Sample records for failure monitoring system

  1. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  2. 40 CFR 49.4166 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...

  3. 40 CFR 49.4166 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...

  4. On possibilities of using global monitoring in effective prevention of tailings storage facilities failures.

    PubMed

    Stefaniak, Katarzyna; Wróżyńska, Magdalena

    2018-02-01

    Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.

  5. Structural health monitoring of wind turbine blades : SE 265 Final Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, W. C.; Jacobs, Laura D.; Rutherford, A. C.

    2006-03-23

    ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repairmore » and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.« less

  6. Triplexer Monitor Design for Failure Detection in FTTH System

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  7. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  8. [Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].

    PubMed

    Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang

    2014-03-01

    In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.

  9. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    NASA Technical Reports Server (NTRS)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  10. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    PubMed

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  11. Disease management: remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors.

    PubMed

    Abraham, William T

    2013-06-01

    Heart failure represents a major public health concern, associated with high rates of morbidity and mortality. A particular focus of contemporary heart failure management is reduction of hospital admission and readmission rates. While optimal medical therapy favourably impacts the natural history of the disease, devices such as cardiac resynchronization therapy devices and implantable cardioverter defibrillators have added incremental value in improving heart failure outcomes. These devices also enable remote patient monitoring via device-based diagnostics. Device-based measurement of physiological parameters, such as intrathoracic impedance and heart rate variability, provide a means to assess risk of worsening heart failure and the possibility of future hospitalization. Beyond this capability, implantable haemodynamic monitors have the potential to direct day-to-day management of heart failure patients to significantly reduce hospitalization rates. The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of heart failure hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial. Observations from a pilot study also support the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial. All these devices depend upon high-intensity remote monitoring for successful detection of parameter deviations and for directing and following therapy.

  12. Failure Prevention of Hydraulic System Based on Oil Contamination

    NASA Astrophysics Data System (ADS)

    Singh, M.; Lathkar, G. S.; Basu, S. K.

    2012-07-01

    Oil contamination is the major source of failure and wear of hydraulic system components. As per literature survey, approximately 70 % of hydraulic system failures are caused by oil contamination. Hence, to operate the hydraulic system reliably, the hydraulic oil should be of perfect condition. This requires a proper `Contamination Management System' which involves monitoring of various parameters like oil viscosity, oil temperature, contamination level etc. A study has been carried out on vehicle mounted hydraulically operated system used for articulation of heavy article, after making the platform levelled with outrigger cylinders. It is observed that by proper monitoring of contamination level, there is considerably increase in reliability, economy in operation and long service life. This also prevents the frequent failure of hydraulic system.

  13. Sensors and systems for space applications: a methodology for developing fault detection, diagnosis, and recovery

    NASA Astrophysics Data System (ADS)

    Edwards, John L.; Beekman, Randy M.; Buchanan, David B.; Farner, Scott; Gershzohn, Gary R.; Khuzadi, Mbuyi; Mikula, D. F.; Nissen, Gerry; Peck, James; Taylor, Shaun

    2007-04-01

    Human space travel is inherently dangerous. Hazardous conditions will exist. Real time health monitoring of critical subsystems is essential for providing a safe abort timeline in the event of a catastrophic subsystem failure. In this paper, we discuss a practical and cost effective process for developing critical subsystem failure detection, diagnosis and response (FDDR). We also present the results of a real time health monitoring simulation of a propellant ullage pressurization subsystem failure. The health monitoring development process identifies hazards, isolates hazard causes, defines software partitioning requirements and quantifies software algorithm development. The process provides a means to establish the number and placement of sensors necessary to provide real time health monitoring. We discuss how health monitoring software tracks subsystem control commands, interprets off-nominal operational sensor data, predicts failure propagation timelines, corroborate failures predictions and formats failure protocol.

  14. On the use of temperature for online condition monitoring of geared systems - A review

    NASA Astrophysics Data System (ADS)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data availablemore » are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.« less

  16. Remote monitoring to Improve long-term prognosis in heart failure patients with implantable cardioverter-defibrillators.

    PubMed

    Ono, Maki; Varma, Niraj

    2017-05-01

    Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.

  17. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  18. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  20. Safety Evaluation of an Automated Remote Monitoring System for Heart Failure in an Urban, Indigent Population.

    PubMed

    Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Hertz, Crystal Coyazo; Guterman, Jeffrey J

    2017-12-01

    Heart Failure (HF) is the most expensive preventable condition, regardless of patient ethnicity, race, socioeconomic status, sex, and insurance status. Remote telemonitoring with timely outpatient care can significantly reduce avoidable HF hospitalizations. Human outreach, the traditional method used for remote monitoring, is effective but costly. Automated systems can potentially provide positive clinical, fiscal, and satisfaction outcomes in chronic disease monitoring. The authors implemented a telephonic HF automated remote monitoring system that utilizes deterministic decision tree logic to identify patients who are at risk of clinical decompensation. This safety study evaluated the degree of clinical concordance between the automated system and traditional human monitoring. This study focused on a broad underserved population and demonstrated a safe, reliable, and inexpensive method of monitoring patients with HF.

  1. Reliable Collection of Real-Time Patient Physiologic Data from less Reliable Networks: a "Monitor of Monitors" System (MoMs).

    PubMed

    Hu, Peter F; Yang, Shiming; Li, Hsiao-Chi; Stansbury, Lynn G; Yang, Fan; Hagegeorge, George; Miller, Catriona; Rock, Peter; Stein, Deborah M; Mackenzie, Colin F

    2017-01-01

    Research and practice based on automated electronic patient monitoring and data collection systems is significantly limited by system down time. We asked whether a triple-redundant Monitor of Monitors System (MoMs) to collect and summarize key information from system-wide data sources could achieve high fault tolerance, early diagnosis of system failure, and improve data collection rates. In our Level I trauma center, patient vital signs(VS) monitors were networked to collect real time patient physiologic data streams from 94 bed units in our various resuscitation, operating, and critical care units. To minimize the impact of server collection failure, three BedMaster® VS servers were used in parallel to collect data from all bed units. To locate and diagnose system failures, we summarized critical information from high throughput datastreams in real-time in a dashboard viewer and compared the before and post MoMs phases to evaluate data collection performance as availability time, active collection rates, and gap duration, occurrence, and categories. Single-server collection rates in the 3-month period before MoMs deployment ranged from 27.8 % to 40.5 % with combined 79.1 % collection rate. Reasons for gaps included collection server failure, software instability, individual bed setting inconsistency, and monitor servicing. In the 6-month post MoMs deployment period, average collection rates were 99.9 %. A triple redundant patient data collection system with real-time diagnostic information summarization and representation improved the reliability of massive clinical data collection to nearly 100 % in a Level I trauma center. Such data collection framework may also increase the automation level of hospital-wise information aggregation for optimal allocation of health care resources.

  2. Estimation procedures to measure and monitor failure rates of components during thermal-vacuum testing

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Kruger, R.

    1980-01-01

    Estimation procedures are described for measuring component failure rates, for comparing the failure rates of two different groups of components, and for formulating confidence intervals for testing hypotheses (based on failure rates) that the two groups perform similarly or differently. Appendix A contains an example of an analysis in which these methods are applied to investigate the characteristics of two groups of spacecraft components. The estimation procedures are adaptable to system level testing and to monitoring failure characteristics in orbit.

  3. Renal function monitoring in heart failure – what is the optimal frequency? A narrative review

    PubMed Central

    Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2017-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643

  4. Automatic patient respiration failure detection system with wireless transmission

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  5. Prognostics using Engineering and Environmental Parameters as Applied to State of Health (SOH) Radionuclide Aerosol Sampler Analyzer (RASA) Real-Time Monitoring

    NASA Astrophysics Data System (ADS)

    Hutchenson, K. D.; Hartley-McBride, S.; Saults, T.; Schmidt, D. P.

    2006-05-01

    The International Monitoring System (IMS) is composed in part of radionuclide particulate and gas monitoring systems. Monitoring the operational status of these systems is an important aspect of nuclear weapon test monitoring. Quality data, process control techniques, and predictive models are necessary to detect and predict system component failures. Predicting failures in advance provides time to mitigate these failures, thus minimizing operational downtime. The Provisional Technical Secretariat (PTS) requires IMS radionuclide systems be operational 95 percent of the time. The United States National Data Center (US NDC) offers contributing components to the IMS. This effort focuses on the initial research and process development using prognostics for monitoring and predicting failures of the RASA two (2) days into the future. The predictions, using time series methods, are input to an expert decision system, called SHADES (State of Health Airflow and Detection Expert System). The results enable personnel to make informed judgments about the health of the RASA system. Data are read from a relational database, processed, and displayed to the user in a GIS as a prototype GUI. This procedure mimics the real time application process that could be implemented as an operational system, This initial proof-of-concept effort developed predictive models focused on RASA components for a single site (USP79). Future work shall include the incorporation of other RASA systems, as well as their environmental conditions that play a significant role in performance. Similarly, SHADES currently accommodates specific component behaviors at this one site. Future work shall also include important environmental variables that play an important part of the prediction algorithms.

  6. Detection of system failures in multi-axes tasks. [pilot monitored instrument approach

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.

  7. Nondestructive evaluation tools and experimental studies for monitoring the health of space propulsion systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1991-01-01

    An overview is given of background and information on space propulsion systems on both the programmatic and technical levels. Feasibility experimental studies indicate that nondestructive evaluation tools such as ultrasonic, eddy current and x-ray may be successfully used to monitor the life limiting failure mechanisms of space propulsion systems. Encouraging results were obtained for monitoring the life limiting failure mechanisms for three space propulsion systems; the degradation of tungsten arcjet and magnetoplasmadynamic electrodes; presence and thickness of spallable electrically conducting molybdenum films in ion thrusters; and the degradation of the catalyst in hydrazine thrusters.

  8. Making intelligent systems team players. A guide to developing intelligent monitoring systems

    NASA Technical Reports Server (NTRS)

    Land, Sherry A.; Malin, Jane T.; Thronesberry, Carroll; Schreckenghost, Debra L.

    1995-01-01

    This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells prospective developers how to determine system requirements, how to build the system through a combined design/development process, and how to solve problems involved in working with real-time data. It explains the relationships among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and validation. It includes suggestions for preparing reference documentation and training users.

  9. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.

  10. Renal function monitoring in heart failure - what is the optimal frequency? A narrative review.

    PubMed

    Al-Naher, Ahmed; Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2018-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication-based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  11. Syndromic surveillance for health information system failures: a feasibility study.

    PubMed

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-05-01

    To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.

  12. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  13. Inductive System Monitors Tasks

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Inductive Monitoring System (IMS) software developed at Ames Research Center uses artificial intelligence and data mining techniques to build system-monitoring knowledge bases from archived or simulated sensor data. This information is then used to detect unusual or anomalous behavior that may indicate an impending system failure. Currently helping analyze data from systems that help fly and maintain the space shuttle and the International Space Station (ISS), the IMS has also been employed by data classes are then used to build a monitoring knowledge base. In real time, IMS performs monitoring functions: determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance. The development of IMS was motivated by the difficulty of producing detailed diagnostic models of some system components due to complexity or unavailability of design information. Successful applications have ranged from real-time monitoring of aircraft engine and control systems to anomaly detection in space shuttle and ISS data. IMS was used on shuttle missions STS-121, STS-115, and STS-116 to search the Wing Leading Edge Impact Detection System (WLEIDS) data for signs of possible damaging impacts during launch. It independently verified findings of the WLEIDS Mission Evaluation Room (MER) analysts and indicated additional points of interest that were subsequently investigated by the MER team. In support of the Exploration Systems Mission Directorate, IMS is being deployed as an anomaly detection tool on ISS mission control consoles in the Johnson Space Center Mission Operations Directorate. IMS has been trained to detect faults in the ISS Control Moment Gyroscope (CMG) systems. In laboratory tests, it has already detected several minor anomalies in real-time CMG data. When tested on archived data, IMS was able to detect precursors of the CMG1 failure nearly 15 hours in advance of the actual failure event. In the Aeronautics Research Mission Directorate, IMS successfully performed real-time engine health analysis. IMS was able to detect simulated failures and actual engine anomalies in an F/A-18 aircraft during the course of 25 test flights. IMS is also being used in colla

  14. Remote monitoring of LED lighting system performance

    NASA Astrophysics Data System (ADS)

    Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.

  15. Investigation of the cross-ship comparison monitoring method of failure detection in the HIMAT RPRV. [digital control techniques using airborne microprocessors

    NASA Technical Reports Server (NTRS)

    Wolf, J. A.

    1978-01-01

    The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.

  16. Continuous ECG Monitoring in Patients With Acute Coronary Syndrome or Heart Failure: EASI Versus Gold Standard.

    PubMed

    Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria

    2018-05-01

    The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.

  17. Rate-based structural health monitoring using permanently installed sensors

    PubMed Central

    2017-01-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of ‘trends’ in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are ‘self-accelerating’ with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine. PMID:28989308

  18. Automation-induced monitoring inefficiency: role of display location.

    PubMed

    Singh, I L; Molloy, R; Parasuraman, R

    1997-01-01

    Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.

  19. Automation-induced monitoring inefficiency: role of display location

    NASA Technical Reports Server (NTRS)

    Singh, I. L.; Molloy, R.; Parasuraman, R.

    1997-01-01

    Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.

  20. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  1. Monitoring the health of power transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.

    This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less

  2. Low-cost failure sensor design and development for water pipeline distribution systems.

    PubMed

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  3. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  4. Syndromic surveillance for health information system failures: a feasibility study

    PubMed Central

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-01-01

    Objective To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. Methods A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. Results In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65–0.85. Conclusions Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures. PMID:23184193

  5. The respiratory system.

    PubMed

    Zifko, U; Chen, R

    1996-10-01

    Neurological disorders frequently contribute to respiratory failure in critically ill patients. They may be the primary reason for the initiation of mechanical ventilation, or may develop later as a secondary complication. Disorders of the central nervous system leading to respiratory failure include metabolic encephalopathies, acute stroke, lesions of the motor cortex and brain-stem respiratory centres, and their descending pathways. Guillan-Barré syndrome, critical illness polyneuropathy and acute quadriplegic myopathy are the more common neuromuscular causes of respiratory failure. Clinical observations and pulmonary function tests are important in monitoring respiratory function. Respiratory electrophysiological studies are useful in the investigation and monitoring of respiratory failure. Transcortical and cervical magnetic stimulation can assess the central respiratory drive, and may be useful in determining the prognosis in ventilated patients, with cervical cord dysfunction. It is also helpful in the assessment of failure to wean, which is often caused by a combination of central and peripheral nervous system disorders. Phrenic nerve conduction studies and needle electromyography of the diaphragm and chest wall muscles are useful to characterize neuropathies and myopathies affecting the diaphragm. Repetitive phrenic nerve stimulation can assess neuromuscular transmission defects. It is important to identify patients at risk of respiratory failure. They should be carefully monitored and mechanical ventilation should be initiated before the development of severe hypoxaemia.

  6. Implantable Hemodynamic Monitoring for Heart Failure Patients.

    PubMed

    Abraham, William T; Perl, Leor

    2017-07-18

    Rates of heart failure hospitalization remain unacceptably high. Such hospitalizations are associated with substantial patient, caregiver, and economic costs. Randomized controlled trials of noninvasive telemedical systems have failed to demonstrate reduced rates of hospitalization. The failure of these technologies may be due to the limitations of the signals measured. Intracardiac and pulmonary artery pressure-guided management has become a focus of hospitalization reduction in heart failure. Early studies using implantable hemodynamic monitors demonstrated the potential of pressure-based heart failure management, whereas subsequent studies confirmed the clinical utility of this approach. One large pivotal trial proved the safety and efficacy of pulmonary artery pressure-guided heart failure management, showing a marked reduction in heart failure hospitalizations in patients randomized to active pressure-guided management. "Next-generation" implantable hemodynamic monitors are in development, and novel approaches for the use of this data promise to expand the use of pressure-guided heart failure management. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide.

    PubMed

    Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu

    2017-12-07

    It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.

  8. Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas

    2006-01-01

    A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.

  9. A failure effects simulation of a low authority flight control augmentation system on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.; Talbot, P. D.

    1977-01-01

    A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison.

  10. 46 CFR 62.25-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... control system; (3) A safety control system, if required by § 62.25-15; (4) Instrumentation to monitor... if instrumentation is not continuously monitored or is inappropriate for detection of a failure or...

  11. 46 CFR 62.25-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... control system; (3) A safety control system, if required by § 62.25-15; (4) Instrumentation to monitor... if instrumentation is not continuously monitored or is inappropriate for detection of a failure or...

  12. 46 CFR 62.25-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... control system; (3) A safety control system, if required by § 62.25-15; (4) Instrumentation to monitor... if instrumentation is not continuously monitored or is inappropriate for detection of a failure or...

  13. 46 CFR 62.25-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... control system; (3) A safety control system, if required by § 62.25-15; (4) Instrumentation to monitor... if instrumentation is not continuously monitored or is inappropriate for detection of a failure or...

  14. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  15. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  16. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  17. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  18. Failure Control Techniques for the SSME

    NASA Technical Reports Server (NTRS)

    Taniguchi, M. H.

    1987-01-01

    Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.

  19. Flood scour monitoring system using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng

    2006-12-01

    The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.

  20. A Remote Patient Monitoring System for Congestive Heart Failure

    PubMed Central

    Suh, Myung-kyung; Chen, Chien-An; Woodbridge, Jonathan; Tu, Michael Kai; Kim, Jung In; Nahapetian, Ani; Evangelista, Lorraine S.; Sarrafzadeh, Majid

    2011-01-01

    Congestive heart failure (CHF) is a leading cause of death in the United States affecting approximately 670,000 individuals. Due to the prevalence of CHF related issues, it is prudent to seek out methodologies that would facilitate the prevention, monitoring, and treatment of heart disease on a daily basis. This paper describes WANDA (Weight and Activity with Blood Pressure Monitoring System); a study that leverages sensor technologies and wireless communications to monitor the health related measurements of patients with CHF. The WANDA system is a three-tier architecture consisting of sensors, web servers, and back-end databases. The system was developed in conjunction with the UCLA School of Nursing and the UCLA Wireless Health Institute to enable early detection of key clinical symptoms indicative of CHF-related decompensation. This study shows that CHF patients monitored by WANDA are less likely to have readings fall outside a healthy range. In addition, WANDA provides a useful feedback system for regulating readings of CHF patients. PMID:21611788

  1. Analysis of Alerting System Failures in Commercial Aviation Accidents

    NASA Technical Reports Server (NTRS)

    Mumaw, Randall J.

    2017-01-01

    The role of an alerting system is to make the system operator (e.g., pilot) aware of an impending hazard or unsafe state so the hazard can be avoided or managed successfully. A review of 46 commercial aviation accidents (between 1998 and 2014) revealed that, in the vast majority of events, either the hazard was not alerted or relevant hazard alerting occurred but failed to aid the flight crew sufficiently. For this set of events, alerting system failures were placed in one of five phases: Detection, Understanding, Action Selection, Prioritization, and Execution. This study also reviewed the evolution of alerting system schemes in commercial aviation, which revealed naive assumptions about pilot reliability in monitoring flight path parameters; specifically, pilot monitoring was assumed to be more effective than it actually is. Examples are provided of the types of alerting system failures that have occurred, and recommendations are provided for alerting system improvements.

  2. Virtual-Instrument-Based Online Monitoring System for Hands-on Laboratory Experiment of Partial Discharges

    ERIC Educational Resources Information Center

    Karmakar, Subrata

    2017-01-01

    Online monitoring of high-voltage (HV) equipment is a vital tool for early detection of insulation failure. Most insulation failures are caused by partial discharges (PDs) inside the HV equipment. Because of the very high cost of establishing HV equipment facility and the limitations of electromagnetic interference-screened laboratories, only a…

  3. Proceedings of the IDA Workshop on Formal Specification and Verification of Ada (Trade Name) (3rd) Held in Research Triangle Park, North Carolina on 14-16 May 1986

    DTIC Science & Technology

    1986-08-01

    sensitivity to software or hardware failures (bit transformation, register perversion, interface failures, etc .) which could cause the system to operate in a...of systems . She pointed to the need for 40 safety concerns in a continually growing number of computer applications (e.g., monitor and/or control of...informal, definition. Finally, the definition is based on the SMoLCS (Structured Monitored Linear Concurrent Systems ) methodology, an approach to the

  4. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  5. Reducing unscheduled plant maintenance delays -- Field test of a new method to predict electric motor failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homce, G.T.; Thalimer, J.R.

    1996-05-01

    Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less

  6. Gerontechnologies for Older Patients with Heart Failure: What is the Role of Smartphones, Tablets, and Remote Monitoring Devices in Improving Symptom Monitoring and Self-Care Management?

    PubMed

    Masterson Creber, Ruth M; Hickey, Kathleen T; Maurer, Mathew S

    2016-10-01

    Older adults with heart failure have multiple chronic conditions and a large number and range of symptoms. A fundamental component of heart failure self-care management is regular symptom monitoring. Symptom monitoring can be facilitated by cost-effective, easily accessible technologies that are integrated into patients' lives. Technologies that are tailored to older adults by incorporating gerontological design principles are called gerontechnologies. Gerontechnology is an interdisciplinary academic and professional field that combines gerontology and technology with the goals of improving prevention, care, and enhancing the quality of life for older adults. The purpose of this article is to discuss the role of gerontechnologies, specifically the use of mobile applications available on smartphones and tablets as well as remote monitoring systems, for outpatient disease management among older adults with heart failure. While largely unproven, these rapidly developing technologies have great potential to improve outcomes among older persons.

  7. Cost-utility analysis of the EVOLVO study on remote monitoring for heart failure patients with implantable defibrillators: randomized controlled trial.

    PubMed

    Zanaboni, Paolo; Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina

    2013-05-30

    Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Two hundred patients implanted with a wireless transmission-enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f).

  8. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  9. Toward Failure Modeling In Complex Dynamic Systems: Impact of Design and Manufacturing Variations

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; McAdams, Daniel A.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes during a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the. modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle vibration monitoring systems.

  10. Attitudes of heart failure patients and health care providers towards mobile phone-based remote monitoring.

    PubMed

    Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J

    2010-11-29

    Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (P< .001). Patients were also confident in using mobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal issues, and difficulty of use for some patients due to lack of visual acuity or manual dexterity.

  11. Monitoring and Follow-up of Chronic Heart Failure: a Literature Review of eHealth Applications and Systems.

    PubMed

    de la Torre Díez, Isabel; Garcia-Zapirain, Begoña; Méndez-Zorrilla, Amaia; López-Coronado, Miguel

    2016-07-01

    In developed countries heart failure is one of the most important causes of death, followed closely by strokes and other cerebrovascular diseases. It is one of the major healthcare issues in terms of increasing number of patients, rate of hospitalizations and costs. The main aim of this paper is to present telemedicine applications for monitoring and follow-up of heart failure and to show how these systems can help reduce costs of administering heart failure. The search for e-health applications and systems in the field of telemonitoring of heart failure was pursued in IEEE Xplore, Science Direct, PubMed and Scopus systems between 2005 and the present time. This search was conducted between May and June 2015, and the articles deemed to be of most interest about treatment, prevention, self-empowerment and stabilization of patients were selected. Over 100 articles about telemonitoring of heart failure have been found in the literature reviewed since 2005, although the most interesting ones have been selected from the scientific standpoint. Many of them show that telemonitoring of patients with a high risk of heart failure is a measure that might help to reduce the risk of suffering from the disease. Following the review conducted, in can be stated that via the research articles analysed that telemonitoring systems can help to reduce the costs of administering heart failure and result in less re-hospitalization of patients.

  12. An evaluation of a real-time fault diagnosis expert system for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.

    1987-01-01

    A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.

  13. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  14. The Utility of a Wireless Implantable Hemodynamic Monitoring System in Patients Requiring Mechanical Circulatory Support.

    PubMed

    Feldman, David S; Moazami, Nader; Adamson, Philip B; Vierecke, Juliane; Raval, Nir; Shreenivas, Satya; Cabuay, Barry M; Jimenez, Javier; Abraham, William T; O'Connell, John B; Naka, Yoshifumi

    Proper timing of left ventricular assist device (LVAD) implantation in advanced heart failure patients is not well established and is an area of intense interest. In addition, optimizing LVAD performance after implantation remains difficult and represents a significant clinical need. Implantable hemodynamic monitoring systems may provide physicians with the physiologic information necessary to improve the timing of LVAD implantation as well as LVAD performance when compared with current methods. The CardioMEMS Heart sensor Allows for Monitoirng of Pressures to Improve Outcomes in NYHA Class III heart failure patients (CHAMPION) Trial enrolled 550 previously hospitalized patients with New York Heart Association (NYHA) class III heart failure. All patients were implanted with a pulmonary artery (PA) pressure monitoring system and randomized to a treatment and control groups. In the treatment group, physicians used the hemodynamic information to make heart failure management decisions. This information was not available to physicians for the control group. During an average of 18 month randomized follow-up, 27 patients required LVAD implantation. At the time of PA pressure sensor implantation, patients ultimately requiring advanced therapy had higher PA pressures, lower systemic pressure, and similar cardiac output measurements. Treatment and control patients in the LVAD subgroup had similar clinical profiles at the time of enrollment. There was a trend toward a shorter length of time to LVAD implantation in the treatment group when hemodynamic information was available. After LVAD implantation, most treatment group patients continued to provide physicians with physiologic information from the hemodynamic monitoring system. As expected PA pressures declined significantly post LVAD implant in all patients, but the magnitude of decline was higher in patients with PA pressure monitoring. Implantable hemodynamic monitoring appeared to improve the timing of LVAD implantation as well as optimize LVAD performance when compared with current methods. Further studies are necessary to evaluate these findings in a prospective manner.

  15. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    NASA Astrophysics Data System (ADS)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  16. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.

    1984-01-01

    Significant improvements in engine readiness with reductions in maintenance costs and turn-around times can be achieved with an engine condition monitoring systems (CMS). The CMS provides health status of critical engine components, without disassembly, through monitoring with advanced sensors. Engine failure reports over 35 years were categorized into 20 different modes of failure. Rotor bearings and turbine blades were determined to be the most critical in limiting turbopump life. Measurement technologies were matched to each of the failure modes identified. Three were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiberoptic deflectometer (bearings), and the fiberoptic pyrometer (blades). Signal processing algorithms were evaluated for their ability to provide useful health data to maintenance personnel. Design modifications to the Space Shuttle Main Engine (SSME) high pressure turbopumps were developed to incorporate the sensors. Laboratory test fixtures have been designed for monitoring the rotor bearings and turbine blades in simulated turbopump operating conditions.

  17. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  18. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  19. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  20. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  1. An artificial intelligence approach to onboard fault monitoring and diagnosis for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Abbott, K. H.

    1986-01-01

    Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.

  2. Fault management for the Space Station Freedom control center

    NASA Technical Reports Server (NTRS)

    Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet

    1992-01-01

    This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.

  3. Real-time automated failure analysis for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  4. A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analytic techniques have been developed for detecting and identifying abrupt changes in dynamic systems. The GLR technique monitors the output of the Kalman filter and searches for the time that the failure occured, thus allowing it to be sensitive to new data and consequently increasing the chances for fast system recovery following detection of a failure. All failure detections are based on functional redundancy. Performance tests of the F-8 aircraft flight control system and computerized modelling of the technique are presented.

  5. Patient engagement with a mobile web-based telemonitoring system for heart failure self-management: a pilot study.

    PubMed

    Zan, Shiyi; Agboola, Stephen; Moore, Stephanie A; Parks, Kimberly A; Kvedar, Joseph C; Jethwani, Kamal

    2015-04-01

    Intensive remote monitoring programs for congestive heart failure have been successful in reducing costly readmissions, but may not be appropriate for all patients. There is an opportunity to leverage the increasing accessibility of mobile technologies and consumer-facing digital devices to empower patients in monitoring their own health outside of the hospital setting. The iGetBetter system, a secure Web- and telephone-based heart failure remote monitoring program, which leverages mobile technology and portable digital devices, offers a creative solution at lower cost. The objective of this pilot study was to evaluate the feasibility of using the iGetBetter system for disease self-management in patients with heart failure. This was a single-arm prospective study in which 21 ambulatory, adult heart failure patients used the intervention for heart failure self-management over a 90-day study period. Patients were instructed to take their weight, blood pressure, and heart rate measurements each morning using a WS-30 bluetooth weight scale, a self-inflating blood pressure cuff (Withings LLC, Issy les Moulineaux, France), and an iPad Mini tablet computer (Apple Inc, Cupertino, CA, USA) equipped with cellular Internet connectivity to view their measurements on the Internet. Outcomes assessed included usability and satisfaction, engagement with the intervention, hospital resource utilization, and heart failure-related quality of life. Descriptive statistics were used to summarize data, and matched controls identified from the electronic medical record were used as comparison for evaluating hospitalizations. There were 20 participants (mean age 53 years) that completed the study. Almost all participants (19/20, 95%) reported feeling more connected to their health care team and more confident in performing care plan activities, and 18/20 (90%) felt better prepared to start discussions about their health with their doctor. Although heart failure-related quality of life improved from baseline, it was not statistically significant (P=.55). Over half of the participants had greater than 80% (72/90 days) weekly and overall engagement with the program, and 15% (3/20) used the interactive voice response telephone system exclusively for managing their care plan. Hospital utilization did not differ in the intervention group compared to the control group (planned hospitalizations P=.23, and unplanned hospitalizations P=.99). Intervention participants recorded shorter average length of hospital stay, but no significant differences were observed between intervention and control groups (P=.30). This pilot study demonstrated the feasibility of a low-intensive remote monitoring program leveraging commonly used mobile and portable consumer devices in augmenting care for a fairly young population of ambulatory patients with heart failure. Further prospective studies with a larger sample size and within more diverse patient populations is necessary to determine the effect of mobile-based remote monitoring programs such as the iGetBetter system on clinical outcomes in heart failure.

  6. Study of Disseminating Landslide Early Warning Information in Malaysia

    NASA Astrophysics Data System (ADS)

    Koay, Swee Peng; Lateh, Habibah; Tien Tay, Lea; Ahamd, Jamilah; Chan, Huah Yong; Sakai, Naoki; Jamaludin, Suhaimi

    2015-04-01

    In Malaysia, rain induced landslides are occurring more often than before. The Malaysian Government allocates millions of Malaysian Ringgit for slope monitoring and slope failure remedial measures in the budget every year. In rural areas, local authorities also play a major role in monitoring the slope to prevent casualty by giving information to the residents who are staying near to the slopes. However, there are thousands of slopes which are classified as high risk slopes in Malaysia. Implementing site monitoring system in these slopes to monitor the movement of the soil in the slopes, predicting the occurrence of slopes failure and establishing early warning system are too costly and almost impossible. In our study, we propose Accumulated Rainfall vs. Rainfall Intensity prediction method to predict the slope failure by referring to the predicted rainfall data from radar and the rain volume from rain gauges. The critical line which determines if the slope is in danger, is generated by simulator with well-surveyed the soil property in the slope and compared with historical data. By establishing such predicting system, the slope failure warning information can be obtained and disseminated to the surroundings via SMS, internet and siren. However, establishing the early warning dissemination system is not enough in disaster prevention, educating school children and the community by giving knowledge on landslides, such as landslide's definition, how and why does the slope failure happen and when will it fail, to raise the risk awareness on landslides will reduce landslides casualty, especially in rural area. Moreover, showing video on the risk and symptom of landslides in school will also help the school children gaining the knowledge of landslides. Generating hazard map and landslides historical data provides further information on the occurrence of the slope failure. In future, further study on fine tuning of landslides prediction method, applying IT technology to educate school children and disseminate warning information will assist the government authorities to reduce landslide casualty by disseminating prompt slope failure warning and improving the community's awareness of disaster prevention.

  7. Cost-Utility Analysis of the EVOLVO Study on Remote Monitoring for Heart Failure Patients With Implantable Defibrillators: Randomized Controlled Trial

    PubMed Central

    Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina

    2013-01-01

    Background Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. Objective We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Methods Two hundred patients implanted with a wireless transmission–enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Results Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Conclusions Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. Trial Registration ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f). PMID:23722666

  8. Dynamic data filtering system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-04-29

    A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.

  9. Examining the Dynamics of Managing Information Systems Development Projects: A Control Loss Perspective

    ERIC Educational Resources Information Center

    Narayanaswamy, Ravi

    2009-01-01

    The failure rate of information systems development (ISD) projects continues to pose a big challenge for organizations. The success rate of ISD projects is less then forty percent. Factors such as disagreements and miscommunications among project manager and team members, poor monitoring and intermediary problems contribute to project failure.…

  10. Automated Iodine Monitoring System Development (AIMS). [shuttle prototype

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The operating principle of the automated iodine monitoring/controller system (AIMS) is described along with several design modifications. The iodine addition system is also discussed along with test setups and calibration; a facsimile of the optical/mechanical portion of the iodine monitor was fabricated and tested. The appendices include information on shuttle prototype AIMS, preliminary prime item development specifications, preliminary failure modes and effects analysis, and preliminary operating and maintenance instructions.

  11. Monitoring of waste disposal in deep geological formations

    NASA Astrophysics Data System (ADS)

    German, V.; Mansurov, V.

    2003-04-01

    In the paper application of kinetic approach for description of rock failure process and waste disposal microseismic monitoring is advanced. On base of two-stage model of failure process the capability of rock fracture is proved. The requests to monitoring system such as real time mode of data registration and processing and its precision range are formulated. The method of failure nuclei delineation in a rock masses is presented. This method is implemented in a software program for strong seismic events forecasting. It is based on direct use of the fracture concentration criterion. The method is applied to the database of microseismic events of the North Ural Bauxite Mine. The results of this application, such as: efficiency, stability, possibility of forecasting rockburst are discussed.

  12. A case study in nonconformance and performance trend analysis

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.; Newton, Coy P.

    1990-01-01

    As part of NASA's effort to develop an agency-wide approach to trend analysis, a pilot nonconformance and performance trending analysis study was conducted on the Space Shuttle auxiliary power unit (APU). The purpose of the study was to (1) demonstrate that nonconformance analysis can be used to identify repeating failures of a specific item (and the associated failure modes and causes) and (2) determine whether performance parameters could be analyzed and monitored to provide an indication of component or system degradation prior to failure. The nonconformance analysis of the APU did identify repeating component failures, which possibly could be reduced if key performance parameters were monitored and analyzed. The performance-trending analysis verified that the characteristics of hardware parameters can be effective in detecting degradation of hardware performance prior to failure.

  13. Efficacy of intrathoracic impedance and remote monitoring in patients with an implantable device after the 2011 great East Japan earthquake.

    PubMed

    Suzuki, Hitoshi; Yamada, Shinya; Kamiyama, Yoshiyuki; Takeishi, Yasuchika

    2014-01-01

    Several studies have revealed that stress after catastrophic disasters can trigger cardiovascular events, however, little is known about its association with the occurrence of heart failure in past earthquakes. The objective of the present study was to determine whether the Great East Japan Earthquake on March 11, 2011, increased the incidence of worsening heart failure in chronic heart failure (CHF) patients with implantable devices. Furthermore, we examined whether intrathoracic impedance using remote monitoring was effective for the management of CHF.We enrolled 44 CHF patients (32 males, mean age 63 ± 12 years) with implantable devices that can check intrathoracic impedance using remote monitoring. We defined the worsening heart failure as accumulated impedance under reference impedance exceeding 60 ohms-days (fluid index threshold), and compared the incidence of worsening heart failure and arrhythmic events 30 days before and after March 11.Within the 30 days after March 11, 10 patients exceeded the threshold compared with only 2 patients in the preceding 30 days (P < 0.05). Although 9 patients using remote monitoring among the 10 patients with threshold crossings were not hospitalized, one patient without the system was hospitalized due to acute decompensated heart failure. On the contrary, arrhythmic events did not change between before and after March 11.Our results suggest that earthquake-induced stress causes an increased risk of worsening heart failure without changes in arrhythmia. Furthermore, intrathoracic impedance using remote monitoring may be a useful tool for the management of CHF in catastrophic disasters.

  14. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  15. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  16. A comparative study of a new wireless continuous cardiorespiratory monitor for the diagnosis and management of patients with congestive heart failure at home.

    PubMed

    Andrews, D; Gouda, M S; Higgins, S; Johnson, P; Williams, A; Vandenburg, M

    2002-01-01

    Congestive heart failure (CHF) is a major and increasing chronic disease in Western society, with a high mortality, morbidity and cost for unplanned hospital admissions. Continuous cardiorespiratory monitoring is required to detect Cheyne-Stokes respiration (CSR). We have tested a new wireless monitoring system and compared it with polysomnography (PSG) and respiratory inductance plethysmography (RIP) in six CHF patients with CSR in a sleep laboratory. The wireless system compared well with RIP for the detection of CSR but less well with PSG, which had unexpected but significant respiratory sensing errors that led to misclassification of the respiratory disorder present. The wireless system could be used to select CHF patients for better-customized treatment at home as part of a specialist-supported community telemedicine programme.

  17. An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction

    ERIC Educational Resources Information Center

    Bhasin, Harpreet

    2011-01-01

    Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…

  18. Integrated medication management in mHealth applications.

    PubMed

    Ebner, Hubert; Modre-Osprian, Robert; Kastner, Peter; Schreier, Günter

    2014-01-01

    Continuous medication monitoring is essential for successful management of heart failure patients. Experiences with the recently established heart failure network HerzMobil Tirol show that medication monitoring limited to heart failure specific drugs could be insufficient, in particular for general practitioners. Additionally, some patients are confused about monitoring only part of their prescribed drugs. Sometimes medication will be changed without informing the responsible physician. As part of the upcoming Austrian electronic health record system ELGA, the eMedication system will collect prescription and dispensing data of drugs and these data will be accessible to authorized healthcare professionals on an inter-institutional level. Therefore, we propose two concepts on integrated medication management in mHealth applications that integrate ELGA eMedication and closed-loop mHealth-based telemonitoring. As a next step, we will implement these concepts and analyze--in a feasibility study--usability and practicability as well as legal aspects with respect to automatic data transfer from the ELGA eMedication service.

  19. A demonstration of an intelligent control system for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.

    1992-01-01

    An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.

  20. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    PubMed

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-03-05

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.

  1. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    PubMed Central

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  2. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  3. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.

    PubMed

    Steinhaus, David; Reynolds, Dwight W; Gadler, Fredrik; Kay, G Neal; Hess, Mike F; Bennett, Tom

    2005-08-01

    Management of congestive heart failure is a serious public health problem. The use of implantable hemodynamic monitors (IHMs) may assist in this management by providing continuous ambulatory filling pressure status for optimal volume management. The Chronicle system includes an implanted monitor, a pressure sensor lead with passive fixation, an external pressure reference (EPR), and data retrieval and viewing components. The tip of the lead is placed near the right ventricular outflow tract to minimize risk of sensor tissue encapsulation. Implant technique and lead placement is similar to that of a permanent pacemaker. After the system had been successfully implanted in 148 patients, the type and frequency of implant-related adverse events were similar to a single-chamber pacemaker implant. R-wave amplitude was 15.2 +/- 6.7 mV and the pressure waveform signal was acceptable in all but two patients in whom presence of artifacts required lead repositioning. Implant procedure time was not influenced by experience, remaining constant throughout the study. Based on this evaluation, permanent placement of an IHM in symptomatic heart failure patients is technically feasible. Further investigation is warranted to evaluate the use of the continuous hemodynamic data in management of heart failure patients.

  4. Performance results of cooperating expert systems in a distributed real-time monitoring system

    NASA Technical Reports Server (NTRS)

    Schwuttke, U. M.; Veregge, J. R.; Quan, A. G.

    1994-01-01

    There are numerous definitions for real-time systems, the most stringent of which involve guaranteeing correct system response within a domain-dependent or situationally defined period of time. For applications such as diagnosis, in which the time required to produce a solution can be non-deterministic, this requirement poses a unique set of challenges in dynamic modification of solution strategy that conforms with maximum possible latencies. However, another definition of real time is relevant in the case of monitoring systems where failure to supply a response in the proper (and often infinitesimal) amount of time allowed does not make the solution less useful (or, in the extreme example of a monitoring system responsible for detecting and deflecting enemy missiles, completely irrelevant). This more casual definition involves responding to data at the same rate at which it is produced, and is more appropriate for monitoring applications with softer real-time constraints, such as interplanetary exploration, which results in massive quantities of data transmitted at the speed of light for a number of hours before it even reaches the monitoring system. The latter definition of real time has been applied to the MARVEL system for automated monitoring and diagnosis of spacecraft telemetry. An early version of this system has been in continuous operational use since it was first deployed in 1989 for the Voyager encounter with Neptune. This system remained under incremental development until 1991 and has been under routine maintenance in operations since then, while continuing to serve as an artificial intelligence (AI) testbed in the laboratory. The system architecture has been designed to facilitate concurrent and cooperative processing by multiple diagnostic expert systems in a hierarchical organization. The diagnostic modules adhere to concepts of data-driven reasoning, constrained but complete nonoverlapping domains, metaknowledge of global consequences of anomalous data, hierarchical reporting of problems that extend beyond a single domain, and shared responsibility for problems that overlap domains. The system enables efficient diagnosis of complex system failures in real-time environments with high data volumes and moderate failure rates, as indicated by extensive performance measurements.

  5. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  6. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alex; Ragaller, Paul; Herman, Andrew

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less

  7. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto

    2014-05-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under simulated conditions of stress and fluid content will be also studied and theoretical modelling will allow to come up with a full hazard assessment and test new methodologies for a much wider scale of applications within EU.

  8. MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment

    PubMed Central

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-01-01

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455

  9. Fault Injection Techniques and Tools

    NASA Technical Reports Server (NTRS)

    Hsueh, Mei-Chen; Tsai, Timothy K.; Iyer, Ravishankar K.

    1997-01-01

    Dependability evaluation involves the study of failures and errors. The destructive nature of a crash and long error latency make it difficult to identify the causes of failures in the operational environment. It is particularly hard to recreate a failure scenario for a large, complex system. To identify and understand potential failures, we use an experiment-based approach for studying the dependability of a system. Such an approach is applied not only during the conception and design phases, but also during the prototype and operational phases. To take an experiment-based approach, we must first understand a system's architecture, structure, and behavior. Specifically, we need to know its tolerance for faults and failures, including its built-in detection and recovery mechanisms, and we need specific instruments and tools to inject faults, create failures or errors, and monitor their effects.

  10. Identification of Bearing Failure Using Signal Vibrations

    NASA Astrophysics Data System (ADS)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  11. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    PubMed

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  12. A multicenter randomized controlled evaluation of automated home monitoring and telephonic disease management in patients recently hospitalized for congestive heart failure: the SPAN-CHF II trial.

    PubMed

    Weintraub, Andrew; Gregory, Douglas; Patel, Ayan R; Levine, Daniel; Venesy, David; Perry, Kathleen; Delano, Christine; Konstam, Marvin A

    2010-04-01

    We performed a prospective, randomized investigation assessing the incremental effect of automated health monitoring (AHM) technology over and above that of a previously described nurse directed heart failure (HF) disease management program. The AHM system measured and transmitted body weight, blood pressure, and heart rate data as well as subjective patient self-assessments via a standard telephone line to a central server. A total of 188 consented and eligible patients were randomized between intervention and control groups in 1:1 ratio. Subjects randomized to the control arm received the Specialized Primary and Networked Care in Heart Failure (SPAN-CHF) heart failure disease management program. Subjects randomized to the intervention arm received the SPAN-CHF disease management program in conjunction with the AHM system. The primary end point was prespecified as the relative event rate of HF hospitalization between intervention and control groups at 90 days. The relative event rate of HF hospitalization for the intervention group compared with controls was 0.50 (95%CI [0.25-0.99], P = .05). Short-term reductions in the heart failure hospitalization rate were associated with the use of automated home monitoring equipment. Long-term benefits in this model remain to be studied. (c) 2010 Elsevier Inc. All rights reserved.

  13. A two-tiered self-powered wireless monitoring system architecture for bridge health management

    NASA Astrophysics Data System (ADS)

    Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward

    2010-04-01

    Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.

  14. Exploration of Drone and Remote Sensing Technologies in Highway Embankment Monitoring and Management (Phase I) : research project capsule.

    DOT National Transportation Integrated Search

    2017-09-01

    Over time, many Louisiana highway embankments have experienced surface sliding failures, a safety issue causing traffic disruptions. Since no advance-warning system is available for these highway embankment failures, the Louisiana Department of Trans...

  15. Towards eradication of inappropriate therapies for ICD lead failure by combining comprehensive remote monitoring and lead noise alerts.

    PubMed

    Ploux, Sylvain; Swerdlow, Charles D; Strik, Marc; Welte, Nicolas; Klotz, Nicolas; Ritter, Philippe; Haïssaguerre, Michel; Bordachar, Pierre

    2018-06-02

    Recognition of implantable cardioverter defibrillator (ICD) lead malfunction before occurrence of life threatening complications is crucial. We aimed to assess the effectiveness of remote monitoring associated or not with a lead noise alert for early detection of ICD lead failure. From October 2013 to April 2017, a median of 1,224 (578-1,958) ICD patients were remotely monitored with comprehensive analysis of all transmitted materials. ICD lead failure and subsequent device interventions were prospectively collected in patients with (RMLN) and without (RM) a lead noise alert (Abbott Secure Sense™ or Medtronic Lead Integrity Alert™) in their remote monitoring system. During a follow-up of 4,457 patient years, 64 lead failures were diagnosed. Sixty-one (95%) of the diagnoses were made before any clinical complication occurred. Inappropriate shocks were delivered in only one patient of each group (3%), with an annual rate of 0.04%. All high voltage conductor failures were identified remotely by a dedicated impedance alert in 10 patients. Pace-sense component failures were correctly identified by a dedicated alert in 77% (17 of 22) of the RMLN group versus 25% (8 of 32) of the RM group (P = 0.002). The absence of a lead noise alert was associated with a 16-fold increase in the likelihood of initiating either a shock or ATP (OR: 16.0, 95% CI 1.8-143.3; P = 0.01). ICD remote monitoring with systematic review of all transmitted data is associated with a very low rate of inappropriate shocks related to lead failure. Dedicated noise alerts further reduce inappropriate detection of ventricular arrhythmias. © 2018 Wiley Periodicals, Inc.

  16. Reliability of biologic indicators in a mail-return sterilization-monitoring service: a review of 3 years.

    PubMed

    Andrés, M T; Tejerina, J M; Fierro, J F

    1995-12-01

    Most mail-return sterilization-monitoring services use spore strips to test sterilizers in dental clinics, but factors such as delay caused by mailing to the laboratory could cause false negatives. The aims of this study were to determine the influence of poststerilization time and temperature on the biologic indicator recovery system and to evaluate sterilization failure and its possible causes in dental clinics subscribing to a mail-return sterilization-monitoring service. Spore strips used in independent tests revealed the poststerilization time and temperature after a 7-day delay to have no significant influence. Sixty-six dental clinics that received quarterly biologic indicators to evaluate the effectiveness of their sterilizers had sterilization failure rates of 28.7% in 1992, 18.1% in 1993, and 9.1% in 1994, a statistically significant decrease in sterilization failure during the 3-year period. The usual causes of failure were operator error in wrapping of instruments, loading, operating temperature, or exposure time.

  17. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  18. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  19. Program evaluation of remote heart failure monitoring: healthcare utilization analysis in a rural regional medical center.

    PubMed

    Riley, William T; Keberlein, Pamela; Sorenson, Gigi; Mohler, Sailor; Tye, Blake; Ramirez, A Susana; Carroll, Mark

    2015-03-01

    Remote monitoring for heart failure (HF) has had mixed and heterogeneous effects across studies, necessitating further evaluation of remote monitoring systems within specific healthcare systems and their patient populations. "Care Beyond Walls and Wires," a wireless remote monitoring program to facilitate patient and care team co-management of HF patients, served by a rural regional medical center, provided the opportunity to evaluate the effects of this program on healthcare utilization. Fifty HF patients admitted to Flagstaff Medical Center (Flagstaff, AZ) participated in the project. Many of these patients lived in underserved and rural communities, including Native American reservations. Enrolled patients received mobile, broadband-enabled remote monitoring devices. A matched cohort was identified for comparison. HF patients enrolled in this program showed substantial and statistically significant reductions in healthcare utilization during the 6 months following enrollment, and these reductions were significantly greater compared with those who declined to participate but not when compared with a matched cohort. The findings from this project indicate that a remote HF monitoring program can be successfully implemented in a rural, underserved area. Reductions in healthcare utilization were observed among program participants, but reductions were also observed among a matched cohort, illustrating the need for rigorous assessment of the effects of HF remote monitoring programs in healthcare systems.

  20. FIREMON: Fire effects monitoring and inventory system

    Treesearch

    Duncan C. Lutes; Robert E. Keane; John F. Caratti; Carl H. Key; Nathan C. Benson; Steve Sutherland; Larry J. Gangi

    2006-01-01

    Monitoring and inventory to assess the effects of wildland fire is critical for 1) documenting fire effects, 2) assessing ecosystem damage and benefit, 3) evaluating the success or failure of a burn, and 4) appraising the potential for future treatments. However, monitoring fire effects is often difficult because data collection requires abundant funds, resources, and...

  1. Remote Health Monitoring for Older Adults and Those with Heart Failure: Adherence and System Usability.

    PubMed

    Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth

    2016-06-01

    Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.

  2. Cost-Effectiveness of Remote Cardiac Monitoring With the CardioMEMS Heart Failure System.

    PubMed

    Schmier, Jordana K; Ong, Kevin L; Fonarow, Gregg C

    2017-07-01

    Heart failure (HF) is a leading cause of cardiovascular mortality in the United States and presents a substantial economic burden. A recently approved implantable wireless pulmonary artery pressure remote monitor, the CardioMEMS HF System, has been shown to be effective in reducing hospitalizations among New York Heart Association (NYHA) class III HF patients. The objective of this study was to estimate the cost-effectiveness of this remote monitoring technology compared to standard of care treatment for HF. A Markov cohort model relying on the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) clinical trial for mortality and hospitalization data, published sources for cost data, and a mix of CHAMPION data and published sources for utility data, was developed. The model compares outcomes over 5 years for implanted vs standard of care patients, allowing patients to accrue costs and utilities while they remain alive. Sensitivity analyses explored uncertainty in input parameters. The CardioMEMS HF System was found to be cost-effective, with an incremental cost-effectiveness ratio of $44,832 per quality-adjusted life year (QALY). Sensitivity analysis found the model was sensitive to the device cost and to whether mortality benefits were sustained, although there were no scenarios in which the cost/QALY exceeded $100,000. Compared with standard of care, the CardioMEMS HF System was cost-effective when leveraging trial data to populate the model. © 2017 Wiley Periodicals, Inc.

  3. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  4. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    NASA Technical Reports Server (NTRS)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  5. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  6. 46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...

  7. 46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...

  8. 46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...

  9. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems with many interacting mechanical elements such as the fiber bundle model (FBM). We highlight intrinsic links between AE characteristics and established statistical models often used in structural engineering and material sciences, and outline potential applications for failure prediction and early-warning using the AE method in combination with the FBM. The biggest challenge to application of the AE method for field applications is strong signal attenuation. We provide an outlook for overcoming such limitations considering emergence of a class of fiber-optic based distributed AE sensors and deployment of acoustic waveguides as part of monitoring networks.

  10. Predictive modeling for corrective maintenance of imaging devices from machine logs.

    PubMed

    Patil, Ravindra B; Patil, Meru A; Ravi, Vidya; Naik, Sarif

    2017-07-01

    In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.

  11. PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs

    DTIC Science & Technology

    2011-09-01

    PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs R. J. WERLINK...number. 1. REPORT DATE SEP 2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE PZT Active Frequency Based Wind Blade Fatigue ...18 Abstract: This paper summarizes NASA PZT Health Monitoring System results previously reported for 9 meter blade Fatigue loading to failure

  12. Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance

    PubMed Central

    Ritzema, Jay; Eigler, Neal L.; Melton, Iain C.; Krum, Henry; Adamson, Philip B.; Kar, Saibal; Shah, Prediman K.; Whiting, James S.; Heywood, J. Thomas; Rosero, Spencer; Singh, Jagmeet P.; Saxon, Leslie; Matthews, Ray; Crozier, Ian G.; Abraham, William T.

    2010-01-01

    We report the stability, accuracy, and development history of a new left atrial pressure (LAP) sensing system in ambulatory heart failure (HF) patients. A total of 84 patients with advanced HF underwent percutaneous transseptal implantation of the pressure sensor. Quarterly noninvasive calibration by modified Valsalva maneuver was achieved in all patients, and 96.5% of calibration sessions were successful with a reproducibility of 1.2 mmHg. Absolute sensor drift was maximal after 3 months at 4.7 mmHg (95% CI, 3.2–6.2 mmHg) and remained stable through 48 months. LAP was highly correlated with simultaneous pulmonary wedge pressure at 3 and 12 months (r = 0.98, average difference of 0.8 ± 4.0 mmHg). Freedom from device failure was 95% (n = 37) at 2 years and 88% (n = 12) at 4 years. Causes of failure were identified and mitigated with 100% freedom from device failure and less severe anomalies in the last 41 consecutive patients (p = 0.005). Accurate and reliable LAP measurement using a chronic implanted monitoring system is safe and feasible in patients with advanced heart failure. PMID:20945124

  13. Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF).

    PubMed

    Angermann, Christiane E; Assmus, Birgit; Anker, Stefan D; Brachmann, Johannes; Ertl, Georg; Köhler, Friedrich; Rosenkranz, Stephan; Tschöpe, Carsten; Adamson, Philip B; Böhm, Michael

    2018-05-19

    Wireless monitoring of pulmonary artery (PA) pressures with the CardioMEMS HF™ system is indicated in patients with New York Heart Association (NYHA) class III heart failure (HF). Randomized and observational trials have shown a reduction in HF-related hospitalizations and improved quality of life in patients using this device in the United States. MEMS-HF is a prospective, non-randomized, open-label, multicenter study to characterize safety and feasibility of using remote PA pressure monitoring in a real-world setting in Germany, The Netherlands and Ireland. After informed consent, adult patients with NYHA class III HF and a recent HF-related hospitalization are evaluated for suitability for permanent implantation of a CardioMEMS™ sensor. Participation in MEMS-HF is open to qualifying subjects regardless of left ventricular ejection fraction (LVEF). Patients with reduced ejection fraction must be on stable guideline-directed pharmacotherapy as tolerated. The study will enroll 230 patients in approximately 35 centers. Expected duration is 36 months (24-month enrolment plus ≥ 12-month follow-up). Primary endpoints are freedom from device/system-related complications and freedom from pressure sensor failure at 12-month post-implant. Secondary endpoints include the annualized rate of HF-related hospitalization at 12 months versus the rate over the 12 months preceding implant, and health-related quality of life. Endpoints will be evaluated using data obtained after each subject's 12-month visit. The MEMS-HF study will provide robust evidence on the clinical safety and feasibility of implementing haemodynamic monitoring as a novel disease management tool in routine out-patient care in selected European healthcare systems. ClinicalTrials.gov; NCT02693691.

  14. Rate of occurrence of failures based on a nonhomogeneous Poisson process: an ozone analyzer case study.

    PubMed

    de Moura Xavier, José Carlos; de Andrade Azevedo, Irany; de Sousa Junior, Wilson Cabral; Nishikawa, Augusto

    2013-02-01

    Atmospheric pollutant monitoring constitutes a primordial activity in public policies concerning air quality. In São Paulo State, Brazil, the São Paulo State Environment Company (CETESB) maintains an automatic network which continuously monitors CO, SO(2), NO(x), O(3), and particulate matter concentrations in the air. The monitoring process accuracy is a fundamental condition for the actions to be taken by CETESB. As one of the support systems, a preventive maintenance program for the different analyzers used is part of the data quality strategy. Knowledge of the behavior of analyzer failure times could help optimize the program. To achieve this goal, the failure times of an ozone analyzer-considered a repairable system-were modeled by means of the nonhomogeneous Poisson process. The rate of occurrence of failures (ROCOF) was estimated for the intervals 0-70,800 h and 0-88,320 h, in which six and seven failures were observed, respectively. The results showed that the ROCOF estimate is influenced by the choice of the observation period, t(0) = 70,800 h and t(7) = 88,320 h in the cases analyzed. Identification of preventive maintenance actions, mainly when parts replacement occurs in the last interval of observation, is highlighted, justifying the alteration in the behavior of the inter-arrival times. The performance of a follow-up on each analyzer is recommended in order to record the impact of the performed preventive maintenance program on the enhancement of its useful life.

  15. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  16. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    PubMed Central

    Prieto, Miguel J.; Pernía, Alberto M.; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J.

    2014-01-01

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs. PMID:24487622

  17. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment.

    PubMed

    Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex

    Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Design and fabrication of prototype system for early warning of impending bearing failure

    NASA Technical Reports Server (NTRS)

    Meacher, J.; Chen, H. M.

    1974-01-01

    A test program was conducted with the objective of developing a method and equipment for on-line monitoring of installed ball bearings to detect deterioration or impending failure of the bearings. The program was directed at the spin-axis bearings of a control moment gyro. The bearings were tested at speeds of 6000 and 8000 rpm, thrust loads from 50 to 1000 pounds, with a wide range of lubrication conditions, with and without a simulated fatigue spall implanted in the inner race ball track. It was concluded that a bearing monitor system based on detection and analysis of modulations of a fault indicating bearing resonance frequency can provide a low threshold of sensitivity.

  19. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  20. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  1. Remote monitoring of heart failure: benefits for therapeutic decision making.

    PubMed

    Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas

    2017-07-01

    Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.

  2. Spacecraft dynamics characterization and control system failure detection. Volume 3: Control system failure monitoring

    NASA Technical Reports Server (NTRS)

    Vanschalkwyk, Christiaan M.

    1992-01-01

    We discuss the application of Generalized Parity Relations to two experimental flexible space structures, the NASA Langley Mini-Mast and Marshall Space Flight Center ACES mast. We concentrate on the generation of residuals and make no attempt to implement the Decision Function. It should be clear from the examples that are presented whether it would be possible to detect the failure of a specific component. We derive the equations from Generalized Parity Relations. Two special cases are treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Generalized Parity Relations for actuators are also derived. The NASA Langley Mini-Mast and the application of SSPR and DSPR to a set of displacement sensors located at the tip of the Mini-Mast are discussed. The performance of a reduced order model that includes the first five models of the mast is compared to a set of parity relations that was identified on a set of input-output data. Both time domain and frequency domain comparisons are made. The effect of the sampling period and model order on the performance of the Residual Generators are also discussed. Failure detection experiments where the sensor set consisted of two gyros and an accelerometer are presented. The effects of model order and sampling frequency are again illustrated. The detection of actuator failures is discussed. We use Generalized Parity Relations to monitor control system component failures on the ACES mast. An overview is given of the Failure Detection Filter and experimental results are discussed. Conclusions and directions for future research are given.

  3. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    NASA Astrophysics Data System (ADS)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  4. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  5. Knowledge representation and user interface concepts to support mixed-initiative diagnosis

    NASA Technical Reports Server (NTRS)

    Sobelman, Beverly H.; Holtzblatt, Lester J.

    1989-01-01

    The Remote Maintenance Monitoring System (RMMS) provides automated support for the maintenance and repair of ModComp computer systems used in the Launch Processing System (LPS) at Kennedy Space Center. RMMS supports manual and automated diagnosis of intermittent hardware failures, providing an efficient means for accessing and analyzing the data generated by catastrophic failure recovery procedures. This paper describes the design and functionality of the user interface for interactive analysis of memory dump data, relating it to the underlying declarative representation of memory dumps.

  6. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less

  7. Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszowiec, Piotr, E-mail: olpio@o2.pl

    The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.

  8. Device monitoring strategies in acute heart failure syndromes.

    PubMed

    Samara, Michael A; Tang, W H Wilson

    2011-09-01

    Acute heart failure syndromes (AHFS) represent the most common discharge diagnoses in adults over age 65 and translate into dramatically increased heart failure-associated morbidity and mortality. Conventional approaches to the early detection of pulmonary and systemic congestion have been shown to be of limited sensitivity. Despite their proven efficacy, disease management and structured telephone support programs have failed to achieve widespread use in part due to their resource intensiveness and reliance upon motivated patients. While once thought to hold great promise, results from recent prospective studies on telemonitoring strategies have proven disappointing. Implantable devices with their capacity to monitor electrophysiologic and hemodynamic parameters over long periods of time and with minimal reliance on patient participation may provide solutions to some of these problems. Conventional electrophysiologic parameters and intrathoracic impedance data are currently available in the growing population of heart failure patients with equipped devices. A variety of implantable hemodynamic monitors are currently under investigation. How best to integrate these devices into a systematic approach to the management of patients before, during, and after AHFS is yet to be established.

  9. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  10. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    PubMed Central

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635

  11. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F [Bloomfield, CT; Harmon, Daryl L [Enfield, CT; Colin, Dreyfuss [Enfield, CT

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  12. 40 CFR 63.820 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring... activity or event that could have been foreseen and avoided, or planned for; and were not part of a... ambient air quality, the environment, and human health; (vi) All emissions monitoring and control systems...

  13. 40 CFR 63.820 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring... activity or event that could have been foreseen and avoided, or planned for; and were not part of a... ambient air quality, the environment, and human health; (vi) All emissions monitoring and control systems...

  14. 40 CFR 63.820 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring... activity or event that could have been foreseen and avoided, or planned for; and were not part of a... ambient air quality, the environment, and human health; (vi) All emissions monitoring and control systems...

  15. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  16. Mechanical systems readiness assessment and performance monitoring study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The problem of mechanical devices which lack the real-time readiness assessment and performance monitoring capability required for future space missions is studied. The results of a test program to establish the feasibility of implementing structure borne acoustics, a nondestructive test technique, are described. The program included the monitoring of operational acoustic signatures of five separate mechanical components, each possessing distinct sound characteristics. Acoustic signatures were established for normal operation of each component. Critical failure modes were then inserted into the test components, and faulted acoustic signatures obtained. Predominant features of the sound signature were related back to operational events occurring within the components both for normal and failure mode operations. All of these steps can be automated. The structure borne acoustics technique lends itself to reducing checkout time, simplifying maintenance procedures, and reducing manual involvement in the checkout, operation, maintenance, and fault diagnosis of mechanical systems.

  17. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.

  18. Tribology symposium -- 1994. PD-Volume 61

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masudi, H.

    This year marks the first Tribology Symposium within the Energy-Sources Technology Conference, sponsored by the ASME Petroleum Division. The program was divided into five sessions: Tribology in High Technology, a historical discussion of some watershed events in tribology; Research/Development, design, research and development on modern manufacturing; Tribology in Manufacturing, the impact of tribology on modern manufacturing; Design/Design Representation, aspects of design related to tribological systems; and Failure Analysis, an analysis of failure, failure detection, and failure monitoring as relating to manufacturing processes. Eleven papers have been processed separately for inclusion on the data base.

  19. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  20. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  1. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  2. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  3. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  4. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less

  5. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  6. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    NASA Astrophysics Data System (ADS)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  7. Accidental Beam Losses and Protection in the LHC

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  8. A mobile system for the improvement of heart failure management: Evaluation of a prototype.

    PubMed

    Haynes, Sarah C; Kim, Katherine K

    2017-01-01

    Management of heart failure is complex, often involving interaction with multiple providers, monitoring of symptoms, and numerous medications. Employing principles of user-centered design, we developed a high- fidelity prototype of a mobile system for heart failure self-management and care coordination. Participants, including both heart failure patients and health care providers, tested the mobile system during a one-hour one-on-one session with a facilitator. The facilitator interviewed participants about the strengths and weaknesses of the prototype, necessary features, and willingness to use the technology. We performed a qualitative content analysis using the transcripts of these interviews. Fourteen distinct themes were identified in the analysis. Of these themes, integration, technology literacy, memory, and organization were the most common. Privacy was the least common theme. Our study suggests that this integration is essential for adoption of a mobile system for chronic disease management and care coordination.

  9. Control system failure monitoring using generalized parity relations. M.S. Thesis Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Vanschalkwyk, Christiaan Mauritz

    1991-01-01

    Many applications require that a control system must be tolerant to the failure of its components. This is especially true for large space-based systems that must work unattended and with long periods between maintenance. Fault tolerance can be obtained by detecting the failure of the control system component, determining which component has failed, and reconfiguring the system so that the failed component is isolated from the controller. Component failure detection experiments that were conducted on an experimental space structure, the NASA Langley Mini-Mast are presented. Two methodologies for failure detection and isolation (FDI) exist that do not require the specification of failure modes and are applicable to both actuators and sensors. These methods are known as the Failure Detection Filter and the method of Generalized Parity Relations. The latter method was applied to three different sensor types on the Mini-Mast. Failures were simulated in input-output data that were recorded during operation of the Mini-Mast. Both single and double sensor parity relations were tested and the effect of several design parameters on the performance of these relations is discussed. The detection of actuator failures is also treated. It is shown that in all the cases it is possible to identify the parity relations directly from input-output data. Frequency domain analysis is used to explain the behavior of the parity relations.

  10. Flight-deck automation - Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.

  11. Comprehensive in-hospital monitoring in acute heart failure: applications for clinical practice and future directions for research. A statement from the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).

    PubMed

    Harjola, Veli-Pekka; Parissis, John; Brunner-La Rocca, Hans-Peter; Čelutkienė, Jelena; Chioncel, Ovidiu; Collins, Sean P; De Backer, Daniel; Filippatos, Gerasimos S; Gayat, Etienne; Hill, Loreena; Lainscak, Mitja; Lassus, Johan; Masip, Josep; Mebazaa, Alexandre; Miró, Òscar; Mortara, Andrea; Mueller, Christian; Mullens, Wilfried; Nieminen, Markku S; Rudiger, Alain; Ruschitzka, Frank; Seferovic, Petar M; Sionis, Alessandro; Vieillard-Baron, Antoine; Weinstein, Jean Marc; de Boer, Rudolf A; Crespo Leiro, Maria G; Piepoli, Massimo; Riley, Jillian P

    2018-04-30

    This paper provides a practical clinical application of guideline recommendations relating to the inpatient monitoring of patients with acute heart failure, through the evaluation of various clinical, biomarker, imaging, invasive and non-invasive approaches. Comprehensive inpatient monitoring is crucial to the optimal management of acute heart failure patients. The European Society of Cardiology heart failure guidelines provide recommendations for the inpatient monitoring of acute heart failure, but the level of evidence underpinning most recommendations is limited. Many tools are available for the in-hospital monitoring of patients with acute heart failure, and each plays a role at various points throughout the patient's treatment course, including the emergency department, intensive care or coronary care unit, and the general ward. Clinical judgment is the preeminent factor guiding application of inpatient monitoring tools, as the various techniques have different patient population targets. When applied appropriately, these techniques enable decision making. However, there is limited evidence demonstrating that implementation of these tools improves patient outcome. Research priorities are identified to address these gaps in evidence. Future research initiatives should aim to identify the optimal in-hospital monitoring strategies that decrease morbidity and prolong survival in patients with acute heart failure. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.

  12. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    PubMed Central

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-01-01

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique. PMID:27517931

  13. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    PubMed

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  14. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  15. Intrathoracic impedance monitor alarm in a patient with cardiac resynchronisation therapy and advanced lung carcinoma.

    PubMed

    Cvijić, Marta; Zižek, David; Antolič, Bor; Zupan, Igor

    2013-01-01

    The intrathoracic impedance monitor system measures impedance between the device case and the right ventricular coil and reflects intrathoracic fluid status. It is used to detect early volume overload in patients with chronic heart failure. We report a case of inappropriate activation of the intrathoracic impedance monitor alarm in a patient with epidermoid lung cancer and pleural carcinosis.

  16. A flexible home monitoring platform for patients affected by chronic heart failure directly integrated with the remote Hospital Information System

    NASA Astrophysics Data System (ADS)

    Donati, Massimiliano; Bacchillone, Tony; Saponara, Sergio; Fanucci, Luca

    2011-05-01

    Today Chronic Heart Failure (CHF) represents one of leading cause of hospitalization among chronic disease, especially for elderly citizens, with a consequent considerable impact on patient quality of life, resources congestion and healthcare costs for the National Sanitary System. The current healthcare model is mostly in-hospital based and consists of periodic visits, but unfortunately it does not allow to promptly detect exacerbations resulting in a large number of rehospitalization. Recently physicians and administrators identify telemonitoring systems as a strategy able to provide effective and cost efficient healthcare services for CHF patients, ensuring early diagnosis and treatments in case of necessity. This work presents a complete and integrated ICT solution to improve the management of chronic heart failure through the remote monitoring of vital signs at patient home, able to connect in-hospital care of acute syndrome with out-of-hospital follow-up. The proposed platform represents the patient's interface, acting as link between biomedical sensors and the data collection point at the Hospital Information System (HIS) in order to handle in transparent way the reception, analysis and forwarding of the main physiological parameters.

  17. Transportation monitoring unit qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Transportation monitoring unit (TMU) qualification testing was performed between 3 Mar. and 14 Dec. 1989. The purpose of the testing was to qualify the TMUs to monitor and store temperature and acceleration data on redesigned solid rocket motor segments and exit cones while they are being shipped from Utah's Thiokol Corporation, Space Operations, to Kennedy Space Center. TMUs were subjected to transportation tests that concerned the structural integrity of the TMUs only, and did not involve TMU measuring capability. This testing was terminated prior to completion due to mounting plate failures, high and low temperature shutdown failures, and data collection errors. Corrective actions taken by the vendor to eliminate high temperature shutdowns were ineffective. An evaluation was performed on the TMUs to determine the TMU vibration and temperature measuring accuracy at a variety of temperatures. This test demonstrated that TMU measured shock levels are high, and that TMUs are temperature sensitive because of decreased accuracy at high and low temperatures. It was determined that modifications to the current TMU system, such that it could be qualified for use, would require a complete redesign and remanufacture. Because the cost of redesigning and remanufacturing the present TMU system exceeds the cost of procuring a new system that could be qualified without modification, it is recommended that an alternate transportation monitoring system be qualified.

  18. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  19. Microfluidic Liquid-Liquid Contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcculloch, Quinn

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  20. Selective monitoring

    NASA Astrophysics Data System (ADS)

    Homem-de-Mello, Luiz S.

    1992-04-01

    While in NASA's earlier space missions such as Voyager the number of sensors was in the hundreds, future platforms such as the Space Station Freedom will have tens of thousands sensors. For these planned missions it will be impossible to use the comprehensive monitoring strategy that was used in the past in which human operators monitored all sensors all the time. A selective monitoring strategy must be substituted for the current comprehensive strategy. This selective monitoring strategy uses computer tools to preprocess the incoming data and direct the operators' attention to the most critical parts of the physical system at any given time. There are several techniques that can be used to preprocess the incoming information. This paper presents an approach to using diagnostic reasoning techniques to preprocess the sensor data and detect which parts of the physical system require more attention because components have failed or are most likely to have failed. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that assertions can be made from instantaneous measurements. And the system must be such that changes are slow enough to allow the computation.

  1. Operational modes, health, and status monitoring

    NASA Astrophysics Data System (ADS)

    Taljaard, Corrie

    2016-08-01

    System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.

  2. SDI satellite autonomy using AI and Ada

    NASA Technical Reports Server (NTRS)

    Fiala, Harvey E.

    1990-01-01

    The use of Artificial Intelligence (AI) and the programming language Ada to help a satellite recover from selected failures that could lead to mission failure are described. An unmanned satellite will have a separate AI subsystem running in parallel with the normal satellite subsystems. A satellite monitoring subsystem (SMS), under the control of a blackboard system, will continuously monitor selected satellite subsystems to become alert to any actual or potential problems. In the case of loss of communications with the earth or the home base, the satellite will go into a survival mode to reestablish communications with the earth. The use of an AI subsystem in this manner would have avoided the tragic loss of the two recent Soviet probes that were sent to investigate the planet Mars and its moons. The blackboard system works in conjunction with an SMS and a reconfiguration control subsystem (RCS). It can be shown to be an effective way for one central control subsystem to monitor and coordinate the activities and loads of many interacting subsystems that may or may not contain redundant and/or fault-tolerant elements. The blackboard system will be coded in Ada using tools such as the ABLE development system and the Ada Production system.

  3. Operational considerations in monitoring oxygen levels at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1985-01-01

    Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.

  4. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    NASA Technical Reports Server (NTRS)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  5. Failure analysis in the identification of synergies between cleaning monitoring methods.

    PubMed

    Whiteley, Greg S; Derry, Chris; Glasbey, Trevor

    2015-02-01

    The 4 monitoring methods used to manage the quality assurance of cleaning outcomes within health care settings are visual inspection, microbial recovery, fluorescent marker assessment, and rapid ATP bioluminometry. These methods each generate different types of information, presenting a challenge to the successful integration of monitoring results. A systematic approach to safety and quality control can be used to interrogate the known qualities of cleaning monitoring methods and provide a prospective management tool for infection control professionals. We investigated the use of failure mode and effects analysis (FMEA) for measuring failure risk arising through each cleaning monitoring method. FMEA uses existing data in a structured risk assessment tool that identifies weaknesses in products or processes. Our FMEA approach used the literature and a small experienced team to construct a series of analyses to investigate the cleaning monitoring methods in a way that minimized identified failure risks. FMEA applied to each of the cleaning monitoring methods revealed failure modes for each. The combined use of cleaning monitoring methods in sequence is preferable to their use in isolation. When these 4 cleaning monitoring methods are used in combination in a logical sequence, the failure modes noted for any 1 can be complemented by the strengths of the alternatives, thereby circumventing the risk of failure of any individual cleaning monitoring method. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. How to avoid the ten most frequent EMS pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, W.

    1982-04-19

    It pays to do your homework before investing in an energy management system if you want to avoid the 10 most common pitfalls listed by users, consultants, and manufacturers as: oversimplification, improper maintenance, failure to involve operating personnel, inaccurate savings estimates, failure to include monitoring capability, incompetent or fradulent firms, improper load control, not allowing for a de-bugging period, failure to include manual override, and software problems. The article describes how each of these pitfalls can lead to poor decisions and poor results. (DCK)

  7. The Management and Security Expert (MASE)

    NASA Technical Reports Server (NTRS)

    Miller, Mark D.; Barr, Stanley J.; Gryphon, Coranth D.; Keegan, Jeff; Kniker, Catherine A.; Krolak, Patrick D.

    1991-01-01

    The Management and Security Expert (MASE) is a distributed expert system that monitors the operating systems and applications of a network. It is capable of gleaning the information provided by the different operating systems in order to optimize hardware and software performance; recognize potential hardware and/or software failure, and either repair the problem before it becomes an emergency, or notify the systems manager of the problem; and monitor applications and known security holes for indications of an intruder or virus. MASE can eradicate much of the guess work of system management.

  8. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  9. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring

    PubMed Central

    Hu, Hai-Feng

    2018-01-01

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175

  10. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.

    PubMed

    Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng

    2018-04-05

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.

  11. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  12. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  13. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  14. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  15. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that failure mechanisms documented by passive monitoring of hydraulic fractures may contain a significant component of tensile failure, including fracture opening and closing, although creation of extensive new fracture surfaces may be a seismically inefficient process that radiates at sub-audio frequencies.

  16. A Comprehensive Availability Modeling and Analysis of a Virtualized Servers System Using Stochastic Reward Nets

    PubMed Central

    Kim, Dong Seong; Park, Jong Sou

    2014-01-01

    It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732

  17. Monitoring SLAC High Performance UNIX Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia.more » Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.« less

  18. Using process groups to implement failure detection in asynchronous environments

    NASA Technical Reports Server (NTRS)

    Ricciardi, Aleta M.; Birman, Kenneth P.

    1991-01-01

    Agreement on the membership of a group of processes in a distributed system is a basic problem that arises in a wide range of applications. Such groups occur when a set of processes cooperate to perform some task, share memory, monitor one another, subdivide a computation, and so forth. The group membership problems is discussed as it relates to failure detection in asynchronous, distributed systems. A rigorous, formal specification for group membership is presented under this interpretation. A solution is then presented for this problem.

  19. Study of Landslide Disaster Prevention System in Malaysia as a Disaster Mitigation Prototype for South East Asia Countries

    NASA Astrophysics Data System (ADS)

    Koay, Swee Peng; Fukuoka, Hiroshi; Tien Tay, Lea; Murakami, Satoshi; Koyama, Tomofumi; Chan, Huah Yong; Sakai, Naoki; Hazarika, Hemanta; Jamaludin, Suhaimi; Lateh, Habibah

    2016-04-01

    Every year, hundreds of landslides occur in Malaysia and other tropical monsoon South East Asia countries. Therefore, prevention casualties and economical losses, by rain induced slope failure, are those countries government most important agenda. In Malaysia, millions of Malaysian Ringgit are allocated for slope monitoring and mitigation in every year budget. Besides monitoring the slopes, here, we propose the IT system which provides hazard map information, landslide historical information, slope failure prediction, knowledge on natural hazard, and information on evacuation centres via internet for user to understand the risk of landslides as well as flood. Moreover, the user can obtain information on rainfall intensity in the monitoring sites to predict the occurrence of the slope failure. Furthermore, we are working with PWD, Malaysia to set the threshold value for the landslide prediction system which will alert the officer if there is a risk of the slope failure in the monitoring sites by calculating rainfall intensity. Although the IT plays a significant role in information dissemination, education is also important in disaster prevention by educating school students to be more alert in natural hazard, and there will be bottom up approach to alert parents on what is natural hazard, by conversion among family members, as most of the parents are busy and may not have time to attend natural hazard workshop. There are many races living in Malaysia as well in most of South East Asia countries. It is not easy to educate them in single education method as the level of living and education are different. We started landslides education workshops in primary schools in rural and urban area, in Malaysia. We found out that we have to use their mother tongue language while conducting natural hazard education for better understanding. We took questionnaires from the students before and after the education workshop. Learning from the questionnaire result, the students are more alert on natural disaster then before, after attending the workshop.

  20. Wireless health monitoring of cracks in structures with MEMS-IDT sensors

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.

    2002-07-01

    The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.

  1. Wireless microsensors for health monitoring of aircraft structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.

  2. A usability study of a mobile monitoring system for congestive heart failure patients.

    PubMed

    Svagård, I; Austad, H O; Seeberg, T; Vedum, J; Liverud, A; Mathiesen, B M; Keller, B; Bendixen, O C; Osborne, P; Strisland, F

    2014-01-01

    Sensor-based monitoring of congestive heart-failure (CHF) patients living at home can improve quality of care, detect exacerbations of disease at an earlier stage and motivate the patient for better self care. This paper reports on a usability study of the ESUMS system that provides continuous measurements of heart rate, activity, upper body posture and skin temperature via a sensor belt and a smartphone as patient terminal. Five CHF patients were included in the trial, all recently discharged from hospital. The nurses experienced continuous heart rate, activity and posture monitoring as useful and objective tools that helped them in their daily assessment of patient health. They also saw the system as an important educational tool to help patients gain insight into their own condition. Three patients liked that they could have a view of their own physiological and activity data, however the smartphones used in the study turned out to be too complicated for the patients to operate. A smartphone is built to be a multi-purpose device, and this may (conceptually and practically) be incompatible with the patients' demands for ease of use.

  3. Urine monitoring system failure analysis and operational verification test report

    NASA Technical Reports Server (NTRS)

    Glanfield, E. J.

    1978-01-01

    Failure analysis and testing of a prototype urine monitoring system (UMS) are reported. System performance was characterized by a regression formula developed from volume measurement test data. When the volume measurement test data. When the volume measurement data was imputted to the formula, the standard error of the estimate calculated using the regression formula was found to be within 1.524% of the mean of the mass of the input. System repeatability was found to be somewhat dependent upon the residual volume of the system and the evaporation of fluid from the separator. The evaporation rate was determined to be approximately 1cc/minute. The residual volume in the UMS was determined by measuring the concentration of LiCl in the flush water. Observed results indicated residual levels in the range of 9-10ml, however, results obtained during the flushing efficiency test indicated a residual level of approximately 20ml. It is recommended that the phase separator pumpout time be extended or the design modified to minimize the residual level.

  4. Noise test system of rotating machinery in nuclear power station based on microphone array

    NASA Astrophysics Data System (ADS)

    Chang, Xincai; Guan, Jishi; Qi, Liangcai

    2017-12-01

    Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.

  5. In-situ material-motion diagnostics and fuel radiography in experimental reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVolpi, A.

    1982-01-01

    Material-motion monitoring has become a routine part of in-pile transient reactor-safety experiments. Diagnostic systems, such as the fast-neutron hodoscope, were developed for the purpose of providing direct time-resolved data on pre-failure fuel motion, cladding-breach time and location, and post-failure fuel relocation. Hodoscopes for this purpose have been installed at TREAT and CABRI; other types of imaging systems that have been tested are a coded-aperture at ACRR and a pinhole at TREAT. Diagnostic systems that use penetrating radiation emitted from the test section can non-invasively monitor fuel without damage to the measuring instrument during the radiographic images of test sections installedmore » in the reator. Studies have been made of applications of hodoscopes to other experimental reactors, including PBF, FARET, STF, ETR, EBR-II, SAREF-STF, and DMT.« less

  6. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    NASA Astrophysics Data System (ADS)

    Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed

    2013-12-01

    Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.

  7. Damage tolerance modeling and validation of a wireless sensory composite panel for a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena

    2013-05-01

    The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons between predictions and test results were within 10% accuracy.

  8. Section 7 reactor incident file general information from 1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1969-01-10

    At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less

  9. Implantable cardiac resynchronization therapy devices to monitor heart failure clinical status.

    PubMed

    Fung, Jeffrey Wing-Hong; Yu, Cheuk-Man

    2007-03-01

    Cardiac resynchronization therapy is a standard therapy for selected patients with heart failure. With advances in technology and storage capacity, the device acts as a convenient platform to provide valuable information about heart failure status in these high-risk patients. Unlike other modalities of investigation which may only allow one-off evaluation, heart failure status can be monitored by device diagnostics including heart rate variability, activity status, and intrathoracic impedance in a continuous basis. These parameters do not just provide long-term prognostic information but also may be useful to predict upcoming heart failure exacerbation. Prompt and early intervention may abort decompensation, prevent hospitalization, improve quality of life, and reduce health care cost. Moreover, this information may be applied to titrate the dosage of medication and monitor response to heart failure treatment. This review will focus on the prognostic and predictive values of heart failure status monitoring provided by these devices.

  10. Quality control of inkjet technology for DNA microarray fabrication.

    PubMed

    Pierik, Anke; Dijksman, Frits; Raaijmakers, Adrie; Wismans, Ton; Stapert, Henk

    2008-12-01

    A robust manufacturing process is essential to make high-quality DNA microarrays, especially for use in diagnostic tests. We investigated different failure modes of the inkjet printing process used to manufacture low-density microarrays. A single nozzle inkjet spotter was provided with two optical imaging systems, monitoring in real time the flight path of every droplet. If a droplet emission failure is detected, the printing process is automatically stopped. We analyzed over 1.3 million droplets. This information was used to investigate the performance of the inkjet system and to obtain detailed insight into the frequency and causes of jetting failures. Of all the substrates investigated, 96.2% were produced without any system or jetting failures. In 1.6% of the substrates, droplet emission failed and was correctly identified. Appropriate measures could then be taken to get the process back on track. In 2.2%, the imaging systems failed while droplet emission occurred correctly. In 0.1% of the substrates, droplet emission failure that was not timely detected occurred. Thus, the overall yield of the microarray manufacturing process was 99.9%, which is highly acceptable for prototyping.

  11. Vibration monitoring via nano-composite piezoelectric foam bushings

    NASA Astrophysics Data System (ADS)

    Bird, Evan T.; Merrell, A. Jake; Anderson, Brady K.; Newton, Cory N.; Rosquist, Parker G.; Fullwood, David T.; Bowden, Anton E.; Seeley, Matthew K.

    2016-11-01

    Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.

  12. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  13. Examining Older Adults’ Perceptions of Usability and Acceptability of Remote Monitoring Systems to Manage Chronic Heart Failure

    PubMed Central

    Evangelista, Lorraine S.; Moser, Debra K.; Lee, Jung-Ah; Moore, Alison A.; Ghasemzadeh, Hassan; Sarrafzadeh, Majid; Mangione, Carol M.

    2015-01-01

    Objective: This study was conducted to evaluate the feasibility, usability, and acceptability of using remote monitoring systems (RMS) in monitoring health status (e.g., vital signs, symptom distress) in older adults (≥55) with chronic heart failure (HF). Method: Twenty-one patients (52.4% women, mean age 73.1 ± 9.3) were trained to measure and transmit health data with an RMS. Data transmissions were tracked for 12 weeks. Results: All participants initiated use of RMS within 1 week; 71%, 14%, and 14% of patients transmitted daily health data 100%, ≥75%, and <75% of the time, respectively, for 12 weeks. Overall usability and acceptability of the RMS were 4.08 ± 0.634 and 4.10 ± 0.563, respectively (when scored on a range of 1-5, where 1 = strongly disagree and 5 = strongly agree). Discussion: Findings show that an RMS-based intervention can be successfully implemented in a group of older patients with chronic HF. PMID:28138479

  14. Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C., III

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  15. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrical system failure. (g) Electrically operated detection and actuation circuits shall be monitored and... operated, a means shall be provided to indicate the functional readiness status of the detection system. (h... susceptible to alteration or recorded electronically in a secured computer system that is not susceptible to...

  16. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrical system failure. (g) Electrically operated detection and actuation circuits shall be monitored and... operated, a means shall be provided to indicate the functional readiness status of the detection system. (h... susceptible to alteration or recorded electronically in a secured computer system that is not susceptible to...

  17. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrical system failure. (g) Electrically operated detection and actuation circuits shall be monitored and... operated, a means shall be provided to indicate the functional readiness status of the detection system. (h... susceptible to alteration or recorded electronically in a secured computer system that is not susceptible to...

  18. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrical system failure. (g) Electrically operated detection and actuation circuits shall be monitored and... operated, a means shall be provided to indicate the functional readiness status of the detection system. (h... susceptible to alteration or recorded electronically in a secured computer system that is not susceptible to...

  19. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical system failure. (g) Electrically operated detection and actuation circuits shall be monitored and... operated, a means shall be provided to indicate the functional readiness status of the detection system. (h... susceptible to alteration or recorded electronically in a secured computer system that is not susceptible to...

  20. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    PubMed

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  1. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  2. Fault Tree Analysis as a Planning and Management Tool: A Case Study

    ERIC Educational Resources Information Center

    Witkin, Belle Ruth

    1977-01-01

    Fault Tree Analysis is an operations research technique used to analyse the most probable modes of failure in a system, in order to redesign or monitor the system more closely in order to increase its likelihood of success. (Author)

  3. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  4. A hybrid feature selection and health indicator construction scheme for delay-time-based degradation modelling of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Deng, Congying; Zhang, Yi

    2018-03-01

    Rolling element bearings are mechanical components used frequently in most rotating machinery and they are also vulnerable links representing the main source of failures in such systems. Thus, health condition monitoring and fault diagnosis of rolling element bearings have long been studied to improve operational reliability and maintenance efficiency of rotatory machines. Over the past decade, prognosis that enables forewarning of failure and estimation of residual life attracted increasing attention. To accurately and efficiently predict failure of the rolling element bearing, the degradation requires to be well represented and modelled. For this purpose, degradation of the rolling element bearing is analysed with the delay-time-based model in this paper. Also, a hybrid feature selection and health indicator construction scheme is proposed for extraction of the bearing health relevant information from condition monitoring sensor data. Effectiveness of the presented approach is validated through case studies on rolling element bearing run-to-failure experiments.

  5. Acoustical Detection Of Leakage In A Combustor

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  6. Approach to Achieve High Availability in Critical Infrastructure

    DTIC Science & Technology

    2015-09-01

    possibility of sensing temperature, vibration , noise , lubrication, and corrosion. The basis of condition-based maintenance is an accurate assessment of the... vibration would be a sign of possible issues such as misalignment or excessive wear and tear. Noise monitoring can complement the temperature sensor...Availability of good sensor Maintenance Approach Cooling systems Unobservable failure Vibration sensor TBM/CBM Blast doors Observable failure No TBM

  7. System and Method for Dynamic Aeroelastic Control

    NASA Technical Reports Server (NTRS)

    Suh, Peter M. (Inventor)

    2015-01-01

    The present invention proposes a hardware and software architecture for dynamic modal structural monitoring that uses a robust modal filter to monitor a potentially very large-scale array of sensors in real time, and tolerant of asymmetric sensor noise and sensor failures, to achieve aircraft performance optimization such as minimizing aircraft flutter, drag and maximizing fuel efficiency.

  8. Monitoring and Early Warning of the 2012 Preonzo Catastrophic Rockslope Failure

    NASA Astrophysics Data System (ADS)

    Loew, Simon; Gschwind, Sophie; Keller-Signer, Alexandra; Valenti, Giorgio

    2015-04-01

    In this contribution we describe the accelerated creep stage and early warning system of a 210'000 m3 rock slope failure that occurred in May 2012 above the village of Preonzo (Swiss Alps). The very rapid failure occurred from a larger and retrogressive instability in high-grade metamorphic ortho-gneisses and amphibolites with a total volume of about 350'000 m3 located at an alpine meadow called Alpe di Roscioro. This instability showed clearly visible signs of movements since 1989 and accelerated creep with significant hydro-mechanical forcing since about 1999. Because the instability at Preonzo threatened a large industrial facility and important transport routes a cost-effective early warning system was installed in 2010. The alarm thresholds for pre-alarm, general public alarm and evacuation were derived from 10 years of continuous displacement monitoring with crack extensometers and an automated total station. These thresholds were successfully applied to evacuate the industrial facility and close important roads a few days before the catastrophic slope failure of May 15th, 2012. The rock slope failure occurred in two events, exposing a planar rupture plane dipping 42° and generating deposits in the mid-slope portion with a travel angle of 38°. Two hours after the second rockslide, the fresh colluvial deposits became reactivated in a devastating de-bris avalanche reaching the foot of the slope.

  9. Decoupled tracking and thermal monitoring of non-stationary targets.

    PubMed

    Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng

    2009-10-01

    Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.

  10. Novel diffuse optics system for continuous tissue viability monitoring: extended recovery in vivo testing in a porcine flap model

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.

  11. Methods, apparatus and system for selective duplication of subtasks

    DOEpatents

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2016-03-29

    A method for selective duplication of subtasks in a high-performance computing system includes: monitoring a health status of one or more nodes in a high-performance computing system, where one or more subtasks of a parallel task execute on the one or more nodes; identifying one or more nodes as having a likelihood of failure which exceeds a first prescribed threshold; selectively duplicating the one or more subtasks that execute on the one or more nodes having a likelihood of failure which exceeds the first prescribed threshold; and notifying a messaging library that one or more subtasks were duplicated.

  12. [Nephro-urological monitoring technology based on radionuclide functional tests (tasks of an automated workplace)].

    PubMed

    Averinova, S G; Kashkadaeva, A V; Shiriaev, S V; Nechipaĭ, A M; Dmitrieva, G D

    1999-01-01

    The paper deals with a diagnostic informational and analytical system (DIAS). The system is based on the current concept of a dynamic model of nephro-urological clearance macroregulation under retention factors at the pre-, intra-, and postrenal levels during drug load tests. DIAS includes a package of dynamic renoscintigraphic techniques, as well as original software support. A system for parameters of renal clearance regulation has been developed, which is effective at nephro-urological screening and monitoring at all treatment stages for cancer patients. A two-detector chamber which permits the mounting of a detector at an angle to the patient's body is the optimum diagnostic apparatus for a cancer clinic. The use of functional tests makes it possible to examine the regulatory reserves for each kidney, followed up by the choice of adequate corrective measures to prevent renal failure during treatment. In some cases, DIAS monitoring frequently shows a higher sensitivity to the signs of latent renal failure than does routine clinical and laboratory monitoring. The effective radiation dose taken by a patient during a study by the DIAS technology aimed at reducing radioopaque doses is 100-150 times higher than that at an X-ray study and is an order less than during routine urinary tests.

  13. Levelized cost-benefit analysis of proposed diagnostics for the Ammunition Transfer Arm of the US Army`s Future Armored Resupply Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, V.K.; Young, J.M.

    1995-07-01

    The US Army`s Project Manager, Advanced Field Artillery System/Future Armored Resupply Vehicle (PM-AFAS/FARV) is sponsoring the development of technologies that can be applied to the resupply vehicle for the Advanced Field Artillery System. The Engineering Technology Division of the Oak Ridge National Laboratory has proposed adding diagnostics/prognostics systems to four components of the Ammunition Transfer Arm of this vehicle, and a cost-benefit analysis was performed on the diagnostics/prognostics to show the potential savings that may be gained by incorporating these systems onto the vehicle. Possible savings could be in the form of reduced downtime, less unexpected or unnecessary maintenance, fewermore » regular maintenance checks. and/or tower collateral damage or loss. The diagnostics/prognostics systems are used to (1) help determine component problems, (2) determine the condition of the components, and (3) estimate the remaining life of the monitored components. The four components on the arm that are targeted for diagnostics/prognostics are (1) the electromechanical brakes, (2) the linear actuators, (3) the wheel/roller bearings, and (4) the conveyor drive system. These would be monitored using electrical signature analysis, vibration analysis, or a combination of both. Annual failure rates for the four components were obtained along with specifications for vehicle costs, crews, number of missions, etc. Accident scenarios based on component failures were postulated, and event trees for these scenarios were constructed to estimate the annual loss of the resupply vehicle, crew, arm. or mission aborts. A levelized cost-benefit analysis was then performed to examine the costs of such failures, both with and without some level of failure reduction due to the diagnostics/prognostics systems. Any savings resulting from using diagnostics/prognostics were calculated.« less

  14. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM).

  15. Active-standby servovalue/actuator development

    NASA Technical Reports Server (NTRS)

    Masm, R. K.

    1973-01-01

    A redundant, fail/operate fail/fixed servoactuator was constructed and tested along with electronic models of a servovalve. It was found that a torque motor switch is satisfactory for the space shuttle main engine hydraulic actuation system, and that this system provides an effective failure monitoring technique.

  16. Tribology symposium 1995. PD-Volume 72

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masudi, H.

    After the keynote presentation by Professor Aaron Cohen of Texas A and M University, entitled Processes Used in Design, the program is divided into five major sessions: Research and Development -- Recent research and development of tribological components; Tribology in Manufacturing -- The impact of tribology on modern manufacturing; Design/Design Representation -- Aspects of design related to tribological systems; Tribo-Chemistry/Tribo-Physics -- Discussion of chemical and physical behavior of substances as related to tribology; and Failure Analysis -- An analysis of failure, failure detection, and failure monitoring as related to manufacturing processes. Papers have been processed separately for inclusion on themore » data base.« less

  17. Bridge reliability assessment based on the PDF of long-term monitored extreme strains

    NASA Astrophysics Data System (ADS)

    Jiao, Meiju; Sun, Limin

    2011-04-01

    Structural health monitoring (SHM) systems can provide valuable information for the evaluation of bridge performance. As the development and implementation of SHM technology in recent years, the data mining and use has received increasingly attention and interests in civil engineering. Based on the principle of probabilistic and statistics, a reliability approach provides a rational basis for analysis of the randomness in loads and their effects on structures. A novel approach combined SHM systems with reliability method to evaluate the reliability of a cable-stayed bridge instrumented with SHM systems was presented in this paper. In this study, the reliability of the steel girder of the cable-stayed bridge was denoted by failure probability directly instead of reliability index as commonly used. Under the assumption that the probability distributions of the resistance are independent to the responses of structures, a formulation of failure probability was deduced. Then, as a main factor in the formulation, the probability density function (PDF) of the strain at sensor locations based on the monitoring data was evaluated and verified. That Donghai Bridge was taken as an example for the application of the proposed approach followed. In the case study, 4 years' monitoring data since the operation of the SHM systems was processed, and the reliability assessment results were discussed. Finally, the sensitivity and accuracy of the novel approach compared with FORM was discussed.

  18. Testing and failure analysis to improve screening techniques for hermetically sealed metallized film capacitors for low energy applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Effective screening techniques are evaluated for detecting insulation resistance degradation and failure in hermetically sealed metallized film capacitors used in applications where low capacitor voltage and energy levels are common to the circuitry. A special test and monitoring system capable of rapidly scanning all test capacitors and recording faults and/or failures is examined. Tests include temperature cycling and storage as well as low, medium, and high voltage life tests. Polysulfone film capacitors are more heat stable and reliable than polycarbonate film units.

  19. Pilots' monitoring strategies and performance on automated flight decks: an empirical study combining behavioral and eye-tracking data.

    PubMed

    Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D

    2007-06-01

    The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.

  20. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study.

    PubMed

    Karvellas, Constantine J; Fix, Oren K; Battenhouse, Holly; Durkalski, Valerie; Sanders, Corron; Lee, William M

    2014-05-01

    To determine if intracranial pressure monitor placement in patients with acute liver failure is associated with significant clinical outcomes. Retrospective multicenter cohort study. Academic liver transplant centers comprising the U.S. Acute Liver Failure Study Group. Adult critically ill patients with acute liver failure presenting with grade III/IV hepatic encephalopathy (n = 629) prospectively enrolled between March 2004 and August 2011. Intracranial pressure monitored (n = 140) versus nonmonitored controls (n = 489). Intracranial pressure monitored patients were younger than controls (35 vs 43 yr, p < 0.001) and more likely to be on renal replacement therapy (52% vs 38%, p = 0.003). Of 87 intracranial pressure monitored patients with detailed information, 44 (51%) had evidence of intracranial hypertension (intracranial pressure > 25 mm Hg) and overall 21-day mortality was higher in patients with intracranial hypertension (43% vs 23%, p = 0.05). During the first 7 days, intracranial pressure monitored patients received more intracranial hypertension-directed therapies (mannitol, 56% vs 21%; hypertonic saline, 14% vs 7%; hypothermia, 24% vs 10%; p < 0.03 for each). Forty-one percent of intracranial pressure monitored patients received liver transplant (vs 18% controls; p < 0.001). Overall 21-day mortality was similar (intracranial pressure monitored 33% vs controls 38%, p = 0.24). Where data were available, hemorrhagic complications were rare in intracranial pressure monitored patients (4 of 56 [7%]; three died). When stratifying by acetaminophen status and adjusting for confounders, intracranial pressure monitor placement did not impact 21-day mortality in acetaminophen patients (p = 0.89). However, intracranial pressure monitor was associated with increased 21-day mortality in nonacetaminophen patients (odds ratio, ~ 3.04; p = 0.014). In intracranial pressure monitored patients with acute liver failure, intracranial hypertension is commonly observed. The use of intracranial pressure monitor in acetaminophen acute liver failure did not confer a significant 21-day mortality benefit, whereas in nonacetaminophen acute liver failure, it may be associated with worse outcomes. Hemorrhagic complications from intracranial pressure monitor placement were uncommon and cannot account for mortality trends. Although our results cannot conclusively confirm or refute the utility of intracranial pressure monitoring in patients with acute liver failure, patient selection and ancillary assessments of cerebral blood flow likely have a significant role. Prospective studies would be required to conclusively account for confounding by illness severity and transplant.

  1. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  2. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  3. Time-lapse Seismic Refraction Monitoring of an Active Landslide in Lias Group Mudrocks, North Yorkshire, UK

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Whiteley, J.; Chambers, J. E.; Inauen, C.; Swift, R. T.

    2017-12-01

    Geophysical monitoring of the internal moisture content and processes of landslides is an increasingly common approach to the characterisation and assessment of the hydrogeological condition of rainfall-triggered landslides. Geoelectrical monitoring methods are sensitive to changes in the subsurface moisture conditions that cause the failure of unstable slopes, typically through the increase of pore water pressures and softening of materials within the landslide system. The application of seismic methods to the monitoring of landslides has not been as extensively applied as geoelectrical approaches, but the seismic method can determine elastic properties of landslide materials that can characterise and identify changes in the geomechanical condition of landslide systems that also lead to slope failure. We present the results of a seismic refraction monitoring campaign undertaken at the Hollin Hill Landslide Observatory in North Yorkshire, UK. This campaign has involved the repeat acquisition of surface acquired high resolution P- and S-wave seismic refraction data. The monitoring profile traverses a 142m long section from the crest to the toe of an active landslide comprising of mudstone and sandstone. Data were acquired at six to nine week intervals between October 2016 and October 2017. This repeat acquisition approach allowed for the imaging of seismically determined property changes of the landslide throughout the annual climatic cycle. Initial results showed that changes in the moisture dynamics of the landslide are reflected by changes in the seismic character of the inverted tomograms. Changes in the seismic properties are linked to the changes in the annual climatic cycle, particularly in relation to effective rainfall. The results indicate that the incorporation of seismic monitoring data into ongoing geoelectrical monitoring programmes can provide complementary geomechanical data to enhance our understanding of the internal condition of landslide systems. Future development of this integrated approach will allow for the imaging and monitoring of these systems at unprecedented spatial and temporal scales.

  4. Chronic Heart Failure Follow-up Management Based on Agent Technology.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza

    2015-10-01

    Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.

  5. Super Learner Analysis of Electronic Adherence Data Improves Viral Prediction and May Provide Strategies for Selective HIV RNA Monitoring.

    PubMed

    Petersen, Maya L; LeDell, Erin; Schwab, Joshua; Sarovar, Varada; Gross, Robert; Reynolds, Nancy; Haberer, Jessica E; Goggin, Kathy; Golin, Carol; Arnsten, Julia; Rosen, Marc I; Remien, Robert H; Etoori, David; Wilson, Ira B; Simoni, Jane M; Erlen, Judith A; van der Laan, Mark J; Liu, Honghu; Bangsberg, David R

    2015-05-01

    Regular HIV RNA testing for all HIV-positive patients on antiretroviral therapy (ART) is expensive and has low yield since most tests are undetectable. Selective testing of those at higher risk of failure may improve efficiency. We investigated whether a novel analysis of adherence data could correctly classify virological failure and potentially inform a selective testing strategy. Multisite prospective cohort consortium. We evaluated longitudinal data on 1478 adult patients treated with ART and monitored using the Medication Event Monitoring System (MEMS) in 16 US cohorts contributing to the MACH14 consortium. Because the relationship between adherence and virological failure is complex and heterogeneous, we applied a machine-learning algorithm (Super Learner) to build a model for classifying failure and evaluated its performance using cross-validation. Application of the Super Learner algorithm to MEMS data, combined with data on CD4 T-cell counts and ART regimen, significantly improved classification of virological failure over a single MEMS adherence measure. Area under the receiver operating characteristic curve, evaluated on data not used in model fitting, was 0.78 (95% confidence interval: 0.75 to 0.80) and 0.79 (95% confidence interval: 0.76 to 0.81) for failure defined as single HIV RNA level >1000 copies per milliliter or >400 copies per milliliter, respectively. Our results suggest that 25%-31% of viral load tests could be avoided while maintaining sensitivity for failure detection at or above 95%, for a cost savings of $16-$29 per person-month. Our findings provide initial proof of concept for the potential use of electronic medication adherence data to reduce costs through behavior-driven HIV RNA testing.

  6. Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring

    PubMed Central

    Petersen, Maya L.; LeDell, Erin; Schwab, Joshua; Sarovar, Varada; Gross, Robert; Reynolds, Nancy; Haberer, Jessica E.; Goggin, Kathy; Golin, Carol; Arnsten, Julia; Rosen, Marc; Remien, Robert; Etoori, David; Wilson, Ira; Simoni, Jane M.; Erlen, Judith A.; van der Laan, Mark J.; Liu, Honghu; Bangsberg, David R

    2015-01-01

    Objective Regular HIV RNA testing for all HIV positive patients on antiretroviral therapy (ART) is expensive and has low yield since most tests are undetectable. Selective testing of those at higher risk of failure may improve efficiency. We investigated whether a novel analysis of adherence data could correctly classify virological failure and potentially inform a selective testing strategy. Design Multisite prospective cohort consortium. Methods We evaluated longitudinal data on 1478 adult patients treated with ART and monitored using the Medication Event Monitoring System (MEMS) in 16 United States cohorts contributing to the MACH14 consortium. Since the relationship between adherence and virological failure is complex and heterogeneous, we applied a machine-learning algorithm (Super Learner) to build a model for classifying failure and evaluated its performance using cross-validation. Results Application of the Super Learner algorithm to MEMS data, combined with data on CD4+ T cell counts and ART regimen, significantly improved classification of virological failure over a single MEMS adherence measure. Area under the ROC curve, evaluated on data not used in model fitting, was 0.78 (95% CI: 0.75, 0.80) and 0.79 (95% CI: 0.76, 0.81) for failure defined as single HIV RNA level >1000 copies/ml or >400 copies/ml, respectively. Our results suggest 25–31% of viral load tests could be avoided while maintaining sensitivity for failure detection at or above 95%, for a cost savings of $16–$29 per person-month. Conclusions Our findings provide initial proof-of-concept for the potential use of electronic medication adherence data to reduce costs through behavior-driven HIV RNA testing. PMID:25942462

  7. User Resistance and Trust in a Clinical RFID Employee Location Tracking Information System

    ERIC Educational Resources Information Center

    Wong, Wilson

    2013-01-01

    User resistance has been identified as a factor in information systems implementation failures in the health care industry. RFID, radio frequency identification, is being incorporated into new health care information systems in order to effect cost reductions by tracking, identifying and monitoring individuals and medical items. This is the first…

  8. Remote Monitoring to Reduce Heart Failure Readmissions.

    PubMed

    Emani, Sitaramesh

    2017-02-01

    Rehospitalization for heart failure remains a challenge in the treatment of affected patients. The ability to remotely monitor patients for worsening heart failure may provide an avenue through which therapeutic interventions can be made to prevent a rehospitalization. Available data on remote monitoring to reduce heart failure rehospitalizations are reviewed within. Strategies to reduce readmissions include clinical telemonitoring, bioimpedance changes, biomarkers, and remote hemodynamic monitoring. Telemonitoring is readily available, but has low sensitivity and adherence. No data exist to demonstrate the efficacy of this strategy in reducing admissions. Bioimpedance offers improved sensitivity compared to telemonitoring, but has not demonstrated an ability to reduce hospitalizations and is currently limited to those patients who have separate indications for an implantable device. Biomarker levels have shown variable results in the ability to reduce hospitalizations and remain without definitive proof supporting their utilization. Remote hemodynamic monitoring has shown the strongest ability to reduce heart failure readmissions and is currently approved for this purpose. However, remote hemodynamic monitoring requires an invasive procedure and may not be cost-effective. All currently available strategies to reduce hospitalizations with remote monitoring have drawbacks and challenges. Remote hemodynamic monitoring is currently the most efficacious based on data, but is not without its own imperfections.

  9. Spatial and temporal analyses for multiscale monitoring of landslides: Examples from Northern Ireland

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; McKinley, Jennifer; Hughes, David

    2013-04-01

    Landslides in the form of debris flows, large scale rotational features and composite mudflows impact transport corridors cutting off local communities and in some instances result in loss of life. This study presents landslide monitoring methods used for predicting and characterising landslide activity along transport corridors. A variety of approaches are discussed: desk based risk assessment of slopes using Geographical Information Systems (GIS); Aerial LiDAR surveys and Terrestrial LiDAR monitoring and field instrumentation of selected sites. A GIS based case study is discussed which provides risk assessment for the potential of slope stability issues. Layers incorporated within the system include Digital Elevation Model (DEM), slope, aspect, solid and drift geology and groundwater conditions. Additional datasets include consequence of failure. These are combined within a risk model, presented as likelihoods of failure. This integrated spatial approach for slope risk assessment provides the user with a preliminary risk assessment of sites. An innovative "Flexviewer" web-based server interface allows users to view data without needing advanced GIS techniques to gather information about selected areas. On a macro landscape scale, Aerial LiDAR (ALS) surveys are used for the characterisation of landslides from the surrounding terrain. DEMs are generated along with terrain derivatives: slope, curvature and various measures of terrain roughness. Spatial analysis of terrain morphological parameters allow characterisation of slope stability issues and are used to predict areas of potential failure or recently failure terrain. On a local scale ground monitoring approaches are employed for the monitoring of changes in selected slopes using ALS and risk assessment approaches. Results are shown from on-going bimonthly Terrestrial LiDAR (TLS) monitoring of the slope within a site specific geodectically referenced network. This has allowed a classification of changes in the slopes with DEMs of difference showing areas of recent movement, erosion and deposition. In addition, changes in the structure of the slope characterised by DEM of difference and morphological parameters in the form of roughness, slope and curvature measures are progressively linked to failures indicated from temporal DEM monitoring. Preliminary results are presented for a case site at Straidkilly Point, Glenarm, Co. Antrim, Northern Ireland, illustrating multiple approaches to the spatial and temporal monitoring of landslides. These indicate how spatial morphological approaches and risk assessment frameworks coupled with TLS monitoring and field instrumentation enable characterisation and prediction of potential areas of slope stability issues. On site weather instrumentation and piezometers document changes in pore water pressures resulting in site-specific information with geotechnical observations parameterised within the temporal LiDAR monitoring. This provides a multifaceted approach to the characterisation and analysis of slope stability issues. The presented methodology of multiscale datasets and surveying approaches utilising spatial parameters and risk index mapping enables a more comprehensive and effective prediction of landslides resulting in effective characterisation and remediation strategies.

  10. Towards Comprehensive Variation Models for Designing Vehicle Monitoring Systems

    NASA Technical Reports Server (NTRS)

    McAdams, Daniel A.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes in a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. This crucial roadblock makes their implementation in real vehicles (e.g., helicopter transmissions and aircraft engines) difficult, making their operation costly and unreliable. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. Using such models, we develop a methodology to account for design and manufacturing variations, and explore the changes in the vibration response to determine its stochastic nature. We explore the potential of the methodology using a nonlinear cam-follower model, where the spring stiffness values are assumed to follow a normal distribution. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle monitoring systems.

  11. Event-Driven Messaging for Offline Data Quality Monitoring at ATLAS

    NASA Astrophysics Data System (ADS)

    Onyisi, Peter

    2015-12-01

    During LHC Run 1, the information flow through the offline data quality monitoring in ATLAS relied heavily on chains of processes polling each other's outputs for handshaking purposes. This resulted in a fragile architecture with many possible points of failure and an inability to monitor the overall state of the distributed system. We report on the status of a project undertaken during the LHC shutdown to replace the ad hoc synchronization methods with a uniform message queue system. This enables the use of standard protocols to connect processes on multiple hosts; reliable transmission of messages between possibly unreliable programs; easy monitoring of the information flow; and the removal of inefficient polling-based communication.

  12. The KATE shell: An implementation of model-based control, monitor and diagnosis

    NASA Technical Reports Server (NTRS)

    Cornell, Matthew

    1987-01-01

    The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.

  13. Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-12-01

    In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.

  14. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  15. Implantable hemodynamic monitoring (the Chronicle IHM system): remote telemonitoring for patients with heart failure.

    PubMed

    Ho, C

    2008-01-01

    (1) Remote monitoring for ambulatory heart failure patients uses an implantable device to record hemodynamic data and transmit it to a central server for continuous assessment. (2) Preliminary evidence from observational studies suggests a potential for reducing hospitalizations with the use of right ventricle implantable hemodynamic monitoring (IHM). However, although a multicentre, randomized controlled trial (COMPASS-HF) showed a reduction in hospitalizations in the IHM group the results were not statistically significant and the US Food and Drug Administration panel concluded the trial failed to meet its primary efficacy endpoint. (3) In the COMPASS-HF study the most common device-related complication was lead dislodgement. (4) Large randomized controlled trials are needed to demonstrate the clinical utility of IHM, particularly in terms of its impact on reducing hospitalization and improving patient outcomes.

  16. Heart failure patients utilizing an electric home monitor: What effects does heart failure have on their quality of life?

    NASA Astrophysics Data System (ADS)

    Simuel, Gloria J.

    Heart Failure continues to be a major public health problem associated with high mortality and morbidity. Heart Failure is the leading cause of hospitalization for persons older than 65 years, has a poor prognosis and is associated with poor quality of life. More than 5.3 million American adults are living with heart failure. Despite maximum medical therapy and frequent hospitalizations to stabilize their condition, one in five heart failure patients die within the first year of diagnosis. Several disease-management programs have been proposed and tested to improve the quality of heart failure care. Studies have shown that hospital admissions and emergency room visits decrease with increased nursing interventions in the home and community setting. An alternative strategy for promoting self-management of heart failure is the use of electronic home monitoring. The purpose of this study was to examine what effects heart failure has on patient's quality of life that had been monitoring on an electronic home monitor longer than 2 months. Twenty-one questionnaires were given to patients utilizing an electronic home monitor by their home health agency nurse. Eleven patients completed the questionnaire. The findings showed that there is some deterioration in quality of life with more association with the physical aspects of life than with the emotional aspects of life, which probably was due to the small sample size. There was no significant difference in readmission rates in patients utilizing an electronic home monitor. Further research is needed with a larger population of patients with chronic heart failure and other chronic diseases which may provide more data, and address issues such as patient compliance with self-care, impact of heart failure on patient's quality of life, functional capacity, and heart failure patient's utilization of the emergency rooms and hospital. Telemonitoring holds promise for improving the self-care abilities of persons with HF.

  17. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  18. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  19. Structural health monitoring of pipelines rehabilitated with lining technology

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2014-03-01

    Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.

  20. 46 CFR 129.570 - Overfill protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... alarm system or failure of electrical circuitry to the tank level sensor; and (3) Be able to be checked... that monitors the condition of the alarm circuitry and sensor. (d) The high-level alarm required by...

  1. Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2004-01-01

    Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

  2. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors.

    PubMed

    Mooney, Deirdre M; Fung, Erik; Doshi, Rahul N; Shavelle, David M

    2015-01-01

    Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.

  3. Monitoring and control of spacecraft systems using procedural reasoning

    NASA Technical Reports Server (NTRS)

    Georgeff, Michael P.; Ingrand, Francois Felix

    1990-01-01

    Research concerned with automating the monitoring and control of spacecraft systems is discussed. In particular, the application of SRI's Procedural Reasoning System (PRS) to the handling of malfunctions in the Reaction Control System (RCS) of NASA's Space Shuttle is examined. Unlike traditional monitoring and control systems, PRS is able to reason about and perform complex tasks in a very flexible and robust manner, somewhat in the manner of a human assistant. Using various RCS malfunctions as examples (including sensor faults, leaking components, multiple alarms, and regulator and jet failures), it is shown how PRS manages to combine both goal-directed reasoning and the ability to react rapidly to unanticipated changes in its environment. In conclusion, some important issues in the design of PRS are reviewed and future enhancements are indicated.

  4. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    PubMed

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  6. Dual permeability FEM models for distributed fiber optic sensors development

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time dependent manner. In that way, the estimated pore pressures may be related to the monitored one and to both failure mechanisms. Furthermore, the approach is intended to be used in a later stage for the real time monitoring of the failure.

  7. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    NASA Technical Reports Server (NTRS)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  8. Near Field Communication-based telemonitoring with integrated ECG recordings.

    PubMed

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  9. Effective technologies for noninvasive remote monitoring in heart failure.

    PubMed

    Conway, Aaron; Inglis, Sally C; Clark, Robyn A

    2014-06-01

    Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.

  10. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study.

    PubMed

    Landolina, Maurizio; Perego, Giovanni B; Lunati, Maurizio; Curnis, Antonio; Guenzati, Giuseppe; Vicentini, Alessandro; Parati, Gianfranco; Borghi, Gabriella; Zanaboni, Paolo; Valsecchi, Sergio; Marzegalli, Maurizio

    2012-06-19

    Heart failure patients with implantable cardioverter-defibrillators (ICDs) or an ICD for resynchronization therapy often visit the hospital for unscheduled examinations, placing a great burden on healthcare providers. We hypothesized that Internet-based remote interrogation systems could reduce emergency healthcare visits. This multicenter randomized trial involving 200 patients compared remote monitoring with standard patient management consisting of scheduled visits and patient response to audible ICD alerts. The primary end point was the rate of emergency department or urgent in-office visits for heart failure, arrhythmias, or ICD-related events. Over 16 months, such visits were 35% less frequent in the remote arm (75 versus 117; incidence density, 0.59 versus 0.93 events per year; P=0.005). A 21% difference was observed in the rates of total healthcare visits for heart failure, arrhythmias, or ICD-related events (4.40 versus 5.74 events per year; P<0.001). The time from an ICD alert condition to review of the data was reduced from 24.8 days in the standard arm to 1.4 days in the remote arm (P<0.001). The patients' clinical status, as measured by the Clinical Composite Score, was similar in the 2 groups, whereas a more favorable change in quality of life (Minnesota Living With Heart Failure Questionnaire) was observed from the baseline to the 16th month in the remote arm (P=0.026). Remote monitoring reduces emergency department/urgent in-office visits and, in general, total healthcare use in patients with ICD or defibrillators for resynchronization therapy. Compared with standard follow-up through in-office visits and audible ICD alerts, remote monitoring results in increased efficiency for healthcare providers and improved quality of care for patients. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00873899.

  11. Haul truck tire dynamics due to tire condition

    NASA Astrophysics Data System (ADS)

    Vaghar Anzabi, R.; Nobes, D. S.; Lipsett, M. G.

    2012-05-01

    Pneumatic tires are costly components on large off-road haul trucks used in surface mining operations. Tires are prone to damage during operation, and these events can lead to injuries to personnel, loss of equipment, and reduced productivity. Damage rates have significant variability, due to operating conditions and a range of tire fault modes. Currently, monitoring of tire condition is done by physical inspection; and the mean time between inspections is often longer than the mean time between incipient failure and functional failure of the tire. Options for new condition monitoring methods include off-board thermal imaging and camera-based optical methods for detecting abnormal deformation and surface features, as well as on-board sensors to detect tire faults during vehicle operation. Physics-based modeling of tire dynamics can provide a good understanding of the tire behavior, and give insight into observability requirements for improved monitoring systems. This paper describes a model to simulate the dynamics of haul truck tires when a fault is present to determine the effects of physical parameter changes that relate to faults. To simulate the dynamics, a lumped mass 'quarter-vehicle' model has been used to determine the response of the system to a road profile when a failure changes the original properties of the tire. The result is a model of tire vertical displacement that can be used to detect a fault, which will be tested under field conditions in time-varying conditions.

  12. Management of redundancy in flight control systems using optimal decision theory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.

  13. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. Thismore » often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.« less

  14. DCDS: A Real-time Data Capture and Personalized Decision Support System for Heart Failure Patients in Skilled Nursing Facilities.

    PubMed

    Zhu, Wei; Luo, Lingyun; Jain, Tarun; Boxer, Rebecca S; Cui, Licong; Zhang, Guo-Qiang

    2016-01-01

    Heart disease is the leading cause of death in the United States. Heart failure disease management can improve health outcomes for elderly community dwelling patients with heart failure. This paper describes DCDS, a real-time data capture and personalized decision support system for a Randomized Controlled Trial Investigating the Effect of a Heart Failure Disease Management Program (HF-DMP) in Skilled Nursing Facilities (SNF). SNF is a study funded by the NIH National Heart, Lung, and Blood Institute (NHLBI). The HF-DMP involves proactive weekly monitoring, evaluation, and management, following National HF Guidelines. DCDS collects a wide variety of data including 7 elements considered standard of care for patients with heart failure: documentation of left ventricular function, tracking of weight and symptoms, medication titration, discharge instructions, 7 day follow up appointment post SNF discharge and patient education. We present the design and implementation of DCDS and describe our preliminary testing results.

  15. Operating Experience and Reliability Improvements on the 5 kW CW Klystron at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Nelson, R.; Holben, S.

    1997-05-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of repotting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator.

  16. Non-Traditional Displays for Mission Monitoring

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Schutte, Paul C.

    1999-01-01

    Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.

  17. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  18. Central hypothyroidism and its role for cardiovascular risk factors in hypopituitary patients.

    PubMed

    Feldt-Rasmussen, Ulla; Klose, Marianne

    2016-10-01

    Hypothyroidism is characterized by hypometabolism, and may be seen as a part of secondary failure due to pituitary insufficiency or tertiary due to hypothalamic disease. Secondary and tertiary failures are also referred to as central hypothyroidism. Whereas overt primary hypothyroidism has a well-known affection on the heart and cardiovascular system, and may result in cardiac failure, cardiovascular affection is less well recognized in central hypothyroidism. Studies on central hypothyroidism and cardiovascular outcome are few and given the rarity of the diseases often small. Further, there are several limitations given vast difficulties in diagnosing the condition correctly biochemically, and difficulties monitoring the treatment because normal thyroid-pituitary feedback interrelationships are disrupted. The present review summarizes available studies of central adult hypothyroidism and its possible influence on the cardiovascular system, describe differences from primary thyroid failure and seek evidence for performing guidelines for clinical management of this particular thyroid and hypothalamo-pituitary disorder.

  19. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method

    PubMed Central

    White, Richard A.; Lu, Chunling; Rodriguez, Carly A.; Bayona, Jaime; Becerra, Mercedes C.; Burgos, Marcos; Centis, Rosella; Cohen, Theodore; Cox, Helen; D'Ambrosio, Lia; Danilovitz, Manfred; Falzon, Dennis; Gelmanova, Irina Y.; Gler, Maria T.; Grinsdale, Jennifer A.; Holtz, Timothy H.; Keshavjee, Salmaan; Leimane, Vaira; Menzies, Dick; Milstein, Meredith B.; Mishustin, Sergey P.; Pagano, Marcello; Quelapio, Maria I.; Shean, Karen; Shin, Sonya S.; Tolman, Arielle W.; van der Walt, Martha L.; Van Deun, Armand; Viiklepp, Piret

    2016-01-01

    Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection. We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference. Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34–0.42) for all patients and 0.33 (0.25–0.42) for HIV-co-infected patients. Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests. PMID:27587552

  20. Design criteria: data acquisition system for waste tank liquid level gauges and SX Tank Farm thermocouples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, G.E.; Oliver, R.G.

    1972-02-17

    This design criteria revision (revision 2) will cancel revision 1 and will provide complete functional supervision of the liquid level gauges. A new.counter and an electronic supervisory circuit will be installed in each waste tank liquid level gauge. The electronic supervisory circuit will monitor (via the new counter and a signal from the gauge electronics) cycling of the gauge on a one minute time cycle. This supervisory circuit will fulfill the intent of revision 1 (monitor AC power to the gauge) and, in addition, will supervise all other aspects of the gauge including: the electronics, the drive motor, all sprocketsmore » and chain linkages, and the counter. If a gauge failure should occur, this circuit will remove the +12 volts excitation from the data acquisition system inferface board; and the computer will be programmed to recognize this condition as a gauge failure. (auth)« less

  1. Preliminary results from BCG and ECG measurements in the heart failure clinic.

    PubMed

    Giovangrandi, Laurent; Inan, Omer T; Banerjee, Dipanjan; Kovacs, Gregory T A

    2012-01-01

    We report on the preliminary deployment of a bathroom scale-based ballistocardiogram (BCG) system for the in-hospital monitoring of patients with heart failure. These early trials provided valuable insights into the challenges and opportunities for such monitoring. In particular, the need for robust algorithms and adapted BCG metric is suggested. The system was designed to be robust and user-friendly, with dual ballistocardiogram (BCG) and electrocardiogram (ECG) capabilities. The BCG was measured from a modified bathroom scale, while the ECG (used as timing reference) was measured using dry handlebar electrodes. The signal conditioning and digitization circuits were USB-powered, and data acquisition performed using a netbook. Four patients with a NYHA class III at admission were measured daily for the duration of their treatment at Stanford hospital. A measure of BCG quality, in essence a quantitative implementation of the BCG classes originally defined in the 1950s, is proposed as a practical parameter.

  2. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  3. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure.

    PubMed

    Sandhu, Alexander T; Goldhaber-Fiebert, Jeremy D; Owens, Douglas K; Turakhia, Mintu P; Kaiser, Daniel W; Heidenreich, Paul A

    2016-05-01

    This study aimed to evaluate the cost-effectiveness of the CardioMEMS (CardioMEMS Heart Failure System, St Jude Medical Inc, Atlanta, Georgia) device in patients with chronic heart failure. The CardioMEMS device, an implantable pulmonary artery pressure monitor, was shown to reduce hospitalizations for heart failure and improve quality of life in the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) trial. We developed a Markov model to determine the hospitalization, survival, quality of life, cost, and incremental cost-effectiveness ratio of CardioMEMS implantation compared with usual care among a CHAMPION trial cohort of patients with heart failure. We obtained event rates and utilities from published trial data; we used costs from literature estimates and Medicare reimbursement data. We performed subgroup analyses of preserved and reduced ejection fraction and an exploratory analysis in a lower-risk cohort on the basis of the CHARM (Candesartan in Heart failure: Reduction in Mortality and Morbidity) trials. CardioMEMS reduced lifetime hospitalizations (2.18 vs. 3.12), increased quality-adjusted life-years (QALYs) (2.74 vs. 2.46), and increased costs ($176,648 vs. $156,569), thus yielding a cost of $71,462 per QALY gained and $48,054 per life-year gained. The cost per QALY gained was $82,301 in patients with reduced ejection fraction and $47,768 in those with preserved ejection fraction. In the lower-risk CHARM cohort, the device would need to reduce hospitalizations for heart failure by 41% to cost <$100,000 per QALY gained. The cost-effectiveness was most sensitive to the device's durability. In populations similar to that of the CHAMPION trial, the CardioMEMS device is cost-effective if the trial effectiveness is sustained over long periods. Post-marketing surveillance data on durability will further clarify its value. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  5. Failure monitoring in dynamic systems: Model construction without fault training data

    NASA Technical Reports Server (NTRS)

    Smyth, P.; Mellstrom, J.

    1993-01-01

    Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic.

  6. Intelligent on-line fault tolerant control for unanticipated catastrophic failures.

    PubMed

    Yen, Gary G; Ho, Liang-Wei

    2004-10-01

    As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.

  7. Respiratory failure in diabetic ketoacidosis.

    PubMed

    Konstantinov, Nikifor K; Rohrscheib, Mark; Agaba, Emmanuel I; Dorin, Richard I; Murata, Glen H; Tzamaloukas, Antonios H

    2015-07-25

    Respiratory failure complicating the course of diabetic ketoacidosis (DKA) is a source of increased morbidity and mortality. Detection of respiratory failure in DKA requires focused clinical monitoring, careful interpretation of arterial blood gases, and investigation for conditions that can affect adversely the respiration. Conditions that compromise respiratory function caused by DKA can be detected at presentation but are usually more prevalent during treatment. These conditions include deficits of potassium, magnesium and phosphate and hydrostatic or non-hydrostatic pulmonary edema. Conditions not caused by DKA that can worsen respiratory function under the added stress of DKA include infections of the respiratory system, pre-existing respiratory or neuromuscular disease and miscellaneous other conditions. Prompt recognition and management of the conditions that can lead to respiratory failure in DKA may prevent respiratory failure and improve mortality from DKA.

  8. Respiratory failure in diabetic ketoacidosis

    PubMed Central

    Konstantinov, Nikifor K; Rohrscheib, Mark; Agaba, Emmanuel I; Dorin, Richard I; Murata, Glen H; Tzamaloukas, Antonios H

    2015-01-01

    Respiratory failure complicating the course of diabetic ketoacidosis (DKA) is a source of increased morbidity and mortality. Detection of respiratory failure in DKA requires focused clinical monitoring, careful interpretation of arterial blood gases, and investigation for conditions that can affect adversely the respiration. Conditions that compromise respiratory function caused by DKA can be detected at presentation but are usually more prevalent during treatment. These conditions include deficits of potassium, magnesium and phosphate and hydrostatic or non-hydrostatic pulmonary edema. Conditions not caused by DKA that can worsen respiratory function under the added stress of DKA include infections of the respiratory system, pre-existing respiratory or neuromuscular disease and miscellaneous other conditions. Prompt recognition and management of the conditions that can lead to respiratory failure in DKA may prevent respiratory failure and improve mortality from DKA. PMID:26240698

  9. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  10. Remote health monitoring of heart failure with data mining via CART method on HRV features.

    PubMed

    Pecchia, Leandro; Melillo, Paolo; Bracale, Marcello

    2011-03-01

    Disease management programs, which use no advanced information and computer technology, are as effective as telemedicine but more efficient because less costly. We proposed a platform to enhance effectiveness and efficiency of home monitoring using data mining for early detection of any worsening in patient's condition. These worsenings could require more complex and expensive care if not recognized. In this letter, we briefly describe the remote health monitoring platform we designed and realized, which supports heart failure (HF) severity assessment offering functions of data mining based on the classification and regression tree method. The system developed achieved accuracy and a precision of 96.39% and 100.00% in detecting HF and of 79.31% and 82.35% in distinguishing severe versus mild HF, respectively. These preliminary results were achieved on public databases of signals to improve their reproducibility. Clinical trials involving local patients are still running and will require longer experimentation.

  11. 40 CFR 49.10711 - Federal Implementation Plan for the Astaris-Idaho LLC Facility (formerly owned by FMC Corporation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, consistent with any averaging period specified for averaging the results of monitoring. Fugitive... beneficial. Monitoring malfunction means any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless...

  12. 40 CFR 49.10711 - Federal Implementation Plan for the Astaris-Idaho LLC Facility (formerly owned by FMC Corporation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section, consistent with any averaging period specified for averaging the results of monitoring. Fugitive... beneficial. Monitoring malfunction means any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless...

  13. Protection of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  14. Spiral-Bevel-Gear Damage Detected Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.

    2003-01-01

    Helicopter transmission integrity is critical to helicopter safety because helicopters depend on the power train for propulsion, lift, and flight maneuvering. To detect impending transmission failures, the ideal diagnostic tools used in the health-monitoring system would provide real-time health monitoring of the transmission, demonstrate a high level of reliable detection to minimize false alarms, and provide end users with clear information on the health of the system without requiring them to interpret large amounts of sensor data. A diagnostic tool for detecting damage to spiral bevel gears was developed. (Spiral bevel gears are used in helicopter transmissions to transfer power between nonparallel intersecting shafts.) Data fusion was used to integrate two different monitoring technologies, oil debris analysis and vibration, into a health-monitoring system for detecting surface fatigue pitting damage on the gears.

  15. Software for marine ecological environment comprehensive monitoring system based on MCGS

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  16. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  17. Applications of the Petri net to simulate, test, and validate the performance and safety of complex, heterogeneous, multi-modality patient monitoring alarm systems.

    PubMed

    Sloane, E B; Gelhot, V

    2004-01-01

    This research is motivated by the rapid pace of medical device and information system integration. Although the ability to interconnect many medical devices and information systems may help improve patient care, there is no way to detect if incompatibilities between one or more devices might cause critical events such as patient alarms to go unnoticed or cause one or more of the devices to become stuck in a disabled state. Petri net tools allow automated testing of all possible states and transitions between devices and/or systems to detect potential failure modes in advance. This paper describes an early research project to use Petri nets to simulate and validate a multi-modality central patient monitoring system. A free Petri net tool, HPSim, is used to simulate two wireless patient monitoring networks: one with 44 heart monitors and a central monitoring system and a second version that includes an additional 44 wireless pulse oximeters. In the latter Petri net simulation, a potentially dangerous heart arrhythmia and pulse oximetry alarms were detected.

  18. Integrated otpical monitoring of MEMS for closed-loop control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.

    2003-01-01

    Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.

  19. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  20. Using failure mode and effects analysis to plan implementation of smart i.v. pump technology.

    PubMed

    Wetterneck, Tosha B; Skibinski, Kathleen A; Roberts, Tanita L; Kleppin, Susan M; Schroeder, Mark E; Enloe, Myra; Rough, Steven S; Hundt, Ann Schoofs; Carayon, Pascale

    2006-08-15

    Failure mode and effects analysis (FMEA) was used to evaluate a smart i.v. pump as it was implemented into a redesigned medication-use process. A multidisciplinary team conducted a FMEA to guide the implementation of a smart i.v. pump that was designed to prevent pump programming errors. The smart i.v. pump was equipped with a dose-error reduction system that included a pre-defined drug library in which dosage limits were set for each medication. Monitoring for potential failures and errors occurred for three months postimplementation of FMEA. Specific measures were used to determine the success of the actions that were implemented as a result of the FMEA. The FMEA process at the hospital identified key failure modes in the medication process with the use of the old and new pumps, and actions were taken to avoid errors and adverse events. I.V. pump software and hardware design changes were also recommended. Thirteen of the 18 failure modes reported in practice after pump implementation had been identified by the team. A beneficial outcome of FMEA was the development of a multidisciplinary team that provided the infrastructure for safe technology implementation and effective event investigation after implementation. With the continual updating of i.v. pump software and hardware after implementation, FMEA can be an important starting place for safe technology choice and implementation and can produce site experts to follow technology and process changes over time. FMEA was useful in identifying potential problems in the medication-use process with the implementation of new smart i.v. pumps. Monitoring for system failures and errors after implementation remains necessary.

  1. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.

  2. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors

    DTIC Science & Technology

    2015-09-28

    malicious behavior found in our dataset and (ii) to create ground truth to evaluate the system proposed in Section V. We begin by removing those cases that...2011. [10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS Behavior of Malicious Domains,” in ACM IMC , 2011. [11] R. Perdisci et...distribution is unlimited. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors The views, opinions and/or findings contained in

  3. Chronic Heart Failure Follow-up Management Based on Agent Technology

    PubMed Central

    Safdari, Reza

    2015-01-01

    Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038

  4. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.

  5. Functional Fault Model Development Process to Support Design Analysis and Operational Assessment

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.

    2016-01-01

    A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.

  6. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  7. ESUMS: a mobile system for continuous home monitoring of rehabilitation patients.

    PubMed

    Strisland, Frode; Svagård, Ingrid; Seeberg, Trine M; Mathisen, Bjørn Magnus; Vedum, Jon; Austad, Hanne O; Liverud, Anders E; Kofod-Petersen, Anders; Bendixen, Ole Christian

    2013-01-01

    The pressure on the healthcare services is building up for several reasons. The ageing population trend, the increase in life-style related disease prevalence, as well as the increased treatment capabilities with associated general expectation all add pressure. The use of ambient healthcare technologies can alleviate the situation by enabling time and cost-efficient monitoring and follow-up of patients discharged from hospital care. We report on an ambulatory system developed for monitoring of physical rehabilitation patients. The system consists of a wearable multisensor monitoring device; a mobile phone with client application aggregating the data collected; a service-oriented-architecture based server solution; and a PC application facilitating patient follow-up by their health professional carers. The system has been tested and verified for accuracy in controlled environment trials on healthy volunteers, and also been usability tested by 5 congestive heart failure patients and their nurses. This investigation indicated that patients were able to use the system, and that nurses got an improved basis for patient follow-up.

  8. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  9. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  10. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    PubMed Central

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software∕hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%–3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation of clinical resources because the most critical failure modes receive the most attention. It is expected that the set of guidelines proposed here will serve as a living document that is updated with the accumulation of progressively more intrainstitutional and interinstitutional experience with DMLC tracking. PMID:21302802

  11. A Sensor Failure Simulator for Control System Reliability Studies

    NASA Technical Reports Server (NTRS)

    Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.

    1986-01-01

    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.

  12. A sensor failure simulator for control system reliability studies

    NASA Astrophysics Data System (ADS)

    Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.

    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.

  13. A multi-sensor approach to landslide monitoring of rainfall-induced failures in Scotland.

    NASA Astrophysics Data System (ADS)

    Gilles, Charlie; Hoey, Trevor; Williams, Richard

    2017-04-01

    Landslides are of significant interest in upland areas of the United Kingdom due to their: complex mechanics, potential to channelize into hazardous debris flows and their costly potential impacts on infrastructure. The British Geological Survey National Landslide Database contains an average of 367 landslides per year (from 1970). Slope failures in the UK are typically triggered by extended periods of intense rainfall, and can occur at any time of year. In any given rainfall event that triggers landslides, most potentially vulnerable slopes remain stable. Accurate warning systems would be facilitated by identifying landslide precursors prior to failure events. This project tests whether such precursors can be identified in the valley of Glen Ogle, Scotland (87 km north-west of Edinburgh), where in summer 2004 two debris flows blocked the main road (A85), trapping fifty-seven people. Two adjacent sites have been selected on a west facing slope in Glen Ogle, one of which (the control) has been stable since at least 2004 and the other failed in 2004 and remains unstable. Understanding the immediate causes and antecedent conditions responsible for landslides requires a multi-scale approach. This project uses multiple sensors to assess failure mechanisms of landslides in Glen Ogle: (1) 3-monthly, high (1.8 arcsec) resolution terrestrial laser scanning of topography to detect changes and identify patterns of movement prior to major failure, using the Riegl VZ-1000 (NERC Geophysical Equipment Fund); (2) rainfall and soil moisture data to monitor pore pressure of landslide failure prior to and after hydrologically triggered events; (3) monitoring ground motion using grain-scale sensors which are becoming lower cost, more efficient in terms of power, and can be wirelessly networked these will be used to detect small scale movement of the landslide. Comparative data from the control and test sites will be presented, from which patterns of surface deformation between failure events will be derived.

  14. Health Monitoring of a Rotating Disk Using a Combined Analytical-Experimental Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Lekki, John D.; Baaklini, George Y.

    2009-01-01

    Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.

  15. Ambulatory Monitoring of Congestive Heart Failure by Multiple Bioelectric Impedance Vectors

    PubMed Central

    Khoury, Dirar S.; Naware, Mihir; Siou, Jeff; Blomqvist, Andreas; Mathuria, Nilesh S.; Wang, Jianwen; Shih, Hue-Teh; Nagueh, Sherif F.; Panescu, Dorin

    2009-01-01

    Objectives To investigate properties of multiple bioelectric impedance signals recorded during congestive heart failure (CHF) by utilizing various electrode configurations of an implanted cardiac resynchronization therapy (CRT) system. Background Monitoring of CHF has relied mainly on right-heart sensors. Methods Fifteen normal dogs underwent implantation of CRT systems using standard leads. An additional left atrial (LA) pressure lead-sensor was implanted in 5 dogs. Continuous rapid right ventricular (RV) pacing was applied over several weeks. Left ventricular (LV) catheterization and echocardiography were performed biweekly. Six steady-state impedance signals, utilizing intrathorcaic and intracardiac vectors, were measured via ring (r), coil (c), and device Can electrodes. Results All animals developed CHF after 2–4 weeks of pacing. Impedance diminished gradually during CHF induction, but at varying rates for different vectors. Impedance during CHF decreased significantly in all measured vectors: LVr-Can, −17%; LVr-RVr, −15%; LVr-RAr, −11%; RVr-Can, −12%; RVc-Can, −7%; RAr-Can, −5%. The LVr-Can vector reflected both the fastest and largest change in impedance in comparison to vectors employing only right-heart electrodes, and was highly reflective of changes in LV end-diastolic volume and LA pressure. Conclusions Impedance, acquired via different lead-electrodes, have variable responses to CHF. Impedance vectors employing a LV lead are highly responsive to physiologic changes during CHF. Measuring multiple impedance signals could be useful for optimizing ambulatory monitoring in heart failure patients. PMID:19298923

  16. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  17. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  18. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  19. Inferring heuristic classification hierarchies from natural language input

    NASA Technical Reports Server (NTRS)

    Hull, Richard; Gomez, Fernando

    1993-01-01

    A methodology for inferring hierarchies representing heuristic knowledge about the check out, control, and monitoring sub-system (CCMS) of the space shuttle launch processing system from natural language input is explained. Our method identifies failures explicitly and implicitly described in natural language by domain experts and uses those descriptions to recommend classifications for inclusion in the experts' heuristic hierarchies.

  20. Autonomous diagnostics and prognostics of signal and data distribution systems

    NASA Astrophysics Data System (ADS)

    Blemel, Kenneth G.

    2001-07-01

    Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.

  1. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  2. Multimodal brain monitoring in fulminant hepatic failure

    PubMed Central

    Paschoal Jr, Fernando Mendes; Nogueira, Ricardo Carvalho; Ronconi, Karla De Almeida Lins; de Lima Oliveira, Marcelo; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2016-01-01

    Acute liver failure, also known as fulminant hepatic failure (FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting. PMID:27574545

  3. Autonomous Component Health Management with Failed Component Detection, Identification, and Avoidance

    NASA Technical Reports Server (NTRS)

    Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.

    2004-01-01

    This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.

  4. Analytical Study of different types Of network failure detection and possible remedies

    NASA Astrophysics Data System (ADS)

    Saxena, Shikha; Chandra, Somnath

    2012-07-01

    Faults in a network have various causes,such as the failure of one or more routers, fiber-cuts, failure of physical elements at the optical layer, or extraneous causes like power outages. These faults are usually detected as failures of a set of dependent logical entities and the links affected by the failed components. A reliable control plane plays a crucial role in creating high-level services in the next-generation transport network based on the Generalized Multiprotocol Label Switching (GMPLS) or Automatically Switched Optical Networks (ASON) model. In this paper, approaches to control-plane survivability, based on protection and restoration mechanisms, are examined. Procedures for the control plane state recovery are also discussed, including link and node failure recovery and the concepts of monitoring paths (MPs) and monitoring cycles (MCs) for unique localization of shared risk linked group (SRLG) failures in all-optical networks. An SRLG failure is a failure of multiple links due to a failure of a common resource. MCs (MPs) start and end at same (distinct) monitoring location(s). They are constructed such that any SRLG failure results in the failure of a unique combination of paths and cycles. We derive necessary and sufficient conditions on the set of MCs and MPs needed for localizing an SRLG failure in an arbitrary graph. Procedure of Protection and Restoration of the SRLG failure by backup re-provisioning algorithm have also been discussed.

  5. [Telemetric monitoring reduces visits to the emergency room and cost of care in patients with chronic heart failure].

    PubMed

    Pérez-Rodríguez, Gilberto; Brito-Zurita, Olga Rosa; Sistos-Navarro, Enrique; Benítez-Aréchiga, Zaria Margarita; Sarmiento-Salazar, Gloria Leticia; Vargas-Lizárraga, José Feliciano

    2015-01-01

    Tele-cardiology is the use of information technologies that help prolong survival, improve quality of life and reduce costs in health care. Heart failure is a chronic disease that leads to high care costs. To determine the effectiveness of telemetric monitoring for controlling clinical variables, reduced emergency room visits, and cost of care in a group of patients with heart failure compared to traditional medical consultation. A randomized, controlled and open clinical trial was conducted on 40 patients with Heart failure in a tertiary care centre in north-western Mexico. The patients were divided randomly into 2 groups of 20 patients each (telemetric monitoring, traditional medical consultation). In each participant was evaluated for: blood pressure, heart rate and body weight. The telemetric monitoring group was monitored remotely and traditional medical consultation group came to the hospital on scheduled dates. All patients could come to the emergency room if necessary. The telemetric monitoring group decreased their weight and improved control of the disease (P=.01). Systolic blood pressure and cost of care decreased (51%) significantly compared traditional medical consultation group (P>.05). Admission to the emergency room was avoided in 100% of patients in the telemetric monitoring group. In patients with heart failure, the telemetric monitoring was effective in reducing emergency room visits and saved significant resources in care during follow-up. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  6. Will sacubitril-valsartan diminish the clinical utility of B-type natriuretic peptide testing in acute cardiac care?

    PubMed

    Mair, Johannes; Lindahl, Bertil; Giannitsis, Evangelos; Huber, Kurt; Thygesen, Kristian; Plebani, Mario; Möckel, Martin; Müller, Christian; Jaffe, Allan S

    2017-06-01

    Since the approval of sacubitril-valsartan for the treatment of chronic heart failure with reduced ejection fraction, a commonly raised suspicion is that a wider clinical use of this new drug may diminish the clinical utility of B-type natriuretic peptide testing as sacubitril may interfere with B-type natriuretic peptide clearance. In this education paper we critically assess this hypothesis based on the pathophysiology of the natriuretic peptide system and the limited published data on the effects of neprilysin inhibition on natriuretic peptide plasma concentrations in humans. As the main clinical application of B-type natriuretic peptide testing in acute cardiac care is and will be the rapid rule-out of suspected acute heart failure there is no significant impairment to be expected for B-type natriuretic peptide testing in the acute setting. However, monitoring of chronic heart failure patients on sacubitril-valsartan treatment with B-type natriuretic peptide testing may be impaired. In contrast to N-terminal-proBNP, the current concept that the lower the B-type natriuretic peptide result in chronic heart failure patients, the better the prognosis during treatment monitoring, may no longer be true.

  7. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  8. The internal model: A study of the relative contribution of proprioception and visual information to failure detection in dynamic systems. [sensitivity of operators versus monitors to failures

    NASA Technical Reports Server (NTRS)

    Kessel, C.; Wickens, C. D.

    1978-01-01

    The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.

  9. Prognostics for Microgrid Components

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav

    2012-01-01

    Prognostics is the science of predicting future performance and potential failures based on targeted condition monitoring. Moving away from the traditional reliability centric view, prognostics aims at detecting and quantifying the time to impending failures. This advance warning provides the opportunity to take actions that can preserve uptime, reduce cost of damage, or extend the life of the component. The talk will focus on the concepts and basics of prognostics from the viewpoint of condition-based systems health management. Differences with other techniques used in systems health management and philosophies of prognostics used in other domains will be shown. Examples relevant to micro grid systems and subsystems will be used to illustrate various types of prediction scenarios and the resources it take to set up a desired prognostic system. Specifically, the implementation results for power storage and power semiconductor components will demonstrate specific solution approaches of prognostics. The role of constituent elements of prognostics, such as model, prediction algorithms, failure threshold, run-to-failure data, requirements and specifications, and post-prognostic reasoning will be explained. A discussion on performance evaluation and performance metrics will conclude the technical discussion followed by general comments on open research problems and challenges in prognostics.

  10. Near Field Communication-based telemonitoring with integrated ECG recordings

    PubMed Central

    Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G.

    2011-01-01

    Objectives Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. Methods We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system’s technical feasibility, usability and patient’s adherence to twice daily usage. Results 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Conclusions Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients. PMID:23616890

  11. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    PubMed

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  12. Intelligent approach to prognostic enhancements of diagnostic systems

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.

    2001-07-01

    This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.

  13. International Space Station Major Constituent Analyzer On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Granahan, John; Matty, Chris

    2012-01-01

    The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic changeout, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Over the past two years, two ORU 02 analyzer assemblies have operated nominally while two others have experienced premature on-orbit failures. These failures as well as nominal performances demonstrate that ORU 02 performance remains a key determinant of MCA performance and logistical support. It can be shown that monitoring several key parameters can maximize the capacity to monitor ORU health and properly anticipate end of life. Improvements to ion pump operation and ion source tuning are expected to improve lifetime performance of the current ORU 02 design.

  14. Time-Frequency Methods for Structural Health Monitoring †

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  15. 49 CFR Appendix G to Part 227 - Schedule of Civil Penalties

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Pt. 227, App. G Appendix G to Part 227... Requirements 227.103Noise monitoring program: (a) Failure to develop and/or implement a noise monitoring... levels and/or make noise measurements as required 2,500 5,000 (d) Failure to repeat noise monitoring...

  16. Liquid-propellant rocket engines health-monitoring—a survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun

    2005-02-01

    This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.

  17. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Battista, L.

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  18. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    PubMed

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  19. Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts.

    PubMed

    Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J

    2016-03-01

    We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.

  20. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    NASA Astrophysics Data System (ADS)

    Rao, B. K. N.; Srinivasa Pai, P.; Nagabhushana, T. N.

    2012-05-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  1. A Temperature-Based Monitoring System for Scour and Deposition at Bridge Piers

    DOT National Transportation Integrated Search

    2017-05-01

    Stream flows around a bridge pier can be fast and highly turbulent causing large shear stresses that may mobilize streambed sediment resulting in scour around bridge foundations. Scour is the leading cause of bridge failure in the USA because it comp...

  2. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  3. Research of a real-time overload monitoring and response system of bridges and roads

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Shi, Yan; Zhao, Xuefeng; Ou, Jinping

    2012-04-01

    Due to the general overloading of vehicles, premature failure of bridges and roads are more and more obvious. Structural behaviors of engineering structures need real-time monitoring and diagnosis, timely detection of structural damage, evaluation of their safety, and necessary precautions, in order to prevent major accident such as the collapse of bridges and roads. But the existing monitoring system, which is very expensive, does not apply to the low budget structures. Therefore, a potable, low-cost, low-power structural monitoring system, which consists of electric resistance strain gauge, collection and execution unit, graph collection system and analysis software, is designed in this paper. The system can collect the critical data about the force of pavement to take the certain judge algorithm. The alarm will be given and the overburden data will be transmitted to IDC to make the further analysis when the pavement is overburden. At the same time, the plates of overweight vehicles can be collected and sent to the relevant departments. The system has the features of simple structure, easy realization, and low cost, which fills the application gaps in structural health monitoring of low-budget project.

  4. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An analytical study of reports relating to cockpit altitude alert systems was performed. A recent change in the Federal Air Regulation permits the system to be modified so that the alerting signal approaching altitude has only a visual component; the auditory signal would continue to be heard if a deviation from an assigned altitude occurred. Failure to observe altitude alert signals and failure to reset the system were the commonest cause of altitude deviations related to this system. Cockpit crew distraction was the most frequent reason for these failures. It was noted by numerous reporters that the presence of altitude alert system made them less aware of altitude; this lack of altitude awareness is discussed. Failures of crew coordination were also noted. It is suggested that although modification of the altitude alert system may be highly desirable in short-haul aircraft, it may not be desirable for long-haul aircraft in which cockpit workloads are much lower for long periods of time. In these cockpits, the aural alert approaching altitudes is perceived as useful and helpful. If the systems are to be modified, it appears that additional emphasis on altitude awareness during recurrent training will be necessary; it is also possible that flight crew operating procedures during climb and descent may need examination with respect to monitoring responsibilities. A selection of alert bulletins and responses to them is presented.

  5. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my; Ibrahim, Maslina Mohd

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)more » are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.« less

  6. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification or mean Cryptosporidium level. 141.211 Section 141.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS ...

  7. Characterization of Mineralocorticoid Receptor Antagonist Therapy Initiation in High-Risk Patients With Heart Failure.

    PubMed

    Cooper, Lauren B; Hammill, Bradley G; Peterson, Eric D; Pitt, Bertram; Maciejewski, Matthew L; Curtis, Lesley H; Hernandez, Adrian F

    2017-01-01

    Heart failure guidelines recommend routine monitoring of serum potassium, and renal function in patients treated with a mineralocorticoid receptor antagonist (MRA). How these recommendations are implemented in high-risk patients or according to setting of drug initiation is poorly characterized. We conducted a retrospective cohort study of Medicare beneficiaries linked to laboratory data in 10 states with prevalent heart failure as of July 1, 2011, and incident MRA use between May 1 and September 30, 2011. Outcomes included laboratory testing before MRA initiation and in the early (days 1-10) and extended (days 11-90) post-initiation periods, based on setting of drug initiation and the presence of renal insufficiency. Additional outcomes included abnormal laboratory results and adverse events proximate to MRA initiation. Of 10 443 Medicare beneficiaries with heart failure started on an MRA, 19.7% were initiated during a hospitalization. Appropriate follow-up laboratory testing across all time periods occurred in 25.2% of patients with inpatient initiation compared with 2.8% of patients begun as an outpatient. Patients with chronic kidney disease had higher rates of both hyperkalemia and acute kidney failure in the early (1.3% and 2.7%, respectively) and extended (5.6% and 9.8%, respectively) post-initiation periods compared with those without chronic kidney disease. Patients initiated on MRA therapy as an outpatient had extremely poor rates of guideline indicated follow-up laboratory monitoring after drug initiation. In particular, patients with chronic kidney disease are at high risk for adverse events after MRA initiation. Quality improvement initiatives focused on systems to improve appropriate laboratory monitoring are needed. © 2017 American Heart Association, Inc.

  8. Back Propagation Artificial Neural Network and Its Application in Fault Detection of Condenser Failure in Thermo Plant

    NASA Astrophysics Data System (ADS)

    Ismail, Firas B.; Thiruchelvam, Vinesh

    2013-06-01

    Steam condenser is one of the most important equipment in steam power plants. If the steam condenser trips it may lead to whole unit shutdown, which is economically burdensome. Early condenser trips monitoring is crucial to maintain normal and safe operational conditions. In the present work, artificial intelligent monitoring systems specialized in condenser outages has been proposed and coded within the MATLAB environment. The training and validation of the system has been performed using real operational measurements captured from the control system of selected steam power plant. An integrated plant data preparation scheme for condenser outages with related operational variables has been proposed. Condenser outages under consideration have been detected by developed system before the plant control system"

  9. Design and implementation of a status at a glance user interface for a power distribution expert system

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.

    1993-01-01

    A user interface to the power distribution expert system for Space Station Freedom is discussed. The importance of features which simplify assessing system status and which minimize navigating through layers of information are examined. Design rationale and implementation choices are also presented. The amalgamation of such design features as message linking arrows, reduced information content screens, high salience anomaly icons, and color choices with failure detection and diagnostic explanation from an expert system is shown to provide an effective status-at-a-glance monitoring system for power distribution. This user interface design offers diagnostic reasoning without compromising the monitoring of current events. The display can convey complex concepts in terms that are clear to its users.

  10. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  11. External quality assurance performance of clinical research laboratories in sub-saharan Africa.

    PubMed

    Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks

    2012-11-01

    Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.

  12. Could Zinc Whiskers Be Impacting Your Electronic Systems? Raise Your Awareness. Revision D

    NASA Technical Reports Server (NTRS)

    Sampson, Michael; Brusse, Jay

    2003-01-01

    During the past several decades electrical short circuits induced by "Zinc Whiskers" have been cited as the root cause of failure for various electronic systems (e.g., apnea monitors, telecom switches). These tiny filaments of zinc that may grow from some zinc-coated items (especially those coated by electroplating processes) have the potential to induce electrical shorts in exposed circuitry. Through this article, the authors describe a particular failure scenario attributed to zinc whiskers that has affected many facilities (including some NASA facilities) that utilized zinc-coated raised "access" floor tiles and support structures. Zinc whiskers that may be growing beneath your raised floor have the potential to wreak havoc on electronic systems operating above the floor.

  13. Understanding Infusion Pumps.

    PubMed

    Mandel, Jeff E

    2018-04-01

    Infusion systems are complicated electromechanical systems that are used to deliver anesthetic drugs with moderate precision. Four types of systems are described-gravity feed, in-line piston, peristaltic, and syringe. These systems are subject to a number of failure modes-occlusion, disconnection, siphoning, infiltration, and air bubbles. The relative advantages of the various systems and some of the monitoring capabilities are discussed. A brief example of the use of an infusion system during anesthetic induction is presented. With understanding of the functioning of these systems, users may develop greater comfort.

  14. Designing and Implementation of a Heart Failure Telemonitoring System

    PubMed Central

    Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim

    2017-01-01

    Introduction: The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. Method: In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. Results: This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient’s data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. Conclusion: This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately. PMID:29114106

  15. Designing and Implementation of a Heart Failure Telemonitoring System.

    PubMed

    Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim

    2017-09-01

    The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient's data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately.

  16. 76 FR 68299 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...: Starter-Generator, 2437: DC Indicating System, and 2430: DC Generator System. (d) Revise the Emergency... Performance Data sections of the RFM to alert the operators to monitor the power display when a generator is... when one generator is deactivated. The actions specified in this AD are intended to prevent failure of...

  17. A concept for fault tolerant design and improved availability of active composite elastic structures

    NASA Astrophysics Data System (ADS)

    Soeffker, D.; Wolters, K.; Krajcin, I.

    2005-05-01

    New functionalities, higher comfort and increasing performance requirements are often be solved by adding new technologies to existing (passive) solutions. Monitoring and control approaches uses additional sensors and actuators, new materials, microprocessors and new devices realizing new and improved functionalities. Two effects are becoming more and more interesting: (1) the lifetime of new actuators/materials strongly depends on the usage-history, (2) the functionality of the new composed systems depends on the fully functionality of all elements. In the consequence, the availability of such new systems is decreased by the number of elements and depends strongly on the use. These effects are known and act against new developments improving performance behavior also in mechanical engineering, automotive systems etc. This will be also the case for multifunctional composite or compound systems such as piezomaterials, magnetostrictive alloys or smart memory alloys (SMA) and is actually within the focus of the Structural-Health-Monitoring (SHM)-community. This contribution explains a new and systematically structured methodological approach to avoid and eliminate failures in mechatronical systems in an integrated and intelligent way to achieve a desirable or required amount of utilization in compliance with a defined failure rate. The result is an enhancement of the dependability of such a system.

  18. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  19. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  20. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... classification or mean Cryptosporidium level must contain the following language: We are required to monitor the... or mean Cryptosporidium level. 141.211 Section 141.211 Protection of Environment ENVIRONMENTAL... Cryptosporidium level. (a) When is the special notice for repeated failure to monitor to be given? The owner or...

  1. Scheduling structural health monitoring activities for optimizing life-cycle costs and reliability of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2017-04-01

    Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.

  2. The nursing perspective on monitoring hemodynamics and oxygen transport.

    PubMed

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  3. Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah

    2014-01-01

    Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.

  4. Review and Analysis of Existing Mobile Phone Apps to Support Heart Failure Symptom Monitoring and Self-Care Management Using the Mobile Application Rating Scale (MARS).

    PubMed

    Masterson Creber, Ruth M; Maurer, Mathew S; Reading, Meghan; Hiraldo, Grenny; Hickey, Kathleen T; Iribarren, Sarah

    2016-06-14

    Heart failure is the most common cause of hospital readmissions among Medicare beneficiaries and these hospitalizations are often driven by exacerbations in common heart failure symptoms. Patient collaboration with health care providers and decision making is a core component of increasing symptom monitoring and decreasing hospital use. Mobile phone apps offer a potentially cost-effective solution for symptom monitoring and self-care management at the point of need. The purpose of this review of commercially available apps was to identify and assess the functionalities of patient-facing mobile health apps targeted toward supporting heart failure symptom monitoring and self-care management. We searched 3 Web-based mobile app stores using multiple terms and combinations (eg, "heart failure," "cardiology," "heart failure and self-management"). Apps meeting inclusion criteria were evaluated using the Mobile Application Rating Scale (MARS), IMS Institute for Healthcare Informatics functionality scores, and Heart Failure Society of America (HFSA) guidelines for nonpharmacologic management. Apps were downloaded and assessed independently by 2-4 reviewers, interclass correlations between reviewers were calculated, and consensus was met by discussion. Of 3636 potentially relevant apps searched, 34 met inclusion criteria. Most apps were excluded because they were unrelated to heart failure, not in English or Spanish, or were games. Interrater reliability between reviewers was high. AskMD app had the highest average MARS total (4.9/5). More than half of the apps (23/34, 68%) had acceptable MARS scores (>3.0). Heart Failure Health Storylines (4.6) and AskMD (4.5) had the highest scores for behavior change. Factoring MARS, functionality, and HFSA guideline scores, the highest performing apps included Heart Failure Health Storylines, Symple, ContinuousCare Health App, WebMD, and AskMD. Peer-reviewed publications were identified for only 3 of the 34 apps. This review suggests that few apps meet prespecified criteria for quality, content, or functionality, highlighting the need for further refinement and mapping to evidence-based guidelines and room for overall quality improvement in heart failure symptom monitoring and self-care related apps.

  5. Expert system for UNIX system reliability and availability enhancement

    NASA Astrophysics Data System (ADS)

    Xu, Catherine Q.

    1993-02-01

    Highly reliable and available systems are critical to the airline industry. However, most off-the-shelf computer operating systems and hardware do not have built-in fault tolerant mechanisms, the UNIX workstation is one example. In this research effort, we have developed a rule-based Expert System (ES) to monitor, command, and control a UNIX workstation system with hot-standby redundancy. The ES on each workstation acts as an on-line system administrator to diagnose, report, correct, and prevent certain types of hardware and software failures. If a primary station is approaching failure, the ES coordinates the switch-over to a hot-standby secondary workstation. The goal is to discover and solve certain fatal problems early enough to prevent complete system failure from occurring and therefore to enhance system reliability and availability. Test results show that the ES can diagnose all targeted faulty scenarios and take desired actions in a consistent manner regardless of the sequence of the faults. The ES can perform designated system administration tasks about ten times faster than an experienced human operator. Compared with a single workstation system, our hot-standby redundancy system downtime is predicted to be reduced by more than 50 percent by using the ES to command and control the system.

  6. Expert System for UNIX System Reliability and Availability Enhancement

    NASA Technical Reports Server (NTRS)

    Xu, Catherine Q.

    1993-01-01

    Highly reliable and available systems are critical to the airline industry. However, most off-the-shelf computer operating systems and hardware do not have built-in fault tolerant mechanisms, the UNIX workstation is one example. In this research effort, we have developed a rule-based Expert System (ES) to monitor, command, and control a UNIX workstation system with hot-standby redundancy. The ES on each workstation acts as an on-line system administrator to diagnose, report, correct, and prevent certain types of hardware and software failures. If a primary station is approaching failure, the ES coordinates the switch-over to a hot-standby secondary workstation. The goal is to discover and solve certain fatal problems early enough to prevent complete system failure from occurring and therefore to enhance system reliability and availability. Test results show that the ES can diagnose all targeted faulty scenarios and take desired actions in a consistent manner regardless of the sequence of the faults. The ES can perform designated system administration tasks about ten times faster than an experienced human operator. Compared with a single workstation system, our hot-standby redundancy system downtime is predicted to be reduced by more than 50 percent by using the ES to command and control the system.

  7. [The role of natriuretic peptides in heart failure].

    PubMed

    Ancona, R; Limongelli, G; Pacileo, G; Miele, T; Rea, A; Roselli, T; Masarone, D; Messina, S; Palmieri, R; Golia, E; Iacomino, M; Gala, S; Calabrò, P; Di Salvo, G; Calabrò, R

    2007-10-01

    Over the last decades, there has been a significant increase in incidence and prevalence of heart failure, a major cause of cardiac morbidity and mortality. Measurements of neurohormones, in particular B-type natriuretic peptide (BNP), can significantly improve diagnostic accuracy, and also correlate with long-term morbidity and mortality in patients with chronic heart failure presenting to the emergency department. BNP is secreted by cardiac ventricles mainly in response to wall stress and neurohormonal factors like the sympathetic nervous system, endothelins, and the rennin-angiotensin-aldosterone system. BNP increases myocardial relaxation and oppose the vasoconstrictive, sodium retaining, and natriuretic effects caused by vasoconstrictive factors. BNP is the first biomarker to prove its clinical value for the diagnosis of left ventricular systolic and diastolic dysfunction but also for the right ventricular dysfunction, guiding prognosis and therapy management. Emerging clinical data will help further refine biomarker-guided therapeutic and monitoring strategies involving BNP.

  8. Keeping Up with Healthcare Trends: IcHeart as a Medication Management Application

    NASA Astrophysics Data System (ADS)

    Kasinathan, Vinothini; Mustapha, Aida; Azah Samsudin, Noor

    2016-11-01

    According to the US governments, more than 125,000 people die each year due to failure to manage their medications, leading to approximately USD100 billion in preventable costs to healthcare systems. The core failure in medication management is attributed by patients failing to adhere their medication regimens, whether by accident, negligence, or intentional. Recognizing the importants of vigilant monitoring in medication management, this paper is set to review the latest android-based healthcare trends and propose a new mobile medication reminder application called IcHeart.

  9. Transportable Life Support for Treatment of Acute Lung Failure Due to Smoke Inhalation and Burns

    DTIC Science & Technology

    2014-04-01

    and all vital sign and medical monitor data collected in the animal ICU . The system is in use in the animal ICU daily and we will report on its... Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA. Nov 4 2009;302(17):1888-1895. 9. Napolitano LM, Park PK, Raghavendran K, Bartlett RH...Nonventilatory strategies for patients with life-threatening 2009 H1N1 influenza and severe respiratory failure. Crit Care Med. Apr 2010;38(4 Suppl

  10. Cadaveric study validating in vitro monitoring techniques to measure the failure mechanism of glenoid implants against clinical CT.

    PubMed

    Junaid, Sarah; Gregory, Thomas; Fetherston, Shirley; Emery, Roger; Amis, Andrew A; Hansen, Ulrich

    2018-03-23

    Definite glenoid implant loosening is identifiable on radiographs, however, identifying early loosening still eludes clinicians. Methods to monitor glenoid loosening in vitro have not been validated to clinical imaging. This study investigates the correlation between in vitro measures and CT images. Ten cadaveric scapulae were implanted with a pegged glenoid implant and fatigue tested to failure. Each scapulae were cyclically loaded superiorly and CT scanned every 20,000 cycles until failure to monitor progressive radiolucent lines. Superior and inferior rim displacements were also measured. A finite element (FE) model of one scapula was used to analyze the interfacial stresses at the implant/cement and cement/bone interfaces. All ten implants failed inferiorly at the implant-cement interface, two also failed at the cement-bone interface inferiorly, and three showed superior failure. Failure occurred at of 80,966 ± 53,729 (mean ± SD) cycles. CT scans confirmed failure of the fixation, and in most cases, was observed either before or with visual failure. Significant correlations were found between inferior rim displacement, vertical head displacement and failure of the glenoid implant. The FE model showed peak tensile stresses inferiorly and high compressive stresses superiorly, corroborating experimental findings. In vitro monitoring methods correlated to failure progression in clinical CT images possibly indicating its capacity to detect loosening earlier for earlier clinical intervention if needed. Its use in detecting failure non-destructively for implant development and testing is also valuable. The study highlights failure at the implant-cement interface and early signs of failure are identifiable in CT images. © 2018 The Authors. Journal of Orthopaedic Research ® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:XX-XX, 2018. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  11. The Generic Spacecraft Analyst Assistant (gensaa): a Tool for Developing Graphical Expert Systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real-time data. The analysts must watch for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As the satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At NASA GSFC, fault-isolation expert systems are in operation supporting this data monitoring task. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will readily support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  12. Feasibility of an on-line fission-gas-leak detection system

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.

    1973-01-01

    Calculations were made to determine if a cladding failure could be detected in a 100-kW zirconium hydride reactor primary system by monitoring the highly radioactive NaK coolant for the presence of I-131. The system is to be completely sealed. A leak of 0.01 percent from a single fuel pin was postulated. The 0.364-MeV gamma of I-131 could be monitored on an almost continuous basis, while its presence could be varified by using a longer counting time for the 0.638-MeV gamma. A lithium-drifted germanium detector would eliminate radioactive corrosion product interference that could occur with a sodium iodide scintillation detector.

  13. Comprehensive analysis of cochlear implant failure: usefulness of clinical symptom-based algorithm combined with in situ integrity testing.

    PubMed

    Yamazaki, Hiroshi; O'Leary, Stephen; Moran, Michelle; Briggs, Robert

    2014-04-01

    Accurate diagnosis of cochlear implant failures is important for management; however, appropriate strategies to assess possible device failures are not always clear. The purpose of this study is to understand correlation between causes of device failure and the presenting clinical symptoms as well as results of in situ integrity testing and to propose effective strategies for diagnosis of device failure. Retrospective case review. Cochlear implant center at a tertiary referral hospital. Twenty-seven cases with suspected device failure of Cochlear Nucleus systems (excluding CI512 failures) on the basis of deterioration in auditory perception from January 2000 to September 2012 in the Melbourne cochlear implant clinic. Clinical presentations and types of abnormalities on in situ integrity testing were compared with modes of device failure detected by returned device analysis. Sudden deterioration in auditory perception was always observed in cases with "critical damage": either fracture of the integrated circuit or most or all of the electrode wires. Subacute or gradually progressive deterioration in auditory perception was significantly associated with a more limited number of broken electrode wires. Cochlear implant mediated auditory and nonauditory symptoms were significantly associated with an insulation problem. An algorithm based on the time course of deterioration in auditory perception and cochlear implant-mediated auditory and nonauditory symptoms was developed on the basis of these retrospective analyses, to help predict the mode of device failure. In situ integrity testing, which included close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery, was sensitive enough to detect malfunction in all suspected device failures, and each mode of device failure showed a characteristic abnormality on in situ integrity testing. Our clinical manifestation-based algorithm combined with in situ integrity testing may be useful for accurate diagnosis and appropriate management of device failure. Close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery is important if the initial in situ integrity testing is inconclusive because objective evidence of failure in the implanted device is essential to recommend explantation/reimplantation.

  14. Micromechanics of composite laminate compression failure

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1986-01-01

    The Dugdale analysis for metals loaded in tension was adapted to model the failure of notched composite laminates loaded in compression. Compression testing details, MTS alignment verification, and equipment needs were resolved. Thus far, only 2 ductile material systems, HST7 and F155, were selected for study. A Wild M8 Zoom Stereomicroscope and necessary attachments for video taping and 35 mm pictures were purchased. Currently, this compression test system is fully operational. A specimen is loaded in compression, and load vs shear-crippling zone size is monitored and recorded. Data from initial compression tests indicate that the Dugdale model does not accurately predict the load vs damage zone size relationship of notched composite specimens loaded in compression.

  15. Making real-time reactive systems reliable

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  16. 21 CFR 880.5130 - Infant radiant warmer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...

  17. 21 CFR 880.5130 - Infant radiant warmer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...

  18. 21 CFR 880.5130 - Infant radiant warmer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...

  19. 21 CFR 880.5130 - Infant radiant warmer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...

  20. 21 CFR 880.5130 - Infant radiant warmer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...

  1. An open-source data storage and visualization back end for experimental data.

    PubMed

    Nielsen, Kenneth; Andersen, Thomas; Jensen, Robert; Nielsen, Jane H; Chorkendorff, Ib

    2014-04-01

    In this article, a flexible free and open-source software system for data logging and presentation will be described. The system is highly modular and adaptable and can be used in any laboratory in which continuous and/or ad hoc measurements require centralized storage. A presentation component for the data back end has furthermore been written that enables live visualization of data on any device capable of displaying Web pages. The system consists of three parts: data-logging clients, a data server, and a data presentation Web site. The logging of data from independent clients leads to high resilience to equipment failure, whereas the central storage of data dramatically eases backup and data exchange. The visualization front end allows direct monitoring of acquired data to see live progress of long-duration experiments. This enables the user to alter experimental conditions based on these data and to interfere with the experiment if needed. The data stored consist both of specific measurements and of continuously logged system parameters. The latter is crucial to a variety of automation and surveillance features, and three cases of such features are described: monitoring system health, getting status of long-duration experiments, and implementation of instant alarms in the event of failure.

  2. Qualitative and temporal reasoning in engine behavior analysis

    NASA Technical Reports Server (NTRS)

    Dietz, W. E.; Stamps, M. E.; Ali, M.

    1987-01-01

    Numerical simulation models, engine experts, and experimental data are used to generate qualitative and temporal representations of abnormal engine behavior. Engine parameters monitored during operation are used to generate qualitative and temporal representations of actual engine behavior. Similarities between the representations of failure scenarios and the actual engine behavior are used to diagnose fault conditions which have already occurred, or are about to occur; to increase the surveillance by the monitoring system of relevant engine parameters; and to predict likely future engine behavior.

  3. FEDAL SYSTEM OPERATION DURING STATION START-UP. Test Results (T-643734). Core I, Seed 2. Section I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    An investigation was conducted to determine if any failed blanket fuel elements exist in core locations previously found to have high levels of delayed neutron emitter activity. Data from Fedal System monitors indicate that J5 may have a failed blanket element, there is no evidence of failure at core location F7. (J.R.D.)

  4. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  5. Optional real-time display of intraoperative neurophysiological monitoring in the microscopic field of view: avoiding communication failures in the operating room.

    PubMed

    Stoecklein, Veit M; Faber, Florian; Koch, Mandy; Mattmüller, Rudi; Schaper, Anika; Rudolph, Frank; Tonn, Joerg C; Schichor, Christian

    2015-11-01

    The use of intraoperative neurophysiological monitoring (IONM) in neurosurgery has improved patient safety and outcomes. However, a pitfall in the use of IONM remains unsolved. Currently, there is no feasible way for surgeons to interpret IONM waves themselves during operations. Instead, they have to rely on verbal feedback from a neurophysiologist. This method is prone to communication failures, which can lead to delayed or false interpretation of the data. Direct visualization of IONM waves is a way to alleviate this problem and make IONM more effective. Microscope-integrated IONM (MI-IONM) was used in 163 cranial and spinal cases. We evaluated the feasibility, system stability and how well the system integrated into the surgical workflow. We used an IONM system that was connected to a surgical microscope. All IONM modalities used at our institution could be visualized as required, superimposed on the surgical field in the eyepiece of the microscope without obstructing the surgeon's field of vision. Use of MI-IONM was safe and reliable. It furthermore provided valuable intraoperative information. The system merely required a short learning curve. Only minor system problems without impact on surgical workflow occurred. MI-IONM proved to be especially useful in surgical cases where careful monitoring of nerve function is required, e.g., cerebellopontine angle surgery. Here, direct assessment of surgical action and IONM wave change was provided to the surgeon, if necessary (on-off control). MI-IONM is a useful extension of conventional IONM that provides optional real-time functional information to the surgeon on demand.

  6. Integrative Assessment of Congestion in Heart Failure Throughout the Patient Journey.

    PubMed

    Girerd, Nicolas; Seronde, Marie-France; Coiro, Stefano; Chouihed, Tahar; Bilbault, Pascal; Braun, François; Kenizou, David; Maillier, Bruno; Nazeyrollas, Pierre; Roul, Gérard; Fillieux, Ludivine; Abraham, William T; Januzzi, James; Sebbag, Laurent; Zannad, Faiez; Mebazaa, Alexandre; Rossignol, Patrick

    2018-04-01

    Congestion is one of the main predictors of poor patient outcome in patients with heart failure. However, congestion is difficult to assess, especially when symptoms are mild. Although numerous clinical scores, imaging tools, and biological tests are available to assist physicians in ascertaining and quantifying congestion, not all are appropriate for use in all stages of patient management. In recent years, multidisciplinary management in the community has become increasingly important to prevent heart failure hospitalizations. Electronic alert systems and communication platforms are emerging that could be used to facilitate patient home monitoring that identifies congestion from heart failure decompensation at an earlier stage. This paper describes the role of congestion detection methods at key stages of patient care: pre-admission, admission to the emergency department, in-hospital management, and lastly, discharge and continued monitoring in the community. The multidisciplinary working group, which consisted of cardiologists, emergency physicians, and a nephrologist with both clinical and research backgrounds, reviewed the current literature regarding the various scores, tools, and tests to detect and quantify congestion. This paper describes the role of each tool at key stages of patient care and discusses the advantages of telemedicine as a means of providing true integrated patient care. Copyright © 2018. Published by Elsevier Inc.

  7. A real-time diagnostic and performance monitor for UNIX. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dong, Hongchao

    1992-01-01

    There are now over one million UNIX sites and the pace at which new installations are added is steadily increasing. Along with this increase, comes a need to develop simple efficient, effective and adaptable ways of simultaneously collecting real-time diagnostic and performance data. This need exists because distributed systems can give rise to complex failure situations that are often un-identifiable with single-machine diagnostic software. The simultaneous collection of error and performance data is also important for research in failure prediction and error/performance studies. This paper introduces a portable method to concurrently collect real-time diagnostic and performance data on a distributed UNIX system. The combined diagnostic/performance data collection is implemented on a distributed multi-computer system using SUN4's as servers. The approach uses existing UNIX system facilities to gather system dependability information such as error and crash reports. In addition, performance data such as CPU utilization, disk usage, I/O transfer rate and network contention is also collected. In the future, the collected data will be used to identify dependability bottlenecks and to analyze the impact of failures on system performance.

  8. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  9. On the enhanced detectability of GPS anomalous behavior with relative entropy

    NASA Astrophysics Data System (ADS)

    Cho, Jeongho

    2016-10-01

    A standard receiver autonomous integrity monitoring (RAIM) technique for the global positioning system (GPS) has been dedicated to provide an integrity monitoring capability for safety-critical GPS applications, such as in civil aviation for the en-route (ER) through non-precision approach (NPA) or lateral navigation (LNAV). The performance of the existing RAIM method, however, may not meet more stringent aviation requirements for availability and integrity during the precision approach and landing phases of flight due to insufficient observables and/or untimely warning to the user beyond a specified time-to-alert in the event of a significant GPS failure. This has led to an enhanced RAIM architecture ensuring stricter integrity requirement by greatly decreasing the detection time when a satellite failure or a measurement error has occurred. We thus attempted to devise a user integrity monitor which is capable of identifying the GPS failure more rapidly than a standard RAIM scheme by incorporating the RAIM with the relative entropy, which is a likelihood ratio approach to assess the inconsistence between two data streams, quite different from a Euclidean distance. In addition, the delay-coordinate embedding technique needs to be considered and preprocessed to associate the discriminant measure obtained from the RAIM with the relative entropy in the new RAIM design. In simulation results, we demonstrate that the proposed user integrity monitor outperforms the standard RAIM with a higher level of detection rate of anomalies which could be hazardous to the users in the approach or landing phase and is a very promising alternative for the detection of deviations in GPS signal. The comparison also shows that it enables to catch even small anomalous gradients more rapidly than a typical user integrity monitor.

  10. J-2X Abort System Development

    NASA Technical Reports Server (NTRS)

    Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.

    2008-01-01

    The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.

  11. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  13. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  14. Three-dimensional dynamic deformation monitoring using a laser-scanning system

    NASA Astrophysics Data System (ADS)

    Al-Hanbali, Nedal N.; Teskey, William F.

    1994-10-01

    Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.

  15. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  16. A wireless monitoring system for Hydrocephalus shunts.

    PubMed

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  17. 14 CFR 171.323 - Fabrication and installation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., using applicable electric and safety codes and Federal Communications Commission (FCC) licensing... time not to exceed 1.5 hours. This measure applies to correction of unscheduled failures of the monitor... measure applies to unscheduled outage, out-of-tolerance conditions, and failures of the monitor...

  18. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  19. Landslide early warning based on failure forecast models: the example of Mt. de La Saxe rockslide, northern Italy

    NASA Astrophysics Data System (ADS)

    Manconi, A.; Giordan, D.

    2015-02-01

    We investigate the use of landslide failure forecast models by exploiting near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here we describe the main concepts of our method, and show an example of application to a real emergency scenario, the La Saxe rockslide, Aosta Valley region, northern Italy. Based on the herein presented case study, we identify operational thresholds based on the reliability of the forecast models, in order to support the management of early warning systems in the most critical phases of the landslide emergency.

  20. Simulation-driven machine learning: Bearing fault classification

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  1. Data-Driven Anomaly Detection Performance for the Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Schwabacher, Mark A.; Matthews, Bryan L.

    2010-01-01

    In this paper, we will assess the performance of a data-driven anomaly detection algorithm, the Inductive Monitoring System (IMS), which can be used to detect simulated Thrust Vector Control (TVC) system failures. However, the ability of IMS to detect these failures in a true operational setting may be related to the realistic nature of how they are simulated. As such, we will investigate both a low fidelity and high fidelity approach to simulating such failures, with the latter based upon the underlying physics. Furthermore, the ability of IMS to detect anomalies that were previously unknown and not previously simulated will be studied in earnest, as well as apparent deficiencies or misapplications that result from using the data-driven paradigm. Our conclusions indicate that robust detection performance of simulated failures using IMS is not appreciably affected by the use of a high fidelity simulation. However, we have found that the inclusion of a data-driven algorithm such as IMS into a suite of deployable health management technologies does add significant value.

  2. Aldosterone antagonists in heart failure.

    PubMed

    Miller, Susan E; Alvarez, René J

    2013-01-01

    Chronic, systolic heart failure is an increasing and costly health problem, and treatments based on pathophysiology have evolved that include the use of aldosterone antagonists. Advances in the understanding of neurohormonal responses to heart failure have led to better pharmacologic treatments. The steroid hormone aldosterone has been associated with detrimental effects on the cardiovascular system, such as ventricular remodeling and endothelial dysfunction. This article will review the literature and guidelines that support the use of aldosterone antagonists in the treatment of chronic, systolic heart failure. Aldosterone antagonists are life-saving drugs that have been shown to decrease mortality in patients with New York Heart Association class III to IV heart failure and in patients with heart failure after an acute myocardial infarction. Additional studies are being conducted to determine if the role of aldosterone antagonists can be expanded to patients with less severe forms of heart failure. Aldosterone antagonists are an important pharmacologic therapy in the neurohormonal blockade necessary in the treatment of systolic heart failure. These drugs have been shown to decrease mortality and reduce hospital readmission rates. The major complication of aldosterone antagonists is hyperkalemia, which can be avoided with appropriate patient selection and diligent monitoring.

  3. Application of displacement monitoring system on high temperature steam pipe

    NASA Astrophysics Data System (ADS)

    Ghaffar, M. H. A.; Husin, S.; Baek, J. E.

    2017-10-01

    High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.

  4. Non-compliance with the International Code of Marketing of Breast Milk Substitutes is not confined to the infant formula industry.

    PubMed

    Forsyth, Stewart

    2013-06-01

    Infant feeding policy and practice continues to be a contentious area of global health care. The infant formula industry is widely considered to be the bête noire with frequent claims that they adopt marketing and sales practices that are not compliant with the WHO Code. However, failure to resolve these issues over three decades suggests that there may be wider systemic failings. Review of published papers, commentaries and reports relating to the implementation and governance of the WHO Code with specific reference to issues of non-compliance. The analysis set out in this paper indicates that there are systemic failings at all levels of the implementation and monitoring process including the failure of WHO to successfully 'urge' governments to implement the Code in its entirety; a lack of political will by Member States to implement and monitor the Code and a lack of formal and transparent governance structures. Non-compliance with the WHO Code is not confined to the infant formula industry and several actions are identified, including the need to address issues of partnership working and the establishment of governance systems that are robust, independent and transparent.

  5. Study of nanosensor systems for hypertension associated cerebrovascular and cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2015-04-01

    Hypertension and hypertension associated cerebrovascular and cardiovascular diseases are on a rise. At-least 970 million people in the world and Seventy percent of the American adults are affected by high blood pressure, also known as hypertension. Even though blood pressure monitoring systems are readily available, the number of people being affected has been increasing. Most of the blood pressure monitoring systems require cumbersome approaches. Even the noninvasive techniques have not lowered the number of people affected nor did at-least increase the user base of these systems. Uncontrolled or untreated hypertension may lead to various cerebrovascular disorders including stroke, hypertensive crisis, lacunar infarcts intracerebral damage, microaneurysm, and cardiovascular disorders including heart failure, myocardial infraction, and ischemic heart disease. Hypertension is rated as the one of the most important causes of premature death in spite of the technical advances in biomedical technology. This paper briefs a review of the widely adopted blood pressure monitoring methods, research techniques, and finally, proposes a concept of implementing nanosensors and wireless communication for real time non-invasive blood pressure monitoring.

  6. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  7. PACS quality control and automatic problem notifier

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Jones, Douglas; Frost, Meryll M.; Staab, Edward V.

    1997-05-01

    One side effect of installing a clinical PACS Is that users become dependent upon the technology and in some cases it can be very difficult to revert back to a film based system if components fail. The nature of system failures range from slow deterioration of function as seen in the loss of monitor luminance through sudden catastrophic loss of the entire PACS networks. This paper describes the quality control procedures in place at the University of Florida and the automatic notification system that alerts PACS personnel when a failure has happened or is anticipated. The goal is to recover from a failure with a minimum of downtime and no data loss. Routine quality control is practiced on all aspects of PACS, from acquisition, through network routing, through display, and including archiving. Whenever possible, the system components perform self and between platform checks for active processes, file system status, errors in log files, and system uptime. When an error is detected or a exception occurs, an automatic page is sent to a pager with a diagnostic code. Documentation on each code, trouble shooting procedures, and repairs are kept on an intranet server accessible only to people involved in maintaining the PACS. In addition to the automatic paging system for error conditions, acquisition is assured by an automatic fax report sent on a daily basis to all technologists acquiring PACS images to be used as a cross check that all studies are archived prior to being removed from the acquisition systems. Daily quality control is preformed to assure that studies can be moved from each acquisition and contrast adjustment. The results of selected quality control reports will be presented. The intranet documentation server will be described with the automatic pager system. Monitor quality control reports will be described and the cost of quality control will be quantified. As PACS is accepted as a clinical tool, the same standards of quality control must be established as are expected on other equipment used in the diagnostic process.

  8. Investigations upon the effects of an auxiliary brake system on the working parameters of diesel engines

    NASA Astrophysics Data System (ADS)

    Suciu, Cornel; Mihai, Ioan

    2016-12-01

    Classical systems have the main disadvantage of being unable to ensure that high load diesel engine vehicles are slowed in good conditions, for the entire range of combinations of inclinations and lengths of sloped public roads. On such roads, where brakes are used repeatedly and for long periods, friction components that enter classical braking systems will overheat and lead to failure. The present paper aims to investigate, the efficiency of a braking system based on compression release, called a Jake Brake. In such a system, the exhaust valve is actuated at a certain predetermined angle of the crankshaft. The presented research was conducted on an experimental rig based on a four-stroke mono-cylinder diesel engine model Lombardini 6 LD400. Pressure and temperature evolutions were monitored before and during the use of the Jake Brake system. As the generated phonic pollution is the main disadvantage of such systems, noise generated in the vicinity of the engine was monitored as well. The monitored parameters were then plotted in diagrams that allowed evaluating the performances of the system.

  9. Prevalence and Predictors of Immunological Failure among HIV Patients on HAART in Southern Ethiopia.

    PubMed

    Yirdaw, Kesetebirhan Delele; Hattingh, Susan

    2015-01-01

    Immunological monitoring is part of the standard of care for patients on antiretroviral treatment. Yet, little is known about the routine implementation of immunological laboratory monitoring and utilization in clinical care in Ethiopia. This study assessed the pattern of immunological monitoring, immunological response, level of immunological treatment failure and factors related to it among patients on antiretroviral therapy in selected hospitals in southern Ethiopia. A retrospective longitudinal analytic study was conducted using documents of patients started on antiretroviral therapy. Adequacy of timely immunological monitoring was assessed every six months the first year and every one year thereafter. Immunological response was assessed every six months at cohort level. Immunological failure was based on the criteria: fall of follow-up CD4 cell count to baseline (or below), or CD4 levels persisting below 100 cells/mm3, or 50% fall from on-treatment peak value. A total of 1,321 documents of patients reviewed revealed timely immunological monitoring were inadequate. There was adequate immunological response, with pediatric patients, females, those with less advanced illness (baseline WHO Stage I or II) and those with higher baseline CD4 cell count found to have better immunological recovery. Thirty-nine patients (3%) were not evaluated for immunological failure because they had frequent treatment interruption. Despite overall adequate immunological response at group level, the prevalence of those who ever experienced immunological failure was 17.6% (n=226), while after subsequent re-evaluation it dropped to 11.5% (n=147). Having WHO Stage III/IV of the disease or a higher CD4 cell count at baseline was identified as a risk for immunological failure. Few patients with confirmed failure were switched to second line therapy. These findings highlight the magnitude of the problem of immunological failure and the gap in management. Prioritizing care for high risk patients may help in effective utilization of meager resources.

  10. Prevalence and Predictors of Immunological Failure among HIV Patients on HAART in Southern Ethiopia

    PubMed Central

    2015-01-01

    Immunological monitoring is part of the standard of care for patients on antiretroviral treatment. Yet, little is known about the routine implementation of immunological laboratory monitoring and utilization in clinical care in Ethiopia. This study assessed the pattern of immunological monitoring, immunological response, level of immunological treatment failure and factors related to it among patients on antiretroviral therapy in selected hospitals in southern Ethiopia. A retrospective longitudinal analytic study was conducted using documents of patients started on antiretroviral therapy. Adequacy of timely immunological monitoring was assessed every six months the first year and every one year thereafter. Immunological response was assessed every six months at cohort level. Immunological failure was based on the criteria: fall of follow-up CD4 cell count to baseline (or below), or CD4 levels persisting below 100 cells/mm3, or 50% fall from on-treatment peak value. A total of 1,321 documents of patients reviewed revealed timely immunological monitoring were inadequate. There was adequate immunological response, with pediatric patients, females, those with less advanced illness (baseline WHO Stage I or II) and those with higher baseline CD4 cell count found to have better immunological recovery. Thirty-nine patients (3%) were not evaluated for immunological failure because they had frequent treatment interruption. Despite overall adequate immunological response at group level, the prevalence of those who ever experienced immunological failure was 17.6% (n=226), while after subsequent re-evaluation it dropped to 11.5% (n=147). Having WHO Stage III/IV of the disease or a higher CD4 cell count at baseline was identified as a risk for immunological failure. Few patients with confirmed failure were switched to second line therapy. These findings highlight the magnitude of the problem of immunological failure and the gap in management. Prioritizing care for high risk patients may help in effective utilization of meager resources. PMID:25961732

  11. Non-contact and Unrestrained Respiration Monitoring System for Sleeping Person Using Near-infrared Bright Spots Matrix Irradiation

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Aoki, Hiroichi; Nakajima, Masato

    Measurement of biological information appears to be an effective method to obtain an understanding of health conditions measures to maintain and improve the health of elderly people. However, every conventional bioinstrumentation technique imposes a sense of restraint that results in aversion against measurements that would last over consecutive days. To solve this problem, we propose a system for monitoring the respiration of sleepers, and it uses a fiber grating vision sensor, which is a type of optical range finder, to achieve non-contact and unrestrained monitoring. The signals obtained by the system include the respiration rate, shifts of the ventilation, and the body movement interval of the sleeper. The information enables to investigate the stability of the sleeper throughout the night. We examined the measuring accuracy, validity, and effectiveness of our proposed system. And all-night monitoring performed at elderly care facility revealed that respiratory disturbances during sleep occurred in many of the residents and that sleep apnea is a common syndrome, especially among residents who have senile dementia or have had a stroke. We were able to carry out the all-night monitoring with this system for a total of about 370 times, according to our schedule, without experiencing any failure, accident, or interruption. Our proposed system is highly effective for monitoring elderly dementia patients who are likely to become uncooperative during measurement with existing monitoring methods that use certain amounts of restraint.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less

  13. Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Ferretti, A.

    The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of

  14. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.

  15. Monitoring the response to pharmacologic therapy in patients with stable chronic heart failure: is BNP or NT-proBNP a useful assessment tool?

    PubMed

    Balion, Cynthia M; McKelvie, Robert S; Reichert, Sonja; Santaguida, Pasqualina; Booker, Lynda; Worster, Andrew; Raina, Parminder; McQueen, Matthew J; Hill, Stephen

    2008-03-01

    B-type natriuretic peptides are biomarkers of heart failure (HF) that can decrease following treatment. We sought to determine whether B-type natriuretic peptide (BNP) or N-terminal proBNP (NT-proBNP) concentration changes occurred in parallel to changes in other measures of heart failure following treatment. We conducted a systematic review of the literature for studies that assessed B-type natriuretic peptide measurements in treatment monitoring of patients with stable chronic heart failure. Selected studies had to include at least three consecutive measurements of BNP or NT-proBNP. Of 4338 citations screened, only 12 met all of the selection criteria. The selected studies included populations with a wide range of heart failure severity and therapy. BNP and NT-proBNP decreased following treatment in nine studies and was associated with improvement in clinical measures of HF. There was limited data to support using BNP or NT-proBNP to monitor therapy in patients with HF.

  16. 77 FR 34288 - Approval and Promulgation of Implementation Plans; Alabama; 110(a)(1) and (2) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... requirements, including emissions inventories, monitoring, and modeling to assure attainment and maintenance of... July 6, 2011, WildEarth Guardians and Sierra Club filed an amended complaint related to EPA's failure...

  17. 77 FR 34906 - Approval and Promulgation of Implementation Plans; Florida; 110(a)(1) and (2) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... requirements, including emissions inventories, monitoring, and modeling to assure attainment and maintenance of... July 6, 2011, WildEarth Guardians and Sierra Club filed an amended complaint related to EPA's failure...

  18. Minimization of the energy loss of nuclear power plants in case of partial in-core monitoring system failure

    NASA Astrophysics Data System (ADS)

    Zagrebaev, A. M.; Ramazanov, R. N.; Lunegova, E. A.

    2017-01-01

    In this paper we consider the optimization problem minimize of the energy loss of nuclear power plants in case of partial in-core monitoring system failure. It is possible to continuation of reactor operation at reduced power or total replacement of the channel neutron measurements, requiring shutdown of the reactor and the stock of detectors. This article examines the reconstruction of the energy release in the core of a nuclear reactor on the basis of the indications of height sensors. The missing measurement information can be reconstructed by mathematical methods, and replacement of the failed sensors can be avoided. It is suggested that a set of ‘natural’ functions determined by means of statistical estimates obtained from archival data be constructed. The procedure proposed makes it possible to reconstruct the field even with a significant loss of measurement information. Improving the accuracy of the restoration of the neutron flux density in partial loss of measurement information to minimize the stock of necessary components and the associated losses.

  19. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    NASA Astrophysics Data System (ADS)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  20. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  1. [Acute renal failure due to RAAS-inhibitors combined with dehydration].

    PubMed

    Scherpbier, Nynke D; de Grauw, Wim J C; Wetzels, Jack F M; Vervoort, Gerald M M

    2010-01-01

    Two men (61 and 81 years old) with mild impaired kidney function developed acute renal failure due to dehydration combined with the use of inhibitors of the renin-angiotensin-aldosterone system (RAAS). After rehydration, correction of hyperkalaemia and stopping RAAS-inhibition and diuretics, they recovered completely. Many patients using RAAS-inhibitors have impaired renal function. In the case of dehydration due to gastroenteritis or prolonged fever they risk developing acute renal failure. The high risk groups are elderly patients, patients with atherosclerosis or heart failure and those with co-medication of diuretics or NSAIDs. The underlying mechanism is that the normal pathways to protect kidney perfusion in case of hypovolaemia are blocked by the use of RAAS-inhibitors or NSAIDs. In the case of dehydration in patients with chronic kidney disease using RAAS-inhibitors, serum creatinine and potassium levels should be monitored. Temporary discontinuation of RAAS-inhibitors or diuretics is often necessary.

  2. In vitro and in vivo testing of a totally implantable left ventricular assist system.

    PubMed

    Jassawalla, J S; Daniel, M A; Chen, H; Lee, J; LaForge, D; Billich, J; Ramasamy, N; Miller, P J; Oyer, P E; Portner, P M

    1988-01-01

    The totally implantable Novacor LVAS is being tested under NIH auspices to demonstrate safety and efficacy before clinical trials. Twelve complete systems (submerged in saline at 37 degrees C) are being tested, with an NIH goal of demonstrating 80% reliability for 2 year operation with a 60% confidence level. The systems, which are continuously monitored, are diurnally cycled between two output levels by automatically varying preload and afterload. Currently, 14.3 years of failure-free operation have been accumulated, with a mean duration of 14 months. Using an exponential failure distribution model, the mean time to failure (MTTF) is greater than 8.8 years, corresponding to a demonstrated reliability (for a 2 year mission time) of 80% (80% confidence level). Recent ovine experiments with VAS subsystems include a 767 day volume compensator implant, a 279 day pump/drive unit implant and a 1,448 day BST implant. The last 12 chronic pump/drive unit experiments had a mean duration of 153 days (excluding early postoperative complications). This compares favorably with the NIH goals for complete systems (5 month mean duration). Complete system experiments are currently underway.

  3. Feasibility of Using Elastic Wave Velocity Monitoring for Early Warning of Rainfall-Induced Slope Failure.

    PubMed

    Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke

    2018-03-27

    Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.

  4. Characterization of HIV-1 antiretroviral drug resistance after second-line treatment failure in Mali, a limited-resources setting

    PubMed Central

    Maiga, Almoustapha Issiaka; Fofana, Djeneba Bocar; Cisse, Mamadou; Diallo, Fodié; Maiga, Moussa Youssoufa; Traore, Hamar Alassane; Maiga, Issouf Alassane; Sylla, Aliou; Fofana, Dionke; Taiwo, Babafemi; Murphy, Robert; Katlama, Christine; Tounkara, Anatole; Calvez, Vincent; Marcelin, Anne-Geneviève

    2012-01-01

    Objectives We describe the outcomes of second-line drug resistance profiles and predict the efficacy of drugs for third-line therapy in patients monitored without the benefit of plasma HIV-1 RNA viral load (VL) or resistance testing. Methods We recruited 106 HIV-1-infected patients after second-line treatment failure in Mali. VL was determined by the Abbott RealTime system and the resistance by the ViroSeq HIV-1 genotyping system. The resistance testing was interpreted using the latest version of the Stanford algorithm. Results Among the 106 patients, 93 had isolates successfully sequenced. The median age, VL and CD4 cells were respectively 35 years, 72 000 copies/mL and 146 cells/mm3. Patients were exposed to a median of 4 years of treatment and to six antiretrovirals. We found 20% of wild-type viruses. Resistance to etravirine was noted in 38%, to lopinavir in 25% and to darunavir in 12%. The duration of prior nucleos(t)ide reverse transcriptase inhibitor exposure was associated with resistance to abacavir (P < 0.0001) and tenofovir (P = 0.0001), and duration of prior protease inhibitor treatment with resistance to lopinavir (P < 0.0001) and darunavir (P = 0.06). Conclusion Long duration of therapy prior to failure was associated with high levels of resistance and is directly related to limited access to VL monitoring and delayed switches to second-line treatment, precluding efficacy of drugs for third-line therapy. This study underlines the need for governments and public health organizations to recommend the use of VL monitoring and also the availability of darunavir and raltegravir for third-line therapies in the context of limited-resource settings. PMID:22888273

  5. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system.

    PubMed

    Adamson, Philip B; Magalski, Anthony; Braunschweig, Frieder; Böhm, Michael; Reynolds, Dwight; Steinhaus, David; Luby, Allyson; Linde, Cecilia; Ryden, Lars; Cremers, Bodo; Takle, Teri; Bennett, Tom

    2003-02-19

    This study examined the characteristics of continuously measured right ventricular (RV) hemodynamic information derived from an implantable hemodynamic monitor (IHM) in heart failure patients. Hemodynamic monitoring might improve the day-to-day management of patients with chronic heart failure (CHF). Little is known about the characteristics of long-term hemodynamic information in patients with CHF or how such information relates to meaningful clinical events. Thirty-two patients with CHF received a permanent RV IHM system similar to a single-lead pacemaker. Right ventricular systolic and diastolic pressures, heart rate, and pressure derivatives were continuously measured for nine months without using the data for clinical decision-making or management of patients. Data were then made available to clinical providers, and the patients were followed up for 17 months. Pressure characteristics during optimal volume, clinically determined volume-overload exacerbations, and volume depletion events were examined. The effect of IHM on hospitalizations was examined using the patients' historical controls. Long-term RV pressure measurements had either marked variability or minimal time-related changes. During 36 volume-overload events, RV systolic pressures increased by 25 +/- 4% (p < 0.05) and heart rate increased by 11 +/- 2% (p < 0.05). Pressure increases occurred in 9 of 12 events 4 +/- 2 days before the exacerbations requiring hospitalization. Hospitalizations before using IHM data for clinical management averaged 1.08 per patient year and decreased to 0.47 per patient-year (57% reduction, p < 0.01) after hemodynamic data were used. Long-term ambulatory pressure measurements from an IHM may be helpful in guiding day-to-day clinical management, with a potentially favorable impact on CHF hospitalizations.

  6. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro experience we consider the objectivity of the Volcanic Activity Level a powerful tool to focus the discussions in a Scientific Committee on the activity forecast and on the expected scenarios, rather than on the multiple explanations of the data fluctuations, which is one of the main sources of conflict in the Scientific Committee discussions. Although the Volcanic Alert System was designed specifically for the unrest episodes at El Hierro, the involved methodologies may be applied to other situations of unrest.

  7. Qualification of computerized monitoring systems in a cell therapy facility compliant with the good manufacturing practices.

    PubMed

    Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim

    2016-09-01

    Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.

  8. Reactivation of a dormant earthflow documented by field monitoring data

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Simoni, Alessandro

    2017-04-01

    Large, deep-seated earthflows are common in mountainous areas where clay soils or fine-grained weak rocks are dominant. Distinctive features of these landslides are the relatively slow movements and the complex style of activity, in which mass flow is accompanied by basal sliding along localized shear zones. Earthflows are subjected to periodic reactivations separated by long intervals of dormancy. Although the dynamics of earthflows is widely documented in the literature, field data on the reactivation process are almost absent because of the difficulty of catching the critical acceleration phase. We document the reactivation of a large, dormant earthflow that occurred in February 2014 in the Northern Apennines of Italy. The Montecchi earthflow is located about 50 km to the south of Bologna, on the left side of the Silla Valley. Slopes are mainly constituted by chaotic sedimentary melanges belonging to the Palombini Shale (lower Cretaceous-Cenomanian). The earthflow first reactivated in November 1994, after an apparently unexceptional precipitation of 95 mm over a week. Surface velocities reached the value of few meters per day during the failure, then the landslide slowed down. One month after the reactivation, the velocity reduced to 1.2 mm/day and five months later it was further decreased to 0.1-0.2 mm/day. In the following years, the landslide became dormant with residual movements in the order of few mm/month. A monitoring system was installed in July 2004 to investigate the slope response to rainfalls and the displacement rates of the landslide during the dormant phase. The monitoring system has been operational for more than 10 years by adapting the number, type, and location of monitoring sensors to the evolving landslide. The monitoring system was operational when, on the 10th of February 2014, the landslide reactivated again. At the time of the failure two monitored sections were operational in the source area (upper section) and in the central part (middle section) of the 1994 earthflow. The upper section essentially consisted of 1 rain gage, 3 surface wire extensometers installed across the main scarp, and 2 instrumented open-standpipe piezometers at 3.6 m depth. In the middle section, 6 instrumented open-standpipe piezometers and 7 pressure sensors directly buried into the ground were installed in the landslide body at depths ranging between 1 and 9 m (about 2 m above the slip surface). Although several sensors were damaged and others were pulled out from the ground during the movement, the reactivation of the earthflow is well documented. The three surface wire extensometers showed a nearly-perfect exponential growth of the displacement rate, that progressively increased from about 1 mm/day one month before the failure to more than 200 mm/day in the last hours. The initial slide in the crown area then loaded the existing, fully-saturated landslide deposits triggering the downslope propagation of the failure. The pressure sensors buried in the landslide material recorded positive pore pressure excesses due to undrained loading (with hydraulic heads well above the ground surface) generally followed by an abrupt decrease, probably related to mechanical unloading or dilation of the landslide mass. These data indicate that the earthflow was reactivated by a relatively small, drained failure in the source area that propagated downslope as an undrained pulse of mechanical compression and extension.

  9. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  10. DiAs Web Monitoring: A Real-Time Remote Monitoring System Designed for Artificial Pancreas Outpatient Trials

    PubMed Central

    Place, Jérôme; Robert, Antoine; Brahim, Najib Ben; Patrick, Keith-Hynes; Farret, Anne; Marie-Josée, Pelletier; Buckingham, Bruce; Breton, Marc; Kovatchev, Boris; Renard, Eric

    2013-01-01

    Background Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. “Home-like” environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. Methods We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. Results Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. Conclusions Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature. J Diabetes Sci Technol 2013;7(6):1427–1435 PMID:24351169

  11. DiAs web monitoring: a real-time remote monitoring system designed for artificial pancreas outpatient trials.

    PubMed

    Place, Jérôme; Robert, Antoine; Ben Brahim, Najib; Keith-Hynes, Patrick; Farret, Anne; Pelletier, Marie-Josée; Buckingham, Bruce; Breton, Marc; Kovatchev, Boris; Renard, Eric

    2013-11-01

    Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. "Home-like" environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature. © 2013 Diabetes Technology Society.

  12. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old andmore » classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.« less

  13. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients.

    PubMed

    Sæhle, Terje; Eide, Per Kristian

    2015-05-01

    OBJECT In patients with hydrocephalus and shunts, lasting symptoms such as headache and dizziness may be indicative of shunt failure, which may necessitate shunt revision. In cases of doubt, the authors monitor intracranial pressure (ICP) to determine the presence of over- or underdrainage of CSF to tailor management. In this study, the authors reviewed their experience of ICP monitoring in shunt failure. The aims of the study were to identify the complications and impact of ICP monitoring, as well as to determine the mean ICP and characteristics of the cardiac-induced ICP waves in pediatric versus adult over- and underdrainage. METHODS The study population included all pediatric and adult patients with hydrocephalus and shunts undergoing diagnostic ICP monitoring for tentative shunt failure during the 10-year period from 2002 to 2011. The patients were allocated into 3 groups depending on how they were managed following ICP monitoring: no drainage failure, overdrainage, or underdrainage. While patients with no drainage failure were managed conservatively without further actions, over- or underdrainage cases were managed with shunt revision or shunt valve adjustment. The ICP and ICP wave scores were determined from the continuous ICP waveforms. RESULTS The study population included 71 pediatric and 75 adult patients. There were no major complications related to ICP monitoring, but 1 patient was treated for a postoperative superficial wound infection and another experienced a minor bleed at the tip of the ICP sensor. Following ICP monitoring, shunt revision was performed in 74 (51%) of 146 patients, while valve adjustment was conducted in 17 (12%) and conservative measures without any actions in 55 (38%). Overdrainage was characterized by a higher percentage of episodes with negative mean ICP less than -5 to -10 mm Hg. The ICP wave scores, in particular the mean ICP wave amplitude (MWA), best differentiated underdrainage. Neither mean ICP nor MWA levels showed any significant association with age. CONCLUSIONS In this cohort of pediatric and adult patients with hydrocephalus and tentative shunt failure, the risk of ICP monitoring was very low, and helped the authors avoid shunt revision in 49% of the patients. Mean ICP best differentiated overdrainage, which was characterized by a higher percentage of episodes with negative mean ICP less than -5 to -10 mm Hg. Underdrainage was best characterized by elevated MWA values, indicative of impaired intracranial compliance.

  14. Advanced Signal Conditioners for Data-Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro

    2004-01-01

    Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the reliability of each component is assessed in terms of such considerations as risks of damage, mean times between failures, and the effects of certain failures on the performance of the signal conditioner as a whole system. Then, fewer or more spares are assigned for each affected component, pursuant to the results of this analysis, in order to obtain the required degree of reliability of the signal conditioner as a whole system. The digital module comprises one or more processors and field-programmable gate arrays, the number of each depending on the results of the aforementioned analysis. The digital module provides redundant control, monitoring, and processing of several analog signals. It is designed to minimize unnecessary consumption of electric energy, including, when possible, going into a low-power "sleep" mode that is implemented in firmware. The digital module communicates with external equipment via a personal-computer serial port. The digital module monitors the "health" of the rest of the signal conditioner by processing defined measurements and/or trends. It automatically makes adjustments to respond to channel failures, compensate for effects of temperature, and maintain calibration.

  15. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  16. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.

  17. Intelligent transient transitions detection of LRE test bed

    NASA Astrophysics Data System (ADS)

    Zhu, Fengyu; Shen, Zhengguang; Wang, Qi

    2013-01-01

    Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.

  18. Telemonitoring in heart failure: Big Brother watching over you.

    PubMed

    Dierckx, R; Pellicori, P; Cleland, J G F; Clark, A L

    2015-01-01

    Heart failure (HF) is a leading cause of hospitalisations in older people. Several strategies, supported by novel technologies, are now available to monitor patients' health from a distance. Although studies have suggested that remote monitoring may reduce HF hospitalisations and mortality, the study of different patient populations, the use of different monitoring technologies and the use of different endpoints limit the generalisability of the results of the clinical trials reported, so far. In this review, we discuss the existing home monitoring modalities, relevant trials and focus on future directions for telemonitoring.

  19. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  20. An expert system to perform on-line controller restructuring for abrupt model changes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    1990-01-01

    Work in progress on an expert system used to reconfigure and tune airframe/engine control systems on-line in real time in response to battle damage or structural failures is presented. The closed loop system is monitored constantly for changes in structure and performance, the detection of which prompts the expert system to choose and apply a particular control restructuring algorithm based on the type and severity of the damage. Each algorithm is designed to handle specific types of failures and each is applicable only in certain situations. The expert system uses information about the system model to identify the failure and to select the technique best suited to compensate for it. A depth-first search is used to find a solution. Once a new controller is designed and implemented it must be tuned to recover the original closed-loop handling qualities and responsiveness from the degraded system. Ideally, the pilot should not be able to tell the difference between the original and redesigned systems. The key is that the system must have inherent redundancy so that degraded or missing capabilities can be restored by creative use of alternate functionalities. With enough redundancy in the control system, minor battle damage affecting individual control surfaces or actuators, compressor efficiency, etc., can be compensated for such that the closed-loop performance in not noticeably altered. The work is applied to a Black Hawk/T700 system.

  1. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermi, A.M.

    1997-05-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new crediblemore » failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.« less

  2. Power System Information Delivering System Based on Distributed Object

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji

    In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.

  3. Enhanced Aircraft Platform Availability Through Advanced Maintenance Concepts and Technologies (Amelioration de la Disponibilite des Plateformes D’Aeronefs par L’Utilisation des Technologies et des Concepts Evolues de Maintenance)

    DTIC Science & Technology

    2011-06-01

    DeLong, W., Yepez, S., Reedy, D. and White, S., “Use of Composite Materials, Health Monitoring and Self Healing Concepts to Refurbish our Civil and...Health Monitoring and Self Healing Concepts to Refurbish Our Civil and Military Infrastructure”, Sandia National Laboratories Report SAND2007-5547...failure without the need for the system to go off-line. Recovery Blocks and Self - Healing (Software) The backwards

  4. Diagnostics of wear in aeronautical systems

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1979-01-01

    Maintenance costs associated with the transmissions and drive train greatly increase the maintenance burden and failure risk. Detection measurements fall under two general categories of vibration and particle detectors. The latter are more amenable to tracking wear. Wear debris analysis can supply a great deal of information such as: particle concentration, rate of change in concentration, composition, particle size and shape, principal metals, etc. It is not economically feasible to monitor all variables. At least one role of the lubrication and wear specialist is to provide guidance in selecting the most appropriate variables to monitor.

  5. Transmission Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.

  6. DMS augmented monitoring and diganosis application (DMS AMDA) prototype

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Boyd, Mark A.; Iverson, David L.; Donnell, Brian; Lauritsen, Janet; Doubek, Sharon; Gibson, Jim; Monahan, Christine; Rosenthal, Donald A.

    1993-01-01

    The Data Management System Augmented Monitoring and Diagnosis Application (DMS AMDA) is currently under development at NASA Ames Research Center (ARC). It will provide automated monitoring and diagnosis capabilities for the Space Station Freedom (SSF) Data Management System (DMS) in the Control Center Complex (CCC) at NASA Johnson Space Center. Several advanced automation applications are under development for use in the CCC for other SSF subsystems. The DMS AMDA, however, is the first application to utilize digraph failure analysis techniques and the Extended Realtime FEAT (ERF) application as the core of its diagnostic system design, since the other projects were begun before the digraph tools were available. Model-based diagnosis and expert systems techniques will provide additional capabilities and augment ERF where appropriate. Utilization of system knowledge captured in the design phase of a system in digraphs should result in both a cost savings and a technical advantage during implementation of the diagnostic software. This paper addresses both the programmatic and technical considerations of this approach, and describes the software design and initial prototyping effort.

  7. Immunisation Information Systems – useful tools for monitoring vaccination programmes in EU/EEA countries, 2016

    PubMed Central

    Derrough, Tarik; Olsson, Kate; Gianfredi, Vincenza; Simondon, Francois; Heijbel, Harald; Danielsson, Niklas; Kramarz, Piotr; Pastore-Celentano, Lucia

    2017-01-01

    Immunisation Information Systems (IIS) are computerised confidential population based-systems containing individual-level information on vaccines received in a given area. They benefit individuals directly by ensuring vaccination according to the schedule and they provide information to vaccine providers and public health authorities responsible for the delivery and monitoring of an immunisation programme. In 2016, the European Centre for Disease Prevention and Control (ECDC) conducted a survey on the level of implementation and functionalities of IIS in 30 European Union/European Economic Area (EU/EEA) countries. It explored the governance and financial support for the systems, IIS software, system characteristics in terms of population, identification of immunisation recipients, vaccinations received, and integration with other health record systems, the use of the systems for surveillance and programme management as well as the challenges involved with implementation. The survey was answered by 27 of the 30 EU/EEA countries having either a system in production at national or subnational levels (n = 16), or being piloted (n = 5) or with plans for setting up a system in the future (n = 6). The results demonstrate the added-value of IIS in a number of areas of vaccination programme monitoring such as monitoring vaccine coverage at local geographical levels, linking individual immunisation history with health outcome data for safety investigations, monitoring vaccine effectiveness and failures and as an educational tool for both vaccine providers and vaccine recipients. IIS represent a significant way forward for life-long vaccination programme monitoring. PMID:28488999

  8. Immunisation Information Systems - useful tools for monitoring vaccination programmes in EU/EEA countries, 2016.

    PubMed

    Derrough, Tarik; Olsson, Kate; Gianfredi, Vincenza; Simondon, Francois; Heijbel, Harald; Danielsson, Niklas; Kramarz, Piotr; Pastore-Celentano, Lucia

    2017-04-27

    Immunisation Information Systems (IIS) are computerised confidential population based-systems containing individual-level information on vaccines received in a given area. They benefit individuals directly by ensuring vaccination according to the schedule and they provide information to vaccine providers and public health authorities responsible for the delivery and monitoring of an immunisation programme. In 2016, the European Centre for Disease Prevention and Control (ECDC) conducted a survey on the level of implementation and functionalities of IIS in 30 European Union/European Economic Area (EU/EEA) countries. It explored the governance and financial support for the systems, IIS software, system characteristics in terms of population, identification of immunisation recipients, vaccinations received, and integration with other health record systems, the use of the systems for surveillance and programme management as well as the challenges involved with implementation. The survey was answered by 27 of the 30 EU/EEA countries having either a system in production at national or subnational levels (n = 16), or being piloted (n = 5) or with plans for setting up a system in the future (n = 6). The results demonstrate the added-value of IIS in a number of areas of vaccination programme monitoring such as monitoring vaccine coverage at local geographical levels, linking individual immunisation history with health outcome data for safety investigations, monitoring vaccine effectiveness and failures and as an educational tool for both vaccine providers and vaccine recipients. IIS represent a significant way forward for life-long vaccination programme monitoring. This article is copyright of The Authors, 2017.

  9. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine whether water treatment at the (treatment plant name) is sufficient to adequately remove... source of your drinking water for Cryptosporidium in order to determine by (date) whether water treatment... conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification...

  10. Landslide early warning based on failure forecast models: the example of the Mt. de La Saxe rockslide, northern Italy

    NASA Astrophysics Data System (ADS)

    Manconi, A.; Giordan, D.

    2015-07-01

    We apply failure forecast models by exploiting near-real-time monitoring data for the La Saxe rockslide, a large unstable slope threatening Aosta Valley in northern Italy. Starting from the inverse velocity theory, we analyze landslide surface displacements automatically and in near real time on different temporal windows and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here, we present the result obtained for the La Saxe rockslide, a large unstable slope located in Aosta Valley, northern Italy. Based on this case study, we identify operational thresholds that are established on the reliability of the forecast models. Our approach is aimed at supporting the management of early warning systems in the most critical phases of the landslide emergency.

  11. ISIS and META projects

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth; Cooper, Robert; Marzullo, Keith

    1990-01-01

    The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported.

  12. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-04

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  13. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-25

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  14. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David, C [Livermore, CA

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  15. In vivo preclinical verification of a multimodal diffuse reflectance and correlation spectroscopy system for sensing tissue perfusion

    NASA Astrophysics Data System (ADS)

    Pakela, Julia M.; Lee, Seung Yup; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree G.; Kolodziejski, Noah J.; Staples, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, impeded blood flow in microvascular free flaps due to a compromise in arterial or venous patency secondary to blood clots or vessel spasms can rapidly result in flap failures. Thus, the ability to detect changes in microvascular free flaps is critical. In this paper, we report progress on in vivo pre-clinical testing of a compact, multimodal, fiber-based diffuse correlation and reflectance spectroscopy system designed to quantitatively monitor tissue perfusion in a porcine model's surgically-grafted free flap. We also describe the device's sensitivity to incremental blood flow changes and discuss the prospects for continuous perfusion monitoring in future clinical translational studies.

  16. Adaptive optimisation-offline cyber attack on remote state estimator

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Dong, Jiuxiang

    2017-10-01

    Security issues of cyber-physical systems have received increasing attentions in recent years. In this paper, deception attacks on the remote state estimator equipped with the chi-squared failure detector are considered, and it is assumed that the attacker can monitor and modify all the sensor data. A novel adaptive optimisation-offline cyber attack strategy is proposed, where using the current and previous sensor data, the attack can yield the largest estimation error covariance while ensuring to be undetected by the chi-squared monitor. From the attacker's perspective, the attack is better than the existing linear deception attacks to degrade the system performance. Finally, some numerical examples are provided to demonstrate theoretical results.

  17. Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy: 1. Methodology

    NASA Astrophysics Data System (ADS)

    Massmann, Joel; Freeze, R. Allan

    1987-02-01

    This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.

  18. Availability analysis of mechanical systems with condition-based maintenance using semi-Markov and evaluation of optimal condition monitoring interval

    NASA Astrophysics Data System (ADS)

    Kumar, Girish; Jain, Vipul; Gandhi, O. P.

    2018-03-01

    Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.

  19. Test results of six-month test of two water electrolysis systems

    NASA Technical Reports Server (NTRS)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  20. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  1. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDAmore » systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.« less

  2. 40 CFR 63.7501 - Affirmative Defense for Violation of Emission Standards During Malfunction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (1) The violation: (i) Was caused by a sudden, infrequent, and unavoidable failure of air pollution... practices; and (iii) Did not stem from any activity or event that could have been foreseen and avoided, or..., and human health; and (6) All emissions monitoring and control systems were kept in operation if at...

  3. 40 CFR 63.7501 - Affirmative Defense for Violation of Emission Standards During Malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (1) The violation: (i) Was caused by a sudden, infrequent, and unavoidable failure of air pollution... practices; and (iii) Did not stem from any activity or event that could have been foreseen and avoided, or..., and human health; and (6) All emissions monitoring and control systems were kept in operation if at...

  4. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  5. Failure rates of leads, pulse generators, and programmers have not diminished over the last 20 years: formal monitoring of performance is still needed. BILITCH Registry and STIMAREC.

    PubMed

    Kawanishi, D T; Song, S; Furman, S; Parsonnet, V; Pioger, G; Petitot, J C; Godin, J F

    1996-11-01

    Formal Monitoring of Performance is Still Needed. In order to detect trends in the number of device or component failures that have occurred among permanent pacemaker systems since the 1970s, we reviewed the data of the five largest pacemaker manufacturers from the Bilitch Registry of permanent pacemaker pulse generators, the Stimarec failure registry, the general accounting office summaries of the United States Veterans Administration (VA) Registry of Pacemaker Leads, and the Implantable Lead Registry, from the Cleveland Clinic Lead registry, and the recalls and safety alerts issued by the United States Food and Drug Administration (FDA) over the last 20 years. The definition of failure followed the criterion, or criteria, developed within each registry and differed significantly between the registries. The 20-year period between 1976 and 1995 was divided into 5-year quartiles (QT): QT 1 = 1976-1980; QT2 = 1981-1985; QT3 = 1986-1990; and QT4 = 1991-1995. For pulse generators, the number of models with failures in each quartile in the Bilitch Registry were: QT 1 = 9; QT 2 = 11; QT3 = 17; QT4 = 13. In Stimarec, the number of units reported as having reached a dangerous condition were: QT1 = 710; QT2 = 212; QT3 = 114; QT4 = 310. From the FDA reports, the number of units included in recalls or safety alerts were: QT3 = 6,085; QT4 = 135,766. For permanent pacemaker leads, the numbers of failed or dangerous leads recorded in Stimarec were: QT3 = 16; QT4 = 32. In the VA Registry, the number of models having a below average survival was 2/92 (2.7%). In the Implantable Lead Registry, the number of models having a below average survival was 3/21 (14%). In the Cleveland Clinic series, 6/13 (46%) of lead models were recognized to have some failure involving the conductor, insulation, or connector. In the FDA reports, the number of leads involved in either recall or safety alert were: QT3 = 20,354; QT4 = 332,105. For programmers, the number of units involved either in a recall or safety alert were: QT3 = 11,124; QT4 = 3,528. In all of these series, each of the five largest manufacturers had some models or units involved in each time period. This review of programs has revealed: 1. The incidence of failures, recalls, or safety alerts did not decline over time; and 2. Despite changes in technology, formal monitoring of pacemaker systems is still warranted.

  6. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  7. Blunt splenic injuries: have we watched long enough?

    PubMed

    Smith, Jason; Armen, Scott; Cook, Charles H; Martin, Larry C

    2008-03-01

    Nonoperative management (NOM) of blunt splenic injuries (BSIs) has been used with increasing frequency in adult patients. There are currently no definitive guidelines established for how long BSI patients should be monitored for failure of NOM after injury. This study was performed to ascertain the length of inpatient observation needed to capture most failures, and to identify factors associated with failure of NOM. We utilized the National Trauma Data Bank to determine time to failure after BSI. During the 5-year study period, 23,532 patients were identified with BSI, of which 2,366 (10% overall) were taken directly to surgery (within 2 hours of arrival). Of 21,166 patients initially managed nonoperatively, 18,506 were successful (79% of all-comers). Patients with isolated BSI are currently monitored approximately 5 days as inpatients. Of patients failing NOM, 95% failed during the first 72 hours, and monitoring 2 additional days saw only 1.5% more failures. Factors influencing success of NOM included computed tomographic injury grade, severity of patient injury, and American College of Surgeons designation of trauma center. Importantly, patients who failed NOM did not seem to have detrimental outcomes when compared with patients with successful NOM. No statistically significant predictive variables could be identified that would help predict patients who would go on to fail NOM. We conclude that at least 80% of BSI can be managed successfully with NOM, and that patients should be monitored as inpatients for failure after BSI for 3 to 5 days.

  8. Landslide monitoring and early warning systems in Lower Austria - current situation and new developments

    NASA Astrophysics Data System (ADS)

    Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem

    2014-05-01

    Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.

  9. Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems

    PubMed Central

    2014-01-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  10. Diagnostics of wear in aeronautical systems

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1979-01-01

    The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.

  11. Remote patient monitoring in chronic heart failure.

    PubMed

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.

  12. a Study on Satellite Diagnostic Expert Systems Using Case-Based Approach

    NASA Astrophysics Data System (ADS)

    Park, Young-Tack; Kim, Jae-Hoon; Park, Hyun-Soo

    1997-06-01

    Many research works are on going to monitor and diagnose diverse malfunctions of satellite systems as the complexity and number of satellites increase. Currently, many works on monitoring and diagnosis are carried out by human experts but there are needs to automate much of the routine works of them. Hence, it is necessary to study on using expert systems which can assist human experts routine work by doing automatically, thereby allow human experts devote their expertise more critical and important areas of monitoring and diagnosis. In this paper, we are employing artificial intelligence techniques to model human experts' knowledge and inference the constructed knowledge. Especially, case-based approaches are used to construct a knowledge base to model human expert capabilities which use previous typical exemplars. We have designed and implemented a prototype case-based system for diagnosing satellite malfunctions using cases. Our system remembers typical failure cases and diagnoses a current malfunction by indexing the case base. Diverse methods are used to build a more user friendly interface which allows human experts can build a knowledge base in as easy way.

  13. Software Health Management: A Short Review of Challenges and Existing Techniques

    NASA Technical Reports Server (NTRS)

    Pipatsrisawat, Knot; Darwiche, Adnan; Mengshoel, Ole J.; Schumann, Johann

    2009-01-01

    Modern spacecraft (as well as most other complex mechanisms like aircraft, automobiles, and chemical plants) rely more and more on software, to a point where software failures have caused severe accidents and loss of missions. Software failures during a manned mission can cause loss of life, so there are severe requirements to make the software as safe and reliable as possible. Typically, verification and validation (V&V) has the task of making sure that all software errors are found before the software is deployed and that it always conforms to the requirements. Experience, however, shows that this gold standard of error-free software cannot be reached in practice. Even if the software alone is free of glitches, its interoperation with the hardware (e.g., with sensors or actuators) can cause problems. Unexpected operational conditions or changes in the environment may ultimately cause a software system to fail. Is there a way to surmount this problem? In most modern aircraft and many automobiles, hardware such as central electrical, mechanical, and hydraulic components are monitored by IVHM (Integrated Vehicle Health Management) systems. These systems can recognize, isolate, and identify faults and failures, both those that already occurred as well as imminent ones. With the help of diagnostics and prognostics, appropriate mitigation strategies can be selected (replacement or repair, switch to redundant systems, etc.). In this short paper, we discuss some challenges and promising techniques for software health management (SWHM). In particular, we identify unique challenges for preventing software failure in systems which involve both software and hardware components. We then present our classifications of techniques related to SWHM. These classifications are performed based on dimensions of interest to both developers and users of the techniques, and hopefully provide a map for dealing with software faults and failures.

  14. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  15. Intersection Monitor for Traffic-Light-Preemption System

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2006-01-01

    The figure shows an intersection monitor that is a key subsystem of an emergency traffic-light-preemption system that could be any of the systems described in the three immediately preceding articles and in Systems Would Preempt Traffic Lights for Emergency Vehicles (NPO-30573), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 36. This unit is so named because it is installed at an intersection, where it monitors the phases (in the sense of timing) of the traffic lights. The mode of operation of this monitor is independent of the type of traffic-light-controller hardware or software in use at the intersection. Moreover, the design of the monitor is such that (1) the monitor does not, by itself, affect the operation of the traffic- light controller and (2) in the event of a failure of the monitor, the trafficlight controller continues to function normally (albeit without preemption). The monitor is installed in series with the traffic-light controller at an intersection. The control signals of interest are monitored by use of high-impedance taps on affected control lines. These taps are fully isolated and further protected by high-voltage diodes that prevent any voltages or short circuits that arise within the monitor from affecting the controller. The signals from the taps are processed digitally and cleaned up by use of high-speed logic gates, and the resulting data are passed on to other parts of the traffic-light-preemption intersection subsystem. The data are compared continuously with data from vehicles and used to calculate timing for reliable preemption of the traffic lights. The pedestrian crossing at the intersection is also monitored, and pedestrians are warned not to cross during preemption.

  16. What must be the accuracy and target of optical sensor systems for patient monitoring?

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.; Kessler, Manfred D.

    2002-06-01

    Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.

  17. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  18. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.

  19. Random safety auditing, root cause analysis, failure mode and effects analysis.

    PubMed

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies

  1. Security Policies for Mitigating the Risk of Load Altering Attacks on Smart Grid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, Tatyana; AlMajali, Anas; Neuman, Clifford

    2015-04-01

    While demand response programs implement energy efficiency and power quality objectives, they bring potential security threats to the Smart Grid. The ability to influence load in a system enables attackers to cause system failures and impacts the quality and integrity of power delivered to customers. This paper presents a security mechanism to monitor and control load according to a set of security policies during normal system operation. The mechanism monitors, detects, and responds to load altering attacks. We examined the security requirements of Smart Grid stakeholders and constructed a set of load control policies enforced by the mechanism. We implementedmore » a proof of concept prototype and tested it using the simulation environment. By enforcing the proposed policies in this prototype, the system is maintained in a safe state in the presence of load drop attacks.« less

  2. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  3. Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.

    PubMed

    Neville, Richard F; Gupta, Samit K; Kuraguntla, David J

    2017-06-01

    Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. More About Software for No-Loss Computing

    NASA Technical Reports Server (NTRS)

    Edmonds, Iarina

    2007-01-01

    A document presents some additional information on the subject matter of "Integrated Hardware and Software for No- Loss Computing" (NPO-42554), which appears elsewhere in this issue of NASA Tech Briefs. To recapitulate: The hardware and software designs of a developmental parallel computing system are integrated to effectuate a concept of no-loss computing (NLC). The system is designed to reconfigure an application program such that it can be monitored in real time and further reconfigured to continue a computation in the event of failure of one of the computers. The design provides for (1) a distributed class of NLC computation agents, denoted introspection agents, that effects hierarchical detection of anomalies; (2) enhancement of the compiler of the parallel computing system to cause generation of state vectors that can be used to continue a computation in the event of a failure; and (3) activation of a recovery component when an anomaly is detected.

  5. A hazard and risk classification system for catastrophic rock slope failures in Norway

    NASA Astrophysics Data System (ADS)

    Hermanns, R.; Oppikofer, T.; Anda, E.; Blikra, L. H.; Böhme, M.; Bunkholt, H.; Dahle, H.; Devoli, G.; Eikenæs, O.; Fischer, L.; Harbitz, C. B.; Jaboyedoff, M.; Loew, S.; Yugsi Molina, F. X.

    2012-04-01

    The Geological Survey of Norway carries out systematic geologic mapping of potentially unstable rock slopes in Norway that can cause a catastrophic failure. As catastrophic failure we describe failures that involve substantial fragmentation of the rock mass during run-out and that impact an area larger than that of a rock fall (shadow angle of ca. 28-32° for rock falls). This includes therefore rock slope failures that lead to secondary effects, such as a displacement wave when impacting a water body or damming of a narrow valley. Our systematic mapping revealed more than 280 rock slopes with significant postglacial deformation, which might represent localities of large future rock slope failures. This large number necessitates prioritization of follow-up activities, such as more detailed investigations, periodic monitoring and permanent monitoring and early-warning. In the past hazard and risk were assessed qualitatively for some sites, however, in order to compare sites so that political and financial decisions can be taken, it was necessary to develop a quantitative hazard and risk classification system. A preliminary classification system was presented and discussed with an expert group of Norwegian and international experts and afterwards adapted following their recommendations. This contribution presents the concept of this final hazard and risk classification that should be used in Norway in the upcoming years. Historical experience and possible future rockslide scenarios in Norway indicate that hazard assessment of large rock slope failures must be scenario-based, because intensity of deformation and present displacement rates, as well as the geological structures activated by the sliding rock mass can vary significantly on a given slope. In addition, for each scenario the run-out of the rock mass has to be evaluated. This includes the secondary effects such as generation of displacement waves or landslide damming of valleys with the potential of later outburst floods. It became obvious that large rock slope failures cannot be evaluated on a slope scale with frequency analyses of historical and prehistorical events only, as multiple rockslides have occurred within one century on a single slope that prior to the recent failures had been inactive for several thousand years. In addition, a systematic analysis on temporal distribution indicates that rockslide activity following deglaciation after the Last Glacial Maximum has been much higher than throughout the Holocene. Therefore the classification system has to be based primarily on the geological conditions on the deforming slope and on the deformation rates and only to a lesser weight on a frequency analyses. Our hazard classification therefore is primarily based on several criteria: 1) Development of the back-scarp, 2) development of the lateral release surfaces, 3) development of the potential basal sliding surface, 4) morphologic expression of the basal sliding surface, 5) kinematic feasibility tests for different displacement mechanisms, 6) landslide displacement rates, 7) change of displacement rates (acceleration), 8) increase of rockfall activity on the unstable rock slope, 9) Presence post-glacial events of similar size along the affected slope and its vicinity. For each of these criteria several conditions are possible to choose from (e.g. different velocity classes for the displacement rate criterion). A score is assigned to each condition and the sum of all scores gives the total susceptibility score. Since many of these observations are somewhat uncertain, the classification system is organized in a decision tree where probabilities can be assigned to each condition. All possibilities in the decision tree are computed and the individual probabilities giving the same total score are summed. Basic statistics show the minimum and maximum total scores of a scenario, as well as the mean and modal value. The final output is a cumulative frequency distribution of the susceptibility scores that can be divided into several classes, which are interpreted as susceptibility classes (very high, high, medium, low, and very low). Today the Norwegian Planning and Building Act uses hazard classes with annual probabilities of impact on buildings producing damages (<1/100, <1/1000, <1/5000 and zero for critical buildings). However, up to now there is not enough scientific knowledge to predict large rock slope failures in these strict classes. Therefore, the susceptibility classes will be matched with the hazard classes from the Norwegian Building Act (e.g. very high susceptibility represents the hazard class with annual probability >1/100). The risk analysis focuses on the potential fatalities of a worst case rock slide scenario and its secondary effects only and is done in consequence classes with a decimal logarithmic scale. However we recommend for all high risk objects that municipalities carry out detailed risk analyses. Finally, the hazard and risk classification system will give recommendations where surveillance in form of continuous 24/7 monitoring systems coupled with early-warning systems (high risk class) or periodic monitoring (medium risk class) should be carried out. These measures are understood as to reduce the risk of life loss due to a rock slope failure close to 0 as population can be evacuated on time if a change of stability situation occurs. The final hazard and risk classification for all potentially unstable rock slopes in Norway, including all data used for its classification will be published within the national landslide database (available on www.skrednett.no).

  6. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    PubMed

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  7. Implementing a Microcontroller Watchdog with a Field-Programmable Gate Array (FPGA)

    NASA Technical Reports Server (NTRS)

    Straka, Bartholomew

    2013-01-01

    Reliability is crucial to safety. Redundancy of important system components greatly enhances reliability and hence safety. Field-Programmable Gate Arrays (FPGAs) are useful for monitoring systems and handling the logic necessary to keep them running with minimal interruption when individual components fail. A complete microcontroller watchdog with logic for failure handling can be implemented in a hardware description language (HDL.). HDL-based designs are vendor-independent and can be used on many FPGAs with low overhead.

  8. Naturally Acquired Learned Helplessness: The Relationship of School Failure to Achievement Behavior, Attributions, and Self-Concept.

    ERIC Educational Resources Information Center

    Johnson, Dona S.

    1981-01-01

    Personality and behavioral consequences of learned helplessness were monitored in children experiencing failure in school. The predictive quality of learned helplessness theory was compared with that of value expectancy theories. Low self-concept was predicted significantly by school failure, internal attributions for failure, and external…

  9. Real-time bio-sensors for enhanced C2ISR operator performance

    NASA Astrophysics Data System (ADS)

    Miller, James C.

    2005-05-01

    The objectives of two Air Force Small Business research topics were to develop a real-time, unobtrusive, biological sensing and monitoring technology for evaluating cognitive readiness in command and control environments (i.e., console operators). We sought an individualized status monitoring system for command and control operators and teams. The system was to consist of a collection of bio-sensing technologies and processing and feedback algorithms that could eventually guide the effective incorporation of fatigue-adaptive workload interventions into weapon systems to mitigate episodes of cognitive overload and lapses in operator attention that often result in missed signals and catastrophic failures. Contractors set about determining what electro-physiological and other indicators of compromised operator states are most amenable for unobtrusive monitoring of psychophysiological and warfighter performance data. They proposed multi-sensor platforms of bio-sensing technologies for development. The sensors will be continuously-wearable or off-body and will not require complicated or uncomfortable preparation. A general overview of the proposed approaches and of progress toward the objective is presented.

  10. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    PubMed

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Reward Contingencies and the Recalibration of Task Monitoring and Reward Systems: A high-density electrical mapping study

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.

    2014-01-01

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. PMID:24836852

  12. Intelligent command and control systems for satellite ground operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1994-01-01

    The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.

  13. Data Auditor: Analyzing Data Quality Using Pattern Tableaux

    NASA Astrophysics Data System (ADS)

    Srivastava, Divesh

    Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.

  14. SU-E-T-495: Neutron Induced Electronics Failure Rate Analysis for a Single Room Proton Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, N; DeWees, T; Klein, E

    2014-06-01

    Purpose: To determine the failure rate as a function of neutron dose of the range modulator's servo motor controller system (SMCS) while shielded with Borated Polyethylene (BPE) and unshielded in a single room proton accelerator. Methods: Two experimental setups were constructed using two servo motor controllers and two motors. Each SMCS was then placed 30 cm from the end of the plugged proton accelerator applicator. The motor was then turned on and observed from outside of the vault while being irradiated to known neutron doses determined from bubble detector measurements. Anytime the motor deviated from the programmed motion a failuremore » was recorded along with the delivered dose. The experiment was repeated using 9 cm of BPE shielding surrounding the SMCS. Results: Ten SMCS failures were recorded in each experiment. The dose per monitor unit for the unshielded SMCS was 0.0211 mSv/MU and 0.0144 mSv/MU for the shielded SMCS. The mean dose to produce a failure for the unshielded SMCS was 63.5 ± 58.3 mSv versus 17.0 ±12.2 mSv for the shielded. The mean number of MUs between failures were 2297 ± 1891 MU for the unshielded SMCS and 2122 ± 1523 MU for the shielded. A Wilcoxon Signed Ranked test showed the dose between failures were significantly different (P value = 0.044) while the number of MUs between failures were not (P value = 1.000). Statistical analysis determined a SMCS neutron dose of 5.3 mSv produces a 5% chance of failure. Depending on the workload and location of the SMCS, this failure rate could impede clinical workflow. Conclusion: BPE shielding was shown to not reduce the average failure of the SMCS and relocation of the system outside of the accelerator vault was required to lower the failure rate enough to avoid impeding clinical work flow.« less

  15. A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level

    NASA Astrophysics Data System (ADS)

    Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.

    2014-04-01

    Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.

  16. Proactive Fault Tolerance for HPC with Xen Virtualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Arun Babu; Mueller, Frank; Engelmann, Christian

    2007-01-01

    with thousands of processors. At such large counts of compute nodes, faults are becoming common place. Current techniques to tolerate faults focus on reactive schemes to recover from faults and generally rely on a checkpoint/restart mechanism. Yet, in today's systems, node failures can often be anticipated by detecting a deteriorating health status. Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive one where processes automatically migrate from “unhealthy” nodes to healthy ones. Our approach relies on operating system virtualization techniques exemplied by but not limited to Xen. This paper contributes an automatic and transparent mechanismmore » for proactive FT for arbitrary MPI applications. It leverages virtualization techniques combined with health monitoring and load-based migration. We exploit Xen's live migration mechanism for a guest operating system (OS) to migrate an MPI task from a health-deteriorating node to a healthy one without stopping the MPI task during most of the migration. Our proactive FT daemon orchestrates the tasks of health monitoring, load determination and initiation of guest OS migration. Experimental results demonstrate that live migration hides migration costs and limits the overhead to only a few seconds making it an attractive approach to realize FT in HPC systems. Overall, our enhancements make proactive FT a valuable asset for long-running MPI application that is complementary to reactive FT using full checkpoint/ restart schemes since checkpoint frequencies can be reduced as fewer unanticipated failures are encountered. In the context of OS virtualization, we believe that this is the rst comprehensive study of proactive fault tolerance where live migration is actually triggered by health monitoring.« less

  17. New methods for the condition monitoring of level crossings

    NASA Astrophysics Data System (ADS)

    García Márquez, Fausto Pedro; Pedregal, Diego J.; Roberts, Clive

    2015-04-01

    Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a 'normal' or 'expected' shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque-Bera and Ljung-Box have been considered for testing the model.

  18. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  19. Automatisms in EMIR instrument to improve operation, safety and maintenance

    NASA Astrophysics Data System (ADS)

    Fernández Izquierdo, Patricia; Núñez Cagigal, Miguel; Barreto Rodríguez, Roberto; Martínez Rey, Noelia; Santana Tschudi, Samuel; Barreto Cabrera, Maria; Patrón Recio, Jesús; Garzón López, Francisco

    2014-08-01

    EMIR is the NIR imager and multiobject spectrograph being built as a common user instrument for the 10-m class GTC. Big cryogenic instruments demand a reliable design and a specific hardware and software to increase its safety and productivity. EMIR vacuum, cooling and heating systems are monitored and partially controlled by a Programmable Logic Controller (PLC) in industrial format with a touch screen. The PLC aids the instrument operator in the maintenance tasks recovering autonomously vacuum if required or proposing preventive maintenance actions. The PLC and its associated hardware improve EMIR safety having immediate reactions against eventual failure modes in the instrument or in external supplies, including hardware failures during the heating procedure or failure in the PLC itself. EMIR PLC provides detailed information periodically about status and alarms of vacuum and cooling components or external supplies.

  20. Cameras Monitor Spacecraft Integrity to Prevent Failures

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

Top