Sample records for faint flux levels

  1. Extreme Faint Flux Imaging with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien

    2009-08-01

    An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.

  2. Correlation between low level fluctuations in the x ray background and faint galaxies

    NASA Technical Reports Server (NTRS)

    Tolstoy, Eline; Griffiths, R. E.

    1993-01-01

    A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).

  3. EoR Foregrounds: the Faint Extragalactic Radio Sky

    NASA Astrophysics Data System (ADS)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  4. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    NASA Astrophysics Data System (ADS)

    Ishihara, Daisuke; Takeuchi, Nami; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2017-05-01

    Context. Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 au. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods: We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 μm detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks < 4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the φ1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is 8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusions: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model. The full version of Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A72

  5. Faint submillimeter galaxies revealed by multifield deep ALMA observations: number counts, spatial clustering, and a dark submillimeter line emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko

    2014-11-01

    We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the deep ALMA observations. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the deep Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of themore » extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra deep HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.« less

  6. X-ray Counterparts of Infrared Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2

  7. The Hawaii SCUBA-2 Lensing Cluster Survey: Number Counts and Submillimeter Flux Ratios

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Cowie, Lennox L.; Chen, Chian-Chou; Barger, Amy J.; Wang, Wei-Hao

    2016-09-01

    We present deep number counts at 450 and 850 μm using the SCUBA-2 camera on the James Clerk Maxwell Telescope. We combine data for six lensing cluster fields and three blank fields to measure the counts over a wide flux range at each wavelength. Thanks to the lensing magnification, our measurements extend to fluxes fainter than 1 mJy and 0.2 mJy at 450 μm and 850 μm, respectively. Our combined data highly constrain the faint end of the number counts. Integrating our counts shows that the majority of the extragalactic background light (EBL) at each wavelength is contributed by faint sources with L IR < 1012 L ⊙, corresponding to luminous infrared galaxies (LIRGs) or normal galaxies. By comparing our result with the 500 μm stacking of K-selected sources from the literature, we conclude that the K-selected LIRGs and normal galaxies still cannot fully account for the EBL that originates from sources with L IR < 1012 L ⊙. This suggests that many faint submillimeter galaxies may not be included in the UV star formation history. We also explore the submillimeter flux ratio between the two bands for our 450 μm and 850 μm selected sources. At 850 μm, we find a clear relation between the flux ratio and the observed flux. This relation can be explained by a redshift evolution, where galaxies at higher redshifts have higher luminosities and star formation rates. In contrast, at 450 μm, we do not see a clear relation between the flux ratio and the observed flux.

  8. THE HAWAII SCUBA-2 LENSING CLUSTER SURVEY: NUMBER COUNTS AND SUBMILLIMETER FLUX RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J.

    2016-09-20

    We present deep number counts at 450 and 850 μ m using the SCUBA-2 camera on the James Clerk Maxwell Telescope. We combine data for six lensing cluster fields and three blank fields to measure the counts over a wide flux range at each wavelength. Thanks to the lensing magnification, our measurements extend to fluxes fainter than 1 mJy and 0.2 mJy at 450 μ m and 850 μ m, respectively. Our combined data highly constrain the faint end of the number counts. Integrating our counts shows that the majority of the extragalactic background light (EBL) at each wavelength ismore » contributed by faint sources with L {sub IR} < 10{sup 12} L {sub ⊙}, corresponding to luminous infrared galaxies (LIRGs) or normal galaxies. By comparing our result with the 500 μ m stacking of K -selected sources from the literature, we conclude that the K -selected LIRGs and normal galaxies still cannot fully account for the EBL that originates from sources with L {sub IR} < 10{sup 12} L {sub ⊙}. This suggests that many faint submillimeter galaxies may not be included in the UV star formation history. We also explore the submillimeter flux ratio between the two bands for our 450 μ m and 850 μ m selected sources. At 850 μ m, we find a clear relation between the flux ratio and the observed flux. This relation can be explained by a redshift evolution, where galaxies at higher redshifts have higher luminosities and star formation rates. In contrast, at 450 μ m, we do not see a clear relation between the flux ratio and the observed flux.« less

  9. Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster

    DOE PAGES

    Aharonian, F. A.; Akamatsu, H.; Akimoto, F.; ...

    2017-03-03

    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentifiedmore » $$E\\approx 3.5\\,\\mathrm{keV}$$ emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S xvi ($$E\\simeq 3.44\\,\\mathrm{keV}$$ rest-frame)—a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. In conclusion, a confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.« less

  10. Are the infrared-faint radio sources pulsars?

    NASA Astrophysics Data System (ADS)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  11. Characterizing Sky Spectra Using SDSS BOSS Data

    NASA Astrophysics Data System (ADS)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  12. Herschel-PACS photometry of faint stars for sensitivity performance assessment and establishment of faint FIR primary photometric standards

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Balog, Z.; Nielbock, M.; Müller, T. G.; Linz, H.; Kiss, Cs.

    2018-05-01

    Aims: Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (≲2.5 Jy) to faint (≳5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. Methods: We obtain aperture photometry from Herschel-PACS high-pass-filtered scan maps and chop/nod observations of the faint stars. The issues of detection limits and sky confusion noise are addressed by comparison of the field-of-view at different wavelengths, by multi-aperture photometry, by special processing of the maps to preserve extended emission, and with the help of large-scale absolute sky brightness maps from AKARI. This photometry is compared with flux-density predictions based on photospheric models for these stars. We obtain a robust noise estimate by fitting the flux distribution per map pixel histogram for the area around the stars, scaling it for the applied aperture size and correcting for noise correlation. Results: For 15 stars we obtain reliable photometry in at least one PACS filter, and for 11 stars we achieve this in all three PACS filters (70, 100, 160 μm). Faintest fluxes, for which the photometry still has good quality, are about 10-20 mJy with scan map photometry. The photometry of seven stars is consistent with models or flux predictions for pure photospheric emission, making them good primary standard candidates. Two stars exhibit source-intrinsic far-infrared excess: β Gem (Pollux), being the host star of a confirmed Jupiter-size exoplanet, due to emission of an associated dust disk, and η Dra due to dust emission in a binary system with a K1 dwarf. The investigation of the 160 μm sky background and environment of four sources reveals significant sky confusion prohibiting the determination of an accurate stellar flux at this wavelength. As a good model approximation, for nine stars we obtain scaling factors of the continuum flux models of four PACS fiducial standards with the same or quite similar spectral type. We can verify a linear dependence of signal-to-noise ratio (S/N) with flux and with square root of time over significant ranges. At 160 μm the latter relation is, however, affected by confusion noise. Conclusions: The PACS faint star sample has allowed a comprehensive sensitivity assessment of the PACS photometer. Accurate photometry allows us to establish a set of five FIR primary standard candidates, namely α Ari, ɛ Lep, ω Cap, HD 41047 and 42 Dra, which are 2-20 times fainter than the faintest PACS fiducial standard (γ Dra) with absolute accuracy of <6%. For three of these primary standard candidates, essential stellar parameters are known, meaning that a dedicated flux model code may be run. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables A.3 to A.5 and B.1 to B.3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A40

  13. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (I) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (II) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (III) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (IV) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  14. Spectral Index Properties of millijansky Radio Sources in ATLAS

    NASA Astrophysics Data System (ADS)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  15. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  16. The effect of unresolved contaminant stars on the cross-matching of photometric catalogues

    NASA Astrophysics Data System (ADS)

    Wilson, Tom J.; Naylor, Tim

    2017-07-01

    A fundamental process in astrophysics is the matching of two photometric catalogues. It is crucial that the correct objects be paired, and that their photometry does not suffer from any spurious additional flux. We compare the positions of sources in Wide-field Infrared Survey Explorer (WISE), INT Photometric H α Survey, Two Micron All Sky Survey and AAVSO Photometric All Sky Survey with Gaia Data Release 1 astrometric positions. We find that the separations are described by a combination of a Gaussian distribution, wider than naively assumed based on their quoted uncertainties, and a large wing, which some authors ascribe to proper motions. We show that this is caused by flux contamination from blended stars not treated separately. We provide linear fits between the quoted Gaussian uncertainty and the core fit to the separation distributions. We show that at least one in three of the stars in the faint half of a given catalogue will suffer from flux contamination above the 1 per cent level when the density of catalogue objects per point spread function area is above approximately 0.005. This has important implications for the creation of composite catalogues. It is important for any closest neighbour matches as there will be a given fraction of matches that are flux contaminated, while some matches will be missed due to significant astrometric perturbation by faint contaminants. In the case of probability-based matching, this contamination affects the probability density function of matches as a function of distance. This effect results in up to 50 per cent fewer counterparts being returned as matches, assuming Gaussian astrometric uncertainties for WISE-Gaia matching in crowded Galactic plane regions, compared with a closest neighbour match.

  17. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  18. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  19. Confirmation of a Steep Luminosity Function for Ly alpha Emitters at z 5.7: a Major Component of Reionization

    NASA Technical Reports Server (NTRS)

    Dressler, Alan; Henry, Alaina L.; Martin, Crystal L.; Sawicki, Marcin; McCarthy, Patrick; Villaneuva, Edward

    2014-01-01

    We report the first direct and robust measurement of the faint-end slope of the Ly-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan- Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems are fainter than F = 2.0×10(exp-17) ergs s(exp-1) cm(exp-2), making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of alpha = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground) within the flux interval F = 2-20 × 10(exp-18) ergs s(exp-1) cm(exp-2) constrains the faint end slope of the luminosity function to -1.95 greater than alpha greater than -2.35 (1 delta). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z = 5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. We suggest that this bodes well for a comparable contribution by similar, low-mass star forming galaxies at higher-redshift - within the reionization epoch at z greater than approximately 7, only 250 Myr earlier - and that such systems provide a substantial, if not dominant, contribution to the late-stage reionization of the IGM.

  20. New Exozodi and Asteroid Belt Analogs using WISE

    NASA Astrophysics Data System (ADS)

    Patel, Rahul; Metchev, Stanimir; Heinze, Aren

    2015-01-01

    The presence of circumstellar dust in the terrestrial planet zone and asteroid belt regions of stars can be ascertained from the excess flux from main sequence stars in the mid-infrared wavelengths. Finding dust in these regions is significant as it traces material related to terrestrial planet formation. The WISE All-Sky survey presents an opportunity to extend the population of faint disks to flux levels 100x fainter than disks detected by IRAS.We use the WISE All-Sky Survey data to detect circumstellar debris disks at the 12 and 22 μm bandpasses (W3 and W4, respectively). We present the detection of a sample of over 214 exozodi and asteroid belt analog candidates, 45% of which are brand new detections at confidence levels >99.5%. This was done by cross-matching Hipparcos main-sequence stars with the WISE All-Sky Data Release for stars within 75 pc and outside the galactic plane (|b|>5 deg) and then seeking color excesses at W3 and W4. In addition to applying the standard WISE photometric flags and filters to remove contaminants from our sample, we also improved our selection techniques by correcting for previously unknown systematic behavior in the WISE photometry, thereby including bright saturated stars into our sample. Our debris disk candidates are reliable detections as well as unprecedentedly faint, due in large part to these improved selection techniques. These new nearby excess hosts are optimal targets for direct imaging campaigns to characterize the disk morphology and to provide a larger sample of well characterized disks with which to understand the overall exoplanetary system architecture.

  1. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    NASA Astrophysics Data System (ADS)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  2. Sub-percent Photometry: Faint DA White Dwarf Spectrophotometric Standards for Astrophysical Observatories

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Axelrod, Tim; Calamida, Annalisa; Saha, Abhijit; Matheson, Thomas; Olszewski, Edward; Holberg, Jay; Holberg, Jay; Bohlin, Ralph; Stubbs, Christopher W.; Rest, Armin; Deustua, Susana; Sabbi, Elena; MacKenty, John W.; Points, Sean D.; Hubeny, Ivan

    2018-01-01

    We have established a network of faint (16.5 < V < 19) hot DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our standards are accessible from both hemispheres and suitable for ground and space-based covering the UV to the near IR. The network is tied directly to the most precise astrophysical reference presently available - the CALSPEC standards - through a multi-cycle program imaging using the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We have developed two independent analyses to forward model all the observed photometry and ground-based spectroscopy and infer a spectral energy distribution for each source using a non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmosphere extincted by interstellar dust. The models are in excellent agreement with each other, and agree with the observations to better than 0.01 mag in all passbands, and better than 0.005 mag in the optical. The high-precision of these faint sources, tied directly to the most accurate flux standards presently available, make our network of standards ideally suited for any experiments that have very stringent requirements on absolute flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRST).

  3. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    NASA Astrophysics Data System (ADS)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux levels.

  4. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  5. Limited role for methane in the mid-Proterozoic greenhouse

    PubMed Central

    Olson, Stephanie L.; Reinhard, Christopher T.; Lyons, Timothy W.

    2016-01-01

    Pervasive anoxia in the subsurface ocean during the Proterozoic may have allowed large fluxes of biogenic CH4 to the atmosphere, enhancing the climatic significance of CH4 early in Earth’s history. Indeed, the assumption of elevated pCH4 during the Proterozoic underlies most models for both anomalous climatic stasis during the mid-Proterozoic and extreme climate perturbation during the Neoproterozoic; however, the geologic record cannot directly constrain atmospheric CH4 levels and attendant radiative forcing. Here, we revisit the role of CH4 in Earth’s climate system during Proterozoic time. We use an Earth system model to quantify CH4 fluxes from the marine biosphere and to examine the capacity of biogenic CH4 to compensate for the faint young Sun during the “boring billion” years before the emergence of metazoan life. Our calculations demonstrate that anaerobic oxidation of CH4 coupled to SO42− reduction is a highly effective obstacle to CH4 accumulation in the atmosphere, possibly limiting atmospheric pCH4 to less than 10 ppm by volume for the second half of Earth history regardless of atmospheric pO2. If recent pO2 constraints from Cr isotopes are correct, we predict that reduced UV shielding by O3 should further limit pCH4 to very low levels similar to those seen today. Thus, our model results likely limit the potential climate warming by CH4 for the majority of Earth history—possibly reviving the faint young Sun paradox during Proterozoic time and challenging existing models for the initiation of low-latitude glaciation that depend on the oxidative collapse of a steady-state CH4 greenhouse. PMID:27671638

  6. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail appear to be normal polars with luminosities and magnetic field strengths typical for this class of accreting binary. None of the four systems studied shows the strong soft excess thought commonplace in polars prior to the XMM-Newton era. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  7. A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ming; Wang Jiancheng, E-mail: mzhou@ynao.ac.cn

    2013-06-01

    In this paper, we repeatedly use the method of image stacking to study the origin of the extragalactic gamma-ray background (EGB) at GeV bands, and find that the Faint Images of the Radio Sky at Twenty centimeters (FIRST) sources undetected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope can contribute about (56 {+-} 6)% of the EGB. Because FIRST is a flux-limited sample of radio sources with incompleteness at the faint limit, we consider that point sources, including blazars, non-blazar active galactic nuclei, and starburst galaxies, could produce a much larger fraction of the EGB.

  8. A study of the impact of the Space Shuttle environment on faint far-UV geophysical and astronomical phenomena

    NASA Technical Reports Server (NTRS)

    Lampton, Michael; Sasseen, Timothy P.; Wu, Xiaoyi; Bowyer, Stuart

    1993-01-01

    FAUST is a far ultraviolet (1400-1800 A) photon-counting imaging telescope featuring a wide field of view (7.6 deg) and a high sensitivity to extended emission features. During its flight as part of the ATLAS-1 payload aboard the STS-45 mission in March 1992, 19 deep-space nighttime viewing opportunities were utilized by FAUST. Here we report the observed fluxes and their time and space variations, and identify the signatures of postsunset airglow phenomena and Orbiter Vernier attitude control thruster firing events. We find that the Space Shuttle nighttime environment at 296 km altitude is often sufficiently dark to permit geophysical and astronomical UV observations down to levels on the order of 1000 photons/sq cm sr A sec, or 0.01 Rayleighs/A. We also find evidence for occasional geophysical fluxes of some tens or hundreds of Rayleighs in the upward-looking direction.

  9. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of supermassive black holes shortly after the Big Bang.

  10. A search for non-triggered events in the BATSE data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kommers, J. M.; Lewin, W. H. G.; Kouveliotou, C.

    1998-05-16

    The archival data from BATSE permit a search for transients that did not activate the onboard burst trigger. Examples of such non-triggered events include faint gamma-ray bursts (GRBs), emission from soft gamma-ray repeaters (SGRs), and bursts and flares from X-ray binaries. A GRB may fail to trigger onboard because it is too faint, because it occurs while the onboard trigger is disabled, or because it biases the onboard background estimation. We describe a search of the BATSE archival data that is sensitive to GRBs with peak fluxes fainter by a factor of {approx}2 than those detected with the onboard burstmore » trigger (on the 1.024 s time scale)« less

  11. First Results from Faint Infrared Grism Survey (Figs): First Simultaneous Detection of Ly Alpha Emission and Lyman Break From a Galaxy at Z =7.51

    NASA Technical Reports Server (NTRS)

    Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.; hide

    2016-01-01

    Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-Alpha emission and the Lyman break from a z = 7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble SpaceTelescope (HST), show a significant emission line detection (6 Sigma) in two observational position angles (PA), with Lyman-Alpha line flux of 1.06 +/- 0.19 x 10(exp -17) erg s(exp -1) cm(exp -2). The line flux is nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-Alpha measurements. A 4-Alpha detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), and if confirmed would make this source the highest-redshift AGN yet found.These observations from the Hubble Space Telescope thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.

  12. Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2016-01-01

    We present results from gamma-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released 'Pass 8' event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the gamma-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100 MeV are 1.7 x 10(exp -9) ph cm(exp -2) s(exp -1) and 5.2 x 10(exp -9) ph cm(exp -2) s(exp -1) respectively (the latter corresponds to residual emission at the level of 1.8sigma). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected gamma-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.

  13. Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data

    DOE PAGES

    Ackermann, M.

    2016-03-08

    We present results from γ-ray observations of the Coma cluster incorporating 6 years of Fermi-LAT data and the newly released “Pass 8” event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the γ-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radiomore » halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10 -9 ph cm -2 s -1 and 5.2 x 10 -9 ph cm -2 s -1 respectively (the latter corresponds to residual emission at the level of 1:8σ). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of cosmic rays and magnetic field properties. The minimal expected γ-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.« less

  14. TIMING OF FIVE MILLISECOND PULSARS DISCOVERED IN THE PALFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, P.; Kaspi, V. M.; Ferdman, R. D.

    2015-02-20

    We present the discovery of five millisecond pulsars (MSPs) from the PALFA Galactic plane survey using Arecibo. Four of these (PSRs J0557+1551, J1850+0244, J1902+0300, and J1943+2210) are binary pulsars whose companions are likely white dwarfs, and one (PSR J1905+0453) is isolated. Phase-coherent timing solutions, ranging from ∼1 to ∼3 yr in length, and based on observations from the Jodrell Bank and Arecibo telescopes, provide precise determinations of spin, orbital, and astrometric parameters. All five pulsars have large dispersion measures (>100 pc cm{sup –3}, within the top 20% of all known Galactic field MSPs) and are faint (1.4 GHz flux densitymore » ≲0.1 mJy, within the faintest 5% of all known Galactic field MSPs), illustrating PALFA's ability to find increasingly faint, distant MSPs in the Galactic plane. In particular, PSR J1850+0244 has a dispersion measure of 540 pc cm{sup –3}, the highest of all known MSPs. Such distant, faint MSPs are important input for accurately modeling the total Galactic MSP population.« less

  15. Through the Looking GLASS: HST Spectroscopy of Faint Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745

    NASA Astrophysics Data System (ADS)

    Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Wang, X.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.; Vulcani, B.

    2014-02-01

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z >~ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z >~ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ~5 × 10-18 erg s-1 cm-2. Taking lensing magnification into account, our flux sensitivity reaches ~0.2-5 × 10-18 erg s-1cm-2. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  16. The Extreme Ultraviolet Flux of Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2017-09-01

    The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.

  17. The MUSE Hubble Ultra Deep Field Survey. VI. The faint-end of the Lyα luminosity function at 2.91 < z < 6.64 and implications for reionisation

    NASA Astrophysics Data System (ADS)

    Drake, A. B.; Garel, T.; Wisotzki, L.; Leclercq, F.; Hashimoto, T.; Richard, J.; Bacon, R.; Blaizot, J.; Caruana, J.; Conseil, S.; Contini, T.; Guiderdoni, B.; Herenz, E. C.; Inami, H.; Lewis, J.; Mahler, G.; Marino, R. A.; Pello, R.; Schaye, J.; Verhamme, A.; Ventou, E.; Weilbacher, P. M.

    2017-11-01

    We present the deepest study to date of the Lyα luminosity function in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lyα emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. The deep data cubes allowed us to calculate accurate total Lyα fluxes capturing low surface-brightness extended Lyα emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to fully characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lyα fluxes. We find that an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the luminosity function, α, down to luminosities of log10L erg s-1< 41.5, applying both the 1 /Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03-0.07+ 1.42 at z ≈ 3.44 to -2.86-∞+0.76 at z ≈ 5.48, however no strong evolution is seen between the 68% confidence regions in L∗-α parameter space. Using the Lyα line flux as a proxy for star formation activity, and integrating the observed luminosity functions, we find that LAEs' contribution to the cosmic star formation rate density rises with redshift until it is comparable to that from continuum-selected samples by z ≈ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought, as any additional intergalactic medium (IGM) correction would act to further boost the Lyα luminosities. Finally, assuming fiducial values for the escape of Lyα and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood luminosity function at 5.00

  18. Earth limb views with greenish bands of airglow during STS-99

    NASA Image and Video Library

    2000-04-06

    STS099-355-024 (11-22 February 2000) -- Two separate atmospheric optical phenomena appear in this 35mm photograph captured from the Space Shuttle Endeavour. The thin greenish band above the horizon is airglow; radiation emitted by the atmosphere from a layer about 30-kilometers thick and about 100-kilometers' altitude. The predominant emission in airglow is the green 5577-Angstrom wavelength emission from atomic oxygen atoms, which is also the predominant emission from the aurora. A yellow-orange color is also seen in airglow, which is the emission of the 5800-Angstrom wavelength from sodium atoms. Airglow is always present in the atmosphere; it results from the recombination of molecules that have been broken apart by solar radiation during the day. But airglow is so faint that it can only be seen at night by looking "edge on" at the emission layer, such as the view that astronauts have in Earth orbit. The other phenomenon in the photo appears to be a faint, diffuse red aurora. Red aurora occur from about 200 kilometers to as high as 500 kilometers altitude only in the auroral zones at polar latitudes. They are caused by the emission of 6300- Angstrom wavelength light from oxygen atoms that have been raised to a higher energy level (excited) by collisions with energetic electrons pouring down from the Earth's magnetosphere. The light is emitted when the atoms return to their original unexcited state. With the red light so faint in this picture, scientists are led to believe that the flux density of incoming electrons was small. Also, since there is no green aurora below the red, that indicates that the energy of the incoming electrons was low - higher energy electrons would penetrate deeper into the atmosphere where the green aurora is energized.

  19. Tracking the Iron Kα line and the Ultra Fast Outflow in NGC 2992 at different accretion states

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Bianchi, S.; Braito, V.; Matt, G.; Nardini, E.; Reeves, J.

    2018-06-01

    The Seyfert 2 galaxy NGC 2992 has been monitored eight times by XMM-Newton in 2010 and then observed again in 2013, while in 2015 it was simultaneously targeted by Swift and NuSTAR. XMM-Newton always caught the source in a faint state (2-10 keV fluxes ranging from 0.3 to 1.6× 10-11 erg cm-2 s-1) but NuSTAR showed an increase in the 2-10 keV flux up to 6× 10-11 erg cm-2 s-1. We find possible evidence of an Ultra Fast Outflow with velocity v1 = 0.21 ± 0.01c (detected at about 99% confidence level) in such a flux state. The UFO in NGC 2992 is consistent with being ejected at a few tens of gravitational radii only at accretion rates greater than 2% of the Eddington luminosity. The analysis of the low flux 2010/2013 XMM data allowed us to determine that the Iron Kα emission line complex in this object is likely the sum of three distinct components: a constant, narrow one due to reflection from cold, distant material (likely the molecular torus); a narrow, but variable one which is more intense in brighter observations and a broad relativistic one emitted in the innermost regions of the accretion disk, which has been detected only in the 2003 XMM observation.

  20. The SCUBA HAlf Degree Extragalactic Survey (SHADES) - V. Submillimetre properties of near-infrared-selected galaxies in the Subaru/XMM -Newton deep field

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Clements, D. L.; Priddey, R. S.; Dunlop, J. S.; Takata, T.; Aretxaga, I.; Chapman, S. C.; Eales, S. A.; Farrah, D.; Granato, G. L.; Halpern, M.; Hughes, D. H.; van Kampen, E.; Scott, D.; Sekiguchi, K.; Smail, I.; Vaccari, M.

    2007-11-01

    We have studied the submillimetre (submm) properties of the following classes of near-infrared-selected (NIR-selected) massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs); distant red galaxies (DRGs); and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. Partial overlap of SIRIUS/NIR images and SHADES in Subaru/XMM-Newton deep field has allowed us to identify four submm-bright NIR-selected galaxies, which are detected in the mid-IR, 24μ m, and the radio, 1.4GHz. We find that all of our submm-bright NIR-selected galaxies satisfy the BzK selection criteria, i.e. BzK ≡ (z - K)AB - (B - z)AB >= -0.2, except for one galaxy whose B - z and z - K colours are however close to the BzK colour boundary. Two of the submm-bright NIR-selected galaxies satisfy all of the selection criteria we considered, i.e. they belong to the BzK-DRG-ERO overlapping population, or `extremely red' BzKs. Although these extremely red BzKs are rare (0.25 arcmin-2), up to 20 per cent of this population could be submm galaxies. This fraction is significantly higher than that found for other galaxy populations studied here. Via a stacking analysis, we have detected the 850-μ m flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution of z ~ 2 BzKs to the submm background is about 10-15 per cent and similar to that from EROs typically at z ~ 1, BzKs have a higher fraction (~30 per cent) of submm flux in resolved sources compared with EROs and submm sources as a whole. From the spectral energy distribution (SED) fitting analysis for both submm-bright and submm-faint BzKs, we found no clear signature that submm-bright BzKs are experiencing a specifically luminous evolutionary phase, compared with submm-faint BzKs. An alternative explanation might be that submm-bright BzKs are more massive than submm-faint ones.

  1. Variability of faint ROSAT field sources

    NASA Astrophysics Data System (ADS)

    Nicholson, K. L.; Mittaz, J. P. D.; Mason, K. O.

    1997-03-01

    We describe a technique to search for variability in faint X-ray sources, based on Poisson statistics. This is applied to data in the field of the detached white dwarf binary RE J1629+781 which has been observed repeatedly with the ROSAT Position Sensitive Proportional Counter (PSPC) over a period of 2.5yr as part of the calibration programme of the co-aligned extreme ultraviolet (EUV) sensitive Wide Field Camera. The field contains eight other identified sources comprising four active galactic nuclei (AGN), a LINER, a probable cluster of galaxies and two stars. Variability is detected in three of the AGN, which all have redshifts between 0.35 and 0.38. The amplitude of variability ranges between one and three times the mean count rate, but is only detected on time-scales of less than 3-5 months. No variability is found in the fourth AGN which is at a redshift of 1.1, nor in the LINER galaxy, Arp 185. The X-ray emission from Arp 185 is relatively bright, and the upper limit to flux variations is 27 per cent of the mean flux. This result is consistent with a non-AGN origin for the X-ray emission from this galaxy. Variability is detected from one of the identified stars in the field, of spectral type dM5.5e. No variations were seen in the flux of the other star (spectral type G) or from the probable cluster of galaxies.

  2. Spectroscopic monitoring of the BL Lac object AO 0235+164

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Villata, M.; Capetti, A.; Heidt, J.; Arnaboldi, M.; Magazzù, A.

    2007-03-01

    Aims:Spectroscopic monitoring of BL Lac objects is a difficult task that nonetheless can provide important information on the different components of the active galactic nucleus. Methods: We performed optical spectroscopic monitoring of the BL Lac object AO 0235+164 (z=0.94) with the VLT and TNG telescopes from Aug. 2003 to Dec. 2004, during an extended WEBT campaign. The flux of this source is both contaminated and absorbed by a foreground galactic system at z=0.524, the stars of which can act as gravitational micro-lenses. Results: In this period the object was in an optically faint, though variable state, and a broad Mg II emission line was visible at all epochs. The spectroscopic analysis reveals an overall variation in the Mg II line flux of a factor 1.9, while the corresponding continuum flux density changed by a factor 4.3. Most likely, the photoionising radiation can be identified with the emission component that was earlier recognised to be present as a UV-soft-X-ray bump in the source spectral energy distribution and that is visible in the optical domain only in very faint optical states. We estimate an upper limit to the broad line region (BLR) size of a few light months from the historical minimum brightness level; from this we infer the maximum amplification of the Mg II line predicted by the microlensing scenario. Conclusions: .Unless we have strongly overestimated the size of the BLR, only very massive stars could significantly magnify the broad Mg II emission line, but the time scale of variations due to these (rare) events would be of several years. In contrast, the continuum flux, coming from much smaller emission regions in the jet, could be affected by microlensing from the more plausible MACHO deflectors, with variability time scales of the order of some months. Based on observations collected at the European Southern Observatory, Chile (ESO Programme 71.A-0174), and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  3. XMM-Newton observations of the Lockman Hole IV: spectra of the brightest AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Barcons, X.; Carrera, F. J.; Ceballos, M. T.; Hasinger, G.; Lehmann, I.; Fabian, A. C.; Streblyanska, A.

    2005-12-01

    This paper presents the results of a detailed X-ray spectral analysis of a sample of 123 X-ray sources detected with XMM-Newton in the Lockman Hole field. This is the deepest observation carried out with XMM-Newton with more that 600 ks of good EPIC-pn data. We have spectra with good signal to noise (>500 source counts) for all objects down to 0.2-12 keV fluxes of 5×10-15 erg cm-2 s-1 (flux limit of 6×10-16 erg cm-2 s-1 in the 0.5-2 and 2-10 keV bands). At the time of the analysis, we had optical spectroscopic identifications for 60% of the sources, 46 being optical type-1 AGN and 28 optical type-2 AGN. Using a single power law model our sources' average spectral slope hardens at faint 0.5-2 keV fluxes but not at faint 2-10 keV fluxes. We have been able to explain this effect in terms of an increase in X-ray absorption at faint fluxes. We did not find in our data any evidence for the existence of a population of faint intrinsically harder sources. The average spectral slope of our sources is 1.9, with an intrinsic dispersion of 0.28. We detected X-ray absorption (F-test significance ≥95%) in 37% of the sources, 10% in type-1 AGN (rest-frame {NH ˜ 1.6 × 1021{-}1.2 × 1022 cm-2}) and 77% (rest-frame {NH ˜ 1.5 ×1021{-}4× 1023 cm-2}) in type-2 AGN. Using X-ray fluxes corrected for absorption, the fraction of absorbed objects and the absorbing column density distribution did not vary with X-ray flux. Our type-1 and type-2 AGN do not appear to have different continuum shapes, but the distribution of intrinsic (rest-frame) absorbing column densities is different among both classes. A significant fraction of our type-2 AGN (5 out of 28) were found to display no substantial absorption ({NH<1021 cm-2}). We discuss possible interpretations to this in terms of Compton-thick AGN and intrinsic Broad Line Region properties. An emission line compatible with Fe Kα was detected in 8 sources (1 type-1 AGN, 5 type-2 AGN and 2 unidentified) with rest frame equivalent widths 120-1000 eV. However weak broad components can be easily missed in other sources by the relatively noisy data. The AGN continuum or intrinsic absorption did not depend on X-ray luminosity and/or redshift. Soft excess emission was detected in 18 objects, but only in 9 (including 4 type-1 AGN and 4 type-2 AGN) could we fit this spectral component with a black body model. The measured 0.5-2 keV luminosities of the fitted black body were not significantly different in type-1 and type-2 AGN, although the temperatures of the black body were slightly higher in type-2 AGN (< {kT}>=0.26±0.08) than in type-1 AGN (< {kT}>=0.09±0.01). For 9 sources (including 1 type-1 AGN and 3 type-2 AGN) a scattering model provided a better fit of the soft excess emission. We found that the integrated contribution from our sources to the X-ray background in the 2-7 keV band is softer (Γ=1.5{-}1.6) than the background itself, implying that fainter sources need to be more absorbed.

  4. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  5. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  6. Herschel Discovery of a New class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J. -Ch.; Bayo, A.; hide

    2012-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron. while the 100 micron fluxes of a Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approximately 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approximately < 22 K, while the fractional luminosity of the cold dust is L(dust)/ L(star) approximates 10(exp -6), close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  7. Herschel Discovery of a New Class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroal, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J.-Ch.; Bayo, A.; hide

    2011-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 m for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 m images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approx 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approx < 22 K, while the fractional luminosity of the cold dust is L(sub dust) / L(*) approx 10 (exp 6) close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  8. STABLE AND UNSTABLE REGIMES OF MASS ACCRETION ONTO RW AUR A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Michihiro; Wei, Yu-Jie; Chou, Mei-Yin

    2016-04-01

    We present monitoring observations of the active T Tauri star RW Aur, from 2010 October to 2015 January, using optical high-resolution (R ≥ 10,000) spectroscopy with Canada–France–Hawaii Telescope/ESPaDOnS. Optical photometry in the literature shows bright, stable fluxes over most of this period, with lower fluxes (by 2–3 mag) in 2010 and 2014. In the bright period our spectra show clear photospheric absorption, complicated variation in the Ca ii λ8542 emission profile shapes, and a large variation in redshifted absorption in the O i λλ7772 and 8446 and He i λ5876 lines, suggesting unstable mass accretion during this period. In contrast, these line profiles are relativelymore » uniform during the faint periods, suggesting stable mass accretion. During the faint periods, the photospheric absorption lines are absent or marginal, and the averaged Li i profile shows redshifted absorption due to an inflow. We discuss (1) occultation by circumstellar material or a companion and (2) changes in the activity of mass accretion to explain the above results, together with near-infrared and X-ray observations from 2011 to 2015. Neither scenario can simply explain all the observed trends, and more theoretical work is needed to further investigate their feasibilities.« less

  9. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  10. Faint blue counts from formation of dwarf galaxies at z approximately equals 1

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Rees, Martin J.

    1993-01-01

    The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.

  11. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, K. B.; Treu, T.; Wang, X.

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to covermore » the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.« less

  12. X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545

    NASA Technical Reports Server (NTRS)

    Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.

  13. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To, Chun-Hao; Wang, Wei-Hao; Owen, Frazer N.

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at zmore » ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.« less

  14. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  15. Herschel discovery of a new class of cold, faint debris discs

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arévalo, M.; Augereau, J.-Ch.; Bayo, A.; Danchi, W.; Del Burgo, C.; Ertel, S.; Fridlund, M.; González-García, B. M.; Heras, A. M.; Lebreton, J.; Liseau, R.; Maldonado, J.; Meeus, G.; Montes, D.; Pilbratt, G. L.; Roberge, A.; Sanz-Forcada, J.; Stapelfeldt, K.; Thébault, P.; White, G. J.; Wolf, S.

    2011-12-01

    We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is Ldust/L ⋆ ~ 10-6, close to the luminosity of the solar-system's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking "classical" debris disc models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Sub-millimetre properties of massive star-forming galaxies at z ~ 2 in SHADES/SXDF

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Dunlop, J. S.

    2007-05-01

    We study the submillimetre (submm) properties of the following NIR-selected massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs), distant red galaxies (DRGs) and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. We detected 6 NIR-selected galaxies in our SCUBA map. Four submm-detected galaxies out of six are found to be detected both at 24 micron and in radio (1.4 GHz), and therefore confirmed as genuine submm-bright galaxies. We identify two submm-bright NIR-selected galaxies are the BzK-DRG-ERO overlapping population. Although this overlapping population is rare, about 12% of this population could be submm galaxies. With a stacking analysis, we detected the 850-micron flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution from BzKs at z˜2 to submm background is about 10 - 15 % and similar to that from EROs typically at z˜1, BzKs have a higher fraction (˜30%) of flux in resolved sources than EROs do. Therefore, submm flux of BzKs seems to be biased high. From the SED fitting using an evolutionary model of starbursts with radiative transfer, submm-bright NIR-selected galaxies, mostly BzKs, are found to have the stellar mass of >5x1010M[sun] with the bolometric luminosity of >3x1012L[sun]. On the other hand, an average SED of submm-faint BzKs indicates the typical stellar mass of <6x1010M[sun] and therefore less massive.

  17. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  18. Chandra ACIS-I particle background: an analytical model

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.; Mazzotta, P.; Bourdin, H.; Vikhlinin, A.

    2014-06-01

    Aims: Imaging and spectroscopy of X-ray extended sources require a proper characterisation of a spatially unresolved background signal. This background includes sky and instrumental components, each of which are characterised by its proper spatial and spectral behaviour. While the X-ray sky background has been extensively studied in previous work, here we analyse and model the instrumental background of the ACIS-I detector on board the Chandra X-ray observatory in very faint mode. Methods: Caused by interaction of highly energetic particles with the detector, the ACIS-I instrumental background is spectrally characterised by the superimposition of several fluorescence emission lines onto a continuum. To isolate its flux from any sky component, we fitted an analytical model of the continuum to observations performed in very faint mode with the detector in the stowed position shielded from the sky, and gathered over the eight-year period starting in 2001. The remaining emission lines were fitted to blank-sky observations of the same period. We found 11 emission lines. Analysing the spatial variation of the amplitude, energy and width of these lines has further allowed us to infer that three lines of these are presumably due to an energy correction artefact produced in the frame store. Results: We provide an analytical model that predicts the instrumental background with a precision of 2% in the continuum and 5% in the lines. We use this model to measure the flux of the unresolved cosmic X-ray background in the Chandra deep field south. We obtain a flux of 10.2+0.5-0.4 × 10-13 erg cm-2 deg-2 s-1 for the [1-2] keV band and (3.8 ± 0.2) × 10-12 erg cm-2 deg-2 s-1 for the [2-8] keV band.

  19. Studying The Spectral Shape And The X-ray/uv Variability Of Active Galactic Nuclei With Data From Swift And Xmm Archives

    NASA Astrophysics Data System (ADS)

    Turriziani, Sara

    2011-01-01

    Many efforts have been made in understanding the underlying origin of variability in Active Galactic Nuclei (AGN), but at present they could give still no conclusive answers. Since a deeper knowledge of variability will enable to understand better the accretion process onto supermassive black holes, I built the first ensemble struction function analysis of the X-ray variability of samples of quasars with data from Swift and XMM-Newton archives in order to study the average properties of their variability. Moreover, it is known that UV and X-ray luminosities of quasars are correlated and recent studies quantified this relation across 5 orders of magnitude. In this context, I presents results on the X-ray/UV ratio from simultaneous observations in UV and X-ray bands of a sample of quasars with data from XMM-Newton archive. Lastly, I will present a complete sample of Swift/SDSS faint blazars and other non-thermal dominated AGNs. I used this sample to calculate the general statistical properties of faint blazars and radio galaxies and in particular their Radio LogN-LogS with fluxes down to 10 mJy, in order to gain knowledge on the contribution to Cosmic Microwave Background (CMB) and gamma-ray background radiation from the faint tail of the radio population. I acknowledge financial support through Grant ASI I/088/06/0.

  20. AGM2015: Antineutrino Global Map 2015

    PubMed Central

    Usman, S.M.; Jocher, G.R.; Dye, S.T.; McDonough, W.F.; Learned, J.G.

    2015-01-01

    Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors. PMID:26323507

  1. AGM2015: Antineutrino Global Map 2015.

    PubMed

    Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G

    2015-09-01

    Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

  2. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  3. Removing cosmic-ray hits from multiorbit HST Wide Field Camera images

    NASA Technical Reports Server (NTRS)

    Windhorst, Rogier A.; Franklin, Barbara E.; Neuschaefer, Lyman W.

    1994-01-01

    We present an optimized algorithm that removes cosmic rays ('CRs') from multiorbit Hubble Space Telescope (HST) Wide Field/Planetary Camera ('WF/PC') images. It computes the image noise in every iteration from the WF/PC CCD equation. This includes all known sources of random and systematic calibration errors. We test this algorithm on WF/PC stacks of 2-12 orbits as a function of the number of available orbits and the formal Poissonian sigma-clipping level. We find that the algorithm needs greater than or equal 4 WF/PC exposures to locate the minimal sky signal (which is noticeably affected by CRs), with an optimal clipping level at 2-2.5 x sigma(sub Poisson). We analyze the CR flux detected on multiorbit 'CR stacks,' which are constructed by subtracting the best CR filtered images from the unfiltered 8-12 orbit average. We use an automated object finder to determine the surface density of CRS as a function of the apparent magnitude (or ADU flux) they would have generated in the images had they not been removed. The power law slope of the CR 'counts' (gamma approximately = 0.6 for N(m) m(exp gamma)) is steeper than that of the faint galaxy counts down to V approximately = 28 mag. The CR counts show a drop off between 28 less than or approximately V less than or approximately 30 mag (the latter is our formal 2 sigma point source sensitivity without spherical aberration). This prevents the CR sky integral from diverging, and is likely due to a real cutoff in the CR energy distribution below approximately 11 ADU per orbit. The integral CR surface density is less than or approximately 10(exp 8)/sq. deg, and their sky signal is V approximately = 25.5-27.0 mag/sq. arcsec, or 3%-13% of our NEP sky background (V = 23.3 mag/sq. arcsec), and well above the EBL integral of the deepest galaxy counts (B(sub J) approximately = 28.0 mag/sq. arcsec). We conclude that faint CRs will always contribute to the sky signal in the deepest WF/PC images. Since WFPC2 has approximately 2.7x lower read noise and a thicker CCD, this will result in more CR detections than in WF/PC, potentially affecting approximately 10%-20% of the pixels in multiorbit WFPC2 data cubes.

  4. VizieR Online Data Catalog: PACS photometry of FIR faint stars (Klaas+, 2018)

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Balog, Z.; Nielbock, M.; Mueller, T. G.; Linz, H.; Kiss, Cs.

    2018-01-01

    70, 100 and 160um photometry of FIR faint stars from PACS scan map and chop/nod measurements. For scan maps also the photometry of the combined scan and cross-scan maps (at 160um there are usually two scan and cross-scan maps each as complements to the 70 and 100um maps) is given. Note: Not all stars have measured fluxes in all three filters. Scan maps: The main observing mode was the point-source mini-scan-map mode; selected scan map parameters are given in column mparam. An outline of the data processing using the high-pass filter (HPF) method is presented in Balog et al. (2014ExA....37..129B). Processing proceeded from Herschel Science Archive SPG v13.1.0 level 1 products with HIPE version 15 build 165 for 70 and 100um maps and from Herschel Science Archive SPG v14.2.0 level 1 products with HIPE version 15 build 1480 for 160um maps. Fluxes faper were obtained by aperture photometry with aperture radii of 5.6, 6.8 and 10.7 arcsec for the 70, 100 and 160um filter, respectively. Noise per pixel sigpix was determined with the histogram method, described in this paper, for coverage values greater than or equal to 0.5*maximum coverage. The number of map pixels (1.1, 1.4, and 2.1 arcsec pixel size, respectively) inside the photometric aperture is Naper = 81.42, 74.12, and 81.56, respectively. The corresponding correction factors for correlated noise are fcorr = 3.13, 2.76, and 4.12, respectively. The noise for the photometric aperture is calculated as sig_aper=sqrt(Naper)*fcorr*sigpix. Signal-to-noise ratios are determined as S/N=faper/sigaper. Aperture-correction factors to derive the total flux are caper = 1.61, 1.56 and 1.56 for the 70, 100 and 160um filter, respectively. Applied colour-correction factors for a 5000K black-body SED are cc = 1.016, 1.033, and 1.074 for the 70, 100, and 160um filter, respectively. The final stellar flux is derived as fstar=faper*caper/cc. Maximum and minimum FWHM of the star PSF are determined by an elliptical fit of the intensity profile. Chop/nod observations: The chop/nod point-source mode is described in this paper. An outline of the data processing is presented in Nielbock et al. (2013ExA....36..631N). Processing proceeded from Herschel Science Archive SPG v11.1.0 level 1 products with HIPE version 13 build 2768. Gyro correction was applied for most of the cases to improve the pointing reconstruction performance. Fluxes faper were obtained by aperture photometry with aperture radii of 5.6, 6.8 and 10.7 arcsec for the 70, 100 and 160um filter, respectively. Noise per pixel sigpix was determined with the histogram method, described in this paper, for coverage values greater than or equal to 0.5*maximum coverage. The number of map pixels (1.1, 1.4, and 2.1 arcsec pixel size, respectively) inside the photometric aperture is Naper = 81.42, 74.12, and 81.56, respectively. The corresponding correction factors for correlated noise are fcorr = 6.33, 4.22, and 7.81, respectively. The noise for the photometric aperture is calculated as sigaper=sqrt(Naper)*fcorr*sigpix. Signal-to-noise ratios are determined as S/N=faper/sigaper. Aperture-correction factors to derive the total flux are caper = 1.61, 1.56 and 1.56 for the 70, 100 and 160um filter, respectively. Applied colour-correction factors for a 5000K black-body SED are cc = 1.016, 1.033, and 1.074 for the 70, 100, and 160um filter, respectively. Maximum and minimum FWHM of the star PSF are determined by an elliptical fit of the intensity profile. (7 data files).

  5. The Coma Cluster Luminosity Function from Ultraviolet to Near-Infrared

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Cuillandre, J.-C.; Pello, R.

    The Coma cluster luminosity function (LF) from ultraviolet (2000 AA ) to the near-infrared (H band) is summarized. In the UV the LF is very steep, much steeper than in the optical. The steep Coma UV LF implies that faint and bright galaxies give similar contributions to the total UV flux and to the total metal production rate. The ComaUV LF is dominated in number and luminosity by blue galaxies, which are often faint in the optical. Therefore the Coma UV LF is dominated by star forming galaxies, not by massive and large galaxies. The optical Coma LF is relatively steep (alpha=-1.4) over the 11 magnitudes sampled, but its slope and shape depend on considered filter and magnitude. We found a clear steeping of the FL going from B to R bands, indicative of the presence of a large number of red dwarfs, as faint as three bright globular clusters. Furthermore, using Hubble Space Telescope images, we discover that blends of globular clusters, not resolved in individual components due to seeing, look like dwarf galaxies when observed from the ground and are numerous and bright. The existence of these fake extended sources increases the steepness of the LF at faint magnitudes, if not deal on. This concern affects previous deep probing of the luminosity function, but not the present work. The near-infrared LF wa s computed on a near-infrared selected sample of galaxies which photometry is complete down to the typical dwarf (M* +5) luminosity. The Coma LF can be described by a Schechter function with intermediate slope (alpha sim-1.3), plus a dip at MH~-22 mag. The shape of the Coma LF in H band is quite similar to th e one found in the B band. The similarity of the LF in the optical and H bands implies that in the central region of Coma there is no new population of galaxies which is too faint to be observed in the optical band (because dust enshrouded, for instance), down to the magnitudes of dwarfs. The exponential cut of the LF at the bright end is in good agreement with the one derived from shallower near-infrared samples o f galaxies, both in clusters and in the field. The faint end of the LF, reaching MH~-19 mag (roughly MB~ -15), is steep, but less than previously suggested from shallower near-infrared observations of an adjacent region in the Coma cluster.

  6. Simulated low-intensity optical pulsar observation with single-photon detector

    NASA Astrophysics Data System (ADS)

    Leeb, W. R.; Alves, J.; Meingast, S.; Brunner, M.

    2015-02-01

    Context. Optical radiation of pulsars offers valuable clues to the physics of neutron stars, which are our only probes of the most extreme states of matter in the present-day universe. Still, only about 1% of all cataloged pulsars have known optical counterparts. Aims: The goal of this work is to develop an observational method optimized for discovering faint optical pulsars. Methods: A single-photon detector transforms the signal received by the telescope into a pulse sequence. The events obtained are time tagged and transformed into a histogram of event time differences. The histogram envelope presents the autocorrelation of the recorded optical signal and thus displays any periodicity of the input signal. Results: Simulations show that faint pulsars radiating in the optical regime can be detected in a straightforward way. As an example, a fictitious pulsar with a V-magnitude of 24.6 mag and a signature like the Crab pulsar can be discovered within one minute using an 8-m class telescope. At the detector's peak sensitivity the average optical flux density would then amount to Fν = 0.63 μJy. With a 40-m class telescope, such as the forthcoming European ELT, the detection of optical pulsars with magnitudes V< 30 mag is within reach for a measurement time of one minute. A two-hour "blind search" with the ELT could reach V ~ 31.3 mag. Conclusions: This method allows detecting faint periodic optical radiation with simple equipment and easy signal processing.

  7. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  8. The contribution of faint AGNs to the ionizing background at z 4

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; Vanzella, E.; Scarlata, C.; Santini, P.; Pentericci, L.; Merlin, E.; Menci, N.; Fontanot, F.; Fontana, A.; Fiore, F.; Civano, F.; Castellano, M.; Brusa, M.; Bonchi, A.; Carini, R.; Cusano, F.; Faccini, M.; Garilli, B.; Marchetti, A.; Rossi, A.; Speziali, R.

    2018-05-01

    Context. Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in observational cosmology. Bright quasi-stellar objects (QSOs) are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A significant contribution by faint active galactic nuclei (AGNs), however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z > 4. Aims: This work is part of a long-term project aimed at measuring the Lyman Continuum escape fraction for a large sample of AGNs at z 4 down to an absolute magnitude of M1450 -23. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U - I color interval, with I 21-23, and 3.6 < z < 4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450 ≲-26) which are known to ionize their surrounding IGM at z ≳ 4. Methods: We acquired deep spectra of these faint AGNs with spectrographs available at the VLT, LBT, and Magellan telescopes, that is, FORS2, MODS1-2, and LDSS3, respectively. The emission in the Lyman Continuum region, close to 900 Å rest frame, has been detected with a signal to noise ratio of 10-120 for all 16 AGNs. The flux ratio between the 900 Å rest-frame region and 930 Å provides a robust estimate of the escape fraction of HI ionizing photons. Results: We have found that the Lyman Continuum escape fraction is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6 < z < 4.2 and - 25.1 ≲ M1450 ≲-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450 ≲-26) at the same redshifts. The Lyman Continuum escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U - I colors of the objects. Assuming that the Lyman Continuum escape fraction remains close to 75% down to M1450 - 18, we find that the AGN population can provide between 16 and 73% (depending on the adopted luminosity function) of the whole ionizing UV background at z 4, measured through the Lyman forest. This contribution increases to 25-100% if other determinations of the ionizing UV background are adopted from the recent literature. Conclusions: Extrapolating these results to z 5-7, there are possible indications that bright QSOs and faint AGNs can provide a significant contribution to the reionization of the Universe, if their space density is high at M1450 -23. Based on observations made at the Large Binocular Telescope (LBT) at Mt. Graham (Arizona, USA). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 098.A-0862. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Faint Submillimeter Galaxies Identified through Their Optical/Near-infrared Colors. I. Spatial Clustering and Halo Masses

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, James M.; Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.; Mortlock, Alice; Simpson, Chris; Wilkinson, Aaron

    2016-11-01

    The properties of submillimeter galaxies (SMGs) that are fainter than the confusion limit of blank-field single-dish surveys ({S}850 ≲ 2 mJy) are poorly constrained. Using a newly developed color selection technique, Optical-Infrared Triple Color (OIRTC), that has been shown to successfully select such faint SMGs, we identify a sample of 2938 OIRTC-selected galaxies, dubbed Triple Color Galaxies (TCGs), in the UKIDSS-UDS field. We show that these galaxies have a median 850 μm flux of {S}850=0.96+/- 0.04 mJy (equivalent to a star formation rate SFR ˜ 60{--}100 {M}⊙ yr-1 based on spectral energy distribution fitting), representing the first large sample of faint SMGs that bridges the gap between bright SMGs and normal star-forming galaxies in S 850 and L IR. We assess the basic properties of TCGs and their relationship with other galaxy populations at z˜ 2. We measure the two-point autocorrelation function for this population and derive a typical halo mass of log10({M}{halo}) = {12.9}-0.3+0.2, {12.7}-0.2+0.1, and {12.9}-0.3+0.2 {h}-1 {M}⊙ at z=1{--}2, 2-3, and 3-5, respectively. Together with the bright SMGs ({S}850≳ 2 mJy) and a comparison sample of less far-infrared luminous star-forming galaxies, we find a lack of dependence between spatial clustering and S 850 (or SFR), suggesting that the difference between these populations may lie in their local galactic environment. Lastly, on the scale of ˜ 8{--}17 {kpc} at 1\\lt z\\lt 5 we find a tentative enhancement of the clustering of TCGs over the comparison star-forming galaxies, suggesting that some faint SMGs are physically associated pairs, perhaps reflecting a merging origin in their triggering.

  10. Lyman-break Galaxies at z ˜ 3 in the Subaru Deep Field: Luminosity Function, Clustering, and [O III] Emission

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Cohen, Daniel P.; Maruyama, Miyoko; Kashikawa, Nobunari; Ly, Chun; Ishikawa, Shogo; Shimasaku, Kazuhiro; Hayashi, Masao; Motohara, Kentaro

    2017-11-01

    We combined deep U-band and optical/near-infrared imaging, in order to select Lyman Break Galaxies (LBGs) at z˜ 3 using U - V and V-{R}c colors in the Subaru Deep Field. The resulting sample of 5161 LBGs gives a UV luminosity function (LF) down to {M}{UV}=-18, with a steep faint-end slope of α =-1.78+/- 0.05. We analyze UV-to-NIR energy distributions (SEDs) from optical photometry and photometry on IR median-stacked images. In the stacks, we find a systematic background depression centered on the LBGs. This results from the difficulty of finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies, so we corrected for this deficit. Best-fit stellar population models for the LBG SEDs indicate stellar masses and star formation rates of {{log}}10({M}* /{M}⊙ )≃ 10 and ≃ 50 M ⊙ yr-1 at < {i}{AB}{\\prime }> =24, down to {{log}}10({M}* /{M}⊙ )≃ 8 and ≃ 3 {M}⊙ yr-1 at < {i}{AB}{\\prime }> =27. The faint LBGs show a ˜1 mag excess over the stellar continuum in K-band. We interpret this excess flux as redshifted [O III]λ λ {4959,5007} lines. The observed excesses imply equivalent widths that increase with decreasing mass, reaching {{EW}}0([{{O}} {{iii}}]4959,5007+{{H}}β )≳ 1500 Å (rest-frame). Such strong [O III] emission is seen only in a miniscule fraction of local emission-line galaxies, but is probably universal in the faint galaxies that reionized the universe. Our halo occupation distribution analysis of the angular correlation function gives a halo mass of {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.29+/- 0.12 for the full sample of LBGs, and {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.49+/- 0.1 for the brightest half of the sample.

  11. The Origin of the EUV Emission in Her X-1

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Marshall, H.

    1999-01-01

    Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.

  12. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  13. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonsdale, C.J.; Hacking, P.B.; Conrow, T.P.

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to themore » Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling. 105 refs.« less

  14. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-01-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  15. VLBI observations of Infrared-Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  16. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2009-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  17. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  18. MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64

    NASA Astrophysics Data System (ADS)

    Drake, Alyssa B.; Guiderdoni, Bruno; Blaizot, Jérémy; Wisotzki, Lutz; Herenz, Edmund Christian; Garel, Thibault; Richard, Johan; Bacon, Roland; Bina, David; Cantalupo, Sebastiano; Contini, Thierry; den Brok, Mark; Hashimoto, Takuya; Marino, Raffaella Anna; Pelló, Roser; Schaye, Joop; Schmidt, Kasper B.

    2017-10-01

    We present the first estimate of the Ly α luminosity function using blind spectroscopy from the Multi Unit Spectroscopic Explorer, MUSE, in the Hubble Deep Field-South. Using automatic source-detection software, we assemble a homogeneously detected sample of 59 Ly α emitters covering a flux range of -18.0 < log10 (F) < -16.3 (erg s-1 cm-2), corresponding to luminosities of 41.4 < log10 (L) < 42.8 (erg s-1). As recent studies have shown, Ly α fluxes can be underestimated by a factor of 2 or more via traditional methods, and so we undertake a careful assessment of each object's Ly α flux using a curve-of-growth analysis to account for extended emission. We describe our self-consistent method for determining the completeness of the sample, and present an estimate of the global Ly α luminosity function between redshifts 2.91 < z < 6.64 using the 1/Vmax estimator. We find that the luminosity function is higher than many number densities reported in the literature by a factor of 2-3, although our result is consistent at the 1σ level with most of these studies. Our observed luminosity function is also in good agreement with predictions from semi-analytic models, and shows no evidence for strong evolution between the high- and low-redshift halves of the data. We demonstrate that one's approach to Ly α flux estimation does alter the observed luminosity function, and caution that accurate flux assessments will be crucial in measurements of the faint-end slope. This is a pilot study for the Ly α luminosity function in the MUSE deep-fields, to be built on with data from the Hubble Ultra Deep Field that will increase the size of our sample by almost a factor of 10.

  19. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-03-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  20. Fainting

    MedlinePlus

    ... pressure. Why Do People Faint? Fainting is pretty common in teens. The good news is that most of the time it's not a sign of something serious. When someone faints, it's usually because ... ventilated setting are common causes of fainting in teens. People can also ...

  1. Multiple-component Decomposition from Millimeter Single-channel Data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Montoya, Iván; Sánchez-Argüelles, David; Aretxaga, Itziar; Bertone, Emanuele; Chávez-Dagostino, Miguel; Hughes, David H.; Montaña, Alfredo; Wilson, Grant W.; Zeballos, Milagros

    2018-03-01

    We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data, we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations, extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey–South (GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular, GOODS-S is decomposed into four independent physical components: one of them is the already-known map of point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission that can be interpreted as the confusion background of faint sources.

  2. Faint Debris Detection by Particle Based Track-Before-Detect Method

    NASA Astrophysics Data System (ADS)

    Uetsuhara, M.; Ikoma, N.

    2014-09-01

    This study proposes a particle method to detect faint debris, which is hardly seen in single frame, from an image sequence based on the concept of track-before-detect (TBD). The most widely used detection method is detect-before-track (DBT), which firstly detects signals of targets from single frame by distinguishing difference of intensity between foreground and background then associate the signals for each target between frames. DBT is capable of tracking bright targets but limited. DBT is necessary to consider presence of false signals and is difficult to recover from false association. On the other hand, TBD methods try to track targets without explicitly detecting the signals followed by evaluation of goodness of each track and obtaining detection results. TBD has an advantage over DBT in detecting weak signals around background level in single frame. However, conventional TBD methods for debris detection apply brute-force search over candidate tracks then manually select true one from the candidates. To reduce those significant drawbacks of brute-force search and not-fully automated process, this study proposes a faint debris detection algorithm by a particle based TBD method consisting of sequential update of target state and heuristic search of initial state. The state consists of position, velocity direction and magnitude, and size of debris over the image at a single frame. The sequential update process is implemented by a particle filter (PF). PF is an optimal filtering technique that requires initial distribution of target state as a prior knowledge. An evolutional algorithm (EA) is utilized to search the initial distribution. The EA iteratively applies propagation and likelihood evaluation of particles for the same image sequences and resulting set of particles is used as an initial distribution of PF. This paper describes the algorithm of the proposed faint debris detection method. The algorithm demonstrates performance on image sequences acquired during observation campaigns dedicated to GEO breakup fragments, which would contain a sufficient number of faint debris images. The results indicate the proposed method is capable of tracking faint debris with moderate computational costs at operational level.

  3. Dark-ages reionization and galaxy formation simulation - X. The small contribution of quasars to reionization

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Mutch, Simon J.; Poole, Gregory B.; Liu, Chuanwu; Angel, Paul W.; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the MERAXES semi-analytic model. The model is calibrated against the observed stellar mass function at z ∼ 0.6-7, the black hole mass function at z ≲ 0.5, the global ionizing emissivity at z ∼ 2-5 and the Thomson scattering optical depth. The model reproduces a Magorrian relation in agreement with observations at z < 0.5 and predicts a decreasing black hole mass towards higher redshifts at fixed total stellar mass. With the implementation of an opening angle of 80 deg for quasar radiation, corresponding to an observable fraction of ∼23.4 per cent due to obscuration by dust, the model is able to reproduce the observed quasar luminosity function at z ∼ 0.6-6. The stellar light from galaxies hosting faint active galactic nucleus (AGN) contributes a significant or dominant fraction of the UV flux. At high redshift, the model is consistent with the bright end quasar luminosity function and suggests that the recent faint z ∼ 4 AGN sample compiled by Giallongo et al. (2015) includes a significant fraction of stellar light. Direct application of this luminosity function to the calculation of AGN ionizing emissivity consequently overestimates the number of ionizing photons produced by quasars by a factor of 3 at z ∼ 6. We conclude that quasars are unlikely to make a significant contribution to reionization.

  4. The dynamic quiet solar corona: 4 days of joint observing with MDI and EIT

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Shine, R. A.; Hurlburt, N. E.; Tarbell, T. D.; Lemen, J. R.

    1997-01-01

    The analysis of a sequence of joint extreme ultraviolet imaging telescope (EIT) Fe XII and Michelson Doppler imager (MDI) magnetogram observations of the quiet sun near disk center is presented. It was found that: all the emerging flux above the threshold of approximately 10(sup 17) Mx is associated with enhanced coronal emissions; loop systems between the polarities in ephemeral regions remain visible up to separations of 10000 up to 30000 km; brightenings between approaching opposite polarity network concentrations form when the concentrations are between 5000 and 25000 km apart, and that faint connections up to 40000 km in length form as sets of concentrations of the same polarity coagulate. The coronal emission over patches of the quiet sun depends on the total flux in connected concentrations, on their distance and on the positions and strengths of neighboring concentrations.

  5. Crowded field photometry with deconvolved images.

    NASA Astrophysics Data System (ADS)

    Linde, P.; Spännare, S.

    A local implementation of the Lucy-Richardson algorithm has been used to deconvolve a set of crowded stellar field images. The effects of deconvolution on detection limits as well as on photometric and astrometric properties have been investigated as a function of the number of deconvolution iterations. Results show that deconvolution improves detection of faint stars, although artifacts are also found. Deconvolution provides more stars measurable without significant degradation of positional accuracy. The photometric precision is affected by deconvolution in several ways. Errors due to unresolved images are notably reduced, while flux redistribution between stars and background increases the errors.

  6. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  7. Self-Calibration of CMB Polarimeters

    NASA Astrophysics Data System (ADS)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  8. The SDSS-XDQSO quasar targeting catalog

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Hennawi, J. F.; Hogg, D. W.; Myers, A. D.; Ross, N. P.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the SDSS catalog, even at medium redshifts (2.5 < z < 3). We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method (XD) to estimate the underlying density. We properly convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low- (z < 2.2), medium- (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point-sources with dereddened i-and magnitude between 17.75 and 22.45 mag in SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar selection technique at low redshift, and out-performs all other flux-based methods for selecting the medium-redshift quasars of our primary interest. Research supported by NASA (grant NNX08AJ48G) and the NSF (grant AST-0908357).

  9. Vasovagal syncope in medical students and their first-degree relatives.

    PubMed

    Serletis, Anna; Rose, Sarah; Sheldon, Aaron G; Sheldon, Robert S

    2006-08-01

    To determine the effect of family history on the likelihood of vasovagal syncope. Sixty-two medical students and 228 first-degree relatives were studied. Vasovagal syncope was ascertained with the Calgary syncope symptom score. The effects of the sex of the subject and parental syncope history on the likelihood of offspring fainting were described using Kaplan-Meier estimates and analysed using proportional hazards regression. The prevalence of vasovagal syncope was 32% and the median age of first faint in those who fainted was 14 years. More females than males fainted [42 vs. 31%; P=0.02; hazard ratio (HR) 1.34 (95% CI 1.07-1.68)]. An individual with two fainting parents was more likely to faint than one with no fainting parents [P<0.0001; HR 3.4 (95% CI 1.7-7.03)]. In the proportional hazards model, offspring of either sex whose mother faints are more likely to faint than those whose mother does not faint [HR 2.86 (95% CI 1.54-5.31)]. Having a father who faints significantly increases the risk of syncope in sons [HR 4.12 (95%CI 1.39-12.31)], but not in daughters [HR 1.18 (95% CI 0.56-3.34)]. Family history and sex of subject are important predictors of vasovagal syncope in offspring.

  10. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Kohno, K.; Aretxaga, I.; Austermann, J. E.; Ezawa, H.; Hughes, D. H.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuo, H.; Matsuura, S.; Nakanishi, K.; Oshima, T.; Perera, T.; Scott, K. S.; Shirahata, M.; Takeuchi, T. T.; Tamura, Y.; Tanaka, K.; Tosaki, T.; Wilson, G. W.; Yun, M. S.

    2010-10-01

    We present number counts and clustering properties of millimeter-bright galaxies uncovered by the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE). We surveyed the AKARI Deep Field South (ADF-S), the Subaru/XMM Newton Deep Field (SXDF), and the SSA22 fields with an area of ~0.25 deg2 each with an rms noise level of ~0.4-1.0 mJy. We constructed differential and cumulative number counts, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z~2-3. The average mass of dark halos hosting bright 1.1 mm sources was calculated to be 1013-1014 Msolar. Comparison of correlation lengths of 1.1 mm sources with other populations and with a bias evolution model suggests that dark halos hosting bright 1.1 mm sources evolve into systems of clusters at present universe and the 1.1 mm sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  11. ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteo, I.; Ivison, R. J.; Zwaan, M. A.

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μ Jy beam{sup −1}more » at sub-arcsec resolution. Adopting a conservative approach based on ≥5 σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S {sub 1.2} m {sub m} ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μ m and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.« less

  12. The Orion Nebula Cluster as a Paradigm of Star Formation

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo

    2014-10-01

    We propose a 52-orbit Treasury Program to investigate two fundamental questions of star formation: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. We target the Orion Nebula Cluster (ONC) using WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and Ic broad-band. Our main objectives are: 1) to discover and classify ~500 brown dwarfs and planetary-mass objects in the field, extending the IMF down to lowest masses formed by gravitational collapse. Using the latest generation of high contrast image processing we will also search for faint companions, reaching down to sub-arcsecond separations and 1E-4 flux ratios. 2) to derive high precision (~0.2km/s) relative proper motions of low-mass stars and substellar objects (about 1000 sources total), leveraging on first epoch data obtained by our previous HST Treasury Program about 10 years ago. These data will unveil the cluster dynamics: velocity dispersion vs. mass, substructures, and the fraction of escaping sources. Only HST can access the IR H2O absorption feature sensitive to the effective temperature of substellar objects, while providing the exceptionally stable PSF needed for the detection of faint companions, and the identical ACS platform for our second epoch proper-motion survey. This program will provide the definitive HST legacy dataset on the ONC. Our High-Level Science Products will be mined by the community, both statistically to constrain competing theories of star formation, and to study in depth the multitude of exotic sources harboured by the cluster.

  13. Extended Schmidt law holds for faint dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations of stars set the pressure in the interstellar medium and affect ongoing star formation, are promising candidates for explaining the ESL. We also confirm that ESL is an independent relation and not a form of a relation between star formation efficiency and metallicity.

  14. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small imagemore » patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.« less

  15. THE NATURE OF A GALAXY ALONG THE SIGHT LINE TO PKS 0454+039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Marianne; Chun, Mark; Kulkarni, Varsha P.

    2012-10-01

    We report on the properties of a faint blue galaxy (G1) along the line of sight to the QSO PKS 0454+039 from spectroscopic and imaging data. We measured emission lines of H{alpha}, [S II] {lambda}{lambda}6716, 6732, and [N II] {lambda}6584 in the spectrum of G1 obtained with the Gemini/GMOS instrument. The spectroscopic redshift of G1 is z = 0.0715 {+-} 0.0002. From the extinction-corrected H{alpha} flux, we determine a modest star formation rate of SFR = 0.07 M{sub Sun} yr{sup -1} and a specific SFR of log (sSFR) -8.4. Using three different abundance indicators, we determine a nebular abundance 12more » + log (O/H) ranging from 7.6 to 8.2. Based on the velocity dispersion inferred from the emission line widths and the observed surface brightness profile, we estimate the virial mass of G1 to be M{sub vir} {approx} 6.7 Multiplication-Sign 10{sup 9} M{sub Sun} with an effective radius of 2.0 kpc. We estimate the stellar mass of G1 using spectral energy distribution fitting to be M{sub *} Almost-Equal-To 1.2 Multiplication-Sign 10{sup 7} M{sub Sun} and an r'-luminosity of L{sub r'} = 1.5x10{sup 8} L{sub Sun }. Overall, G1 is a faint, low-mass, low-metallicity Im/H II galaxy. We also report on the line flux limits of another source (G3) which is the most likely candidate for the absorber system at z = 0.8596. From the spectrum of the QSO itself, we report a previously undetected Mg II {lambda}{lambda}2796, 2803 absorption line system at z = 1.245.« less

  16. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penner, Kyle; Dickinson, Mark; Dey, Arjun

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less

  17. VizieR Online Data Catalog: 12um ISOCAM survey of the ESO-Sculptor field (Seymour+, 2007)

    NASA Astrophysics Data System (ADS)

    Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.

    2007-11-01

    We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al., 1997A&AS..124..163A). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5{sigma}), is presented above an integrated flux density of 0.31mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12um flux density is derived by fitting optical colours from a multi-band {chi}2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007A&A...475..801R) where the 12um faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PEGASE.3. (1 data file).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Cooray, A.; Bock, J.

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitudemore » of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.« less

  19. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  20. The classification of flaring states of blazars

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Franco, D.; Gross, A.; Costamante, L.; Flaccomio, E.

    2009-08-01

    Aims: The time evolution of the electromagnetic emission from blazars, in particular high-frequency peaked sources (HBLs), displays irregular activity that has not yet been understood. In this work we report a methodology capable of characterizing the time behavior of these variable objects. Methods: The maximum likelihood blocks (MLBs) is a model-independent estimator that subdivides the light curve into time blocks, whose length and amplitude are compatible with states of constant emission rate of the observed source. The MLBs yield the statistical significance in the rate variations and strongly suppresses the noise fluctuations in the light curves. We applied the MLBs for the first time on the long term X-ray light curves (RXTE/ASM) of Mkn 421, Mkn 501, 1ES 1959+650, and 1ES 2155-304, more than 10 years of observational data (1996-2007). Using the MLBs interpretation of RXTE/ASM data, the integrated time flux distribution is determined for each single source considered. We identify in these distributions the characteristic level, as well as the flaring states of the blazars. Results: All the distributions show a significant component at negative flux values, most probably caused by an uncertainty in the background subtraction and by intrinsic fluctuations of RXTE/ASM. This effect concerns in particular short time observations. To quantify the probability that the intrinsic fluctuations give rise to a false identification of a flare, we study a population of very faint sources and their integrated time-flux distribution. We determine duty cycle or fraction of time a source spent in the flaring state of the source Mkn 421, Mkn 501, 1ES 1959+650 and 1ES 2155-304. Moreover, we study the random coincidences between flares and generic sporadic events such as high-energy neutrinos or flares in other wavelengths.

  1. On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.; Burrows, Christopher J.

    1990-01-01

    The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.

  2. The correlation between malaria RDT (Paracheck pf.®) faint test bands and microscopy in the diagnosis of malaria in Malawi.

    PubMed

    Makuuchi, Ryoko; Jere, Sandy; Hasejima, Nobuchika; Chigeda, Thoms; Gausi, January

    2017-05-02

    Faint test bands of Paracheck Pf.® are interpreted as malaria positive according to world health organization (WHO) guideline. However if there are conspicuous number of faint test bands, a performance of Paracheck Pf.® could be influenced depending on whether interpreting faint test bands as malaria positive or negative. Finding out the frequency and accurate interpretation of faint test bands are important to prevent the overdiagnosis and drug resistance. A cross-sectional, descriptive study was conducted to find out the frequency of faint test bands and evaluate the performance of Paracheck Pf.® by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of diagnosis of Paracheck Pf.® using microscopy as the gold standard. 388 suspected patients with malaria in Malawi were recruited in this study. Malaria rapid diagnostic tests (RDTs) and microscopy were used and patients' information which includes age, sex, body temperature and signs or symptoms of malaria were recorded. Among all patients involved in the study, 29.1% (113/388) were found malaria positive by RDT. Overall 5.4% (21/388) of all Paracheck Pf.® tests resulted in a "faint test band" and 85.7% (18/21) corresponded with malaria negative by microscopy. Faint test bands which corresponded with malaria positive by microscopy were lower parasite density and there are no patients who showed definitive symptom of malaria, such as fever. When Paracheck Pf.® "faint test bands" were classified as positive, accuracy of diagnosis was 76.5% (95% CI 72%-80.7%) as compared to 80.4% (95% CI 76.1%-84.2%) when Paracheck Pf.® "faint test bands" were classified as negative. This study shows that frequency of faint test bands is 5.4% in all malaria RDTs. The accuracy of diagnosis was improved when faint test bands were interpreted as malaria negative. However information and data obtained in this study may not be enough and more intensive research including a frequency and property of faint test bands is needed for significant interpretation of faint test bands.

  3. A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, Patrick D.; Eisner, Josh A.; Mann, Rita K.

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–freemore » and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.« less

  4. Discovery of high and very high-energy emission from the BL Lacertae object SHBL J001355.9-185406

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Nedbal, D.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spieß, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-06-01

    The detection of the high-frequency peaked BL Lac object (HBL) SHBL J001355.9-185406 (z = 0.095) at high (HE; 100 MeV < E < 300 GeV) and very high-energy (VHE; E > 100 GeV) with the Fermi Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) is reported. Dedicated observations were performed with the H.E.S.S. telescopes, leading to a detection at the 5.5σ significance level. The measured flux above 310 GeV is (8.3 ± 1.7stat ± 1.7sys) × 10-13 photons cm-2 s-1 (about 0.6% of that of the Crab Nebula), and the power-law spectrum has a photon index of Γ = 3.4 ± 0.5stat ± 0.2sys. Using 3.5 years of publicly available Fermi-LAT data, a faint counterpart has been detected in the LAT data at the 5.5σ significance level, with an integrated flux above 300 MeV of (9.3 ± 3.4stat ± 0.8sys) × 10-10 photons cm-2 s-1 and a photon index of Γ = 1.96 ± 0.20stat ± 0.08sys. X-ray observations with Swift-XRT allow the synchrotron peak energy in νFν representation to be located at ~1.0 keV. The broadband spectral energy distribution is modelled with a one-zone synchrotronself-Compton (SSC) model and the optical data by a black-body emission describing the thermal emission of the host galaxy. The derived parameters are typical of HBLs detected at VHE, with a particle-dominated jet.

  5. Discovery of high and very high-energy emission from the BL Lacertae object SHBL J001355.9–185406

    DOE PAGES

    Abramowski, A.; Acero, F.; Aharonian, F.; ...

    2013-06-05

    In this paper, the detection of the high-frequency peaked BL Lac object (HBL) SHBL J001355.9–185406 (z = 0.095) at high (HE; 100 MeV < E < 300 GeV) and very high-energy (VHE; E > 100 GeV) with the Fermi Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) is reported. Dedicated observations were performed with the H.E.S.S. telescopes, leading to a detection at the 5.5σ significance level. The measured flux above 310 GeV is (8.3 ± 1.7 stat ± 1.7 sys) × 10 -13 photons cm -2 s -1 (about 0.6% of that of the Crab Nebula), andmore » the power-law spectrum has a photon index of Γ = 3.4 ± 0.5 stat ± 0.2 sys. Using 3.5 years of publicly available Fermi-LAT data, a faint counterpart has been detected in the LAT data at the 5.5σ significance level, with an integrated flux above 300 MeV of (9.3 ± 3.4 stat ± 0.8 sys) × 10 -10 photons cm -2 s -1 and a photon index of Γ = 1.96 ± 0.20 stat ± 0.08 sys. X-ray observations with Swift-XRT allow the synchrotron peak energy in νF ν representation to be located at ~1.0 keV. The broadband spectral energy distribution is modelled with a one-zone synchrotronself-Compton (SSC) model and the optical data by a black-body emission describing the thermal emission of the host galaxy. Lastly, the derived parameters are typical of HBLs detected at VHE, with a particle-dominated jet.« less

  6. Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate

    NASA Astrophysics Data System (ADS)

    Mossoux, Enmanuelle; Grosso, Nicolas

    2017-08-01

    Context. X-ray flaring activity from the closest supermassive black hole Sagittarius A* (Sgr A*) located at the center of our Galaxy has been observed since 2000 October 26 thanks to the current generation of X-ray facilities. In a study of X-ray flaring activity from Sgr A* using Chandra and XMM-Newton public observations from 1999 to 2014 and Swift monitoring in 2014, it was argued that the "bright and very bright" flaring rate has increased from 2014 August 31. Aims: As a result of additional observations performed in 2015 with Chandra, XMM-Newton, and Swift (total exposure of 482 ks), we seek to test the significance and persistence of this increase of flaring rate and to determine the threshold of unabsorbed flare flux or fluence leading to any change of flaring rate. Methods: We reprocessed the Chandra, XMM-Newton, and Swift data from 1999 to 2015 November 2. From these data, we detected the X-ray flares via our two-step Bayesian blocks algorithm with a prior on the number of change points properly calibrated for each observation. We improved the Swift data analysis by correcting the effects of the target variable position on the detector and we detected the X-ray flares with a 3σ threshold on the binned light curves. The mean unabsorbed fluxes of the 107 detected flares were consistently computed from the extracted spectra and the corresponding calibration files, assuming the same spectral parameters. We constructed the observed distribution of flare fluxes and durations from the XMM-Newton and Chandra detections. We corrected this observed distribution from the detection biases to estimate the intrinsic distribution of flare fluxes and durations. From this intrinsic distribution, we determined the average flare detection efficiency for each XMM-Newton, Chandra, and Swift observation. We finally applied the Bayesian blocks algorithm on the arrival times of the flares corrected from the corresponding efficiency. Results: We confirm a constant overall flaring rate from 1999 to 2015 and a rise in the flaring rate by a factor of three for the most luminous and most energetic flares from 2014 August 31, I.e., about four months after the pericenter passage of the Dusty S-cluster Object (DSO)/G2 close to Sgr A*. In addition, we identify a decay of the flaring rate for the less luminous and less energetic flares from 2013 August and November, respectively, I.e., about 10 and 7 months before the pericenter passage of the DSO/G2 and 13 and 10 months before the rise in the bright flaring rate. Conclusions: The decay of the faint flaring rate is difficult to explain in terms of the tidal disruption of a dusty cloud since it occurred well before the pericenter passage of the DSO/G2, whose stellar nature is now well established. Moreover, a mass transfer from the DSO/G2 to Sgr A* is not required to produce the rise in the bright flaring rate since the energy saved by the decay of the number of faint flares during a long period of time may be later released by several bright flares during a shorter period of time.

  7. A summary of the lateral cutoff analysis and results from NASA's Farfield Investigation of No-boom Thresholds

    NASA Astrophysics Data System (ADS)

    Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.

    2015-10-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  8. A Summary of the Lateral Cutoff Analysis and Results from Nasa's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.; Arnac, Sarah R.

    2015-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  9. Self-calibration of Cosmic Microwave Background Polarization Experiments

    NASA Astrophysics Data System (ADS)

    Keating, Brian G.; Shimon, Meir; Yadav, Amit P. S.

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes," have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 1015 GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.

  10. The Distribution of Fixation Durations during Reading: Effects of Stimulus Quality

    ERIC Educational Resources Information Center

    White, Sarah J.; Staub, Adrian

    2012-01-01

    Participants' eye movements were recorded as they read single sentences presented normally, presented entirely in faint text, or presented normally except for a single faint word. Fixations were longer when the entire sentence was faint than when the sentence was presented normally. In addition, fixations were much longer on a single faint word…

  11. Haptoglobin blood test

    MedlinePlus

    ... Chronic liver disease Blood buildup under the skin (hematoma) Liver disease Transfusion reaction Higher-than-normal levels ... may include: Excessive bleeding Fainting or feeling lightheaded Hematoma (blood accumulating under the skin) Infection (a slight ...

  12. Fainting

    MedlinePlus

    ... in older people. Some causes of fainting include Heat or dehydration Emotional distress Standing up too quickly Certain medicines Drop in blood sugar Heart problems When someone faints, make sure that the ...

  13. Strongly lensed gravitational waves from intrinsically faint double compact binaries—prediction for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong, E-mail: dingxuheng@mail.bnu.edu.cn, E-mail: marek.biesiada@us.edu.pl, E-mail: zhuzh@bnu.edu.cn

    With a fantastic sensitivity improving significantly over the advanced GW detectors, Einstein Telescope (ET) will be able to observe hundreds of thousand inspiralling double compact objects per year. By virtue of gravitational lensing effect, intrinsically unobservable faint sources can be observed by ET due to the magnification by intervening galaxies. We explore the possibility of observing such faint sources amplified by strong gravitational lensing. Following our previous work, we use the merger rates of DCO (NS-NS,BH-NS,BH-BH systems) as calculated by Dominik et al.(2013). It turns out that tens to hundreds of such (lensed) extra events will be registered by ET.more » This will strongly broaden the ET's distance reach for signals from such coalescences to the redshift range z = 2 − 8. However, with respect to the full inspiral event catalog this magnification bias is at the level of 0.001 and should not affect much cosmological inferences.« less

  14. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  15. Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function

    NASA Astrophysics Data System (ADS)

    Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.

    2011-05-01

    We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.

  16. A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z {approx} 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siana, Brian; Bridge, Carrie R.; Teplitz, Harry I.

    We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z {approx} 1.3 in the GOODS fields to search for escaping Lyman continuum (LyC) photons. These are the deepest far-UV images (m{sub AB} = 28.7, 3{sigma}, 1'' diameter) over this large an area (4.83 arcmin{sup 2}) and provide some of the best escape fraction constraints for any galaxies at any redshift. We do not detect any individual galaxies, with 3{sigma} limits to the LyC ({approx}700 A) flux 50-149 times fainter (in f{sub {nu}}) than the rest-frame UV (1500 A) continuum fluxes. Correcting for the mean intergalacticmore » medium (IGM) attenuation (factor {approx}2), as well as an intrinsic stellar Lyman break (factor {approx}3), these limits translate to relative escape fraction limits of f{sub esc,rel} < [0.03, 0.21]. The stacked limit is f{sub esc,rel}(3{sigma}) < 0.02. We use a Monte Carlo simulation to properly account for the expected distribution of line-of-sight IGM opacities. When including constraints from previous surveys at z {approx} 1.3 we find that, at the 95% confidence level, no more than 8% of star-forming galaxies at z {approx} 1.3 can have relative escape fractions greater than 0.50. Alternatively, if the majority of galaxies have low, but non-zero, escaping LyC, the escape fraction cannot be more than 0.04. In light of some evidence for strong LyC emission from UV-faint regions of Lyman break galaxies (LBGs) at z {approx} 3, we also stack sub-regions of our galaxies with different surface brightnesses and detect no significant LyC flux at the f{sub esc,rel} < 0.03 level. Both the stacked limits and the limits from the Monte Carlo simulation suggest that the average ionizing emissivity (relative to non-ionizing UV emissivity) at z {approx} 1.3 is significantly lower than has been observed in LBGs at z {approx} 3. If the ionizing emissivity of star-forming galaxies is in fact increasing with redshift, it would help to explain the high photoionization rates seen in the IGM at z>4 and reionization of the IGM at z>6.« less

  17. End-tidal pCO2 in blood phobics during viewing of emotion- and disease-related films.

    PubMed

    Ritz, Thomas; Wilhelm, Frank H; Gerlach, Alexander L; Kullowatz, Antje; Roth, Walton T

    2005-01-01

    Many patients with blood, injection, and injury (BII) phobia respond to specific stimuli with vasovagal dysregulation and fainting. However, little is known about the role of hyperventilation in the distress of these patients. Hyperventilation, defined by subnormal arterial pCO2 levels, induces anxiety and may promote the development of fainting. We studied end-tidal pCO2 in 12 patients with BII phobia and 14 nonanxious controls during presentation of emotional films. Ten film clips were shown, two in each of 5 categories: pleasant, unpleasant, neutral, BII-related (surgery), and asthma-related (portraying labored breathing). For each subject, two subsets were created, each containing one clip from each category. For one subset, the instruction was simply to view the film, and for the other subset, to view the film while tensing the leg muscles. PCO2, heart rate, blood pressure, and leg electromyogram were recorded continuously during viewing, and self-report of symptoms and emotion was collected after each film. Patients reported the greatest anxiety and disgust during surgery films. PCO2 was relatively stable throughout all categories except surgery films, during which minima were below 30 mm Hg, indicating significant hypocapnia. Cardiovascular variables suggested biphasic patterns in two patients with BII phobia. These patients, together with one additional patient and one control who were close to fainting after or during one surgery film, also showed a marked fall in pCO2) Leg muscle tension raised heart rate and systolic blood pressure for all films, but was not related to near-fainting or endurance in surgery film viewing. Hyperventilation is part of the fear response of patients with BII phobia, but was transitory in experimental fear induction using surgery films. Its role in real-life exposure and fainting deserves further study.

  18. COMPLETE ELEMENT ABUNDANCES OF NINE STARS IN THE r -PROCESS GALAXY RETICULUM II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Chiti, Anirudh

    We present chemical abundances derived from high-resolution Magellan /Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (−3.5 < [Fe/H] < −2). Seven of the nine stars have extremely high levels of r -process material ([Eu/Fe] ∼ 1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < −3), and they have neutron-capture elementmore » abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r -process halo stars, but they are ∼0.5 dex lower than the solar r -process pattern. If the universal r -process pattern extends to those elements, the stars in Ret II display the least contaminated known r -process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r -process sites besides the source of r -process elements in Ret II. Galaxies like Ret II may be the original birth sites of r -process enhanced stars now found in the halo.« less

  19. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any redshift; and (d) scaled and dust-obscured radio-loud quasars or compact steep spectrum sources. We estimated upper limits on the infrared luminosity, the black hole accretion rate, and the star formation rate of IFRS, which all agreed with corresponding numbers of HzRGs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. The far-infrared properties of the CfA galaxy sample. I - The catalog

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Sauvage, M.

    1992-01-01

    IRAS flux densities are presented for all galaxies in the Center for Astrophysics magnitude-limited sample (mB not greater than 14.5) detected in the IRAS Faint Source Survey (FSS), a total of 1544 galaxies. The detection rate in the FSS is slightly larger than in the PSC for the long-wavelength 60- and 100-micron bands, but improves by a factor of about 3 or more for the short wavelength 12- and 25-micron bands. This optically selected sample consists of galaxies which are, on average, much less IR-active than galaxies in IR-selected samples. It possesses accurate and complete redshift, morphological, and magnitude information, along with observations at other wavelengths.

  1. HIFOGS: Its design, operations and calibration

    NASA Astrophysics Data System (ADS)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jesse D.; Heere, Karen R.; Greene, Thomas P.; Wooden, Diane H.

    The High-efficiency, Infrared Faint Object Grating Spectrometer (HIFOGS) provides spectral coverage of selectable portions of the 3 to 18 micron range at resolving powers from 00 to 1000 using 120 Si/Bi detectors. Additional coverage to 30 microns is provided by a bank of 32 Si:P detectors. Selectable apertures, gratings and band-pass filters provide flexibility to this system. Software for operation of HIFOGS and reduction of the data runs on a MacIntosh computer. HIFOGS has been used to establish celestial flux standards using 3 independent approaches: comparison to star models, comparisons to asteroid models and comparisons to laboratory blackbodies. These standards are expected to have wide application in astronomical thermal-infrared spectroscopy.

  2. THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSOQUASAR TARGETING CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOVY, J.; Sheldon, E.; Hennawi, J.F.

    2011-03-10

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient,more » and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.« less

  3. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Scargle, J. D.; Troja, E.

    2012-01-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  4. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Baldini, L.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to {gamma}{gamma} should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  5. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Bechtol, K.; Berenji, B.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  6. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE PAGES

    Ajello, M.

    2012-02-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  7. Fainting

    MedlinePlus

    ... fainted one time and you are otherwise in good health. Fainting is common and usually not serious. However, if you have serious health problems, you probably should see your doctor. This is ... your overall, good health. It helps maintain your temperature, remove waste ...

  8. Typical Dark

    Atmospheric Science Data Center

    2013-04-22

    ... contrast greatly enhanced. Random fluctuations in the camera video signal produce the "salt and pepper" appearance, and the faint horizontal banding is due to random fluctuations in the video background level. The brightness of all these fluctuations is less than ...

  9. THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.2-2 {mu}m WAVELENGTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windhorst, Rogier A.; Cohen, Seth H.; Mechtley, Matt

    2011-04-01

    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Y{sub s} ), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 arcmin{sup 2} at 0.2-1.7 {mu}m in wavelength at 0.''07-0.''15 FWHM resolutionmore » and 0.''090 Multidrizzled pixels to depths of AB {approx_equal} 26.0-27.0 mag (5{sigma}) for point sources, and AB {approx_equal} 25.5-26.5 mag for compact galaxies. In this paper, we describe (1) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics, (2) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used, and (3) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.''07-0.''15 FWHM resolution of HST/WFC3 and ACS makes star-galaxy separation straightforward over a factor of 10 in wavelength to AB {approx_equal} 25-26 mag from the UV to the near-IR, respectively. Our main results are: (1) proper motion of faint ERS stars is detected over 6 years at 3.06 {+-} 0.66 mas year{sup -1} (4.6{sigma}), consistent with Galactic structure models; (2) both the Galactic star counts and the galaxy counts show mild but significant trends of decreasing count slopes from the mid-UV to the near-IR over a factor of 10 in wavelength; (3) combining the 10-band ERS counts with the panchromatic Galaxy and Mass Assembly survey counts at the bright end (10 mag {approx}< AB {approx}< 20 mag) and the Hubble Ultra Deep Field counts in the BVizY{sub s}JH filters at the faint end (24 mag {approx}< AB {approx}< 30 mag) yields galaxy counts that are well measured over the entire flux range 10 mag {approx}< AB {approx}< 30 mag for 0.2-2 {mu}m in wavelength; (4) simple luminosity+density evolution models can fit the galaxy counts over this entire flux range. However, no single model can explain the counts over this entire flux range in all 10 filters simultaneously. More sophisticated models of galaxy assembly are needed to reproduce the overall constraints provided by the current panchromatic galaxy counts for 10 mag {approx}< AB {approx}< 30 mag over a factor of 10 in wavelength.« less

  10. Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0

    NASA Technical Reports Server (NTRS)

    Nota, A. (Editor); Jedrzejewski, R. (Editor); Greenfield, P. (Editor); Hack, W. (Editor)

    1994-01-01

    The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program.

  11. Searching for Faint Traces of CO(2-1) and HCN(4-3) Gas In Debris Disks

    NASA Astrophysics Data System (ADS)

    Stafford Lambros, Zachary; Hughes, A. Meredith

    2018-01-01

    The surprising presence of molecular gas in the debris disks around main sequence stars provides an opportunity to study the dissipation of primordial gas and, potentially, the composition of gas in other solar systems. Molecular gas is not expected to survive beyond the pre-main sequence phase, and it is not yet clear whether the gas is a remnant of the primordial protoplanetary material or whether the gas, like the dust, is second-generation material produced by collisional or photodesorption from planetesimals, exocomets, or the icy mantles of dust grains. Here we present two related efforts to characterize the prevalence and properties of gas in debris disks. First, we place the lowest limits to date on the CO emission from an M star debris disk, using 0.3" resolution observations of CO(2-1) emission from the AU Mic system with the Atacama Large Millimeter/submillimeter Array (ALMA). We place a 3-sigma upper limit on the integrated flux of 0.39 Jy km/s, corresponding to a maximum CO mass of 5e10-6 (Earth Masses) if the gas is in LTE. We also present the results of an ALMA search for HCN(4-3) emission from the prototypical gas-rich debris disk around 49 Ceti at a spatial resolution of 0.3". Despite hosting one of the brightest CO-rich debris disks yet discovered, our observations of 49 Ceti also yield a low upper limit of 0.057 Jy km/s in the HCN line, leaving CO as the only molecule clearly detected in emission from a debris disk. We employ several methods of detecting faint line emission from debris disks, including a model based on Keplerian kinematics as well as a spectral shifting method previously used to detect faint CO emission from the Fomalhaut debris disk, and compare our results.

  12. A direct localization of a fast radio burst and its host.

    PubMed

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.

  13. A Measurement of the Millimeter Emission and the Sunyaev-zel'dovich Effect Associated with Low-frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; hide

    2013-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular power spectrum at l = 3000 at 148 GHz, after accounting for the SZ effect associated with their host halos.

  14. SELF-CALIBRATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Brian G.; Yadav, Amit P. S.; Shimon, Meir

    2013-01-10

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity 'B-modes', have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detectmore » the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 10{sup 15} GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.« less

  15. A catalogue of faint local radio AGN and the properties of their host galaxies

    NASA Astrophysics Data System (ADS)

    Lofthouse, E. K.; Kaviraj, S.; Smith, D. JB; Hardcastle, M. J.

    2018-05-01

    We present a catalogue of local (z < 0.1) galaxies that contain faint AGN. We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star-formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the FIRST survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz-1), and host ˜13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN which may contaminate the radio-derived SFRs.

  16. The Beta Pictoris circumstellar disk. XV - Highly ionized species near Beta Pictoris

    NASA Technical Reports Server (NTRS)

    Deleuil, M.; Gry, C.; Lagrange-Henri, A.-M.; Vidal-Madjar, A.; Beust, H.; Ferlet, R.; Moos, H. W.; Livengood, T. A.; Ziskin, D.; Feldman, P. D.

    1993-01-01

    Temporal variations of the Fe II, Mg II, and Al III circumstellar lines towards Beta Pictoris have been detected and monitored since 1985. However, the unusual presence of Al III ions is still puzzling, since the UV stellar flux from an A5V star such as Beta Pic is insufficient to produce such an ion. In order to better define the origin of such a phenomenon, new observations have been carried out to detect faint signatures of other highly ionized species in the short UV wavelength range, where the stellar continuum flux is low. These observations reveal variations not only near the C IV doublet lines, but also in C I and Al II lines, two weakly ionized species, not clearly detectable until now. In the framework of an infalling body scenario, highly ionized species would be created in the tail, far from the comet head, by collisions with ambient gas surrounding the star, or a weak stellar wind. Spectral changes have also been detected near a CO molecular band location, which, if confirmed, would provide the first molecular signature around Beta Pictoris.

  17. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul; Roth, Lorenz; Strobel, D.; Reiners, Ansgar

    2018-01-01

    An interesting question about ultracool dwarfs is whether their emission is purely internally driven or partially powered by external processes similar to auroral emission known from planetary bodies of the solar system. Here we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the UV. The dwarf’s UV emission is generally weaker compared to younger-type M-dwarfs. We detect the Mg II doublet at 2800 A and constrain an average flux throughout the Near-UV. In the Far-UV without Lyman alpha, the ultracool dwarf is extremely faint with an energy output of at least a factor of 1000 smaller than expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyman alpha emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of M-dwarf stars much closer than the spectrum expected from Jupiter-like auroral processes.

  18. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar

    2018-05-01

    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.

  19. Evidence for a decay of the faint flaring rate of Sgr A* from 2013 Aug., 13 months before a rise of the before a rise of the bright one

    NASA Astrophysics Data System (ADS)

    Mossoux, E.; Grosso, N.

    2017-10-01

    Thanks to the overall 1999-2015 Chandra, XMM-Newton and Swift observations of the supermassive black hole at the center of our Galaxy, Sgr A*, we tested the significance and persistence of the increase of 'bright and very bright' X-ray flaring rate (FR) argued by Ponti et al. (2015). We detected the flares observed with Swift using the binned light curves whereas those observed by XMM-Newton and Chandra were detected using the two-steps Bayesian blocks (BB) algorithm with a prior number of change-points properly calibrated. We then applied this algorithm on the flare arrival times corrected from the detection efficiency computed for each observation thanks to the observed distribution of flare fluxes and durations. We confirmed a constant overall FR and a rise of the FR for the faintest flares from 2014 Aug. 31 and identified a decay of the FR for the brightest flares from 2013 Aug. and Nov. A mass transfer from the Dusty S-cluster Object/G2 to Sgr A* is not required to produce the rise of bright FR since the energy saved by the decay of the number of faint flares during a long time period may be later released by several bright flares during a shorter time period.

  20. The 4 Ms CHANDRA Deep Field-South Number Counts Apportioned by Source Class: Pervasive Active Galactic Nuclei and the Ascent of Normal Galaxies

    NASA Technical Reports Server (NTRS)

    Lehmer, Bret D.; Xue, Y. Q.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Brusa, M.; Comastri, A.; Gilli, R.; Hornschemeier, A. E.; Luo, B.; hide

    2012-01-01

    We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S ) measurements for the recently completed approx. equal to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approx. equal to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approx. equal to 4 Ms CDF-S reaches a maximum source density of approx. equal to 27,800 deg(sup -2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approx. equal to 14,900 deg(sup -2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approx. equal to 12,700 deg(sup -2) and make up 46% plus or minus 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approx. equal to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approx. equal to 4 Ms sensitivity limit. We show that a future approx. equal to 10 Ms CDF-S would allow for a significant increase in X-ray-detected sources, with many of the new sources being cosmologically distant (z greater than or approx. equal to 0.6) normal galaxies.

  1. 1.4 GHz on the Fundamental Plane of black hole activity

    NASA Astrophysics Data System (ADS)

    Saikia, Payaswini; Körding, Elmar; Dibi, Salome

    2018-06-01

    The Fundamental Plane (FP) of black hole activity is an empirical relationship between the O III/X-ray luminosity depicting the accretion power, the radio luminosity as a probe of the instantaneous jet power and the mass of the black hole. For the first time, we use the 1.4 GHz FIRST radio luminosities on the optical FP, to investigate whether or not Faint Images of the Radio Sky at Twenty-Centimetres (FIRST) fluxes can trace nuclear activity. We use an SDSS-FIRST cross-correlated sample of 10 149 active galaxies and analyse their positioning on the optical FP. We focus on various reasons that can cause the discrepancy between the observed FIRST radio fluxes and the theoretically expected core radio fluxes, and show that FIRST fluxes are heavily contaminated by non-nuclear, extended components and other environmental factors. We show that the subsample of `compact sources', which should have negligible lobe contribution, statistically follow the FP when corrected for relativistic beaming, while all the other sources lie above the plane. The sample of low-ionization nuclear emission-line regions (LINERs), which should have negligible lobe and beaming contribution, also follow the FP. A combined fit of the low-luminosity AGN and the X-ray binaries, with the LINERs, results in the relation log LR = 0.77 log L_{O III} + 0.69 log M. Assuming that the original FP relation is correct, we conclude that 1.4 GHz FIRST fluxes do not trace the pure `core' jet and instantaneous nuclear activity in the AGN, and one needs to be careful while using it on the FP of black hole activity.

  2. How Faint Can You Go?

    NASA Astrophysics Data System (ADS)

    Henden, Arne

    2017-06-01

    For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.

  3. How Faint Can You Go? (Abstract)

    NASA Astrophysics Data System (ADS)

    Henden, A.

    2017-12-01

    (Abstract only) For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.

  4. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  5. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  6. Discovery of a radio nebula around PSR J0855-4644

    NASA Astrophysics Data System (ADS)

    Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.

    2018-06-01

    We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km s-1 through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.

  7. Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.

  8. Observing Exoplanetary Ozone In The Mid-Ultraviolet

    NASA Technical Reports Server (NTRS)

    Heap, S.

    2008-01-01

    There are good reasons for pushing the spectral range of observation to shorter wavelengths than currently envisaged for terrestrial planet-finding missions utilizing with a 4-rn, diffraction-limited, optical telescope: (1) The angular resolution is higher, so that the image of an exoplanet is better separated from that of the much brighter star. (2) Due to the higher resolution, the exozodiacal background per resolution element is smaller, so exposure times are reduced for the same incident flux. (3) Most importantly, the sensitivity to the presence of life on habitable exoplanets is increased by a hundred-fold by access to the ozone biomarker at 250-300 nm. These benefits must be weighed against challenges arising from the faintness of exoplanets in the mid-UV. We will describe the benefits and the technical and cost challenges.

  9. The third catalog of active galactic nuclei detected by the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2015-08-25

    We present the third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC). It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV with a Test Statistic greater than 25, between 2008 August 4 and 2012 July 31. The 3LAC includes 1591 AGNs located at high Galactic latitudes (more » $$| b| \\gt 10^\\circ $$), a 71% increase over the second catalog based on 2 years of data. There are 28 duplicate associations, thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. Most of them (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their gamma-ray spectral properties, these sources are evenly split between flat-spectrum radio quasars (FSRQs) and BL Lacs. The most abundant detected BL Lacs are of the high-synchrotron-peaked (HSP) type. There were about 50% of the BL Lacs that had no measured redshifts. A few new rare outliers (HSP-FSRQs and high-luminosity HSP BL Lacs) are reported. The general properties of the 3LAC sample confirm previous findings from earlier catalogs. The fraction of 3LAC blazars in the total population of blazars listed in BZCAT remains non-negligible even at the faint ends of the BZCAT-blazar radio, optical, and X-ray flux distributions, which hints that even the faintest known blazars could eventually shine in gamma-rays at LAT-detection levels. Furthermore, the energy-flux distributions of the different blazar populations are in good agreement with extrapolation from earlier catalogs.« less

  10. FERMI Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M87

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-17

    Here, we report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 (±0.63) × 10 –8 photons cm –2 s –1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable withmore » the previous EGRET upper limit (<2.18 × 10 –8 photons cm –2 s –1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Lastly, alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.« less

  11. Outreach syncope clinic managed by a nurse practitioner: Outcome and cost effectiveness.

    PubMed

    Hamdan, Mohamed H; Walsh, Kathleen E; Brignole, Michele; Key, Jamie

    2017-01-01

    Introduction The purpose of this study was to assess the clinical and financial outcomes of a novel outreach syncope clinic. Methods We compared the clinical outcome of the Faint and Fall Clinic at the American Center (January-June 2016) with that of the University of Wisconsin Health and Clinics Faint and Fall Clinic (January 2013-December 2014). The American Center-Faint and Fall Clinic is run solely by a nurse practitioner, assisted by online faint-decision software and consultancy of a faint specialist through video-conferencing. Results Five hundred and twenty-eight consecutive patients were seen at the University of Wisconsin Hospital and Clinics-Faint and Fall Clinic and 68 patients at the American Center-Faint and Fall Clinic. The patients' clinical characteristics were similar except for a lower age in the American Center patients (45 ± 18 vs 51 ± 22, p = 0.03). Overall, a diagnosis was made within 45 days in 70% (95% confidence interval 66-74%) of the University of Wisconsin Hospital and Clinics patients and 69% (95% confidence interval 58-80%) of the American Center patients, ( p = 0.9). A mean of 3.0 ± 1.6 tests per patient was used in the University of Wisconsin Hospital and Clinics group compared to 1.5 ± 0.8 tests per patient in the American Center group, p = 0.001. Over the six-month study period, the total revenue at the American Center was US$152,597 (contribution margin of US$122,393 plus professional revenue of US$30,204). The total cost of the nurse practitioner including benefits was US$66,662 ((US$98,466 salary/year + 35.4% benefits)/2). Total revenue minus expenses resulted in a net profit of US$85,935. Discussion A nurse practitioner-run outreach syncope-clinic equipped with online faint-decision software and consultancy of a faint specialist through vedio-conferencing is feasible and financially self-sustainable. It allows the dissemination of standardized high-quality syncope care to patients who have no immediate access to a tertiary teaching hospital.

  12. A Tale of Two Faint Bursts: GRB 050223 and GRB 050911

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Campana, S.; Chincharini, G.; Cummings, J. R.; Cusumano, G.; Gehrels, N.; Giommi, P.; Goad, M. R.; Godet, O.; Graham, J.; Kaneko, Y.; Kennea, J. A.; Mangano, V.; Markwardt, C. B.; O'Brien, P. T.; Osborne, J. P.; Reichart, D. E.; Rol, E.; Sakamoto, T.; Tagliaferri, G.; Tanvir, N. R.; Wells, A. A.; Zhang, B.

    2006-05-01

    GRBs 050223 and 050911 were discovered by the Swift Burst Alert Telescope (BAT) on 23rd February and 11th September 2005 respectively. The observation of GRB 050223 showed a faint, fading X-ray source, which was identified as the afterglow; GRB 050911, however, was not detected, making any X-ray afterglow extremely faint. The faintness of the afterglow of GRB 050223 could be explained by a large opening or viewing angle, or by the burst being at high redshift. The non-detection of GRB 050911 may indicate the burst occurred in a low-density environment, or, alternatively, was due to a compact object merger, in spite of the apparent long duration of the burst.

  13. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are formed off axis - that is, away from the occulting spot - so that they become refocused onto the final image plane.

  14. SILVERRUSH. III. Deep optical and near-infrared spectroscopy for Lyα and UV-nebular lines of bright Lyα emitters at z = 6-7

    NASA Astrophysics Data System (ADS)

    Shibuya, Takatoshi; Ouchi, Masami; Harikane, Yuichi; Rauch, Michael; Ono, Yoshiaki; Mukae, Shiro; Higuchi, Ryo; Kojima, Takashi; Yuma, Suraphong; Lee, Chien-Hsiu; Furusawa, Hisanori; Konno, Akira; Martin, Crystal L.; Shimasaku, Kazuhiro; Taniguchi, Yoshiaki; Kobayashi, Masakazu A. R.; Kajisawa, Masaru; Nagao, Tohru; Goto, Tomotsugu; Kashikawa, Nobunari; Komiyama, Yutaka; Kusakabe, Haruka; Momose, Rieko; Nakajima, Kimihiko; Tanaka, Masayuki; Wang, Shiang-Yu

    2018-01-01

    We present Lyα and UV-nebular emission line properties of bright Lyα emitters (LAEs) at z = 6-7 with a luminosity of log LLyα/[erg s-1] = 43-44 identified in the 21 deg2 area of the SILVERRUSH early sample developed with the Subaru Hyper Suprime-Cam survey data. Our optical spectroscopy newly confirms 21 bright LAEs with clear Lyα emission, and contributes to making a spectroscopic sample of 96 LAEs at z = 6-7 in SILVERRUSH. From the spectroscopic sample, we select seven remarkable LAEs as bright as Himiko and CR7 objects, and perform deep Keck/MOSFIRE and Subaru/nuMOIRCS near-infrared spectroscopy reaching the 3 σ flux limit of ˜2 × 10-18 erg s-1 for the UV-nebular emission lines of He II λ1640, C IV λλ1548,1550, and O III]λλ1661,1666. Except for one tentative detection of C IV, we find no strong UV-nebular lines down to the flux limit, placing the upper limits of the rest-frame equivalent widths (EW0) of ˜2-4 Å for C IV, He II, and O III] lines. We also investigate the VLT/X-SHOOTER spectrum of CR7 whose 6 σ detection of He II is claimed by Sobral et al. Although two individuals and the ESO archive service carefully reanalyzed the X-SHOOTER data that are used in the study of Sobral et al., no He II signal of CR7 is detected, supportive of weak UV-nebular lines of the bright LAEs even for CR7. The spectral properties of these bright LAEs are thus clearly different from those of faint dropouts at z ˜ 7 that have strong UV-nebular lines shown in the various studies. Comparing these bright LAEs and the faint dropouts, we find anti-correlations between the UV-nebular line EW0 and the UV-continuum luminosity, which are similar to those found at z ˜ 2-3.

  15. Magnifying the Early Episodes of Star Formation: Super Star Clusters at Cosmological Distances

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; Castellano, M.; Meneghetti, M.; Mercurio, A.; Caminha, G. B.; Cupani, G.; Calura, F.; Christensen, L.; Merlin, E.; Rosati, P.; Gronke, M.; Dijkstra, M.; Mignoli, M.; Gilli, R.; De Barros, S.; Caputi, K.; Grillo, C.; Balestra, I.; Cristiani, S.; Nonino, M.; Giallongo, E.; Grazian, A.; Pentericci, L.; Fontana, A.; Comastri, A.; Vignali, C.; Zamorani, G.; Brusa, M.; Bergamini, P.; Tozzi, P.

    2017-06-01

    We study the spectrophotometric properties of a highly magnified (μ ≃ 40{--}70) pair of stellar systems identified at z = 3.2222 behind the Hubble Frontier Field galaxy cluster MACS J0416. Five multiple images (out of six) have been spectroscopically confirmed by means of VLT/MUSE and VLT/X-Shooter observations. Each image includes two faint ({m}{UV}≃ 30.6), young (≲ 100 Myr), low-mass (< {10}7 {M}⊙ ), low-metallicity (12 + Log(O/H) ≃ 7.7, or 1/10 solar), and compact (30 pc effective radius) stellar systems separated by ≃ 300 pc after correcting for lensing amplification. We measured several rest-frame ultraviolet and optical narrow ({σ }v≲ 25 km s-1) high-ionization lines. These features may be the signature of very hot (T> {{50,000}} K) stars within dense stellar clusters, whose dynamical mass is likely dominated by the stellar component. Remarkably, the ultraviolet metal lines are not accompanied by Lyα emission (e.g., C IV/Lyα > 15), despite the fact that the Lyα line flux is expected to be 150 times brighter (inferred from the Hβ flux). A spatially offset, strongly magnified (μ > 50) Lyα emission with a spatial extent ≲ 7.6 kpc2 is instead identified 2 kpc away from the system. The origin of such a faint emission could be the result of fluorescent Lyα induced by a transverse leakage of ionizing radiation emerging from the stellar systems and/or may be associated with an underlying and barely detected object (with {m}{UV}> 34 de-lensed). This is the first confirmed metal-line emitter at such low-luminosity and redshift without Lyα emission—suggesting that, at least in some cases, a non-uniform covering factor of the neutral gas might hamper the Lyα detection. Based on observations collected at the European Southern Observatory for Astronomical research in the southern hemisphere, under ESO programmes P095.A-0840, P095.A-0653, and P186.A-0798.

  16. CHARACTERIZING FAINT GALAXIES IN THE REIONIZATION EPOCH: LBT CONFIRMS TWO L < 0.2 L* SOURCES AT z = 6.4 BEHIND THE CLASH/FRONTIER FIELDS CLUSTER MACS0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanzella, E.; Cusano, F.; Fontana, A.

    2014-03-01

    We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyα emitters at z = 6.4 behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of μ > 5. These are the faintest z > 6 candidates spectroscopically confirmed to date. These may also be multiple images of the same z = 6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually.more » Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Lyα lines are well detected with S/N(m {sub 1500}) ≳ 10 and S/N(Lyα) ≅ 10-15. Adopting μ > 5, the absolute magnitudes, M {sub 1500}, and Lyα fluxes are fainter than –18.7 and 2.8 × 10{sup –18} erg s{sup –1} cm{sup –2}, respectively. We find a very steep ultraviolet spectral slope β = –3.0 ± 0.5 (F {sub λ} = λ{sup β}), implying that these are very young, dust-free, and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age ≲ 30 Myr, E(B – V) = 0 and metallicity 0.0-0.2 Z/Z {sub ☉}). The objects are compact (<1 kpc{sup 2}) and with a stellar mass M {sub *} < 10{sup 8} M {sub ☉}. The very steep β, the presence of the Lyα line, and the intrinsic FWHM (<300 km s{sup –1}) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.« less

  17. ELTs adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules

    NASA Astrophysics Data System (ADS)

    Neichel, B.; Conan, J.-M.; Fusco, T.; Gendron, E.; Puech, M.; Rousset, G.; Hammer, F.

    2006-06-01

    In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65μm) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of an extremely low SC. For the LGS approach, the option of low order correction with a faint NGS is discussed. We demonstrate that, this last solution allows the scientific requirements to be met together with a quasi full SC.

  18. Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Miller, Eric; Bautz, Mark; Lowenstein, Mike; Randall, Scott W.; Smith, Randall K.

    2016-01-01

    We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2sigma-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (approx. 2sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(sup 2)(2theta) = 6.1 x 10(exp -11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.

  19. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    NASA Technical Reports Server (NTRS)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  20. The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos; hide

    2012-01-01

    We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample

  1. The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.; hide

    2012-01-01

    We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  2. Investigating The Nuclear Activity Of Barred Spirals: The case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, Leigh; Brandt, N.; Colbert, E.; Levan, A.; Roberts, T.; Ward, M.; Zezas, A.

    2008-03-01

    We present new results from Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located either end of its prominent bar. Using new X-ray imaging and spectral information, together with supporting multiwavelength data, we show for the first time that NGC1672 possesses a faint, hard, central X-ray source surrounded by a circumnuclear starburst ring that dominates the X-ray emission in the region, presumably triggered and sustained by gas and dust driven inwards along the galactic bar. The faint central source may represent low-level AGN activity, or alternatively emission associated with star-formation in the nucleus. More generally, we present some preliminary results on a Chandra archival search for low-luminosity AGN activity in barred galaxies.

  3. X-ray Emission From Eta Carinae near Periastron in 2009 I: A Two State Solution

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Russell, Christopher; Pollock, Andrew M. T.; Gull, Theodore R.; Teodoro, Mairan; Madura, Thomas I.; Damineli, Augusto; Pittard, Julian M.

    2014-01-01

    X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases the lowest flux phase in the first 3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at 1.91012 ergs/sq cm/s (38 keV). The spectral shape changed such that the hard band above 4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in 2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas down-stream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is completely blocked by the primary wind. The brighter phase is probably caused by the re-appearance of the WWC plasma, whose emissivity significantly declined during the occultation. We interpret this to mean that the X-ray minimum is produced by a hybrid mechanism of an occultation and a decline in emissivity of the WWC shock. We constrain timings of superior conjunction and periastron based on these results.

  4. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  5. Dark Matter Search Using XMM-Newton Observations of Willman 1

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  6. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  7. Detection of a Compact Radio Source near the Center of a Gravitational Lens: Quasar Image or Galactic Core?

    PubMed

    Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A

    1983-01-07

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.

  8. A New Optical Design for Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  9. The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4

    NASA Astrophysics Data System (ADS)

    Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.

    2017-07-01

    The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.

  10. Valbenazine

    MedlinePlus

    ... It works by changing the activity of certain natural substances in the brain. ... treatment: feeling faint fainting or loss of consciousness fast or ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...

  11. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  12. 46 CFR 160.041-4 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inhalants 10 do 1 Iodine applicators (1/2 ml swab type) 10 do 1 Aspirin, phenacetin and caffeine compound... Ammonia inhalants Break one and inhale for faintness, fainting, or collapse. Aspirin, phenacetin, caffeine...

  13. 46 CFR 160.041-4 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inhalants 10 do 1 Iodine applicators (1/2 ml swab type) 10 do 1 Aspirin, phenacetin and caffeine compound... Ammonia inhalants Break one and inhale for faintness, fainting, or collapse. Aspirin, phenacetin, caffeine...

  14. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-01-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  15. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel

    2016-10-01

    Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  16. Fainting (Syncope)

    MedlinePlus

    ... Attack Heart Valve Problems Join our e-newsletter! Aging & Health A to Z Fainting (Syncope) Basic Facts & ... November 2016 Posted: March 2012 © 2018 Health in Aging. All rights reserved. Feedback • Site Map • Privacy Policy • ...

  17. Faint Ring, Bright Arc

    NASA Image and Video Library

    2010-01-12

    In this image taken by NASA Cassini spacecraft, the bright arc in Saturn faint G ring contains a little something special. Although it cant be seen here, the tiny moonlet Aegaeon orbits within the bright arc.

  18. Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques

    PubMed Central

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D.

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors. PMID:22294896

  19. Improving the ability of image sensors to detect faint stars and moving objects using image deconvolution techniques.

    PubMed

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.

  20. Calibration and operation of the Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    Harms, R.; Beaver, E.; Burbidge, E.; Hier, R.; Allen, R.; Angel, R.; Bartko, F.; Bohlin, R.; Ford, H.; Davidson, A.

    1984-01-01

    The design and basic performance characteristics of the Faint Object Spectrograph (FOS), one of five instruments built for use on the Space Telescope observatory, is summarized briefly. The results of the recently completed instrument-level calibration are presented with special emphasis on issues affecting plans for FOS astronomical observations. Examples include such fundamental characteristics as: limiting magnitudes (system sensitivity and noise figures), spectral coverage and resolution, scattered light properties, and instrumental polarization and modulation efficiencies. Also gated toward intended users, a rather detailed description of FOS operating modes is given. The discussion begins with the difficulties anticipated during target acquisition and their hoped-for resolution. Both the 'normal' spectroscopic operating modes of the FOS and its 'exotic' features (e.g. spectropolarimetric, time-tagged, and time-resolved modes) are presented. The paper concludes with an overview of the activities to assure proper alignment and operation of the FOS within the entire Space Telescope system (orbital and ground-based).

  1. Sky Subtraction with Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  2. [Fainting in Greco-Roman medicine, especially in the traumatology and surgery fields].

    PubMed

    Salazar, C F

    2001-01-01

    Occurrences of fainting are very common in medical as well as non-medical literature; in order to restrict the field to a manageable size, this article focuses mainly on surgery and traumatology. An examination of the various passages suggests that there was considerable ambiguity associated with the concept of fainting. On the one hand it was seen as a common occurrence, to be expected in the context of wounds or surgery, but on the other it was also regarded as a life-threatening force in its own right.

  3. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). Wemore » have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.« less

  4. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  5. Investigating circular patterns in linear polarization observations of Venus

    NASA Astrophysics Data System (ADS)

    Mahapatra, Gourav; Stam, Daphne; Rossi, Loic; Rodenhuis, Michiel; Snik, Frans

    2017-04-01

    ESA's Venus Express mission has revealed our neighbouring planet to be a highly dynamic world, with ever-changing cloud properties and structures, wind speeds that increase in time, and variable concentrations of atmospheric trace gases such as SO2. The SPICAV-IR instrument on Venus Express has provided us with close-up linear polarization data of sunlight reflected by Venus's clouds and hazes, that allows a characterisation of their composition and particle sizes. Here, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the sub-solar point that are absent in the flux observations. So far, careful analyses have ruled out instrumental effects which leaves us to wonder about atmospheric properties as the cause of the circular patterns. Using numerical simulations of the flux and polarization of sunlight that is reflected by Venus, we have investigated the relation between the observed patterns and several atmospheric properties, such as variations in particle sizes, composition, density and altitude. We discuss the plausibility of the possible causes in the view of the current knowledge of the composition and dynamical processes in Venus's atmosphere.

  6. BOKS 45906: a CV with an orbital period of 56.6 min in the Kepler field?

    NASA Astrophysics Data System (ADS)

    Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.

    2014-02-01

    BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 mag outburst lasting ˜5 d. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 min sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 ± 0.0014 min and a semi-amplitude of ˜3 per cent. Since we can phase all the 1 min cadence data on a common ephemeris using this period, it is probable that 56.56 min is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the `period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.

  7. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  8. The eclipsing AM Herculis variable H1907 + 690

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.

    1991-01-01

    The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.

  9. Rocket and laboratory studies in astronomy

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1993-01-01

    This report covers the period from September 1, 1992 to August 31, 1993. During the reporting period we launched the Faint Object Telescope to measure absolute fluxes of two hot dwarf stars in the spectral range below 1200 A. Although all systems worked normally, a higher than anticipated pressure in the detector led to ion-feedback that masked the useable data from the source. We have identified the source of the problem and are preparing for a reflight in the Fall of 1993. Our laboratory program for the evaluation of the ultraviolet performance of charge-coupled-detector (CCD) arrays continued with the aim of including a UV-sensitive CCD in a payload to be flown in 1994, and we have begun the assembly of this payload. Work has continued on the analysis of data from previous rocket experiments and from the UVX experiment which flew on STS-61C in January 1986.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Brendon J.; Foreman-Mackey, Daniel; Hogg, David W., E-mail: bj.brewer@auckland.ac.nz

    We present and implement a probabilistic (Bayesian) method for producing catalogs from images of stellar fields. The method is capable of inferring the number of sources N in the image and can also handle the challenges introduced by noise, overlapping sources, and an unknown point-spread function. The luminosity function of the stars can also be inferred, even when the precise luminosity of each star is uncertain, via the use of a hierarchical Bayesian model. The computational feasibility of the method is demonstrated on two simulated images with different numbers of stars. We find that our method successfully recovers the inputmore » parameter values along with principled uncertainties even when the field is crowded. We also compare our results with those obtained from the SExtractor software. While the two approaches largely agree about the fluxes of the bright stars, the Bayesian approach provides more accurate inferences about the faint stars and the number of stars, particularly in the crowded case.« less

  11. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  12. Observing Exoplanets in the Mid-Ultraviolet

    NASA Technical Reports Server (NTRS)

    Heap. Sara

    2008-01-01

    There are good reasons for pushing the spectral range of observation to shorter wavelengths than currently envisaged for terrestrial planet-finding missions utilizing with a 4-m, diffraction-limited, optical telescope: (1) The angular resolution is higher, so the image of an exoplanet is better separated from that of the much brighter star. (2) The exozodiacal background per resolution element is smaller, so exposure times are reduced for the same incident flux. (3) Most importantly, the sensitivity to the ozone biomarker is increased by several hundred-fold by access to the ozone absorption band at 250-300 nm. These benefits must be weighed against challenges arising from the faintness of exoplanets in the mid-UV. We will evaluate both the technical and cost challenges including image quality of large telescopes, advanced mirror coatings and innovative designs for enhanced optical throughput, and CCD detectors optimized for 250-400 nm.

  13. Observations of simultaneous coronal loop shrinkage and expansion during the decay phase of a solar flare

    NASA Astrophysics Data System (ADS)

    Khan, J. I.; Fletcher, L.; Nitta, N. V.

    2006-07-01

    We report what we believe are the first direct and unambiguous observations of simultaneous coronal magnetic flux loop shrinkage and expansion during the decay phase of a solar flare. The retracting and expanding loops were observed nearly face-on (i.e., with the loop major axis approximately orthogonal to the line of sight) in emission in imaging data from the Yohkoh Soft X-ray Telescope (SXT). The retracting loop is observed to shrink with a speed of 118 ± 66 km s-1. The faint outward moving loop-like feature occurred ~200´´ above the shrinking loop during the time of the shrinking loop. We estimate the speed of the outward moving loop was ~129 ± 74 km s-1. We interpret the shrinking loop and simultaneous outward moving loop as direct evidence for reconnected magnetic field lines during a flare.

  14. Wearable vital parameters monitoring system

    NASA Astrophysics Data System (ADS)

    Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina

    2015-02-01

    The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.

  15. Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Förster, Francisco; Carlin, Jeffrey L.; Martinez, Jorge; Galbany, Lluis; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2017-08-01

    During the analysis of RR Lyrae stars (RRLs) discovered in the High Cadence Transient Survey (HiTS) taken with the Dark Energy Camera at the 4 m telescope at Cerro Tololo Inter-American Observatory, we found a group of three very distant, fundamental mode pulsator RR Lyrae (type ab). The location of these stars agrees with them belonging to the Leo V ultra-faint satellite galaxy, for which no variable stars have been reported to date. The heliocentric distance derived for Leo V based on these stars is 173 ± 5 kpc. The pulsational properties (amplitudes and periods) of these stars locate them within the locus of the Oosterhoff II group, similar to most other ultra-faint galaxies with known RRLs. This serendipitous discovery shows that distant RRLs may be used to search for unknown faint stellar systems in the outskirts of the Milky Way.

  16. Extremely faint, diffuse satellite systems in the M31 halo: exceptional star clusters or tiny dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Recent years have seen the discovery of a variety of low surface brightness, diffuse stellar systems in the Local Group. Of particular prominence are the ultra-faint dwarf satellites of the Milky Way and the extended globular clusters seen in M31, M33, and NGC 6822. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered several very faint and diffuse stellar satellites in the M31 halo. In Cycle 19 we obtained ACS/WFC imaging for one of these, PAndAS-48, which has revealed it to be a puzzling and unusual object. On the size-luminosity plane it falls between the extended clusters and ultra-faint dwarfs; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is an extended cluster then it is the most elliptical, isolated, metal-poor, and lowest-luminosity example yet uncovered. Conversely, while its properties are generally consistent with those observed for the faint dwarf satellites of the Milky Way, it would be a factor 2-3 smaller in spatial extent than its Galactic counterparts at comparable luminosity. Here we propose deep resolved imaging of the remaining five similar objects in our sample, with the aim of probing this hitherto poorly-explored region of parameter space in greater detail. If we are able to confirm any of these objects as faint dwarfs, they will provide the first insight into the behaviour of this class of object in a galaxy other than the Milky Way.

  17. The Origin of Ultra-Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Sand, David

    2017-08-01

    We request 24 orbits of HST/ACS to obtain imaging in F606W and F814W of apparent tidal features in two ultra-faint dwarf galaxies: Hercules and Leo V. This will enable us to test whether the stars in ultra- faint galaxies-as a population-have been affected by Galactic tides. Most of the new dwarfs show signs of tidal interaction in ground-based photometry, several have measured ellipticities greater than 0.5, and kinematics of a subset show velocity gradients. These ubiquitous hints for tidal effects among distant dwarfs is particularly surprising and suggestive. If most ultra-faint dwarfs are disturbed by tides, then recent tests of galaxy formation in the near field have unstable foundations.HST resolution provides an opportunity to assess whether tidal features (accompanied by tentative kinematic gradients) seen in ground-based observations of Hercules and Leo V are genuine or are instead clumps of compact background galaxies masquerading as stellar debris. In Hercules, a further test is possible: searching for a distance gradient along the stretched body of the galaxy. Parallel pointings will sample similar dwarf-centric radii away from the tidal features, assuring an unambiguous result. Whether we confirm or rule out the presence of stellar loss in these objects, the consequences are important-the origin of the ultra-faint dwarfs tells us the lower limit to both galaxy formation and the number of dark matter subhalos inhabiting the Milky Way.This program is only possible with HST: its exquisite resolution can separate compact galaxies from main sequence dwarf stars at faint magnitudes, which even the best multi-band ground-based schemes struggle with.

  18. CME Flux Rope and Shock Identifications and Locations: Comparison of White Light Data, Graduated Cylindrical Shell Model, and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.

  19. Estimating sizes of faint, distant galaxies in the submillimetre regime

    NASA Astrophysics Data System (ADS)

    Lindroos, L.; Knudsen, K. K.; Fan, L.; Conway, J.; Coppin, K.; Decarli, R.; Drouart, G.; Hodge, J. A.; Karim, A.; Simpson, J. M.; Wardlow, J.

    2016-10-01

    We measure the sizes of redshift ˜2 star-forming galaxies by stacking data from the Atacama Large Millimeter/submillimeter Array (ALMA). We use a uv-stacking algorithm in combination with model fitting in the uv-domain and show that this allows for robust measures of the sizes of marginally resolved sources. The analysis is primarily based on the 344 GHz ALMA continuum observations centred on 88 submillimetre galaxies in the LABOCA ECDFS Submillimeter Survey (ALESS). We study several samples of galaxies at z ≈ 2 with M* ≈ 5 × 1010 M⊙, selected using near-infrared photometry (distant red galaxies, extremely red objects, sBzK-galaxies, and galaxies selected on photometric redshift). We find that the typical sizes of these galaxies are ˜0.6 arcsec which corresponds to ˜5 kpc at z = 2, this agrees well with the median sizes measured in the near-infrared z band (˜0.6 arcsec). We find errors on our size estimates of ˜0.1-0.2 arcsec, which agree well with the expected errors for model fitting at the given signal-to-noise ratio. With the uv-coverage of our observations (18-160 m), the size and flux density measurements are sensitive to scales out to 2 arcsec. We compare this to a simulated ALMA Cycle 3 data set with intermediate length baseline coverage, and we find that, using only these baselines, the measured stacked flux density would be an order of magnitude fainter. This highlights the importance of short baselines to recover the full flux density of high-redshift galaxies.

  20. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  1. Panchromatic properties of 99000 galaxies detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys

    NASA Astrophysics Data System (ADS)

    Obrić, M.; Ivezić, Ž.; Best, P. N.; Lupton, R. H.; Tremonti, C.; Brinchmann, J.; Agüeros, M. A.; Knapp, G. R.; Gunn, J. E.; Rockosi, C. M.; Schlegel, D.; Finkbeiner, D.; Gaćeša, M.; Smolčić, V.; Anderson, S. F.; Voges, W.; Jurić, M.; Siverd, R. J.; Steinhardt, W.; Jagoda, A. S.; Blanton, M. R.; Schneider, D. P.

    2006-08-01

    We discuss the panchromatic properties of 99088 galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 1 `main' spectroscopic sample (a flux-limited sample for 1360deg2). These galaxies are positionally matched to sources detected by ROSAT, Galaxy Evolution Explorer (GALEX), two-Micron All-Sky Survey (2MASS), Infrared Astronomical Satellite (IRAS), Green Bank GB6 survey (GB6), Faint Images of the Radio Sky at Twenty-centimetres (FIRST), NRAO VLA Sky Survey (NVSS) and Westerbork Northern Sky Survey (WENSS). The matching fraction varies from <1 per cent for ROSAT and GB6 to ~40 per cent for GALEX and 2MASS. In addition to its size, the advantages of this sample are well-controlled selection effects, faint flux limits and the wealth of measured parameters, including accurate X-ray to radio photometry, angular sizes and optical spectra. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colours and emission-line strengths. For example, ~2/3 of SDSS `main' galaxies classified as active galactic nucleus (AGN) using emission-line strengths are detected by 2MASS, while the corresponding fraction for star-forming galaxies (SFs) is only ~1/10. Similarly, over 90 per cent of galaxies detected by IRAS display strong emission lines in their optical spectra, compared to ~50 per cent for the whole SDSS sample. Using GALEX, SDSS and 2MASS data, we construct the ultraviolet-infrared (UV-IR) broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, the SDSS u- and r-band data, supplemented with redshift, can be used to `predict' K-band magnitudes measured by 2MASS with an rms scatter of only 0.2mag. When a dust content estimate determined from SDSS spectra with the aid of models is also utilized, this scatter decreases to 0.1mag and can be fully accounted for by measurement uncertainties. We demonstrate that this interstellar dust content, inferred from optical SDSS spectra by Kauffmann et al., is indeed higher for galaxies detected by IRAS and that it can be used to `predict' measured IRAS 60μm flux density within a factor of 2 using only SDSS data. We also show that the position of a galaxy in the emission-line-based Baldwin-Phillips-Terlevich diagram is correlated with the optical light concentration index and u - r colour determined from the SDSS broad-band imaging data, and discuss changes in the morphology of this diagram induced by requiring detections at other wavelengths. Notably, we find that SDSS `main' galaxies detected by GALEX include a non-negligible fraction (10-30 per cent) of AGNs, and hence do not represent a clean sample of starburst galaxies. We study the IR-radio correlation and find evidence that its slope may be different for AGN and SFs and related to the Hα/Hβ line-strength ratio.

  2. Isolated and companion young brown dwarfs in the taurus and chamaeleon molecular clouds

    PubMed

    Tamura; Itoh; Oasa; Nakajima

    1998-11-06

    Infrared imaging observations have detected a dozen faint young stellar objects (YSOs) in the Taurus and Chamaeleon molecular clouds whose near-infrared colors are similar to those of classical T Tauri stars (TTS). They are around four magnitudes fainter than low-luminosity YSOs in Taurus detected in earlier surveys and as much as eight magnitudes fainter than typical TTS. The extreme faintness of the objects and their lower luminosity relative to previously identified brown dwarfs in the Pleiades indicate that these faint YSOs are very young brown dwarfs on the order of 1 million years old.

  3. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  4. Chemical enrichment in Ultra-Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  5. A Study of the Effects of Faint Dust Comae on the Spectra of Asteroids

    NASA Astrophysics Data System (ADS)

    Rondón, E.; Carvano, J.; Lorenz-Martins, S.

    2017-09-01

    The presence of dust comae on asteroids and centaurs is a phenomenon that became accepted in the last decades and which challenges the traditional definitions of asteroids and comets. A possible way of improving the chances of discovery of Active Asteroids is to use large multi-colour surveys or catalogs, like SDSS Moving Object Catalog. In this work we analyze the effects of faint dust comae on asteroid spectra and then use it to investigate the effects that a faint dust comae would have over the spectrum, magnitude, and radial profile of asteroids.

  6. Confirmation of Faint Dwarf Galaxies in the M81 Group

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  7. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Timothy D.

    2016-06-20

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less

  8. The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.

    The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 ± 3 MeV for GRB050525.

  9. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox.

    PubMed

    Ueno, Yuichiro; Johnson, Matthew S; Danielache, Sebastian O; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-09-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Delta33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at lambda >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Isak G. B.; Barger, Amy J.; Owen, Frazer N.

    We present 1.4 GHz catalogs for the cluster fields A370 and A2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The A370 image covers an area of 40' Multiplication-Sign 40' with a synthesized beam of {approx}1.''7 and a noise level of {approx}5.7 {mu}Jy near the field center. The A2390 image covers an area of 34' Multiplication-Sign 34' with a synthesized beam of {approx}1.''4 and a noise level of {approx}5.6 {mu}Jy near the field center. We catalog 200 redshifts for the A370 field. We construct differential number counts for themore » central regions (radius < 16') of both clusters. We find that the faint (S{sub 1.4{sub GHz}} < 3 mJy) counts of A370 are roughly consistent with the highest blank field number counts, while the faint number counts of A2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our number counts can be largely attributed to cosmic variance.« less

  11. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox

    PubMed Central

    Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450

  12. PSR J1907+0602: A radio-faint gamma-ray pulsar powering a bright TeV pulsar wind nebula

    DOE PAGES

    Abdo, A. A.

    2010-02-06

    Here, we present multiwavelength studies of the 106.6 ms γ-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19 h07 m54more » $$s\\atop{.}$$7(2), decl. = +06°02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed γ-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is Γ = 1.76 ± 0.05 with an exponential cutoff energy E c = 3.6 ± 0.5 GeV. We present the energy-dependent γ-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of sime 3.4 μJy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 ± 1.1 cm –3 pc. This indicates a distance of 3.2 ± 0.6 kpc and a pseudo-luminosity of L 1400 sime 0.035 mJy kpc 2. Furthermore, a Chandra ACIS observation revealed an absorbed, possibly extended, compact (lesssim4'') X-ray source with significant nonthermal emission at R.A. = 19 h07 m54$$s\\atop{.}$$76, decl. = +06°02'14farcs6 with a flux of 2.3 +0.6 –1.4 × 10 –14 erg cm –2 s –1. From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of ~1 × 10 –13 erg cm –2 s –1. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5 – 0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.« less

  13. PSR J1907+0602: A RADIO-FAINT GAMMA-RAY PULSAR POWERING A BRIGHT TeV PULSAR WIND NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2010-03-01

    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19{sup h}07{sup m}54.{sup s}7(2), decl. = +06{sup 0}02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is GAMMA = 1.76 +- 0.05 with an exponential cutoffmore » energy E{sub c} = 3.6 +- 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of {approx_equal} 3.4 {mu}Jy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 +- 1.1 cm{sup -3} pc. This indicates a distance of 3.2 +- 0.6 kpc and a pseudo-luminosity of L{sub 1400} {approx_equal} = 0.035 mJy kpc{sup 2}. A Chandra ACIS observation revealed an absorbed, possibly extended, compact ({approx}<4'') X-ray source with significant nonthermal emission at R.A. = 19{sup h}07{sup m}54.{sup s}76, decl. = +06{sup 0}02'14.''6 with a flux of 2.3{sup +0.6}{sub -1.4} x 10{sup -14} erg cm{sup -2} s{sup -1}. From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of {approx}1 x 10{sup -13} erg cm{sup -2} s{sup -1}. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5 - 0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.« less

  14. Is there Place for Perfectionism in the NIR Spectral Data Reduction?

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor

    2017-09-01

    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  15. The outburst of the blazar S4 0954+658 in 2011 March-April

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozova, D. A.; Larionov, V. M.; Troitsky, I. S.

    2014-09-01

    We present the results of optical (R-band) photometric and polarimetric monitoring and Very Long Baseline Array imaging of the blazar S4 0954+658, along with Fermi γ-ray data during a multi-waveband outburst in 2011 March-April. After a faint state with a brightness level R ∼ 17.6 mag registered in the first half of 2011 January, the optical brightness of the source started to rise and reached ∼14.8 mag during the middle of March, showing flare-like behavior. The most spectacular case of intranight variability was observed during the night of 2011 March 9, when the blazar brightened by ∼0.7 mag within 7more » hr. During the rise of the flux, the position angle of the optical polarization rotated smoothly over more than 300°. At the same time, within 1σ uncertainty, a new superluminal knot appeared with an apparent speed of 19.0 ± 0.3c. We have very strong evidence that this knot is associated with the multi-waveband outburst in 2011 March-April. We also analyze the multi-frequency behavior of S4 0954+658 during a number of minor outbursts from 2008 August to 2012 April. We find some evidence of connections between at least two additional superluminal ejecta and near-simultaneous optical flares.« less

  16. 1. Dyea Dock looking south. Note faint evenly spaced circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Dyea Dock looking south. Note faint evenly spaced circular dark pieces of grass up through the middle of the picture indicating posts making up the pier. Photograph made from park service cherry picker. - Dyea Dock & Association (Ruins), Skagway, Skagway, AK

  17. 10C survey of radio sources at 15.7 GHz - II. First results

    NASA Astrophysics Data System (ADS)

    AMI Consortium; Davies, Mathhew L.; Franzen, Thomas M. O.; Waldram, Elizabeth M.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony; Olamaie, Malak; Pooley, Guy G.; Riley, Julia M.; Rodríguez-Gonzálvez, Carmen; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Zwart, Jonathan T. L.

    2011-08-01

    In a previous paper (Paper I), the observational, mapping and source-extraction techniques used for the Tenth Cambridge (10C) Survey of Radio Sources were described. Here, the first results from the survey, carried out using the Arcminute Microkelvin Imager Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of ≈27 deg2 to a flux-density completeness of 1 mJy. Results for some deeper areas, covering ≈12 deg2, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The 10C survey is the deepest radio survey of any significant extent (≳0.2 deg2) above 1.4 GHz. The 10C source catalogue contains 1897 entries and is available online. The source catalogue has been combined with that of the Ninth Cambridge Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parametrization of the differential count between 0.5 mJy and 1 Jy. The measured source count has been compared with that predicted by de Zotti et al. - the model is found to display good agreement with the data at the highest flux densities. However, over the entire flux-density range of the measured count (0.5 mJy to 1 Jy), the model is found to underpredict the integrated count by ≈30 per cent. Entries from the source catalogue have been matched with those contained in the catalogues of the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-cm survey (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-GHz spectral index to 15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources, developed in Paper I, have been applied to the data; ≈5 per cent of the sources are found to be extended relative to the LA-synthesized beam of ≈30 arcsec. Investigations using higher resolution data showed that most of the genuinely extended sources at 15.7 GHz are classical doubles, although some nearby galaxies and twin-jet sources were also identified.

  18. ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Kangjin

    2014-11-20

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME andmore » Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s{sup –1} and median = 1199 km s{sup –1}) than Group 2 events (average = 598 km s{sup –1} and median = 518 km s{sup –1}). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s{sup –1}, 0.65 (34/52) for intermediate CMEs with 500 km s{sup –1} ≤ V < 1000 km s{sup –1}, and 0.14 (3/21) for slow CMEs with V < 500 km s{sup –1}. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.« less

  19. View of southeast side, faint "141" sign, Cranes P76 and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of southeast side, faint "141" sign, Cranes P-76 and P-71 are behind, view facing northwest - U.S. Naval Base, Pearl Harbor, Dry Dock No. 1, Latrine, Sixth Street, adjacent to Dry Dock No. 1, Pearl City, Honolulu County, HI

  20. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  1. Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II

    NASA Technical Reports Server (NTRS)

    Paltoglou, G.; Bell, R. A.

    1991-01-01

    A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.

  2. Handling Technique Development of Live Carp, Cyprinus carpio, In Cold Dry Styrofoam Box

    NASA Astrophysics Data System (ADS)

    Ketut Suwetja, I.; Salindeho, Netty; Gede Prabawa Suwetja, I.

    2017-10-01

    The study focused on several following aspects: temperature and time optimation for fainting, holding media optimation, temperature and time optimation for recovery, and their correlation with mortality rate of carp, Cyprinus carpio. Fainting occurred at the optimum time of 11 minutes and 03 seconds, temperature of 8°C, and holding time of 6 hours. Holding medium was rice husk. The fastest consciousness of the fish was found in 6 volt-aerated water medium. The fish consciousness after 6 hours of storing in the rice husk at the fainting temperature of 8°C was found faster (p < 0.05), 11 minutes and 15 seconds, than that added with 0.02% of clove oil, 25 minutes and 16 seconds. The fish mortality rate after 6 hours of storage in the rice husk at fainting temperature of 8°C was lower (p < 0.05), 46%, than that with addition of 0.02% of clove oil, 75%.

  3. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  4. Central Stars of Planetary Nebulae in the LMC

    NASA Technical Reports Server (NTRS)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 2's program B001 we studied Central Stars of Planetary Nebulae (CSPN) in the Large Magellanic Could. All FUSE observations have been successfully completed and have been reduced, analyzed and published. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.2.2). The flux of these LMC post-AGB objects is at the threshold of FUSE's sensitivity, and thus special care in the background subtraction was needed during the reduction. Because of their faintness, the targets required many orbit-long exposures, each of which typically had low (target) count-rates. Each calibrated extracted sequence was checked for unacceptable count-rate variations (a sign of detector drift), misplaced extraction windows, and other anomalies. All the good calibrated exposures were combined using FUSE pipeline routines. The default FUSE pipeline attempts to model the background measured off-target and subtracts it from the target spectrum. We found that, for these faint objects, the background appeared to be over-estimated by this method, particularly at shorter wavelengths (i.e., < 1000 A). We therefore tried two other reductions. In the first method, subtraction of the measured background is turned off and and the background is taken to be the model scattered-light scaled by the exposure time. In the second one, the first few steps of the pipeline were run on the individual exposures (correcting for effects unique to each exposure such as Doppler shift, grating motions, etc). Then the photon lists from the individual exposures were combined, and the remaining steps of the pipeline run on the combined file. Thus, more total counts for both the target and background allowed for a better extraction.

  5. Dust Reddened Quasars in FIRST and UKIDSS: Beyond the Tip of the Iceberg

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. G.; Urry, Meg; Croom, Scott; Schneider, Donald P.; Mahabal, Ashish; Graham, Matthew; Ge, Jian

    2013-12-01

    We present the results of a pilot survey to find dust-reddened quasars by matching the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio catalog to the UKIDSS near-infrared survey and using optical data from Sloan Digital Sky Survey to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily reddened quasars at higher redshifts as compared with previous work using FIRST and Two Micron All Sky Survey (2MASS). We selected 87 candidates with K <= 17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1), which covers 190 deg2. These candidates reach up to ~1.5 mag below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared, as well as classifications in the literature, and have identified 14 reddened quasars with E(B - V) > 0.1, including 3 at z > 2. We study the infrared properties of the sample using photometry from the Wide-Field Infrared Survey Explorer and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z >~ 2) are only moderately reddened, with E(B - V) ~ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B - V) >~ 0.5) at z > 2 and a depth of K = 17, we would need to survey at least ~2.5 times more area.

  6. Mystery solved: discovery of extended radio emission in the merging galaxy cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Gendron-Marsolais, M.-L.; Fecteau-Beaucage, D.; van Weeren, R. J.; Russell, H. R.; Edge, A.; Olamaie, M.; Rumsey, C.; King, L.; Fabian, A. C.; McNamara, B.; Hogan, M.; Mezcua, M.; Taylor, G.

    2018-04-01

    Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ˜2), yet deep Giant MetreWave Telescope 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multiconfiguration 1-2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 h of observations. These data reveal for the first time the presence of an extended (≈850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock that we classify as a radio relic and one associated with the subcluster core that is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P1.4 GHz, halo = 2.4 ± 0.2 × 1023 W Hz-1 and P1.4 GHz, relic = 2.2 ± 0.2 × 1023 W Hz-1). The flux measurement of the halo, as well as its morphology, also suggests that the halo was recently created (≈0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio haloes in merging clusters should be detected by future radio facilities such as the Square Kilometre Array.

  7. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-06-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.

  8. Unveiling high redshift structures with Planck

    NASA Astrophysics Data System (ADS)

    Welikala, Niraj

    2012-07-01

    The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.

  9. The Role of Galaxies and AGN in Reionising the IGM - slowromancapi@: Keck Spectroscopy of 5 < z < 7 Galaxies in the QSO Field J1148+5251

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Ellis, Richard S.; Laporte, Nicolas; Zitrin, Adi; Eilers, Anna-Christina; Ryan-Weber, Emma; Meyer, Romain A.; Robertson, Brant; Stark, Daniel P.; Bosman, Sarah E. I.

    2018-05-01

    We introduce a new method for determining the influence of galaxies and active galactic nuclei (AGN) on the intergalactic medium (IGM) at high redshift and illustrate its potential via a first application to the field of the z = 6.42 QSO J1148+5251. Correlating spatial positions Lyman break galaxies (LBGs) with the Lyman alpha forest seen in the spectrum of a background QSO, we provide a statistical measure of the typical escape fraction of Lyman continuum photons. Using Keck DEIMOS spectroscopy to locate 7 colour-selected LBGs in the range 5.3 ≲ z ≲ 6.4 we examine the spatial correlation between this sample and Lyα/Lyβ transmission fluctuations in a Keck ESI spectrum of the QSO. Interpreting the statistical H I proximity effect as arising from faint galaxies clustered around the LBGs, we translate the observed mean Lyα transmitted flux into a constraint on the mean escape fraction ⟨fesc⟩ ≥ 0.08 at z ≃ 6. We also report individual transverse H I proximity effect for a z = 6.177 luminous LBG via a Lyβ transmission spike and two broad Lyα transmission spikes around the z = 5.701 AGN. We discuss the origin of such associations which suggest that while faint galaxies are primarily driving reionisation, luminous galaxies and AGN may provide important contributions to the UV background or thermal fluctuations of the IGM at z ≃ 6. Although a limited sample, our results demonstrate the potential of making progress using this method in resolving one of the most challenging aspects of the contribution of galaxies and AGN to cosmic reionisation.

  10. A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive

    NASA Technical Reports Server (NTRS)

    Margon, B.

    1984-01-01

    An in-progress investigation aimed at characterizing the X-ray luminosity of very faint QSOs is described. More than 100 faint, previously uncataloged QSOs which lie in areas imaged in X rays at very high sensitivity were discovered.

  11. New Window on the Universe.

    ERIC Educational Resources Information Center

    Reynolds, Ronald F.

    1984-01-01

    Describes the basic components of a space telescope that will be launched during a 1986 space shuttle mission. These components include a wide field/planetary camera, faint object spectroscope, high-resolution spectrograph, high-speed photometer, faint object camera, and fine guidance sensors. Data to be collected from these instruments are…

  12. A 12 μm ISOCAM survey of the ESO-Sculptor field. Data reduction and analysis

    NASA Astrophysics Data System (ADS)

    Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.

    2007-12-01

    We present a detailed reduction of a mid-infrared 12 μm (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al. 1997, A&AS, 124, 163). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5σ), is presented above an integrated flux density of 0.24 {mJy}. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1 {mJy} and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12 μm flux density is derived by fitting optical colours from a multi-band χ2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007, A&A, 475, 801) where the 12 μ m faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PÉGASE.3. Based on observations collected at the European Southern Observatory (ESO), La Silla, Chile, and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA. Full Table [see full textsee full textsee full textsee full textsee full textsee full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/475/791

  13. The Sensitivity of Earth's Climate History To Changes In The Rates of Biological And Geological Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.

    2014-12-01

    The faint young Sun paradox (early Earth had surface liquid water despite solar luminosity 70% of the modern value) implies that our planet's albedo has increased through time and/or greenhouse warming has fallen. The obvious explanation is that negative feedback processes stabilized temperatures. However, the limited temperature data available does not exhibit the expected residual temperature rise and, at least for the Phanerozoic, estimates of climate sensitivity exceed the Planck sensitivity (the zero net-feedback value). The alternate explanation is that biological and geological evolution have tended to cool Earth through time hence countering solar-driven warming. The coincidence that Earth-evolution has roughly cancelled Solar-evolution can then be explained as an emergent property of a complex system (the Gaia hypothesis) or the result of the unavoidable observational bias that Earth's climate history must be compatible with our existence (the anthropic principle). Here, I use a simple climate model to investigate the sensitivity of Earth's climate to changes in the rate of Earth-evolution. Earth-evolution is represented by an effective emissivity which has an intrinsic variation through time (due to continental growth, the evolution of cyanobacteria, orbital fluctuations etc) plus a linear feedback term which enhances emissivity variations. An important feature of this model is a predicted maximum in the radiated-flux versus temperature function. If the increasing solar flux through time had exceeded this value then runaway warming would have occurred. For the best-guess temperature history and climate sensitivity, the Earth has always been within a few percent of this maximum. There is no obvious Gaian explanation for this flux-coincidence but the anthropic principle naturally explains it: If the rate of biological/geological evolution is naturally slow then Earth is a fortunate outlier which evolved just fast enough to avoid solar-induced over-heating. However, there are large uncertainties concerning the temperature history of our planet and concerning climate sensitivity in the Archean and Proterozoic. When these are included, the solar-flux through time might have been as little as 70-90 % of the maximum thus reducing the significance of the flux-coincidence.

  14. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory, far beyond what we ever expected Hubble could do. Twenty years of astonishing progress with Hubble and Spitzer leave me looking to JWST to provide even more remarkable exploration of the realm of the first galaxies.

  15. The UDF05 Follow-up of the HUDF: I. The Faint-End Slope of the Lyman-Break Galaxy Population at zeta approx. 5

    NASA Technical Reports Server (NTRS)

    Oesch, P. A.; Stiavelli, M.; Carollo, C. M.; Bergeron, L. E.; Koekemoer, A.; Lucas, R. A.; Pavlovsky, C. M.; Trenti, M.; Lilly, S. J.; Beckwith, S. V. W.; hide

    2007-01-01

    We present the UDF05 project, a HST Large Program of deep ACS (F606W, F775W, F850LP, and NICMOS (Fll0W, Fl60W) imaging of three fields, two of which coincide with the NICP1-4 NICMOS parallel observations of the Hubble Ultra Deep Field (HUDF). In this first paper we use the ACS data for the NICP12 field, as well as the original HUDF ACS data, to measure the UV Luminosity Function (LF) of z approximately 5 Lyman Break Galaxies (LBGs) down to very faint levels. Specifically, based on a V - i, i - z selection criterion, we identify a sample of 101 and 133 candidate z approximately 5 galaxies down to z(sub 850) = 28.5 and 29.25 magnitudes in the NICP12 field and in the HUDF, respectively. Using an extensive set of Monte Carlo simulations we derive corrections for observational biases and selection effects, and construct the rest-frame 1400 Angstroms LBG LF over the range M(sub 1400) = [-22.2, -17.1], i.e. down to approximately 0.04 L(sub *) at z = 5. We show that: (i) Different assumptions for the SED distribution of the LBG population, dust properties and intergalactic absorption result in a 25% variation in the number density of LBGs at z = 5 (ii) Under consistent assumptions for dust properties and intergalactic absorption, the HUDF is about 30% under-dense in z = 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; (iii) The faint-end slope of the LF is independent of the specific assumptions for the input physical parameters, and has a value of alpha approximately -1.6, similar to the faint-end slope of the LF that has been measured for LBGs at z = 3 and z = 6. Our study therefore supports no variation in the faint-end of the LBG LF over the whole redshift range z = 3 to z = 6. The comparison with theoretical predictions suggests that (a,) the majority of the stars in the z = 5 LBG population are produced with a Top-Heavy IMF in merger-driven starbursts, and that (b) possibly, either the fraction of stellar mass produced in starburst, or the fraction of high mass stars in the bursts is increased towards the bright end of the LF.

  16. GHRS observations of cool, low-gravity stars. 1: The far-ultraviolet spectrum of alpha Orionis (M2 Iab)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander

    1994-01-01

    We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A. These Fe II features are formed at temperatures that can occur only in the chromosphere of the star and are clearly not photospheric or circumstellar in origin.

  17. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  18. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J.; McClintock, J. E.; Dauser, T.

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to themore » gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.« less

  19. A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.

    2017-10-20

    We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less

  20. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trilling, David E.; Mommert, Michael; Hora, Joseph

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. Wemore » present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.« less

  1. BOKS 45906: a CV with an Orbital Period of 56.6 Min in the Kepler Field?

    NASA Technical Reports Server (NTRS)

    Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.

    2013-01-01

    BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 magnitude outburst lasting approximately 5 days. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 minute sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 plus or minus 0.0014 minutes and a semi-amplitude of approximately 3 percent. Since we can phase all the 1 minute cadence data on a common ephemeris using this period, it is probable that 56.56 minutes is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the 'period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.

  2. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  3. Coronagraphic Imaging with HST and STIS

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Proffitt, C.; Malumuth, E.; Woodgate, B. E.; Gull, T. R.; Bowers, C. W.; Heap, S. R.; Kimble, R. A.; Lindler, D.; Plait, P.

    2002-01-01

    Revealing faint circumstellar nebulosity and faint stellar or substellar companions to bright stars typically requires use of techniques for rejecting the direct, scattered, and diffracted light of the star. One such technique is Lyot coronagraphy. We summarize the performance of the white-light coronagraphic capability of the Space Telescope Imaging spectrograph, on board the Hubble Space Telescope.

  4. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  5. An Ultra-faint Galaxy Candidate Discovered in Early Data from the Magellanic Satellites Survey

    NASA Astrophysics Data System (ADS)

    Drlica-Wagner, A.; Bechtol, K.; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y.-Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; van der Marel, R. P.; Yanny, B.

    2016-12-01

    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ ={28.5}-1+1 {mag} {arcsec}{}-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of {45}-4+5 {kpc}. The physical size ({r}1/2={46}-11+15 {pc} ) and low luminosity ({M}V=-{3.2}-0.5+0.4 {mag} ) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located {11.3}-0.9+3.1 {kpc} from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  6. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  7. Galaxy luminosity function: evolution at high redshift

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4

  8. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  9. Faints, fits, and fatalities from emotion in Shakespeare's characters: survey of the canon

    PubMed Central

    2006-01-01

    Objectives To determine how often Shakespeare's characters faint, fit, or die from extreme emotion; to assess Shakespeare's uniqueness in this regard; and to examine the plausibility of these dramatised events. Design Line by line search through modern editions of these late 16th and early 17th century works for accounts of characters fainting, fitting, or dying while under strong emotion and for no other apparent reason. Data sources All 39 canonical plays by Shakespeare and his three long narrative poems; 18 similar works by seven of Shakespeare's best known contemporaries. Results 10 deaths from strong emotion are recorded by Shakespeare (three occur on stage); all are due to grief, typically at the loss of a loved one. All but two of the deaths are in the playwright's late works. Some deaths are sudden. Another 29 emotion induced deaths are mentioned as possible, but the likelihood of some can be challenged. Transient loss of consciousness is staged or reported in 18 cases (sounding like epilepsy in two) and near fainting in a further 13. Extreme joy is sometimes depicted as a factor in these events. Emotional death and fainting also occur occasionally in works by Shakespeare's contemporaries. Conclusions These dramatic phenomena are part of the early modern belief system but are also plausible by modern understanding of physiology and disease. They teach us not to underestimate the power of the emotions to disturb bodily functions. PMID:17185734

  10. On the faint-end of the high-z galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Yue, Bin; Ferrara, Andrea; Xu, Yidong

    2016-12-01

    Recent measurements of the luminosity function (LF) of galaxies in the Epoch of Reionization (EoR, z ≳ 6) indicate a very steep increase of the number density of low-mass galaxies populating the LF faint-end. However, as star formation in low-mass haloes can be easily depressed or even quenched by ionizing radiation, a turnover is expected at some faint UV magnitudes. Using a physically motivated analytical model, we quantify reionization feedback effects on the LF faint-end shape. We find that if reionization feedback is neglected, the power-law Schechter parametrization characterizing the LF faint-end remains valid up to absolute UV magnitude ˜-9. If instead radiative feedback is strong enough that quenches star formation in haloes with circular velocity smaller than 50 km s-1, the LF starts to drop at absolute UV magnitude ˜-15, I.e. slightly below the detection limits of current (unlensed) surveys at z ˜ 5. The LFs may rise again at higher absolute UV magnitude, where, as a result of interplay between reionization process and galaxy formation, most of the galaxy light is from relic stars formed before the EoR. We suggest that the galaxy number counts data, particularly in lensed fields, can put strong constraints on reionization feedback. In models with stronger reionization feedback, stars in galaxies with absolute UV magnitude higher than ˜-13 and smaller than ˜-8 are typically older. Hence, the stellar age-UV magnitude relation can be used as an alternative feedback probe.

  11. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to zmore » = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie, E-mail: drw@ucsc.edu

    We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, aremore » well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.« less

  13. The population of faint Jupiter family comets near the Earth

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Morbidelli, Alessandro

    2006-11-01

    We study the population of faint Jupiter family comets (JFCs) that approach the Earth (perihelion distances q<1.3 AU) by applying a debiasing technique to the observed sample. We found for the debiased cumulative luminosity function (CLF) of absolute total magnitudes H a bimodal distribution in which brighter comets ( H≲9) follow a linear relation with a steep slope α=0.65±0.14, while fainter comets follow a much shallower slope α=0.25±0.06 down to H˜18. The slope can be pushed up to α=0.35±0.09 if a second break in the H distribution to a much shallower slope is introduced at H˜16. We estimate a population of about 10 3 faint JFCs with q<1.3 AU and 10

  14. DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.

    2012-02-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less

  15. Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.

    2011-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  16. Stacked Denoising Autoencoders Applied to Star/Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi

    2017-04-01

    In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.

  17. Polarimeter Arrays for Cosmic Microwave Background Measurements

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Cao, Nga; Chuss, David; Fixsen, Dale; Hsieh, Wen-Ting; Kogut, Alan; Limon, Michele; Moseley, S. Harvey; Phillips, Nicholas; Schneider, Gideon

    2006-01-01

    We discuss general system architectures and specific work towards precision measurements of Cosmic Microwave Background (CMB) polarization. The CMB and its polarization carry fundamental information on the origin, structure, and evolution of the universe. Detecting the imprint of primordial gravitational radiation on the faint polarization of the CMB will be difficult. The two primary challenges will be achieving both the required sensitivity and precise control over systematic errors. At anisotropy levels possibly as small as a few nanokelvin, the gravity-wave signal is faint compared to the fundamental sensitivity limit imposed by photon arrival statistics, and one must make simultaneous measurements with large numbers, hundreds to thousands, of independent background-limited direct detectors. Highly integrated focal plane architectures, and multiplexing of detector outputs, will be essential. Because the detectors, optics, and even the CMB itself are brighter than the faint gravity-wave signal by six to nine orders of magnitude, even a tiny leakage of polarized light reflected or diffracted from warm objects could overwhelm the primordial signal. Advanced methods of modulating only the polarized component of the incident radiation will play an essential role in measurements of CMB polarization. One promising general polarimeter concept that is under investigation by a number of institutions is to first use planar antennas to separate millimeter-wave radiation collected by a lens or horn into two polarization channels. Then the signals can be fed to a pair of direct detectors through a planar circuit consisting of superconducting niobium microstrip transmission lines, hybrid couplers, band-pass filters, and phase modulators to measure the Stokes parameters of the incoming radiation.

  18. Conversion from solvent rinsable fluxes to aqueous rinsable fluxes for hot oil solder leveling

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A water rinsable flux was evaluated for hot oil solder leveling of printed wiring boards. The previously used rosin-activated flux required a solvent containing a chlorinated hydrocarbon for removing the flux residues after soldering. The water rinsable flux requires hot water or a solution of hot detergent for removing flux residues after smoldering. The water rinsable flux produced an acceptable soldered surface. Flux residues were removed by either hot water (120 F) or a solution of hot detergent (120 F).

  19. SHIELD: EVLA HI Spectral Line Observations of Low-mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Miazzo, Masao; Ruvolo, Elizabeth; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. Here we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. These low angular resolution (~40" beam) images localize the HI gas; with a few exceptions, the HI gas is co-spatial with the optical centers of the galaxies. These images provide the first glimpse of the neutral interstellar medium in these systems.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  20. Multi-wavelength Polarimetry of the GF9-2 YSO

    NASA Astrophysics Data System (ADS)

    Clemens, Dan P.; El-Batal, Adham M.; Montgomery, Jordan; Kressy, Sophia; Schroeder, Genevieve; Pillai, Thushara

    2018-06-01

    Our new SOFIA/HAWC+ 214 μm polarimetry of the cloud core containing the young stellar object GF9-2 (IRAS 20503+6006, aka L1082C) has been combined with deep near-infrared H- and K-band polarimetry of the cloud's core, obtained with the Mimir instrument. Additionally, Planck 870 μm and published optical polarimetry are included to provide context at larger size scales. We follow the direction and structure of the plane-of-sky magnetic field from the smallest physical scales (~10 arcsec or 4,000 AU) traced by SOFIA/HAWC+ to the Mimir field of view (10 arcmin, or 1.3 pc) and compare the B-field orientation with that of a faint reflection nebula seen in WISE and Spitzer images. The importance, or lack thereof, for the B-field in this naescent star-forming region is assessed through estimates of the Mass-to-Flux (M/Φ) ratio.This work has been supported by NSF AST14-12269, NASA NNX15AE51G, and USRA/SOF 04-0014 grants

  1. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  2. LSDCat: Detection and cataloguing of emission-line sources in integral-field spectroscopy datacubes

    NASA Astrophysics Data System (ADS)

    Herenz, Edmund Christian; Wisotzki, Lutz

    2017-06-01

    We present a robust, efficient, and user-friendly algorithm for detecting faint emission-line sources in large integral-field spectroscopic datacubes together with the public release of the software package Line Source Detection and Cataloguing (LSDCat). LSDCat uses a three-dimensional matched filter approach, combined with thresholding in signal-to-noise, to build a catalogue of individual line detections. In a second pass, the detected lines are grouped into distinct objects, and positions, spatial extents, and fluxes of the detected lines are determined. LSDCat requires only a small number of input parameters, and we provide guidelines for choosing appropriate values. The software is coded in Python and capable of processing very large datacubes in a short time. We verify the implementation with a source insertion and recovery experiment utilising a real datacube taken with the MUSE instrument at the ESO Very Large Telescope. The LSDCat software is available for download at http://muse-vlt.eu/science/tools and via the Astrophysics Source Code Library at http://ascl.net/1612.002

  3. GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levan, Andrew; Nugent, Peter; Fruchter, Andrew

    2004-03-19

    We present the discovery and monitoring of the optical transient (OT) associated with GRB 020410. The fading OT was found by Hubble Space Telescope (HST) observations taken 28 and 65 days after burst at a position consistent with the X-ray afterglow. Subsequent re-examination of early ground based observations revealed that a faint OT was present 6 hours after burst, confirming the source association with GRB 020410. A deep non-detection after one week requires that the OT re-brightened between day 7 and day 28, and further late time HST data taken approximately 100 days after burst imply that it is verymore » red (F{sub nu} proportional to nu-2.7). We compare both the flux and color of the excess with supernova models and show that the data are best explained by the presence of a Type I b/c supernova at a redshift z approx. equal 0.5, which occurred roughly coincident with the day of GRB.« less

  4. The near-infrared counterpart of a variable galactic plane radio source

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Phillips, Andrew C.; Ciardullo, Robin; Jacoby, George H.

    1992-01-01

    A near-infrared counterpart to the highly variable, unresolved galactic plane radio source GT 0116 + 622 is identified. This source is of particular interest, as it has been previously suggested to be the counterpart of the gamma-ray source Cas gamma-l. The present NIR and red images detect a faint, spatially extended (3 arcsec FWHM), very red object coincident with the radio position. There is complex spatial structure which may be due in part to an unrelated superposed foreground object. Observations on multiple nights show no evidence for flux variability, despite the high amplitude variability on a time-scale of days reported for the radio source. The data are consistent with an interpretation of GT 0116 + 622 as an unusually variable, obscured active galaxy at a distance of several hundred megaparsecs, although more exotic, and in particular galactic, interpretations cannot yet be ruled out. If the object is extragalactic, the previously suggested identification with the gamma-ray source would seem unlikely.

  5. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less

  6. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  7. Rats Can Acquire Conditional Fear of Faint Light Leaking through the Acrylic Resin Used to Mount Fiber Optic Cannulas

    ERIC Educational Resources Information Center

    Eckmier, Adam; de Marcillac, Willy Daney; Maître, Agnès; Jay, Thérèse M.; Sanders, Matthew J.; Godsil, Bill P.

    2016-01-01

    Rodents are exquisitely sensitive to light and optogenetic behavioral experiments routinely introduce light-delivery materials into experimental situations, which raises the possibility that light could leak and influence behavioral performance. We examined whether rats respond to a faint diffusion of light, termed caplight, which emanated through…

  8. Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.

    PubMed

    Doebler, William J; Sparrow, Victor W

    2017-06-01

    The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.

  9. The STIS CCD Spectroscopic Line Spread Functions

    NASA Technical Reports Server (NTRS)

    Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.

    2002-01-01

    We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).

  10. Galactic Starburst NGC 3603 from X-Rays to Radio

    NASA Technical Reports Server (NTRS)

    Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; hide

    2002-01-01

    NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.

  11. Multi-wavelength photometry of the T Tauri binary V582 Mon (KH 15D): A new epoch of occultations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William, E-mail: dwindemuth@wesleyan.edu

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V – I behaviormore » is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ∼5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.« less

  12. Multi-wavelength Photometry of the T Tauri Binary V582 Mon (KH 15D): a New Epoch of Occultations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V - I behavior is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ~5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.

  13. Exploring the Universe with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.

  14. VizieR Online Data Catalog: CANDID code for interferometric observations (Gallenne+, 2015)

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Merand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzynski, G.; McAlister, H.; Ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

    2015-07-01

    This is a suite of Python2.7 tools to find faint companion around star in interferometric data in the OIFITS format. This tool allows to systematically search for faint companions in OIFITS data, and if not found, estimates the detection limit. All files are also available at https://github.com/amerand/CANDID . (3 data files).

  15. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE PAGES

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  16. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  17. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  18. ARC-1989-A89-7015

    NASA Image and Video Library

    1989-08-21

    Range : 4.8 million km. ( 3 million miles ) P-34648 This Voyager 2, sixty-one second exposure, shot through clear filters, of Neptunes rings. The Voyager cameras were programmed to make a systematic search of the entire ring system for new material. The previously ring arc is visible as a long bright streak at the bottom of the image. Extening beyond the bright arc is a much fainter component which follows the arc in its orbit. this faint material was also visible leading the ring arc and, in total, covers at least half of the orbit before it becomes too faint to identify. Also visible in this image, is a continuous ring of faint material previously identified as a possible ring arc by Voyager. this continuous ring is located just outside the orbit of the moon 1989N3, which was also discovered by Voyager. This moon is visible as a streak in the lower left. the smear of 1989N3 is due to its own orbital motion during the exposure. Extreme computer processing of this image was made to enhance the extremely faint features of Neptunes moon system. the dark area surrounding the moon as well as the bright corners are due to this special processing.

  19. The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8

    NASA Astrophysics Data System (ADS)

    Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven

    2018-01-01

    Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.

  20. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  1. Applications of independent component analysis in SAR images

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping

    2009-07-01

    The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.

  2. Finding new sub-stellar co-moving companion candidates - the case of CT Cha

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias; Neuhäuser, Ralph

    2008-05-01

    We have searched for close and faint companions around T Tauri stars in the Chamaeleon star forming region. Two epochs of direct imaging data were taken with the VLT Adaptive Optics instrument NaCo in February 2006 and March 2007 in Ks band for the classical T Tauri star CT Cha together with a Hipparcos binary for astrometric calibration. Moreover a J band image was taken in March 2007 to get color information. We found CT Cha to have a very faint companion (Ks0=14.6 mag) of 2.67” separation corresponding to 440AU. We show that CT Cha A and the faint object form a common proper motion pair and that the companion is not a non-moving background object (with 4σ significance).

  3. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLF depends on cluster redshift, mass, and substructure and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. Methods: We calculated the GLFs for 31 clusters taken from the DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z < 0.65 and αred > 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late-type galaxies that converted into early types, explaining the lack of evolution in the faint-end slopes of the blue GLFs. Appendix is available in electronic form at http://www.aanda.org

  4. The Faint End of the Quasar Luminosity Function at z ~ 4

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M 1450 < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg2. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 Å. Considering only our R <= 23 sample, the best-fit single power law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < β < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate TOA flux reference level is used to define satellite TOA fluxes, and horizontal transmission of solar radiation through the planet is not accounted for in the radiation budget equation, systematic errors in net flux of up to 8 W/sq m can result. Since climate models generally use a plane-parallel model approximation to estimate TOA fluxes and the earth radiation budget, they implicitly assume zero horizontal transmission of solar radiation in the radiation budget equation, and do not need to specify a flux reference level. By defining satellite-based TOA flux estimates at a 20-km flux reference level, comparisons with plane-parallel climate model calculations are simplified since there is no need to explicitly correct plane-parallel climate model fluxes for horizontal transmission of solar radiation through a finite earth.

  6. Interventions for Individuals With High Levels of Needle Fear

    PubMed Central

    Noel, Melanie; Taddio, Anna; Antony, Martin M.; Asmundson, Gordon J.G.; Riddell, Rebecca Pillai; Chambers, Christine T.; Shah, Vibhuti

    2015-01-01

    Background: This systematic review evaluated the effectiveness of exposure-based psychological and physical interventions for the management of high levels of needle fear and/or phobia and fainting in children and adults. Design/Methods: A systematic review identified relevant randomized and quasi-randomized controlled trials of children, adults, or both with high levels of needle fear, including phobia (if not available, then populations with other specific phobias were included). Critically important outcomes were self-reported fear specific to the feared situation and stimulus (psychological interventions) or fainting (applied muscle tension). Data were pooled using standardized mean difference (SMD) or relative risk with 95% confidence intervals. Results: The systematic review included 11 trials. In vivo exposure-based therapy for children 7 years and above showed benefit on specific fear (n=234; SMD: −1.71 [95% CI: −2.72, −0.7]). In vivo exposure-based therapy with adults reduced fear of needles posttreatment (n=20; SMD: −1.09 [−2.04, −0.14]) but not at 1-year follow-up (n=20; SMD: −0.28 [−1.16, 0.6]). Compared with single session, a benefit was observed for multiple sessions of exposure-based therapy posttreatment (n=93; SMD: −0.66 [−1.08, −0.24]) but not after 1 year (n=83; SMD: −0.37 [−0.87, 0.13]). Non in vivo e.g., imaginal exposure-based therapy in children reduced specific fear posttreatment (n=41; SMD: −0.88 [−1.7, −0.05]) and at 3 months (n=24; SMD: −0.89 [−1.73, −0.04]). Non in vivo exposure-based therapy for adults showed benefit on specific fear (n=68; SMD: −0.62 [−1.11, −0.14]) but not procedural fear (n=17; SMD: 0.18 [−0.87, 1.23]). Applied tension showed benefit on fainting posttreatment (n=20; SMD: −1.16 [−2.12, −0.19]) and after 1 year (n=20; SMD: −0.97 [−1.91, −0.03]) compared with exposure alone. Conclusions: Exposure-based psychological interventions and applied muscle tension show evidence of benefit in the reduction of fear in pediatric and adult populations. PMID:26352916

  7. EMS Activations for School-Aged Children From Public Buildings, Places of Recreation or Sport, and Health Care Facilities in Pennsylvania.

    PubMed

    Catherine, Andrew T; Olympia, Robert P

    2016-06-01

    To determine the etiology of emergency medical services (EMS) activations in 2011 to public buildings, places of recreation or sport, and health care facilities involving children aged 5 to 18 years in Pennsylvania. Electronic records documenting 2011 EMS activations as provided by the Pennsylvania Department of Health's Bureau of EMS were reviewed. Data elements (demographics, dispatch complaint, mechanism of injury, primary assessment) from patients aged 5 to 18 years involved in an EMS response call originating from either a public building, a place of recreation and sport, or health care facility were analyzed. A total of 12,289 records were available for analysis. The most common primary assessments from public buildings were traumatic injury, behavioral/psychiatric disorder, syncope/fainting, seizure, and poisoning. The most common primary assessments from places of recreation or sport were traumatic injury, syncope/fainting, altered level of consciousness, respiratory distress, and abdominal pain. The most common primary assessments from health care facilities were behavioral/psychiatric disorder, traumatic injury, abdominal pain, respiratory distress, and syncope/fainting. When examining the mechanism of injury for trauma-related primary assessments, falls were the most common mechanism at all 3 locations, followed by being struck by an object. Of the 1335 serious-incident calls (11% of the total EMS activations meeting inclusion criteria), 61.2% were from public buildings, 14.1% from places of recreation or sport, and 24.7% from health care facilities. Our identification of common EMS dispatch complaints, mechanisms of injury, and primary assessments can be used in the education of staff and preparation of facilities for medical emergencies and injuries where children spend time.

  8. Deconvolution of post-adaptive optics images of faint circumstellar environments by means of the inexact Bregman procedure

    NASA Astrophysics Data System (ADS)

    Benfenati, A.; La Camera, A.; Carbillet, M.

    2016-02-01

    Aims: High-dynamic range images of astrophysical objects present some difficulties in their restoration because of the presence of very bright point-wise sources surrounded by faint and smooth structures. We propose a method that enables the restoration of this kind of images by taking these kinds of sources into account and, at the same time, improving the contrast enhancement in the final image. Moreover, the proposed approach can help to detect the position of the bright sources. Methods: The classical variational scheme in the presence of Poisson noise aims to find the minimum of a functional compound of the generalized Kullback-Leibler function and a regularization functional: the latter function is employed to preserve some characteristic in the restored image. The inexact Bregman procedure substitutes the regularization function with its inexact Bregman distance. This proposed scheme allows us to take under control the level of inexactness arising in the computed solution and permits us to employ an overestimation of the regularization parameter (which balances the trade-off between the Kullback-Leibler and the Bregman distance). This aspect is fundamental, since the estimation of this kind of parameter is very difficult in the presence of Poisson noise. Results: The inexact Bregman procedure is tested on a bright unresolved binary star with a faint circumstellar environment. When the sources' position is exactly known, this scheme provides us with very satisfactory results. In case of inexact knowledge of the sources' position, it can in addition give some useful information on the true positions. Finally, the inexact Bregman scheme can be also used when information about the binary star's position concerns a connected region instead of isolated pixels.

  9. Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alzate, Nathalia; Morgan, Huw, E-mail: naa19@aber.ac.uk

    Coronal mass ejections (CMEs) are generally associated with low coronal signatures (LCSs), such as flares, filament eruptions, extreme ultraviolet (EUV) waves, or jets. A number of recent studies have reported the existence of stealth CMEs as events without LCSs, possibly due to observational limitations. Our study focuses on a set of 40 stealth CMEs identified from a study by D’Huys et al. New image processing techniques are applied to high-cadence, multi-instrument sets of images spanning the onset and propagation time of each of these CMEs to search for possible LCSs. Twenty-three of these events are identified as small, low-mass, unstructuredmore » blobs or puffs, often occurring in the aftermath of a large CME, but associated with LCSs such as small flares, jets, or filament eruptions. Of the larger CMEs, seven are associated with jets and eight with filament eruptions. Several of these filament eruptions are different from the standard model of an erupting filament/flux tube in that they are eruptions of large, faint flux tubes that seem to exist at large heights for a long time prior to their slow eruption. For two of these events, we see an eruption in Large Angle Spectrometric Coronagraph C2 images and the consequent changes at the bottom edge of the eruption in EUV images. All 40 events in our study are associated with some form of LCS. We conclude that stealth CMEs arise from observational and processing limitations.« less

  10. The potential of a Čerenkov Array for Supersymmetry and Cosmology

    NASA Astrophysics Data System (ADS)

    Vasileiadis, G.; Falvard, A.; Giraud, E.; Lavalle, J.; Sajjad, S.

    2005-02-01

    If R-parity is sufficiently well conserved, most of the supersymmetric models predict the existence of a stable, neutral particle, the neutralino, which would be a natural candidate for dark matter. Such particles can annihilate through various channels producing in particular, a faint flux of high energy photons in galactic and extragalactic high density regions. We have considered the potential of a Čerenkov array for exploring a significant fraction of the supersymmetric parameter space. The main constraints are the flux limit, which requires a very large effective area, and the energy threshold which needs reaching lower limit of the order of 15-20 GeV due to the lowest neutralino mass given by accelerators. Combining such constaints leads to an array of at least 16-19 Čerenkov reflectors with diameters of the order of 18m, located at high altitude (5000 m). This instrument would combine wide angle camera and large detection areas. It would also serve as a major tool in Observational Cosmology and Astrophysics above 15-20 GeV up to 1 TeV. Coming after GLAST, it would allow studying in details, at higher energy, the sources detected by this satellite. This instrument would not be able to explore the 10 GeV to sub-10 GeV domain unless higher QE detectors are discovered or larger diameters are considered. A very interesting site would be the Chajnantor-Toco area for this project which requires clear UBV photometric nights.

  11. HST/STIS ULTRAVIOLET SPECTROSCOPY OF THE COMPONENTS OF THE MASSIVE TRIPLE STAR δ ORI A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Noel D.; Moffat, Anthony F. J.; Gull, Theodore R.

    2015-07-20

    The multiple star system of δ Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we presentmore » Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet spectroscopy of δ Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and Ab with reference to model spectra. Both stars have similar effective temperatures, but Ab is fainter and is a rapid rotator. The results will help in the interpretation of ground-based spectroscopy and in understanding the physical and evolutionary parameters of these massive stars.« less

  12. Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan

    2018-03-01

    We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.

  13. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE PAGES

    Drlica-Wagner, A.

    2015-11-04

    Here, we report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M V > –4.7more » $$\\mathrm{mag}$$) and span a range of physical sizes (17 $$\\mathrm{pc}$$ < r 1/2 < 181 $$\\mathrm{pc}$$) and heliocentric distances (25 kpc < D ⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ ≳ 27.5 $$\\mathrm{mag}$$ $$\\mathrm{arcsec}$$ –2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10 –3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  14. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, A. D.; Dotter, A.; Huxor, A. P.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow,more » and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.« less

  15. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  16. X-ray versus infrared selection of distant galaxy clusters: A case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-04-01

    We present a comparison of two samples of z > 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray selected XMM-LSS distant cluster survey and 92 clusters from the optical-MIR selected SpARCS cluster survey. Both samples are selected from the same approximately 9 square degree sky area and we examine them using common XMM-Newton, Spitzer-SWIRE and CFHT Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: a) X-ray bright, b) X-ray faint, MIR bright, and c) X-ray faint, MIR faint clusters. We determine that X-ray and MIR selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of BCG-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally-concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  17. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.

    Here, we report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M V > –4.7more » $$\\mathrm{mag}$$) and span a range of physical sizes (17 $$\\mathrm{pc}$$ < r 1/2 < 181 $$\\mathrm{pc}$$) and heliocentric distances (25 kpc < D ⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ ≳ 27.5 $$\\mathrm{mag}$$ $$\\mathrm{arcsec}$$ –2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10 –3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  18. Electric Stimulus Opens Intercellular Spaces in Skin*

    PubMed Central

    Hama, Susumu; Kimura, Yuki; Mikami, Aya; Shiota, Kanako; Toyoda, Mao; Tamura, Atsushi; Nagasaki, Yukio; Kanamura, Kiyoshi; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-01-01

    Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200–400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57–65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca2+ inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology. PMID:24318878

  19. The Last of FIRST: The Final Catalog and Source Identifications

    NASA Astrophysics Data System (ADS)

    Helfand, David J.; White, Richard L.; Becker, Robert H.

    2015-03-01

    The FIRST survey, begun over 20 years ago, provides the definitive high-resolution map of the radio sky. This Very Large Telescope (VLA) survey reaches a detection sensitivity of 1 mJy at 20 cm over a final footprint of 10,575 deg2 that is largely coincident with the Sloan Digital Sky Survey (SDSS) area. Both the images and a catalog containing 946,432 sources are available through the FIRST Web site (http://sundog.stsci.edu). We record here the authoritative survey history, including hardware and software changes that affect the catalog's reliability and completeness. In particular, we use recent observations taken with the JVLA to test various aspects of the survey data (astrometry, CLEAN bias, and the flux density scale). We describe a new, sophisticated algorithm for flagging potential sidelobes in this snapshot survey, and show that fewer than 10% of the cataloged objects are likely sidelobes, and that these are heavily concentrated at low flux densities and in the vicinity of bright sources, as expected. We also report a comparison of the survey with the NRAO VLA Sky Survey (NVSS), as well as a match of the FIRST catalog to the SDSS and Two Micron Sky Survey (2MASS) sky surveys. The NVSS match shows very good consistency in flux density scale and astrometry between the two surveys. The matches with 2MASS and SDSS indicate a systematic ~10-20 mas astrometric error with respect to the optical reference frame in all VLA data that has disappeared with the advent of the JVLA. We demonstrate strikingly different behavior between the radio matches to stellar objects and to galaxies in the optical and IR surveys reflecting the different radio populations present over the flux density range 1-1000 mJy. As the radio flux density declines, stellar counterparts (quasars) get redder and fainter, while galaxies get brighter and have colors that initially redden but then turn bluer near the FIRST detection limit. Implications for future radio sky surveys are also briefly discussed. In particular, we show that for radio source identification at faint optical magnitudes, high angular resolution observations are essential, and cannot be sacrificed in exchange for high signal-to-noise data. The value of a JVLA survey as a complement to Square Kilometer Array precursor surveys is briefly discussed.

  20. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6

  1. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  2. Magnetic Flux Emergence and the Initiation of Filament Eruptions and CMEs as Observed by the EUV Imaging Telescope on SOHO

    NASA Astrophysics Data System (ADS)

    Neupert, W. M.

    2005-05-01

    Solar observations over more than twenty years (e.g., Gaizauskas and Svestka, 1987, summarizing the "Flare Build-up Study", Feynman and Martin, 1995, and more recently, Wang and Sheeley, 1999) have demonstrated that emergence of new magnetic flux in the vicinity of quiescent filament fields frequently leads to the eruption of those filaments, given polarity orientations favorable for magnetic reconnection. Concurrently, models of the interaction of such magnetic flux configurations have been developed to explain the initiation of flares (e.g., Priest and Forbes, 2002) and coronal mass ejections (Chen et al., 2002). We have used observations made in the 195 Angstrom (Fe XII) band by the EUV imaging Telescope (EIT) on SOHO to identify instances of emerging flux, indicated by new EUV emission, and subsequent eruption of a quiescent filament in a search for coronal changes that might appear as a result of merging magnetic fields. Limiting our study to quiescent filaments distant from active regions, we have identified events in which a slow increase in filament height begins shortly (a few hours) after first appearance of an EUV emission source either within or beside the filament channel. For long filaments, the apex of the rising filament appears to lie above the developing EUV source, implying that the field supporting the filament is locally interacting with the emerging field. Transient EUV features at onset of the eruptive phase include low-lying loops over the neutral line and, more rarely, localized sources apparently associated with the rising filament. No evidence of reconfiguring of an overlying corona (only faintly detected by the EIT) prior to CME initiation has been found. Our results support the hypothesis that at least in some instances the emergence of new magnetic field leads to a loss of filament equilibrium and a coronal mass ejection. This work is supported by NASA Intergovernmental Transfer W-10118 to NOAA's Space Environment Center. SOHO is a project of international cooperation between ESA and NASA.

  3. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  4. Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.

  5. Faint Photoelectric Photometric Standard Star Sequences

    DTIC Science & Technology

    1988-07-15

    data awaiting additional study which will result in published research papers . The following list is a compilation of the publications which have...Astrophysical Journal, 323, 271, 1987. papers in preparation.... 1. "The Open Cluster van den Bergh Hagen-Harris No. 99", by A. U. Landolt, C. L...REPORT For a Grant for Basic Scientific Research (AFOSR Grant No. 82-0192) from The Air Force Office of Scientific Research entitled FAINT

  6. Does faint galaxy clustering contradict gravitational instability?

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1992-01-01

    It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.

  7. Horologium II: A Second Ultra-faint Milky Way Satellite in the Horologium Constellation

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut

    2015-08-01

    We report the discovery of a new ultra-faint Milky Way satellite candidate, Horologium II (Hor II), detected in the Dark Energy Survey Y1A1 public data. Hor II features a half-light radius of {r}{{h}}=47+/- 10 pc and a total luminosity of {M}V=-{2.6}-0.3+0.2 that place it in the realm of ultra-faint dwarf galaxies on the size-luminosity plane. The stellar population of the new satellite is consistent with an old (˜13.5 Gyr) and metal-poor ([Fe/H] ˜ -2.1) isochrone at a distance modulus of (m-M)=19.46+/- 0.20, or a heliocentric distance of 78 ± 8 kpc, in the color-magnitude diagram. Hor II has a distance similar to the Sculptor dwarf spheroidal galaxy (˜82 kpc) and the recently reported ultra-faint satellites Eridanus III (87 ± 8 kpc) and Horologium I (79 ± 8 kpc). All four satellites are well aligned on the sky, which suggests a possible common origin. As Sculptor is moving on a retrograde orbit within the Vast Polar Structure when compared to the other classical MW satellite galaxies including the Magellanic Clouds, this hypothesis can be tested once proper motion measurements become available.

  8. Serendipitous discovery of a faint dwarf galaxy near a Local Volume dwarf

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.; Antipova, A. V.; Karachentsev, I. D.; Tully, R. B.

    2018-03-01

    A faint dwarf irregular galaxy has been discovered in the HST/ACS field of LV J1157+5638. The galaxy is resolved into individual stars, including the brightest magnitude of the red giant branch. The dwarf is very likely a physical satellite of LV J1157+5638. The distance modulus of LV J1157+5638 using the tip of the red giant branch (TRGB) distance indicator is 29.82 ± 0.09 mag (D = 9.22 ± 0.38 Mpc). The TRGB distance modulus of LV J1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42 Mpc). The distances to the two galaxies are consistent within the uncertainties. The projected separation between them is only 3.9 kpc. LV J1157+5638 has a total absolute V magnitude of -13.26 ± 0.10 and linear Holmberg diameter of 1.36 kpc, whereas its faint satellite LV J1157+5638 sat has MV = -9.38 ± 0.13 mag and Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first time beyond the nearest 4 Mpc from us. The presence of main-sequence stars in both galaxies unambiguously indicates the classification of the objects as dwarf irregulars with recent or ongoing star formation events in both galaxies.

  9. The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Jiang, Linhua; Cai, Zheng

    2018-03-01

    We present results from a spectroscopic survey of z ∼ 5 quasars in the CFHT Legacy Survey. Using both optical color selection and a likelihood method, we select 97 candidates over an area of 105 deg2 to a limit of i AB < 23.2, and 7 candidates in the range 23.2 < i AB < 23.7 over an area of 18.5 deg2. Spectroscopic observations for 43 candidates were obtained with Gemini, MMT, and Large Binocular Telescope, of which 37 are z > 4 quasars. This sample extends measurements of the quasar luminosity function ∼1.5 mag fainter than our previous work in Sloan Digital Sky Survey Stripe 82. The resulting luminosity function is in good agreement with our previous results, and suggests that the faint end slope is not steep. We perform a detailed examination of our survey completeness, particularly the impact of the Lyα emission assumed in our quasar spectral models, and find hints that the observed Lyα emission from faint z ∼ 5 quasars is weaker than for z ∼ 3 quasars at a similar luminosity. Our results strongly disfavor a significant contribution of faint quasars to the hydrogen-ionizing background at z = 5.

  10. A Sneak Peek at the JWST Era: Observing Galaxies Below the Hubble Limit with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.

    2016-01-01

    The installation of WFC3 on the Hubble Space Telescope pushed the frontier of high-redshift galaxy studies to only 500 Myr after the Big Bang. However, observations in this epoch remain challenging and are limited to the brightest galaxies; the fainter sources believed to be responsible for reionizing the Universe remain beyond the grasp of Hubble. With gravitational lensing, however, we can benefit from the magnification of faint sources, which brings them within reach of today's telescopes. The Hubble Frontier Fields program is a deep survey of strongly lensing clusters observed in the optical and near-infrared. Unfortunately, detecting highly magnified, intrinsically faint galaxies in these fields has proved challenging due to the bright foregound cluster galaxies and intracluster light. We have developed a technique using wavelet decomposition to overcome these difficulties and detect galaxies at z~7 with intrinsic UV magnitudes as faint as MUV = -13. We present this method and the resulting luminosity functions, which support a steep faint-end slope extending out to the observational limits. Our method has uncovered hundreds of galaxies at z > 6 fainter than any that have been seen before, providing our first insight into the small galaxy population during the epoch of reionization and a preview of the capabilities of JWST.

  11. The black hole candidate XTE J1752-223 towards and in quiescence: optical and simultaneous X-ray-radio observations

    NASA Astrophysics Data System (ADS)

    Ratti, E. M.; Jonker, P. G.; Miller-Jones, J. C. A.; Torres, M. A. P.; Homan, J.; Markoff, S.; Tomsick, J. A.; Kaaret, P.; Wijnands, R.; Gallo, E.; Özel, F.; Steeghs, D. T. H.; Fender, R. P.

    2012-07-01

    We present optical, X-ray and radio observations of the black hole transient (BHT) XTE J1752-223 towards and in quiescence. Optical photometry shows that the quiescent magnitude of XTE J1752-223 is fainter than 24.4 mag in the i' band. A comparison with measurements of the source during its 2009-2010 outburst shows that the outburst amplitude is more than 8 mag in the i' band. Known X-ray properties of the source combined with the faintness of the quiescence optical counterpart and the large outburst optical amplitude point towards a short orbital-period system (Porb≲ 6.8 h) with an M type (or later) mass donor, at a distance of 3.5 ≲d≲ 8 kpc. Simultaneous X-ray and radio data were collected with Chandra and the Expanded Very Large Array (EVLA), allowing constraints to be placed on the quiescent X-ray and radio flux of XTE J1752-223. Furthermore, using data covering the final stage of the outburst decay, we investigated the low-luminosity end of the X-ray-radio correlation for this source and compared it with other BHTs. We found that XTE J1752-223 adds to the number of outliers with respect to the 'standard' X-ray-radio luminosity relation. Furthermore, XTE J1752-223 is the second source, after the BHT H1743-322, that shows a transition from the region of the outliers towards the 'standard' correlation at low luminosity. Finally, we report on a faint, variable X-ray source we discovered with Chandra at an angular distance of ˜2.9 arcsec to XTE J1752-223 and at a position angle consistent with that of the radio jets previously observed from the BHT. We discuss the possibility that we detected X-ray emission associated with a jet from XTE J1752-223.

  12. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    DOE PAGES

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity ofmore » $$62.8\\pm 0.5\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$ and a velocity dispersion of $$3.3\\pm 0.7\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$. The mass-to-light ratio of Ret II within its half-light radius is $$470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $$\\mathrm{km}\\ {{\\rm{s}}}^{-1}$$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with $${\\rm{[Fe/H]}}\\lt -3$$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of $${\\rm{[Fe/H]}}=-2.65\\pm 0.07$$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is $${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.« less

  13. The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Armas Padilla, M.; Ponti, G.; De Marco, B.; Muñoz-Darias, T.; Haberl, F.

    2018-01-01

    We report on a detailed study of the spectral and temporal properties of the neutron star low-mass X-ray binary SLX 1737-282, which is located only ∼1° away from Sgr A*. The system is expected to have a short orbital period, even within the ultracompact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 yr apart. We infer (0.5-10 keV) X-ray luminosities in the range of 3-6 × 1035ergs-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) blackbody component plus a Comptonized emission component with Γ ∼ 1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ∼20 per cent fractional root-mean-square amplitude of the fast variability (0.1-7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is ≳7 keV for the Suzaku observation, but it is measured to be as low as ∼2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001-7 Hz). Finally, we investigated the origin of the low-frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to ≲65° unless the orbital period is longer than 11 h (i.e. the length of the XMM-Newton observation).

  14. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  15. Detection of Escaping Lyman Continuum Radiation in Two Local Starbursts Using FUSE

    NASA Astrophysics Data System (ADS)

    Leitet, E.; Bergvall, N.; Andersson, B.-G.; Zackrisson, E.

    2007-05-01

    Dwarf galaxies may play a significant role in the reionization history of the universe, and as such also for the history of structure formation. These galaxies are however too faint to be observed at high redshifts, and it is therefore important to establish the amount of Lyman continuum (LyC) radiation that escape local starbursting dwarf galaxies. The amount of leakage is important to know also in order to improve models of star formation and spectral evolution of galaxies, which if neglected, might lead to false conclusions about the properties of the galaxies themself. Previous attempts to directly observe the leakage of hydrogen-ionizing radiation from local galaxies has before this resulted only in one successful case. In Bergvall et al. (2006 A&A 448, 513) an escape fraction of 4-10 % for the blue compact galaxy Haro 11, was found. In this work the detection and quantification of the LyC escape fractions for two additional local starburst galaxies using the Far Ultraviolet Spectroscopic Explorer, FUSE, is presented. The detections were made using FUSE archival data reduced with the latest, and much improved, pipeline. The LyC continuum can be seen as a faint structure between the Lyman limit of the target galaxies and the Milky Way. From line profile fitting it was found that both galaxies have high column densities of neutral gas, indicating that the LyC radiation is escaping through holes in the ISM. The escape fractions are calculated using spectral evolutionary models, based on the f(900Å), f(960Å) and f(Ha) fluxes. The fact that LyC leakage now is detected in three local starbursting dwarf galaxies is going to have a deep impact on future research on structure formation and galaxy evolution. The next challenge would be to statistically determine the escape fraction in extended surveys of starbursting dwarf galaxies.

  16. Linking surface morphology, composition and activity on the 67P/Churyumov-Gerasimenko’s nucleus

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Hoang, Van Hong; Hasselmann, Pedro H.; Barucci, Maria Antonieta; Feller, Clement; Prasanna Deshapriya, Jasinghege Don; Keller, Horst Uwe; OSIRIS Team

    2017-10-01

    The Rosetta mission orbited around the comet 67P/Churyumov-Gerasimenko for more than 2 years, getting an incredible amount of unique data of the comet nucleus and inner coma. This has enabled us to study its activity continuously from 4 AU inbound to 3.6 AU outbound, including the perihelion passage at 1.25 AU.This work focuses on the identification of the regions sources of faint jets and outbursts, and on the study of their spectrophotometric properties, from observations acquired with the OSIRIS/NAC camera during the July-October 2015 period, i.e. close to perihelion. More than 150 jets of different intensities were identified directly on the nucleus from NAC color sequences acquired in 7-11 filters covering the 250-1000 nm wavelength range, and their spectrophotometric properties studied for the first time. Some spectacular outbursts appear dominated by water ice particles, while fainter jets often show colors redder than the nucleus and appear dominated by dusty particles. Some jets are very faint and were identified on the nucleus thanks to the unprecedented spatial and temporal resolution of the ROSETTA/OSIRIS observations. Some of them have an extremely short lifetime, appearing on the cometary surface during the color sequence observations, reaching their peak in flux and then vanishing in less than a couple of minutes.We will present the results on the location, duration, and colors of active sources on the 67P nucleus from the relatively low resolution (i.e. 6-10 m/pixel) images acquired close to the perihelion passage. Some of this active regions were observed and investigated in higher resolution (up to few dm per pixel) during other phases of the mission. These observations allow us to study the morphological and spectral evolution of the regions found to be active and to further investigate the link between morphology, composition, and activity on cometary nuclei.

  17. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.

  18. The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Durret, Florence; Adami, Christophe; Rudnick, Gregory

    2017-08-01

    Characterizing the evolution of the faint end of the cluster red sequence (RS) galaxy luminosity function (GLF) with redshift is a milestone in understanding galaxy evolution. However, the community is still divided in that respect, hesitating between an enrichment of the RS due to efficient quenching of blue galaxies from z 1 to present-day or a scenario in which the RS is built at a higher redshift and does not evolve afterwards. Recently, it has been proposed that surface brightness (SB) selection effects could possibly solve the literature disagreement, accounting for the diminishing RS faint population in ground-based observations. We investigate this hypothesis by comparing the RS GLFs of 16 CLASH clusters computed independently from ground-based Subaru/Suprime-Cam V and Ip or Ic images and space-based HST/ACS F606W and F814W images in the redshift range 0.187 ≤ z ≤ 0.686. We stack individual cluster GLFs in two redshift bins (0.187 ≤ z ≤ 0.399 and 0.400 ≤ z ≤ 0.686) and two mass (6 × 1014M⊙ ≤ M200< 1015M⊙ and 1015M⊙ ≤ M200) bins, and also measure the evolution with the enclosing radius from 0.5 Mpc up to the virial radius for the Subaru large field of view data. Finally, we simulate the low-redshift clusters at higher redshift to investigate SB dimming effects. We find similar RS GLFs for space- and ground-based data, with a difference of 0.2σ in the faint end parameter α when stacking all clusters together and a maximum difference of 0.9σ in the case of the high-redshift stack, demonstrating a weak dependence on the type of observation in the probed range of redshift and mass. When considering the full sample, we estimate α = - 0.76 ± 0.07 and α = - 0.78 ± 0.06 with HST and Subaru, respectively. We note a mild variation of the faint end between the high- and low-redshift subsamples at a 1.7σ and 2.6σ significance. We investigate the effect of SB dimming by simulating our low-redshift galaxies at high redshift. We measure an evolution in the faint end slope of less than 1σ in this case, implying that the observed signature is larger than one would expect from SB dimming alone, and indicating a true evolution in the faint end slope. Finally, we find no variation with mass or radius in the probed range of these two parameters. We therefore conclude that quenching is mildly affecting cluster galaxies at z ≲ 0.7 leading to a small enrichment of the RS until today, and that the different faint end slopes observed in the literature are probably due to specific cluster-to-cluster variation. Based on publicly available HST data acquired with ACS through the CLASH and COSMOS surveys. Also based on Subaru Suprime-Cam archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters

    NASA Astrophysics Data System (ADS)

    Becker, Robert H.; White, Richard L.; Helfand, David J.

    1995-09-01

    The FIRST survey to produce Faint Images of the Radio Sky at Twenty centimeters is now underway using the NRAO Very Large Array. We describe here the scientific motivation for a large-area sky survey at radio frequencies which has a sensitivity and angular resolution comparable to the Palomar Observatory Sky Survey, and we recount the history that led to the current survey project. The technical design of the survey is covered in detail, including a description and justification of the grid pattern chosen, the rationale behind the integration time and angular resolution selected, and a summary of the other considerations which informed our planning for the project. A comprehensive description of the automated data analysis pipeline we have developed is presented. We also report here the results of the first year of FIRST observations. A total of 144 hr of time in 1993 April and May was used for a variety of tests, as well as to cover an initial strip of the survey extending between 07h 15m and 16h 30m in a 2°.8 wide declination zone passing through the local zenith (28.2 <δ < 31.0). A total of 2153 individual pointings yielded an image database containing 1039 merged images 46'.5 × 34'.5 in extent with 1".8 pixels and a typical rms of 0.13 mJy. A catalog derived from this 300 deg2 region contains 28,000 radio sources. We have performed extensive tests on the images and source list in order to establish the photometric and astrometric accuracy of these data products. We find systematic astrometric errors of < 0".05 individual sources down to the 1 mJy survey flux density threshold have 90% confidence error circles with radii of < 1". CLEAN bias introduces a systematic underestimate of point-source flux densities of ˜0.25 mJy; the bias is more severe for extended sources. Nonetheless, a comparison with a published deep survey field demonstrates that we successfully detect 39/49 sources with integrated flux densities greater than 0.75 mJy, including 19 of 20 sources above 2.0 mJy; the sources not detected are known to be very extended and so have surface brightnesses well below our threshold. With 480 hr of observing time committed for each of the next three B-configuration periods, FIRST will complete nearly one-half of its goal of covering the 10,000 deg2 of the north Galactic cap scheduled for inclusion in the Sloan Digital Sky Survey. All of the FIRST data raw visibilities, self-calibrated UV data sets, individual pointing maps, final merged images, source catalogs, and individual source images are being placed in the public domain as soon as they are verified; all of the 1993 data are now available through the NRAO and/or the STScI archive. We conclude with a brief summary of the scientific significance of FIRST, which represents an improvement by a factor of 50 in both angular resolution and sensitivity over the best available large area radio surveys.

  20. Automated observation of diurnal solar-induced chlorophyll fluorescence for better understanding of crop photosynthesis

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, L.; Wang, S.; Qiao, N.

    2016-12-01

    Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring vegetation photosynthesis. However, numerous challenges have greatly limited its wide applications, including accurate estimate of faint SIF from the observed apparent reflected radiation, uncertainties in inferring the vegetation photosynthesis as well as lack of validation. These difficulties should be resolved at ground-based controlled scales before the launch of SIF satellite platforms such as ESA's FLEX (to be launched 2021). Currently, increasing continuous and long-term automated SIF measurement systems have been reported for better understanding the diurnal and seasonal changes of vegetation photosynthesis. This study introduces a newly developed automated SIF field measurement system (Auto-SIF, 500-800 nm, FWHM=0.74 nm, SSI=0.38 nm, SNR=1000:1, see figure 1) in China and its initial results for inferring photosynthesis of different crops including soybean (three types), maize (two types) and rice (two types). The experiments were conducted at the test crop field affiliated to the Institute of Genetics and Development Biology, Chinese Academy of Sciences. The Auto-SIF incorporates two observation modes, i.e., reference panel mode and target mode (see figure 1), and the two modes can be switched very quickly through an electrical motor. All diurnal super-spectra data and SIFs of crops were collected in clear days and with a finer time interval of 1minute, therefore they can be easily resampled to different time intervals (see figure 2) in order for convenient comparisons with other data from different observation platforms, like 30-minute tower-flux GPP data. For better understanding of crop photosynthesis, Li-6400 XT (LI-COR, Inc.) and TES-1339R light meter were respectively used in this study to simultaneously obtain diurnal dynamics of leaf-level SIFs and sun incoming flux. Due to the availability of wide spectral range of Auto-SIF (500-800 nm), the photochemical reflectance index (PRI) and NDVI were also calculated to assess the diurnal SIFs and photosynthesis performances among different crops. This study presents a primary analyses of field diurnal canopy/leaf SIFs, PRI, NDVI of different crops , and may provide a better understanding of crop photosynthesis.

  1. Metallicity and the level of the ultraviolet rising branch in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Faber, S. M.

    1986-01-01

    This final report concerns a project to study the systematics of the ultraviolet flux level in elliptical galaxies. Prior to the inception of this work, the systematic behavior of the ultraviolet flux level was basically unknown and ultraviolet fluxes were observed to vary greatly from galaxy to galaxy. There was a suggestion, however, that there might be a dependence of ultraviolet flux on galaxy metallicity, but the correlation was based on just six galaxies. IUE spectra of elliptical galaxies have been reanalyzed and placed on a consistent, homogenous flux system. The major conclusion is a confirmation of the original hypothesis: galaxies with stronger Mg2 lines show enhanced ultraviolet flux.

  2. Multiparty Quantum Secret Sharing of Key Using Practical Faint Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan-Jun; Man, Zhong-Xiao

    2005-07-01

    Based on a bidirectional quantum key distribution protocol [Phys. Rev. A 70 (2004) 012311], we propose a (m-1,m-1)-threshold scheme of m (m >= 3)-party quantum secret sharing of key by using practical faint laser pulses. In our scheme, if all the m-1 sharers collaborate, they can obtain the joint secret key from the message sender. Our scheme is more feasible according to the present-day technology.

  3. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  4. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  5. Correlation of γ-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraija, N., E-mail: nifraija@astro.unam.mx

    2014-03-01

    The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint γ-ray flux imaged by the Fermi Large Area Telescope at an energy of ≥100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation,more » and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the γ-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the γ-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the γ-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.« less

  6. RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz, E-mail: zhul04@mails.tsinghua.edu.cn

    2012-12-20

    In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while themore » X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.« less

  7. Hier ist wahrhaftig ein Loch im Himmel. The NGC 1999 dark globule is not a globule

    NASA Astrophysics Data System (ADS)

    Stanke, T.; Stutz, A. M.; Tobin, J. J.; Ali, B.; Megeath, S. T.; Krause, O.; Linz, H.; Allen, L.; Bergin, E.; Calvet, N.; di Francesco, J.; Fischer, W. J.; Furlan, E.; Hartmann, L.; Henning, T.; Manoj, P.; Maret, S.; Muzerolle, J.; Myers, P. C.; Neufeld, D.; Osorio, M.; Pontoppidan, K.; Poteet, C. A.; Watson, D. M.; Wilson, T.

    2010-07-01

    The NGC 1999 reflection nebula features a dark patch with a size of 10 000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160 μm maps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few {M}⊙. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of 2.4×10-2 {M}⊙. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near-infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or cavity in the material producing the NGC 1999 reflection nebula, excavated by protostellar jets from the V 380 Ori multiple system. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASAThis publication includes data acquired with the Atacama Pathfinder Experiment (APEX; proposal E-082.F-9807 and E-284.C-5015). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.Appendices A and B are only available in electronic form at http://www.aanda.org

  8. Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions

    NASA Astrophysics Data System (ADS)

    Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.

    2018-06-01

    We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.

  9. NGC628 with SITELLE : I. Imaging Spectroscopy of 4285 HII region candidates.

    NASA Astrophysics Data System (ADS)

    Rousseau-Nepton, L.; Robert, C.; Martin, R. P.; Drissen, L.; Martin, T.

    2018-02-01

    This is the first paper of a series dedicated to nebular physics and the chemical evolution of nearby galaxies by investigating large samples of HII regions with the CFHT imaging spectrograph SITELLE. We present a technique adapted to imaging spectroscopy to identify and extract parameters from 4285 HII region candidates found in the disc of NGC 628. Using both the spatial and spectral capabilities of SITELLE, our technique enables the extraction of the position, dust extinction, velocity, Hα profile, diffuse ionized gas (DIG) background, luminosity, size, morphological type, and the emission line fluxes for individual spaxels and the integrated spectrum for each region. We have produced a well-sampled HII region luminosity function and studied its variation with galactocentric radius and level of the DIG background. We found a slope α of -1.12 ±0.03 with no evidence of a break at high luminosity. Based on the width of the region profile, bright regions are rather compact, while faint regions are seen over a wide range of sizes. The radius function reveals a slope of -1.81 ±0.02. BPT diagrams of the individual spaxels and integrated line ratios confirm that most detections are HII regions. Also, maps of the line ratios show complex variations of the ionisation conditions within HII regions. All this information is compiled in a new catalogue for HII regions. The objective of this database is to provide a complete sample which will be used to study the whole parameter space covered by the physical conditions in active star-forming regions.

  10. Carbon Dioxide Cycling, Climate, Impacts, and the Faint Young Sun

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Sleep, H. H.

    1999-01-01

    Evidence for relatively mild climates on ancient Earth and Mars has been a puzzle in light of the faint early sun. The geologic evidence, although far from conclusive, would appear to indicate that the surfaces of both planets were, if anything, warmer ca. 3-4 Ga than they are now. The astrophysical argument that the sun ought to have brightened approx. 30% since it reached the main sequence is hard to refute. There results a paradox between the icehouse we expect and the greenhouse we think we see. The usual fix has been to posit massive CO2 atmospheres, although reduced gases (e.g., NH3 or CH4 ) have had their partisans. Evidence against siderite in paleosols dated 2.2-2.75 Ga sets a rough upper limit of 30 PAL (present atmospheric levels) on pCO2 at that time. This is an order of magnitude short of what is needed to defeat the fainter sun. We present here an independent argument against high pCO2 on early Earth that applies not only to the Archean but yet more forcefully to the Hadean era. Additional information is contained in the original extended abstract.

  11. Photometric Redshift Calibration Strategy for WFIRST Cosmology

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY

    2018-01-01

    In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.

  12. Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2016-10-01

    Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.

  13. The X-Ray Background and the AGN Luminosity Function

    NASA Astrophysics Data System (ADS)

    Hasinger, G.

    The deepest X-ray surveys performed with ROSAT were able to resolve as much as 70-80% of the 1-2 keV X-ray background into resolved sources. Optical follow-up observations were able to identify the majority of faint X-ray sources as active galactic nuclei (AGN) out to redshifts of 4.5 as well as a sizeable fraction as groups of galaxies out to redshifts of 0.7. A new population of X-ray luminous, optically innocent narrow emission line galaxies (NELGs) at the faintest X-ray fluxes is still a matter of debate, most likely many of them are also connected to AGN. First deep surveys with the Japanese ASCA satellite give us a glimpse of the harder X-ray background where the bulk of the energy density resides. Future X-ray observatories (XMM and AXAF) will be able to resolve the harder X-ray background. For the first time we are now in a position to study the cosmological evolution of the X-ray luminosity function of AGN, groups of galaxies and galaxies and simultaneously constrain their total luminosity output over cosmic time.

  14. SHIELD: Observations of Three Candidate Interacting Systems

    NASA Astrophysics Data System (ADS)

    Ruvolo, Elizabeth; Miazzo, Masao; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    Abstract:The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. In a companion poster, we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. Three galaxies in that study have been discovered to lie in close angular proximity to more massive galaxies. Here we present VLA HI imaging of these candidate interacting systems. We compare the neutral gas morphology and kinematics with optical images from SDSS. We discuss the frequency of low-mass galaxies undergoing tidal interaction in the complete SHIELD sample.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  15. IXPE: The Imaging X-ray Polarimetry Explorer, Implementing a Dedicated Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's center dot The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components) center dot Typically, for a few % minimum detectable polarization, 106 photons are required. center dot So, a dedicated mission is vital with instruments that are designed specifically to measure polarization (with minimal systematic effects) Over the proposed mission life (2- 3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations. Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies Heritage: X-ray Optics at MSFC polarimetry mission.

  16. The darkest EMCCD ever

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Quirion, Pierre-Olivier; Lessard, Simon

    2010-07-01

    EMCCDs are devices capable of sub-electron read-out noise at high pixel rate, together with a high quantum efficiency (QE). However, they are plagued by an excess noise factor (ENF) which has the same effect on photometric measurement as if the QE would be halved. In order to get rid of the ENF, the photon counting (PC) operation is mandatory, with the drawback of counting only one photon per pixel per frame. The high frame rate capability of the EMCCDs comes to the rescue, at the price of increased clock induced charges (CIC), which dominates the noise budget of the EMCCD. The CIC can be greatly reduced with an appropriate clocking, which renders the PC operation of the EMCCD very efficient for faint flux photometry or spectroscopy, adaptive optics, ultrafast imaging and Lucky Imaging. This clocking is achievable with a new EMCCD controller: CCCP, the CCD Controller for Counting Photons. This new controller, which is now commercialized by Nüvü cameras inc., was integrated into an EMCCD camera and tested at the observatoire du mont-M'egantic. The results are presented in this paper.

  17. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  18. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  19. The second FERMI large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  20. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  1. Soft X-ray maps of the Large Magellanic Cloud (LMC)

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Nousek, J. A.; Burrows, D. N.; Garmire, G. P.

    1985-01-01

    Soft X-ray maps of the Large Magellanic Cloud (LMC) were obtained from scanning-observations with the HEAO-1 low energy detectors. Comparison of the 1/4 keV X-ray observations with the neutral hydrogen column densities in the LMC obtained from a 21 cm line survey, shows no evidence for absorption effects in the 1/4 keV X-ray flux from the LMC due to the neutral matter in the LMC. Instead, faint X-ray emission is detected from the LMC. The extent of this emission is smaller than the size of the halo or the disk of the LMC. Assuming this 1/4 keV emission to be diffuse, it is identified with a supergiant shell of optical nebulosity known as Shapley III, and the bar of the LMC. The X-ray luminosities of the regions are estimated to be 9 times 10 to the 38th power ergs/sec and 1.8 times 10 to the 39th power ergs/sec for the Shapley III region and the bar of the LMC respectively. Shapley III could be an X-ray superbubble.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V.; Goldin, Alexey, E-mail: valeri.makarov@navy.mil, E-mail: alexey.goldin@gmail.com

    KIC 7341653 is one of several late-type M dwarfs observed by the main mission of Kepler with peculiar infrared colors placing them in the domain of suspected young stellar objects (YSO). It is likely associated with a powerful X-ray emitter with X-ray flares. Kepler light curves reveal two distinct types of activity: frequent flares lasting from less than 30 minutes to a few hours, and a periodic variability with a period of 0.5463441(7) days. The largest detected flare increased the flux in the Kepler passband by a factor of 2.8 and released an estimated 4 × 10{sup 34} erg ofmore » energy in the Kepler band. Segmented periodogram analysis reveals that the amplitude of the periodic variation was subject to secular changes, dropping from peak values around 20 ppt to below 5 ppt toward the end of the mission, while the phase varied periodically with an amplitude of 0.15 rad and period 362(3) days. Two possible interpretations of the phase periodicity are discussed: a migrating long-lived photospheric spot, and a Doppler frequency shift generated by a solar-mass faint companion, such as a white dwarf.« less

  3. Improving MWA/HERA Calibration Using Extended Radio Source Models

    NASA Astrophysics Data System (ADS)

    Cunningham, Devin; Tasker, Nicholas; University of Washington EoR Imaging Team

    2018-01-01

    The formation of the first stars and galaxies in the universe is among the greatest mysteries in astrophysics. Using special purpose radio interferometers, it is possible to detect the faint 21 cm radio line emitted by neutral hydrogen in order to characterize the Epoch of Reionization (EoR) and the formation of the first stars and galaxies. We create better models of extended radio sources by reducing component number of deconvolved Murchison Widefield Array (MWA) data by up to 90%, while preserving real structure and flux information. This real structure is confirmed by comparisons to observations of the same extended radio sources from the TIFR GMRT Sky Survey (TGSS) and NRAO VLA Sky Survey (NVSS), which detect at a similar frequency range as the MWA. These sophisticated data reduction techniques not only offer improvements to the calibration of the MWA, but also hold applications for the future sky-based calibration of the Hydrogen Epoch of Reionization Array (HERA). This has the potential to reduce noise in the power spectra from these instruments, and consequently provide a deeper view into the window of EoR.

  4. Properties of SN1978K from multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.; Ryder, Stuart; Staveley-Smith, L.; Colbert, E.; Petre, R.; Dopita, M.; Campbell-Wilson, D.

    2000-06-01

    We update the light curves from the X-ray, optical, and radio bandpasses which we have assembled over the past decade, and present two observations in the ultraviolet using the Hubble Space Telescope Faint Object Spectrograph. The HRI X-ray light curve is constant within the errors over the entire observation period which is confirmed by ASCA GIS data obtained in 1993 and 1995. In the UV, we detected the Mg II doublet at 2800 Å and a line at ~3190 Å attributed to He I 3187 at SN1978K's position. The optical light curve is formally constant within the errors, although a slight upward trend may be present. The radio light curve continues its steep decline. The longer time span of our radio observations compared to previous studies shows that SN1978K belongs in the class of highly X-ray and radio-luminous supernovae. The Mg II doublet flux ratio implies the quantity of line optical depth times density is ~1014 cm-3. The emission site must lie in the shocked gas. .

  5. The second fermi large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  6. The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew Arnold; Cohen, Daniel

    2017-01-01

    We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.

  7. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter.

    PubMed

    Clarke, J T; Ajello, J; Ballester, G; Ben Jaffel, L; Connerney, J; Gérard, J-C; Gladstone, G R; Grodent, D; Pryor, W; Trauger, J; Waite, J H

    2002-02-28

    Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.

  8. CANDID: Companion Analysis and Non-Detection in Interferometric Data

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzynski, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

    2015-05-01

    CANDID finds faint companion around star in interferometric data in the OIFITS format. It allows systematically searching for faint companions in OIFITS data, and if not found, estimates the detection limit. The tool is based on model fitting and Chi2 minimization, with a grid for the starting points of the companion position. It ensures all positions are explored by estimating a-posteriori if the grid is dense enough, and provides an estimate of the optimum grid density.

  9. UBV and H. beta. photometry of faint early-type stars in Crux and Centaurus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.; Feinstein, A.; Orsatti, A.M.

    1976-08-01

    UBV and H..beta.. photoelectric observations of faint early-type stars in a small region in Crux near the open cluster Hogg 15 and another in Centaurus are presented. The data suggest large absorption in Crux and small absorption in Centaurus. The spread in the distance moduli of the observed stars seems to be in agreement with the view that a spiral arm is seen tangentially near l = 305/sup 0/.

  10. The Joint Facial and Invasive Neck Trauma (J-FAINT) Project, Iraq and Afghanistan 2003-2011

    DTIC Science & Technology

    2013-01-01

    Original Research— Facial Plastic and Reconstructive Surgery The Joint Facial and Invasive Neck Trauma (J-FAINT) Project, Iraq and Afghanistan 2003...number and type of facial and penetrat- ing neck trauma injuries sustained in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF). Study...queried for data from OIF and OEF from January 2003 to May 2011. Information on demographics; type and severity of facial , neck, and associated trauma

  11. Is dental phobia a blood-injection-injury phobia?

    PubMed

    van Houtem, C M H H; Aartman, I H A; Boomsma, D I; Ligthart, L; Visscher, C M; de Jongh, A

    2014-12-01

    Dental phobia is part of the Blood-Injection-Injury (B-I-I) phobia subtype of specific phobia within DSM-IV-TR. To investigate the conceptual validity of this classification, the purpose of the present study was to determine the co-occurrence of dental phobia, typical dental (and B-I-I related) fears, vasovagal fainting, and avoidance of dental care. Data were collected by an online survey in Dutch twin families (n = 11,213). Individuals with a positive screen of dental phobia (0.4% of the sample) rated typical B-I-I-related stimuli as relatively little anxiety provoking (e.g. of all 28 fears the stimulus "the sight of blood" was ranked lowest). Presence of dental phobia was significantly associated with a history of dizziness or fainting during dental treatment (OR = 3.4; 95% CI: 1.5-8.1), but of the dental phobic individuals only 13.0% reported a history of dizziness or fainting during dental treatment. Presence of dental phobia (OR = 5.0; 95% CI: 2.8-8.8) was found to be associated with avoidance of dental care, but a history of dizziness or fainting during dental treatment was not (OR = 1.0; 95% CI: 0.8-1.2). The present findings converge to the conclusion that dental phobia should be considered a specific phobia subtype independent of the B-I-I cluster within the DSM classification system. © 2013 Wiley Periodicals, Inc.

  12. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  13. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  14. An extended galactic population of low-luminosity x-ray sources (CVs?) and the diffuse x-ray background

    NASA Technical Reports Server (NTRS)

    Maoz, Eyal; Grindlay, Jonathan E.

    1995-01-01

    The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the possible nature of these soures, including their being subdwarfs, low mass x-ray binaries (LMXBs), massive black holes, and old neutron stars. We argue that the inferred X-ray and optical luminosities of these sources, the slope of their energy spectrum, and the derived local number density and spatial distribution are all consistent with their being intrinsically faint cataclysmic variables with low accretion rates. We suggest a few possibilities for the origin of such population, including an origin from disrupted globular clusters or dark clusters. We make predictions and suggest tests that could either confirm or rule out our proposal in the near future.

  15. X-ray versus infrared selection of distant galaxy clusters: a case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-07-01

    We present a comparison of two samples of z> 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray-selected XMM Large Scale Structure (LSS) distant cluster survey and 92 clusters from the optical-mid-infrared (MIR)-selected Spitzer Adaptation of the Red Sequence Cluster survey (SpARCS) cluster survey. Both samples are selected from the same approximately 9 sq deg sky area and we examine them using common XMM-Newton, Spitizer Wide-Area Infrared Extra-galactic (SWIRE) survey, and Canada-France-Hawaii Telescope Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: (i) X-ray bright, (ii) X-ray faint, MIR bright, and (iii) X-ray faint, MIR faint clusters. We determine that X-ray- and MIR-selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray- and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of brightest cluster galaxy-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  16. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  17. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  18. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki

    2015-01-20

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functionsmore » with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.« less

  19. Asteroid families - An initial search

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1992-01-01

    A stereo examination was conducted for clusters in three-dimensional proper element space within a sample of both numbered and faint Palomar-Leiden Survey (PLS) asteroids. The clusters were then objectively filtered for small Poisson probability of chance occurrence; 104 were accepted as families with 4- to 12-member populations, and are interpreted as impact-generated. Structure is common in the well-populated families: the better-sampled families are accordingly discussed in terms of their geometry and taxonomy. Some families are very rich in faint PLS members.

  20. Tethered Prominence-CME Systems Captured during the 2012 November 13 and 2013 November 3 Total Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Druckmüller, Miloslav; Habbal, Shadia R.; Alzate, Nathalia; Emmanouilidis, Constantinos

    2017-12-01

    We report on white light observations of high latitude tethered prominences acquired during the total solar eclipses of 2012 November 13 and 2013 November 3, at solar maximum, with a field of view spanning several solar radii. Distinguished by their pinkish hue, characteristic of emission from neutral hydrogen and helium, the four tethered prominences were akin to twisted flux ropes, stretching out to the limit of the field of view, while remaining anchored at the Sun. Cotemporal observations in the extreme ultraviolet from the Solar Dynamics Observatory (SDO/AIA) clearly showed that the pinkish emission from the cool (≈ {10}4-{10}5 K) filamentary prominences was cospatial with the 30.4 nm He II emission, and was directly linked to filamentary structures emitting at coronal temperatures ≥slant {10}6 K in 17.1 and 19.3 nm. The tethered prominences evolved from typical tornado types. Each one formed the core of different types of coronal mass ejections (CMEs), as inferred from coordinated LASCO C2, C3, and STEREO A and B coronagraph observations. Two of them evolved into a series of faint, unstructured puffs. One was a normal CME. The most striking one was a “light-bulb” type CME, whose three-dimensional structure was confirmed from all four coronagraphs. These first uninterrupted detections of prominence-CME systems anchored at the Sun, and stretching out to at least the edge of the field of view of LASCO C3, provide the first observational confirmation for the source of counter-streaming electron fluxes measured in interplanetary CMEs, or ICMEs.

  1. Extending pure luminosity evolution models into the mid-infrared, far-infrared and submillimetre

    NASA Astrophysics Data System (ADS)

    Hill, Michael D.; Shanks, Tom

    2011-07-01

    Simple pure luminosity evolution (PLE) models, in which galaxies brighten at high redshift due to increased star formation rates (SFRs), are known to provide a good fit to the colours and number counts of galaxies throughout the optical and near-infrared. We show that optically defined PLE models, where dust reradiates absorbed optical light into infrared spectra composed of local galaxy templates, fit galaxy counts and colours out to 8 μm and to at least z≈ 2.5. At 24-70 μm, the model is able to reproduce the observed source counts with reasonable success if 16 per cent of spiral galaxies show an excess in mid-IR flux due to a warmer dust component and a higher SFR, in line with observations of local starburst galaxies. There remains an underprediction of the number of faint-flux, high-z sources at 24 μm, so we explore how the evolution may be altered to correct this. At 160 μm and longer wavelengths, the model fails, with our model of normal galaxies accounting for only a few percent of sources in these bands. However, we show that a PLE model of obscured AGN, which we have previously shown to give a good fit to observations at 850 μm, also provides a reasonable fit to the Herschel/BLAST number counts and redshift distributions at 250-500 μm. In the context of a ΛCDM cosmology, an AGN contribution at 250-870 μm would remove the need to invoke a top-heavy IMF for high-redshift starburst galaxies.

  2. The Empirical Low Energy Ion Flux Model for the Terrestrial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Diekmann, Anne M.

    2007-01-01

    This document includes a viewgraph presentation plus the full paper presented at the conference. The Living With a Star Ion Flux Model (IFM) is a radiation environment risk mitigation tool that provides magnetospheric ion flux values for varying geomagnetic disturbance levels in the geospace environment. IFM incorporates flux observations from the Polar and Geotail spacecraft in a single statistical flux model. IFM is an engineering environment model which predicts the proton flux not only in the magnetosphere, but also in the solar wind and magnetosheath phenomenological regions. This paper describes the ion flux databases that allows for IFM output to be correlated with the geomagnetic activity level, as represented by the Kp index.

  3. The Evolution of the Faint End of the UV Luminosity Function during the Peak Epoch of Star Formation (1 < z < 3)

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Freeman, William R.; Scarlata, Claudia; Robertson, Brant; Stark, Daniel P.; Teplitz, Harry I.; Desai, Vandana

    2016-11-01

    We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1\\lt z\\lt 3. We use our deep near-ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope and existing Advanced Camera for Surveys (ACS)/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACS J0717 from the Hubble Frontier Field survey and Abell 1689. Combining deep UV imaging and high magnification from strong gravitational lensing, we use photometric redshifts to identify 780 ultra-faint galaxies with {M}{UV}\\lt -12.5 AB mag at 1\\lt z\\lt 3. From these samples, we identified five new, faint, multiply imaged systems in A1689. We run a Monte Carlo simulation to estimate the completeness correction and effective volume for each cluster using the latest published lensing models. We compute the rest-frame UV LF and find the best-fit faint-end slopes of α =-1.56+/- 0.04, α =-1.72+/- 0.04, and α =-1.94+/- 0.06 at 1.0\\lt z\\lt 1.6, 1.6\\lt z\\lt 2.2, and 2.2\\lt z\\lt 3.0, respectively. Our results demonstrate that the UV LF becomes steeper from z˜ 1.3 to z˜ 2.6 with no sign of a turnover down to {M}{UV}=-14 AB mag. We further derive the UV LFs using the Lyman break “dropout” selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example) likely dominate. If we restrict our analysis to galaxies and volumes above \\gt 50 % completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values (α =-1.55+/- 0.06, -1.69 ± 0.07, and -1.79 ± 0.08 for z˜ 1.3, 1.9, and 2.6, respectively). Finally, we conclude that the faint star-forming galaxies with UV magnitudes of -18.5\\lt {M}{UV}\\lt -12.5 covered in this study produce the majority (55%-60%) of the unobscured UV luminosity density at 1\\lt z\\lt 3. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial distribution of the member sample confirms the existence of two groups in Antlia, each one dominated by a giant elliptical galaxy and with one cE located close to each giant. Size and position, with respect to massive galaxies, of the dSph candidates are estimated and compared to Local Group counterparts. Based on observations carried out at the Cerro Tololo Inter-American Observatory (Chile), at Las Campanas Observatory (Chile) and at the European Southern Observatory, Paranal (Chile). Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  5. Intermittent operation of ultra-low pressure ultrafiltration for decentralized drinking water treatment.

    PubMed

    Peter-Varbanets, Maryna; Gujer, Willi; Pronk, Wouter

    2012-06-15

    River water was treated by ultrafiltration at a relatively low transmembrane pressure (40 mbar). As observed before, flux stabilization occurred after several days of operation although no back-flushing or cross flow was applied. Interruptions in flux were applied by temporary offset of the transmembrane pressure. After restoration of the transmembrane pressure, the initial flux was higher than the stable flux level, and the flux recovery depended on the standstill time. Furthermore, if a short cross flow was applied after standstill, the flux was restored to an even higher level. In all cases, the flux decreased again during operation to reach finally the same stable level as before standstill. In order to evaluate the influence of intermittent operation as practiced for water treatment on a household level, daily interruptions of flux were applied. An optimum of total daily water production rate was obtained at 21 h of operation and 3 h of standstill per day. A model was developed which can describe the impact of intermittent operation on the flux depending on the duration of the standstill and operating periods. This enables the prediction of production capacity of the system operated intermittently. The flux increase during standstill could be explained by a relaxation and expansion of the biofouling layer, while the higher flux after forward-flushing was caused by this layer being partially sloughed off. Household water treatment with the process presented here will generally be operated on a discontinuous basis. The results show that such operation schemes do not compromise the permeability of the system, but actually lead to higher fluxes after standstill. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  7. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE PAGES

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    2017-01-16

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minchin, Robert F., E-mail: rminchin@naic.edu

    I investigate whether it is possible to reconcile the recent Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) observation that the neutral hydrogen mass function (HIMF) across different galactic densities has the same, non-flat, faint-end slope, with observations of isolated galaxies and many galaxy groups that show their HIMFs to have flat faint-end slopes. I find that a fairly simple model in which the position of the knee in the mass function of each individual group is allowed to vary is able to account for both of these observations. If this model reflects reality, the ALFALFA results point to anmore » interesting “conspiracy” whereby the differing group HIMFs always sum up to form global HIMFs with the same faint-end slope in different environments. More generally, this result implies that global environmental HIMFs do not necessarily reflect the HIMFs in individual groups belonging to that environment and cannot be used to directly measure variations in group-specific HIMFs with environment.« less

  9. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  10. Observations of faint comets at McDonald Observatory: 1978-1980

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  11. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  12. DISCOVERY OF A NEW FAINT DWARF GALAXY ASSOCIATED WITH NGC 253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Strader, J.

    2014-09-20

    We report the discovery of a new faint dwarf galaxy, which we dub Scl-MM-Dw1, at a projected distance of ∼65 kpc from the spiral galaxy NGC 253. The discovery results from the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), a program with the Magellan/Megacam imager to study faint substructure in resolved stellar light around massive galaxies outside of the Local Group. We measure a tip of the red giant branch distance to Scl-MM-Dw1 of D = 3.9 ± 0.5 Mpc, consistent with that of NGC 253, making their association likely. The new dwarf's stellar population is complex, with an old, metal-poor red giant branch (≳10 Gyr, [Fe/H] ∼ –2), andmore » an asymptotic giant branch with an age of ∼500 Myr. Scl-MM-Dw1 has a half-light radius of r{sub h} = 340 ± 50 pc and an absolute magnitude of M{sub V}  = –10.3 ± 0.6 mag, comparable to the Milky Way's satellites at the same luminosity. Once complete, our imaging survey of NGC 253 and other nearby massive galaxies will provide a census of faint substructure in halos beyond the Local Group, both to put our own environment into context and to confront models of hierarchical structure formation.« less

  13. Infrared Astronomy at Extremely Faint Light Levels in Support of the LAIRTS Program.

    DTIC Science & Technology

    1987-09-01

    Elliptical and Irregular Galaxies (T. X. Thuan), Ap. J., 299, 881-895 (1985). 2. IC 3475: A Stripped Dwarf Galaxy in the Virgo Cluster (L. Vigroux, T. X...imply a metallicity range for BCDs and dis between 1/30 and 1/3 of the sun’s metallicity, while the near-IR colors of the dEs (in the Virgo cluster of... clusters . A paper is in preparation which will study the stellar populations in these first brightest galaxies, as a function of the cluster

  14. Groth Deep Locations Image

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. http://photojournal.jpl.nasa.gov/catalog/PIA04626

  15. Minor Contribution of Quasars to Ionizing Photon Budget at z ˜ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa; Kashikawa, Nobunari; Willott, Chris J.; Hibon, Pascale; Im, Myungshin; Furusawa, Hisanori; Harikane, Yuichi; Imanishi, Masatoshi; Ishikawa, Shogo; Kikuta, Satoshi; Matsuoka, Yoshiki; Nagao, Tohru; Niino, Yuu; Ono, Yoshiaki; Ouchi, Masami; Tanaka, Masayuki; Tang, Ji-Jia; Toshikawa, Jun; Uchiyama, Hisakazu

    2017-10-01

    We constrain the quasar contribution to the cosmic reionization based on our deep optical survey of z ˜ 6 quasars down to z R = 24.15 using Subaru/Suprime-Cam in three UKIDSS-DXS fields covering 6.5 deg2. In Kashikawa et al. (2015), we select 17 quasar candidates and report our initial discovery of two low-luminosity quasars ({M}1450˜ -23) from seven targets, one of which might be a Lyα-emitting galaxy. From an additional optical spectroscopy, none of the four candidates out of the remaining 10 turn out to be genuine quasars. Moreover, the deeper optical photometry provided by the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) shows that, unlike the two already-known quasars, the I - z and z - y colors of the last six candidates are consistent with M- or L-type brown dwarfs. Therefore, the quasar luminosity function (QLF) measurement in the previous paper is confirmed. Compiling the QLF measurements from the literature over a wide magnitude range, including an extremely faint AGN candidate from Parsa et al. (2017), to fit them with a double power law, we find that the best-fit faint-end slope is α =-{2.04}-0.18+0.33 (-{1.98}-0.21+0.48) and characteristic magnitude is {M}1450* =-{25.8}-1.9+1.1 (-{25.7}-1.8+1.0) in the case of two (one) quasar detection. Our result suggests that, if the QLF is integrated down to {M}1450=-18, quasars produce ˜1%-12% of the ionizing photons required to fully ionize the universe at z ˜ 6 with a 2σ confidence level, assuming that the escape fraction is {f}{esc}=1 and the intergalactic medium clumpy factor is C = 3. Even when the systematic uncertainties are taken into account, our result supports the scenario that quasars are the minor contributors of the reionization.

  16. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Metzger, B. D.; Butler, N. R.

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However,more » a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.« less

  17. On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-01-01

    We use deep Gemini/GMOS-S g, r photometry to study the three ultra-faint dwarf galaxy candidates DES1, Eridanus III (Eri III), and Tucana V (Tuc V). Their total luminosities, M V (DES1) = ‑1.42 ± 0.50 and M V (Eri III) = ‑2.07 ± 0.50, and mean metallicities, [{Fe}/{{H}}]=-{2.38}-0.19+0.21 and [{Fe}/{{H}}]=-{2.40}-0.12+0.19, are consistent with them being ultra-faint dwarf galaxies, as they fall just outside the 1σ confidence band of the luminosity–metallicity relation for Milky Way satellite galaxies. However, their positions in the size–luminosity relation suggest that they are star clusters. Interestingly, DES1 and Eri III are at relatively large Galactocentric distances, with DES1 located at {D}{GC}=74+/- 4 {kpc} and Eri III at {D}{GC}=91+/- 4 {kpc}. In projection, both objects are in the tail of gaseous filaments trailing the Magellanic Clouds and have similar 3D separations from the Small Magellanic Cloud (SMC): {{Δ }}{D}{SMC,{DES}1}=31.7 kpc and {{Δ }}{D}{SMC,{Eri}{III}}=41.0 kpc, respectively. It is plausible that these stellar systems are metal-poor SMC satellites. Tuc V represents an interesting phenomenon in its own right. Our deep photometry at the nominal position of Tuc V reveals a low-level excess of stars at various locations across the GMOS field without a well-defined center. An SMC Northern Overdensity–like isochrone would be an adequate match to the Tuc V color–magnitude diagram, and the proximity to the SMC (12.°1 {{Δ }}{D}{SMC,{Tuc}{{V}}}=13 kpc) suggests that Tuc V is either a chance grouping of stars related to the SMC halo or a star cluster in an advanced stage of dissolution.

  18. Particle flux in deep seas: regional characteristics and temporal variability

    NASA Astrophysics Data System (ADS)

    Lampitt, R. S.; Antia, A. N.

    1997-08-01

    Particle flux data have been collated from the literature representing most areas of the open ocean to determine regional trends in deep water flux and its seasonal variability. Organic carbon flux data normalised to a depth of 2000 m exhibits a range of an order of magnitude in areas outside the polar domains (0.38 to 4.2 g/m2/y). In polar regions the range is wider (0.01-5.9 g/m2/y). Latitudinal trends are not apparent for most components of the flux although calcite flux exhibits a poleward decrease. Limited data from polar regions show fluxes of opaline silica not significantly higher than elsewhere. The variability of flux over annual cycles was calculated and expressed as a Flux Stability Index (FSI) and the relationship between this and vertical flux of material examined. Somewhat surprisingly there is no significant relationship between FSI and fluxes of dry mass, organic carbon, inorganic carbon or opaline silica. At each site, net annual primary production was determined using published satellite derived estimates. There is a negative but weak relationship between FSI and the proportion of primary production exported to 2000 m (e2000 ratio). The most variable of the non-polar environments export to 2000 m about twice as much of the primary production as the most stable ones. Polar environments have very low e2000 ratios with no apparent relationship to FSI. At primary production levels below 200 g C/m2/y there is a positive correlation between production and organic carbon flux at 2000 m but above this level, flux remains constant at about 3.5g C/m2/y. A curve derived to describe this relationship was applied to estimates of annual primary production in each of 34 of the open ocean biogeochemical provinces proposed by Longhurst et al. (1995). Globally, open ocean flux of organic carbon at 2000 m is 0.34 Gt/yr which is 1% of the total net primary production in these regions. This flux is nearly equally divided between the Atlantic, Pacific and Southern Oceans. The Indian and Arctic oceans between them only contribute 5% to the total. The eight planktonic climatological categories proposed by Longhurst (1995) provide a most useful means of examining the data on flux and its variability. A characteristic level of FSI was found in each category with highest levels in the tropics and lowest levels in the Antarctic. There is also a characteristic level of export ratio in each category with the highest in monsoonal environments (1.7%) and the lowest in Antarctica (0.1%).

  19. In-pile electrochemical measurements on AISI 316 L(N) IG and EUROFER 97 I: experimental results

    NASA Astrophysics Data System (ADS)

    Vankeerberghen, Marc; Bosch, Rik-Wouter; Van Nieuwenhoven, Rudi

    2003-02-01

    In-pile electrochemical measurements were performed in order to investigate the effect of radiation on the electrochemical corrosion behaviour of two materials: reduced activation ferritic-martensitic steel EUROFER 97 and stainless steel AISI 316 L(N) IG. The corrosion potential was continuously monitored during the whole irradiation period. At regular intervals and under various flux levels, polarisation resistance measurements and electrochemical impedance spectroscopy were performed. Polarisation curves were recorded at the end of the reactor cycle. Analysis showed that the corrosion potential increased and the polarisation resistance decreased with the flux level. The impedance data showed two semi-circles in the Nyquist diagram which contracted with increasing flux level. A fit of the impedance data yielded a decrease of solution and polarisation resistances with the flux level. The polarisation curves could be fitted with a standard Butler-Volmer representation after correction for the solution resistance and showed an increase in the corrosion current density with the flux level.

  20. Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay

    PubMed Central

    Sheng, Xuancai; Wu, Ming; Wu, Hao; Ning, Xiao

    2017-01-01

    Changes in the hydrological conditions of coastal wetlands may potentially affect the role of wetlands in the methane (CH4) cycle. In this study, the CH4 production potential and emissions from restored coastal reed wetlands at different water levels were examined in eastern China at a field scale in two phenological seasons. Results showed that the total CH4 flux from reeds at various water levels were positive, indicating that they were “sources” of CH4. During the peak growing season, CH4 flux from reeds was greater than that during the spring thaw. CH4 flux from reeds in inundated conditions was greater than that in non-inundated conditions. The CH4 production potential during the peak growing season was far greater than that during the spring thaw. However, the effect of water level on wetland CH4 production potential differed among seasons. The correlations among CH4 production potential, soil properties and CH4 flux change at different water level. These results demonstrate that water level was related to CH4 production and CH4 flux. The growing season also plays a role in CH4 fluxes. Controlling the hydrological environment in restored wetlands has important implications for the maintenance of their function as carbon sinks. PMID:28968419

  1. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China

    Treesearch

    Jingfeng Xiao; Ge Sun; Jiquan Chen; Hui Chen; Shiping Chen; Gang Dong

    2013-01-01

    The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China,and examined the carbon fluxes, evapotranspiration (ET), and...

  2. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  3. Dwarf galaxies: a lab to investigate the neutron capture elements production

    NASA Astrophysics Data System (ADS)

    Cescutti, Gabriele

    2018-06-01

    In this contribution, I focus on the neutron capture elements observed in the spectra of old halo and ultra faint galaxies stars. Adopting a stochastic chemical evolution model and the Galactic halo as a benchmark, I present new constraints on the rate and time scales of r-process events, based on the discovery of the r-process rich stars in the ultra faint galaxy Reticulum 2. I also show that an s-process activated by rotation in massive stars can play an important role in the production of heavy elements.

  4. VizieR Online Data Catalog: Deep Herschel PACS point spread functions (Bocchio+, 2016)

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Bianchi, A.; Abergel, S.

    2016-06-01

    Herschel PACS dedicated PSF observations are scanmaps centred on various objects taken at 70 (blue channel), 100 (green channel) and 160 (red channel) um. The core of the PSF is best characterised observing faint objects (e.g. the asteroid Vesta), while the wings of the PSF can only be seen in observations of bright objects (e.g. Mars). Using a combination of images of bright and faint objects it is therefore possible to have a good characterisation of the PACS PSFs. (2 data files).

  5. Astrometric and Photometric Follow-up of Faint Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Morgan, T. (Technical Monitor); Spahr, Timothy

    2005-01-01

    During the period April 2003 - April 2005, roughly 150 different faint NEO's were observed using the 1.2-m telescope at Mt. Hopkins. Among these were a couple of spacecraft/radar targets, including support observations in support of the Deep Impact mission. While not strictly an NEO target, comet P/Tempel 1 was nonetheless observed as an object of very high importance. During this time and independent contractor, Kyle Smalley, was trained in the use of the telescope and provided some basic software support for the project.

  6. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  7. Digital image profilers for detecting faint sources which have bright companions

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham; Slavey, Robert

    1992-01-01

    For this program, an image profiling system was developed which offers the potential for detecting extremely faint optical sources that are located in close proximity to bright companions. The approach employed is novel in three respects. First, it does not require an optical system wherein extraordinary measures must be taken to minimize diffraction and scatter. Second, it does not require detectors possessing either extreme uniformity in sensitivity or extreme temporal stability. Finally, the system can readily be calibrated, or nulled, in space by testing against an unresolved singular stellar source.

  8. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance

    Treesearch

    Chelcy R. Ford; Robert M. Hubbard; Brian D. Kloeppel; James M. Vose

    2007-01-01

    Many researchers are using sap flux to estimate tree-level transpiration, and to scale to stand- and catchment-level transpiration; yet studies evaluating the comparability of sap flux-based estimates of transpiration (E) with alternative methods for estimating Et at this spatial scale are rare. Our ability to...

  9. EVALUATION OF MASS FLUX TO AND FROM GROUND WATER USING A VERTICAL FLUX MODEL (VFLUX): APPLICATION TO THE SOIL VACUUM EXTRACTION CLOSURE PROBLEM

    EPA Science Inventory

    Site closure for soil vacuum extraction (SVE) application typically requires attainment of specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLSs). Unfortuna...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@umich.edu

    The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studiesmore » of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.« less

  11. Two-sample discrimination of Poisson means

    NASA Technical Reports Server (NTRS)

    Lampton, M.

    1994-01-01

    This paper presents a statistical test for detecting significant differences between two random count accumulations. The null hypothesis is that the two samples share a common random arrival process with a mean count proportional to each sample's exposure. The model represents the partition of N total events into two counts, A and B, as a sequence of N independent Bernoulli trials whose partition fraction, f, is determined by the ratio of the exposures of A and B. The detection of a significant difference is claimed when the background (null) hypothesis is rejected, which occurs when the observed sample falls in a critical region of (A, B) space. The critical region depends on f and the desired significance level, alpha. The model correctly takes into account the fluctuations in both the signals and the background data, including the important case of small numbers of counts in the signal, the background, or both. The significance can be exactly determined from the cumulative binomial distribution, which in turn can be inverted to determine the critical A(B) or B(A) contour. This paper gives efficient implementations of these tests, based on lookup tables. Applications include the detection of clustering of astronomical objects, the detection of faint emission or absorption lines in photon-limited spectroscopy, the detection of faint emitters or absorbers in photon-limited imaging, and dosimetry.

  12. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses.

    PubMed

    Rennenberg, Heinz; Herschbach, Cornelia

    2014-11-01

    Understanding the dynamics of physiological process in the systems biology era requires approaches at the genome, transcriptome, proteome, and metabolome levels. In this context, metabolite flux experiments have been used in mapping metabolite pathways and analysing metabolic control. In the present review, sulphur metabolism was taken to illustrate current challenges of metabolic flux analyses. At the cellular level, restrictions in metabolite flux analyses originate from incomplete knowledge of the compartmentation network of metabolic pathways. Transport of metabolites through membranes is usually not considered in flux experiments but may be involved in controlling the whole pathway. Hence, steady-state and snapshot readings need to be expanded to time-course studies in combination with compartment-specific metabolite analyses. Because of species-specific differences, differences between tissues, and stress-related responses, the quantitative significance of different sulphur sinks has to be elucidated; this requires the development of methods for whole-sulphur metabolome approaches. Different cell types can contribute to metabolite fluxes to different extents at the tissue and organ level. Cell type-specific analyses are needed to characterize these contributions. Based on such approaches, metabolite flux analyses can be expanded to the whole-plant level by considering long-distance transport and, thus, the interaction of roots and the shoot in metabolite fluxes. However, whole-plant studies need detailed empirical and mathematical modelling that have to be validated by experimental analyses. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Distribution of Faint Atomic Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Yun, Min Su; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Zhu, Guangtun; Braatz, James A.

    2015-10-01

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25‧ × 25‧ (140-650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast-southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  14. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  15. Discarded candidate companions to low-mass members of Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Comerón, F.

    2012-01-01

    Context. Direct detections of brown dwarfs and planetary-mass companions to members of nearby star-forming regions provide important clues about the process of star formation, core fragmentation, and protoplanetary disk evolution. Aims: We study two faint objects at a very small angular distance from the low-mass star ESO-Hα-558 and the possible massive brown dwarf ESO-Hα-566, both of which are members of the Chamaeleon I star-forming region, to establish whether they are physical companions to those sources. If they are, their low luminosities should imply L or T spectral types, which have clearly detectable spectral features. Methods: Adaptive optics-assisted imaging and spectroscopy of both faint candidate companions has been obtained with the NACO instrument at the Very Large Telescope (VLT). Results: Photometry shows that the colors of both objects are compatible with them being moderately reddened, normal stars in the background of the Chamaeleon I clouds. This interpretation is confirmed spectroscopically, as the spectrum between 1.4 and 2.4 μm of both objects has a featureless, monotonic slope lacking the strong H2O absorption features that dominate cool stellar and substellar spectra in that domain. Conclusions: We demonstrate that the two faint sources seen very close to ESO-Hα-558 and ESO-Hα-566 are unrelated background stars, instead of giant planetary-mass companions as might be expected based on their faintness and angular proximity. Based on observations collected with the Very Large Telescope (VLT) at the European Southern Observatory, Paranal, Chile, under observing programmes 075.C-0809(B) and 078.C-0429(C).

  16. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and I bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of I=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ˜ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  17. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  18. Diagnostic performance of a computer-assisted diagnosis system for bone scintigraphy of newly developed skeletal metastasis in prostate cancer patients: search for low-sensitivity subgroups.

    PubMed

    Koizumi, Mitsuru; Motegi, Kazuki; Koyama, Masamichi; Terauchi, Takashi; Yuasa, Takeshi; Yonese, Junji

    2017-08-01

    The computer-assisted diagnostic system for bone scintigraphy (BS) BONENAVI is used to evaluate skeletal metastasis. We investigated its diagnostic performance in prostate cancer patients with and without skeletal metastasis and searched for the problems. An artificial neural network (ANN) value was calculated in 226 prostate cancer patients (124 with skeletal metastasis and 101 without) using BS. Receiver operating characteristic curve analysis was performed and the sensitivity and specificity determined (cutoff ANN = 0.5). Patient's situation at the time of diagnosis of skeletal metastasis, computed tomography (CT) type, extent of disease (EOD), and BS uptake grade were analyzed. False-negative and false-positive results were recorded. BONENAVI showed 82% (102/124) of sensitivity and 83% (84/101) specificity for metastasis detection. There were no significant differences among CT types, although low EOD and faint BS uptake were associated with low ANN values and low sensitivity. Patients showed lower sensitivity during the follow-up period than staging work-up. False-negative lesions were often located in the pelvis or adjacent to it. They comprised not only solitary, faint BS lesions but also overlaying to urinary excretion. BONENAVI with BS has good sensitivity and specificity for detecting prostate cancer's osseous metastasis. Low EOD and faint BS uptake are associated with low sensitivity but not the CT type. Prostate cancer patients likely to have false-negative results during the follow-up period had a solitary lesion in the pelvis with faint BS uptake or lesions overlaying to urinary excretion.

  19. DISTRIBUTION OF FAINT ATOMIC GAS IN HICKSON COMPACT GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borthakur, Sanchayeeta; Heckman, Timothy M.; Zhu, Guangtun

    2015-10-10

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25′ × 25′ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detectedmore » in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.« less

  20. NGC628 with SITELLE: I. Imaging spectroscopy of 4285 H II region candidates

    NASA Astrophysics Data System (ADS)

    Rousseau-Nepton, L.; Robert, C.; Martin, R. P.; Drissen, L.; Martin, T.

    2018-07-01

    This is the first paper of a series dedicated to nebular physics and the chemical evolution of nearby galaxies by investigating large samples of H II regions with the Canada-France-Hawaii Telescope imaging spectrograph SITELLE (Spectro-Imageur à Transformée de Fourier pour l'Étude en Long et en Large des raies d'Émission). We present a technique adapted to imaging spectroscopy to identify and extract parameters from 4285 H II region candidates found in the disc of NGC 628. Using both the spatial and spectral capabilities of SITELLE, our technique enables the extraction of the position, dust extinction, velocity, H α profile, diffuse ionized gas (DIG) background, luminosity, size, morphological type, and the emission-line fluxes for individual spaxels and the integrated spectrum for each region. We have produced a well-sampled H II region luminosity function and studied its variation with galactocentric radius and level of the DIG background. We found a slope α of -1.12 ± 0.03 with no evidence of a break at high luminosity. Based on the width of the region profile, bright regions are rather compact, while faint regions are seen over a wide range of sizes. The radius function reveals a slope of -1.81 ± 0.02. BPT diagrams of the individual spaxels and integrated line ratios confirm that most detections are H II regions. Also, maps of the line ratios show complex variations of the ionization conditions within H II regions. All this information is compiled in a new catalogue for H II regions. The objective of this data base is to provide a complete sample which will be used to study the whole parameter space covered by the physical conditions in active star-forming regions.

  1. Towards stellar effective temperatures and diameters at 1 per cent accuracy for future surveys

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; Portinari, L.; Glass, I. S.; Laney, D.; Silva Aguirre, V.; Datson, J.; Andersen, J.; Nordström, B.; Holmberg, J.; Flynn, C.; Asplund, M.

    2014-04-01

    The apparent size of stars is a crucial benchmark for fundamental stellar properties such as effective temperatures, radii and surface gravities. While interferometric measurements of stellar angular diameters are the most direct method to gauge these, they are still limited to relatively nearby and bright stars, which are saturated in most of the modern photometric surveys. This dichotomy prevents us from safely extending well-calibrated relations to the faint stars targeted in large spectroscopic and photometric surveys. Here, we alleviate this obstacle by presenting South African Astronomical Observatory near-infrared JHK observations of 55 stars: 16 of them have interferometric angular diameters and the rest are in common with the 2 Micron All Sky Survey (2MASS, unsaturated) data set, allowing us to tie the effective temperatures and angular diameters derived via the infrared flux method to the interferometric scale. We extend the test to recent interferometric measurements of unsaturated 2MASS stars, including giants, and the metal-poor benchmark target HD122563. With a critical evaluation of the systematics involved, we conclude that a 1 per cent accuracy in fundamental stellar parameters is usually within reach. Caution, however, must be used when indirectly testing a Teff scale via colour relations as well as when assessing the reliability of interferometric measurements, especially at submilliarcsec level. As a result, rather different effective temperature scales can be compatible with a given subset of interferometric data. We highlight some caveats to be aware of in such a quest and suggest a simple method to check against systematics in fundamental measurements. A new diagnostic combination seismic radii with astrometric distances is also presented.

  2. Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits

    NASA Astrophysics Data System (ADS)

    Sun, Hui-Chen; Liu, Yu-xi; Ian, Hou; You, J. Q.; Il'ichev, E.; Nori, Franco

    2014-06-01

    We study the microwave absorption of a driven three-level quantum system, which is realized by a superconducting flux quantum circuit (SFQC), with a magnetic driving field applied to the two upper levels. The interaction between the three-level system and its environment is studied within the Born-Markov approximation, and we take into account the effects of the driving field on the damping rates of the three-level system. We study the linear response of the driven three-level SFQC to a weak probe field. The linear magnetic susceptibility of the SFQC can be changed by both the driving field and the bias magnetic flux. When the bias magnetic flux is at the optimal point, the transition from the ground state to the second-excited state is forbidden and the three-level SFQC has a ladder-type transition. Thus, the SFQC responds to the probe field like natural atoms with ladder-type transitions. However, when the bias magnetic flux deviates from the optimal point, the three-level SFQC has a cyclic transition, thus it responds to the probe field like a combination of natural atoms with ladder-type transitions and natural atoms with Λ-type transitions. In particular, we provide detailed discussions on the conditions for realizing electromagnetically induced transparency and Autler-Townes splitting in three-level SFQCs.

  3. Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Costamante, L.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Milite, M.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Remillard, R. A.

    2002-10-01

    The nearby BL Lacertae (BL Lac) object Markarian 421 (Mkn 421) at a red shift z=0.031 was observed to undergo strong TeV gamma -ray outbursts in the observational periods from December 1999 until May 2001. The time averaged flux level F(E>1 TeV) in the 1999/2000 season was (1.43+/-0.04) x 10-11 ph cm-2 s-1, whereas in the 2000/2001 season the average integral flux increased to (4.19+/-0.04) x 10-11 ph cm-2 s-1. Both energy spectra are curved and well fit by a power law with an exponential cut-off energy at 3.6(+0.4-0.3)_stat(+0.9-0.8)_sys TeV. The respective energy spectra averaged over each of the two time periods indicate a spectral hardening for the 2000/2001 spectrum. The photon index changes from 2.39+/-0.09_stat for 1999/2000 to 2.19+/-0.02_stat in 2000/2001. The energy spectra derived for different average flux levels ranging from 0.5 to 10 x 10-11 ph cm-2 s-1 follow a clear correlation of photon index and flux level. Generally, the energy spectra are harder for high flux levels. From January to April 2001 Mkn 421 showed rapid variability (doubling time as short as 20 min), accompanied with a spectral hardening with increasing flux level within individual nights. For two successive nights (MJD 51989-51991, March 21-23, 2001), this correlation of spectral hardness and change in flux has been observed within a few hours. The cut-off energy for the Mkn 421 TeV spectrum remains within the errors constant for the different flux levels and differs by Delta E=2.6+/-0.6_stat+/-0.6_sys TeV from the value determined for Mkn 501. This indicates that the observed exponential cut-off in the energy spectrum of Mkn 421 is not solely caused by absorption of multi-TeV photons by pair-production processes with photons of the extragalactic near/mid infrared background radiation.

  4. Can the Discrepancy between Locally and Globally Derived Neutral Hydrogen Mass Functions be Explained by a Varying Value of M ⋆?

    NASA Astrophysics Data System (ADS)

    Minchin, Robert F.

    2017-09-01

    I investigate whether it is possible to reconcile the recent Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) observation that the neutral hydrogen mass function (HIMF) across different galactic densities has the same, non-flat, faint-end slope, with observations of isolated galaxies and many galaxy groups that show their HIMFs to have flat faint-end slopes. I find that a fairly simple model in which the position of the knee in the mass function of each individual group is allowed to vary is able to account for both of these observations. If this model reflects reality, the ALFALFA results point to an interesting “conspiracy” whereby the differing group HIMFs always sum up to form global HIMFs with the same faint-end slope in different environments. More generally, this result implies that global environmental HIMFs do not necessarily reflect the HIMFs in individual groups belonging to that environment and cannot be used to directly measure variations in group-specific HIMFs with environment.

  5. FIGGS 2: An HI survey of extremely faint irregular galaxies

    NASA Astrophysics Data System (ADS)

    Patra, N. N.; Chengalur, J. N.; Karachentsev, I. D.; Sharina, M. E.

    2016-10-01

    We present observations and first results from the FIGGS2 survey. FIGGS2 is an extension of the earlier Faint Irregular Galaxies GMRT survey (FIGGS) towards faint luminosity end. The sample consists of 20 galaxies, 15 of which were detected in HI 21 cm line using the Giant Meterwave Radio Telescope (GMRT). The median blue band magnitude of our sample is approximately -11.m 6, which is more than one magnitude fainter than earlier FIGGS survey. From our GMRT observations we found that, for many of our sample galaxies, the HI disks are offset from their optical disks. The HI diameters of the FIGGS2 galaxies show a tight correlation with their HI mass. The slope of the correlation is 2.08 ± 0.20 similar to what is found for FIGGS galaxies. We also found that for almost all galaxies, the HI disks are larger than the optical disks which is a common trend for dwarf or spiral galaxies. The mean value of the ratio of HI to optical diameter is about 1.54.

  6. Exploring the Faint End of the Luminosity-Metallicity Relation with Hα Dots

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.

    2015-01-01

    The well-known correlation between a galaxy's luminosity and its gas-phase oxygen abundance (the luminosity-metallicity (L-Z) relation) offers clues toward our understanding of chemical enrichment histories and evolution. Bright galaxies are comparatively better studied than faint ones, leaving a relative dearth of observational data points to constrain the L-Z relation in the low-luminosity regime. We present high S/N nebular spectroscopy of low-luminosity star-forming galaxies observed with the KPNO 4m using the new KOSMOS spectrograph to derive direct-method metallicities. Our targets are strong point-like emission-line sources discovered serendipitously in continuum-subtracted narrowband images from the ALFALFA Hα survey. Follow-up spectroscopy of these "Hα dots" shows that these objects represent some of the lowest luminosity star-forming systems in the local Universe. Our KOSMOS spectra cover the full optical region and include detection of [O III] λ4363 in roughly a dozen objects. This paper presents some of the first scientific results obtained using this new spectrograph, and demonstrates its capabilities and effectiveness in deriving direct-method metallicities of faint objects.

  7. PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z{approx} 4 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, H.; Nagao, T.; Matsuoka, K.

    2011-02-20

    We searched for quasars that are {approx}3 mag fainter than the SDSS quasars in the redshift range 3.7 {approx}< z {approx}< 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function (QLF). Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z {approx} 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope and identified eight low-luminosity quasars at z {approx} 4. In order to derive the QLF based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasarmore » survey through detailed Monte Carlo simulations. Our QLF at z {approx} 4 has a much shallower faint-end slope ({beta} = -1.67{sup +0.11}{sub -0.17}) than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.« less

  8. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  9. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars requires mergers to have occurred very early in the galaxys history. Can double-neutron-star systems merge quickly enough to account for the observed chemical enrichment?Small Kicks and Fast MergersFraction of double-neutron-star systems that remain bound, vs. the magnitude of the kick they receive. A typical escape velocity for an ultra-faint dwarf is ~15 km/s; roughly 55-65% of binaries receive smaller kicks than that and wouldnt be ejected from an ultra-faint dwarf. [Beniamini et al. 2016]Led by Paz Beniamini, a team of scientists from the Racah Institute of Physics at the Hebrew University of Jerusalem has set out to answer these questions. Using the statistics of our galaxys double-neutron-star population, the team performed Monte Carlo simulations to estimate the distributions of mass ejection and kick velocities for the systems.Beniamini and collaborators find that, for typical initial separations, more than half of neutron star binaries are born with small enough kicks that they remain bound and arent ejected even from small, ultra-faint dwarf galaxies.The team also used their statistics to calculate the time until merger for the population of binaries, finding that ~90% of the double-neutron-star systems merge within 300 Myr, and around 15% merge within 100 Myr quick enough to enrich even the old population of stars.This population of systems that remain confined to the galaxy and merge rapidly can therefore explain the observations of r-process material in ultra-faint dwarf galaxies. Beniamini and collaborators work suggests that the merger of neutron stars is indeed a viable model for the production of heavy elements in our universe.CitationPaz Beniamini et al 2016 ApJ 829 L13. doi:10.3847/2041-8205/829/1/L13

  10. First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip M.; Esposito, Simone; Burrows, Adam; Leisenring, Jarron; Skrutskie, Michael; Desidera, Silvano; Mesa, Dino; Arcidiacono, Carmelo; Mannucci, Filippo; Rodigas, Timothy J.; Close, Laird; McCarthy, Don; Kulesa, Craig; Agapito, Guido; Apai, Daniel; Argomedo, Javier; Bailey, Vanessa; Boutsia, Konstantina; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Claudi, Riccardo; Eisner, Joshua; Fini, Luca; Follette, Katherine B.; Garnavich, Peter; Gratton, Raffaele; Guerra, Juan Carlos; Hill, John M.; Hoffmann, William F.; Jones, Terry; Krejny, Megan; Males, Jared; Masciadri, Elena; Meyer, Michael R.; Miller, Douglas L.; Morzinski, Katie; Nelson, Matthew; Pinna, Enrico; Puglisi, Alfio; Quanz, Sascha P.; Quiros-Pacheco, Fernando; Riccardi, Armando; Stefanini, Paolo; Vaitheeswaran, Vidhya; Wilson, John C.; Xompero, Marco

    2012-07-01

    As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H band and 3.3 μm with the new Large Binocular Telescope adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3 μm photometry of the innermost planet (for the first time) and put strong upper limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 μm compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 μm due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres but find that removing CH4 to fit the 3.3 μm photometry increases the predicted L' (3.8 μm) flux enough that it is inconsistent with observations. In an effort to fit the spectral energy distribution of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown dwarfs. Our mixed-cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are as follows: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di AstroÞsica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  11. The composite nature of Dust-Obscured Galaxies (DOGs) at z ˜ 2-3 in the COSMOS field - I. A far-infrared view

    NASA Astrophysics Data System (ADS)

    Riguccini, L.; Le Floc'h, E.; Mullaney, J. R.; Menéndez-Delmestre, K.; Aussel, H.; Berta, S.; Calanog, J.; Capak, P.; Cooray, A.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A.; Lutz, D.; Magnelli, B.; McCracken, H.; Oliver, S.; Roseboom, I.; Salvato, M.; Sanders, D.; Scoville, N.; Taniguchi, Y.; Treister, E.

    2015-09-01

    Dust-Obscured Galaxies (DOGs) are bright 24 μm-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (TD ˜ 200-1000 K) in the near-IR indicating that their mid-IR luminosity is dominated by an active galactic nucleus (AGN). DOGs with a fainter 24 μm flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g. total IR luminosities; mid-to-far-IR colours; dust temperatures and masses) based on spectral energy distribution fitting. Of particular interest are the 24 μm-bright DOGs (F24 μm > 1 mJy). They present bluer far-IR/mid-IR colours than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 μm flux increases as a function of the rest-frame 8 μm-luminosity irrespective of the redshift. This confirms that faint DOGs (L8 μm < 1012 L⊙) are dominated by star formation while brighter DOGs show a larger contribution from an AGN.

  12. A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.

    2016-08-20

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWNmore » around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.« less

  13. An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long Feng; Herczeg, Gregory J.; Pascucci, Ilaria

    The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey {sup 13}CO and C{sup 18}O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect {sup 13}CO emission from 17 sources and C{sup 18}O from only one source.more » Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H{sub 2} ratio of 10{sup −4}, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M {sub Jup} as inferred from the average flux of stacked {sup 13}CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.« less

  14. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    PubMed

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources weremore » detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).« less

  16. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot.more » We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.« less

  17. Gradual Streamer Expansions and the Relationship between Blobs and Inflows

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Hess, P.

    2018-06-01

    Coronal helmet streamers show a continual tendency to expand outward and pinch off, giving rise to flux ropes that are observed in white light as “blobs” propagating outward along the heliospheric current/plasma sheet. The blobs form within the r ∼ 2–6 R ⊙ heliocentric range of the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument, but the expected inward-moving counterparts are often not detected. Here we show that the height of blob formation varies as a function of the underlying photospheric field, with the helmet streamer loops expanding to greater heights when active regions (ARs) emerge underneath them. When the pinch-offs occur at r ∼ 3–4 R ⊙, diverging inward/outward tracks sometimes appear in height–time maps constructed from LASCO C2 running-difference images. When the underlying photospheric field is weak, the blobs form closer to the inner edge of the C2 field of view and only the outward tracks are clearly visible. Conversely, when the emergence of large ARs leads to a strengthening of the outer coronal field and an increase in the total white-light radiance (as during late 2014), the expanding helmet-streamer loops pinch off beyond r ∼ 4 R ⊙, triggering strong inflow streams whose outgoing counterparts are usually very faint. We deduce that the visibility of the blobs and inflows depends on the amount of material that the diverging components sweep up within the 2–6 R ⊙ field of view. We also note that the rate of blob production tends to increase when a helmet streamer is “activated” by underlying flux emergence.

  18. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  19. A Broadband Emission Model of Magnetar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.

    2016-08-01

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (˜1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L spin among all the magnetars. However, the MWN is faint because of the low L spin of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ-ray flux will be detected in a future TeV γ-ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  20. An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Long, Feng; Herczeg, Gregory J.; Pascucci, Ilaria; Drabek-Maunder, Emily; Mohanty, Subhanjoy; Testi, Leonardo; Apai, Daniel; Hendler, Nathan; Henning, Thomas; Manara, Carlo F.; Mulders, Gijs D.

    2017-08-01

    The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey 13CO and C18O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect 13CO emission from 17 sources and C18O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H2 ratio of 10‑4, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M Jup as inferred from the average flux of stacked 13CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.

  1. HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.

    2015-09-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.

  2. A Faint Flux-limited Lyα Emitter Sample at z ˜ 0.3

    NASA Astrophysics Data System (ADS)

    Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.; Cowie, Lennox L.; Rosenwasser, Benjamin

    2017-10-01

    We present a flux-limited sample of z ˜ 0.3 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX z ˜ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Lyα emission line directly from our sample. We examine the evolution of these quantities from z ˜ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Lyα luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Lyα luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the Hα luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Lyα escape fraction. Finally, we show that the observed Lyα luminosity density from AGNs is comparable to the observed Lyα luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Lyα luminosity density persists out to z ˜ 2.2. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  3. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  4. Ultraviolet imaging of planetary nebulae with GALEX

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  5. Coronagraphic Observations of the Lunar Sodium Exosphere Near the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1998-01-01

    The sodium exosphere of the Moon was observed using a solar coronagraph to occult the illuminated surface of the Moon. Exceptionally dust-free atmospheric conditions were required to allow the faint emission from sunlight scattered by lunar sodium atoms to be distinguished from moonlight scattered from atmospheric dust. At 0300 UT on April 22, 1994, ideal conditions prevailed for a few hours, and one excellent image of the sodium exosphere was measured, with the Moon at a phase angle of 51 deg, 81 % illuminated. Analysis of the image data showed that the weighted mean temperature of the exosphere was 1280 K and that the sodium column density varied approximately as cosine-cubed of the latitude. A cosine-cubed variation is an unexpected result, since the flux per unit area of solar photons and solar particles varies as the cosine of latitude. It is suggested that this can be explained by a temperature dependence for the sputtering of sodium atoms from the surface. This is a characteristic feature of chemical sputtering, which has been previously proposed to explain the sodium exosphere of Mercury. A possible interaction between chemical sputtering and solar photons is suggested.

  6. Rocket and laboratory studies in astronomy

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.

    1994-01-01

    This report covers the period from September 1, 1993 to August 31, 1994. During the reporting period we launched the Faint Object Telescope to measure the absolute flux of a hot white dwarf star in the spectral range below 1200 A. This experiment was not successful due to a failure of an electronics unit in the onboard TV acquisition system. The source of the failure has been identified and corrected and is described in detail below. The payload was recovered in excellent condition and we are planning to refurbish it for flight during the November 1995 Australia campaign. We have continued our laboratory studies of the ultraviolet performance of charge-coupled-detector (CCD) arrays and plan to include a UV-sensitive CCD in a new payload that was assembled during the current period. The objective of the experiment is the ultraviolet imaging of Jupiter and we are scheduled to launch the payload, 36.115UG, in May-June 1995. We have also begun the design of a high-resolution FUV spectrograph for a future flight of the FOT and have just recently received a high line density grating fabricated by Jobin-Yvon, S.A. (France) for evaluation. Work has continued on the analysis of data from previous rocket experiments.

  7. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less

  8. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less

  9. Compton echoes from nearby gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Giannios, Dimitrios; Younes, George; van der Horst, Alexander J.; Kouveliotou, Chryssa

    2018-06-01

    The recent discovery of gravitational waves from GW170817, associated with a short gamma-ray burst (GRB) at a distance of 40 Mpc, has demonstrated that short GRBs can occur locally and at a reasonable rate. Furthermore, gravitational waves enable us to detect close-by GRBs, even when we are observing at latitudes far from the jet's axis. We consider here Compton echoes, the scattered light from the prompt and afterglow emission. Compton echoes, an as yet undetected counterpart of GRBs, peak in X-rays and maintain a roughly constant flux for hundreds to thousands of years after the burst. Though too faint to be detected in typical cosmological GRBs, a fraction of close-by bursts with a sufficiently large energy output in X-rays, and for which the surrounding medium is sufficiently dense, may indeed be observed in this way. The detection of a Compton echo could provide unique insight into the burst properties and the environment's density structure. In particular, it could potentially determine whether or not there was a successful jet that broke through the compact binary merger ejecta. We discuss here the properties and expectations from Compton echoes and suggest methods for detectability.

  10. International Ultraviolet Explorer observations of the white dwarf nucleus of the very old, diffuse planetary nebula, IW-2

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, Walter A.

    1993-01-01

    UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.

  11. Discovery of a Be/X-Ray Binary Consistent with the Location of GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen; Weisskopf, Martin; Finger, Mark H.; Coe, M. J.; Greiner, Jochen; Reig, Pablo; Papamastorakis, Giannis

    2005-01-01

    GRO J2058+42 is a 195 s transient X-ray pulsar discovered in 1995 with BATSE. In 1996, RXTE located GRO J2058+42 to a 90% confidence error circle with a 4 radius. On 2004 February 20, the region including the error circle was observed with Chandra ACIS-I. No X-ray sources were detected within the error circle; however, two faint sources were detected in the ACIS-I field of view. We obtained optical observations of the brightest object, CXOU J205847.5+414637, which had about 64 X-ray counts and was just 013 outside the error circle. The optical spectrum contains a strong Ha line and corresponds to an inhued object in the Two Micron All Sky Survey catalog, indicating a Be/X-ray binary system. Pulsations were not detected in the Chandra observations, but similar flux variations and distance estimates suggest that CXOU J205847.5+414637 and GRO J2058+42 are the same object. We present results from the Chandra observation, optical observations, new and previously unreported RXTE observations, and a reanalysis of a ROSAT observation.

  12. Spitzer/IRS spectroscopy of the 12um Seyferts

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.; Houck, J.

    2009-01-01

    The extended 12um galaxy sample is a flux-limited sample of 893 galaxies selected from the IRAS Faint Source Catalog 2. A total of 118 objects from this sample have been classified optically as Seyfert galaxies, providing one of the largest infrared selected unbiased sample of active galactic nuclei (AGN). We present our prelimary results from our analysis of mid-infrared Spitzer/IRS spectra of 102 12um Seyferts (that is 86 % of the 12um Seyfert sample) which have been observed by various Spitzer programs and are available in the Spitzer archive. A number of mid-infared diagnostics have been developed to study the nature of nuclear dust enshrouded emission from AGNs, in order to disentangle the starburst-AGN connection. Since PAH emission is a tracer of star formation activity we have measured the 11.3um PAH feature for our Seyfert sample. We find that as the strength of the radiation field in AGNs increases the PAH molecules are destroyed, while the PAH EWs increase with the IRAS f60/f25 ratios of the host galaxies. We further probe this warm/cold color diagnostic, by contrasting our findings with those of we starbust galaxies, ULIRGs, as well as blue compact dwarf galaxies.

  13. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  14. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  15. In-flight performance of the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.

    1991-01-01

    An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.

  16. BP Reg Experiment Operations

    NASA Image and Video Library

    2015-04-07

    ISS043E091755 (04/07/2015) --- Expedition 43 Commander Terry Virts is seen here working inside of the Columbus laboratory on the Blood Pressure Regulation (BP Reg) experiment. Astronauts returning from long-duration space flights risk experiencing dizziness or fainting when they stand immediately after returning to Earth. This has an important health risk as it reduces the potential for astronauts to safely escape from an emergency situation. BP Reg will help researchers develop appropriate countermeasures so that astronauts returning from long-duration space flights will have very low risk of experiencing dizziness or fainting when they return to Earth.

  17. BP Reg Experiment Operations

    NASA Image and Video Library

    2015-04-07

    ISS043E091740 (04/07/2015) --- Expedition 43 Commander Terry Virts is seen here working inside of the Columbus laboratory on the Blood Pressure Regulation (BP Reg) experiment. Astronauts returning from long-duration space flights risk experiencing dizziness or fainting when they stand immediately after returning to Earth. This has an important health risk as it reduces the potential for astronauts to safely escape from an emergency situation. BP Reg will help researchers develop appropriate countermeasures so that astronauts returning from long-duration space flights will have very low risk of experiencing dizziness or fainting when they return to Earth.

  18. UV properties of hot stars in NGC 6752

    NASA Technical Reports Server (NTRS)

    Altner, Bruce

    1990-01-01

    The UV properties of hot stars found in the center of NGC 6752 are compared with those outside the core. Few, if any, faint sdB stars are found in the central region, whereas they occur in significant numbers far from the core. A statistically complete photographic survey is used to demonstrate that the faint blue stars in NGC 6752 occur in greater numbers with increasing distance form the center, and the International Ultraviolet Explorer (IUE) findings extend this result all the way to the center of the cluster. A similar phenomenon has been observed optically in other clusters, such as M15.

  19. Cometary ephemerides - needs and concerns

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1981-01-01

    With the use of narrow field-of-view instrumentation on faint comets, the accuracy requirements upon computed ephemerides are increasing. It is not uncommon for instruments with a one arc minute field-of-view to be tracking a faint comet that is not visible without a substantial integration time. As with all ephemerides of solar syste objects, the computed motion and reduction of these observations, the computed motion of a comet is further depenent upon effects related to the comet's activity. Thus, the ephemeris of an active comet is corrupted by both observational errors and errors due to the comet's activity.

  20. Fabrication and evaluation of a weak zone plate for monitoring performance of large orbiting telescopes

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1972-01-01

    An experimental study of the feasibility of monitoring the optical performance of a large telescope by means of a very faint phase hologram imprinted upon the primary mirror is reported. Tests have been made using an f/5 telescope with a 0.3 m aperture. The results indicate that a usable hologram can be so faint and so restricted in area that it will probably not interfere significantly with normal operation of a 3.0 m telescope at wavelengths longer than 100 nm for stars brighter than magnitude 29.

  1. AmeriFlux US-PFa Park Falls/WLEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-PFa Park Falls/WLEF. Site Description - The flux footprint encompasses a highly heterogeneous landscape of upland forests and wetlands (forested and nonforested). The forests are mainly deciduous but also include substantial coniferous coverage. The upland/lowland variability occurs on spatial scales of a few hundred meters. This heterogeneous landscape is further complicated by a nonuniform, small scale mosaic of thinning and clearcutting of the forest. At larger scales (1 km or greater) the forest cover mosaic is quite homogeneous for many kilometers. The site was chosen not formore » study of a simple stand, but for upscaling experiments. The daytime fetch of flux measurements from the 396m level is on the order of 5-10 km, yielding a flux footprint roughly 100x the area of a typical stand-level flux tower. AC power (tower is a TV transmitter).« less

  2. Direct evidence of a sub-stellar companion around CT Chamaeleontis

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Seifahrt, A.; Vogt, N.; Bedalov, A.; Helling, Ch.; Witte, S.; Hauschildt, P. H.

    2008-11-01

    Aims: In our ongoing search for close and faint companions around T Tauri stars in the Chamaeleon star-forming region, we here present observations of a new common proper motion companion to the young T-Tauri star and Chamaeleon member CT Cha and discuss its properties in comparison to other young, low-mass objects and to synthetic model spectra from different origins. Methods: Common proper motion of the companion and CT Cha was confirmed by direct Ks-band imaging data taken with the VLT Adaptive Optics (AO) instrument NACO in February 2006 and March 2007, together with a Hipparcos binary for astrometric calibration. An additional J-band image was taken in March 2007 to obtain color information for a first classification of the companion. Moreover, AO integral field spectroscopy with SINFONI in J, and H+K bands was obtained to deduce physical parameters of the companion, such as temperature and extinction. Relative flux calibration of the bands was achieved using photometry from the NACO imaging data. Results: We found a very faint (Ks = 14.9 mag, Ks0 = 14.4 mag) object, just ~2.67´´ northwest of CT Cha corresponding to a projected separation of ~440 AU at 165 ± 30 pc. We show that CT Cha A and this faint object form a common proper motion pair and that the companion is by ≥4σ significance not a stationary background object. The near-infrared spectroscopy yields a temperature of 2600 ± 250 K for the companion and an optical extinction of AV = 5.2 ± 0.8 mag, when compared to spectra calculated from Drift-Phoenix model atmospheres. We demonstrate the validity of the model fits by comparison to several other well-known young sub-stellar objects. Conclusions: We conclude that the CT Cha companion is a very low-mass member of Chamaeleon and very likely a physical companion to CT Cha, as the probability for a by chance alignment is ≤0.01. Due to a prominent Pa-β emission in the J-band, accretion is probably still ongoing onto the CT Cha companion. From temperature and luminosity (log(L_bol/L⊙) = -2.68 ± 0.21), we derive a radius of R = 2.20_-0.60+0.81 RJup. We find a consistent mass of M = 17 ± 6 MJup for the CT Cha companion from both its luminosity and temperature when placed on evolutionary tracks. Hence, the CT Cha companion is most likely a wide brown dwarf companion or possibly even a planetary mass object. Based on observations made with ESO telescopes at the Paranal Observatory under program IDs 076.C-0292(A), 078.C-0535(A), & 279.C-5010(A). Color versions of Figs. 4, 6, 8 and 11 are only available in electronic form at http://www.aanda.org

  3. Evolution in High Spatial Resolution Imaging of Faint, Complex Objects

    NASA Astrophysics Data System (ADS)

    van Belle, G.

    The astrophysical community has been working at the task of obtaining image information of the smallest structures in the sky via the use of optical interferometry for well over a century. A richly diverse family of technology architectures has been explored over the years, and yet the current family of facilities are all striking similar. Although there may be other, heretofore undeployed, architectures that support the goal of collecting image information at the highest resolutions, we expect dramatic advances at the component level of long-baseline interferometry to be the best avenue for advancing the technique, rather than entirely new architectures.

  4. Near Infrared Imaging of the Hubble Deep Field with Keck Telescope

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Neugebauer, G.; Armus, Lee; Matthews, K.; Pahre, Michael A.; Soifer, B. T.; Weinberger, A. J.

    1997-01-01

    Two deep K-band (2.2 micrometer) images, with point-source detection limits of K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V(sub 606)- I(sub 814) and I(sub 814)-K colors are measured. By stacking visually selected objects, mean I(sub 814)-K colors can be measured to very faint levels, the mean I(sub 814)-K color is constant with apparent magnitude down to V(sub 606)=28 mag.

  5. How large is the subducted water flux? New constraints on mantle regassing rates

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2012-02-01

    Estimates of the subducted water (H2O) flux have been used to discuss the regassing of the mantle over Earth history. However, these estimates vary widely, and some are large enough to have reduced the volume of water in the global ocean by a factor of two over the Phanerozoic. In light of uncertainties in the hydration state of subducting slabs, magma production rates and mantle source water contents, we use a Monte Carlo simulation to set limits on long-term global water cycling and the return flux of water to the deep Earth. Estimates of magma production rates and water contents in primary magmas generated at ocean islands, mid-ocean ridges, arcs and back-arcs are paired with estimates of water entering trenches via subducting oceanic slab in order to construct a model of the deep Earth water cycle. The simulation is constrained by reconstructions of Phanerozoic sea level change, which suggest that ocean volume is near steady-state, though a sea level decrease of up to 360 m may be supported. We provide limits on the return flux of water to the deep Earth over the Phanerozoic corresponding to a near steady-state exosphere (0-100 meter sea level decrease) and a maximum sea level decrease of 360 m. For the near steady-state exosphere, the return flux is 1.4 - 2.0- 0.3+ 0.4 × 1013 mol/yr, corresponding to 2-3% serpentinization in 10 km of lithospheric mantle. The return flux that generates the maximum sea level decrease over the Phanerozoic is 3.5- 0.3+ 0.4 × 1013 mol/yr, corresponding to 5% serpentinization in 10 km of lithospheric mantle. Our estimates of the return flux of water to the mantle are up to 7 times lower than previously suggested. The imbalance between our estimates of the return flux and mantle output flux leads to a low rate of increase in bulk mantle water content of up to 24 ppm/Ga.

  6. Understanding Wave-mean Flow Feedbacks and Tropospheric Annular Variability

    NASA Astrophysics Data System (ADS)

    Lorenz, D. J.

    2016-12-01

    The structure of internal tropospheric variability is important for determining the impact of the stratosphere on the troposphere. This study aims to better understand the fundamental dynamical mechanisms that control the feedbacks between the eddies and the mean flow, which in turn select the tropospheric annular mode. Recent work using Rossby Wave Chromatography suggests that "barotropic processes", which directly impact the meridional propagation of wave activity (specifically the reflectivity of the poleward flank of the mid-latitude jet), are more important for the positive feedback between the annular mode and the eddies than "baroclinic processes", which involve changes in the generation of wave activity by baroclinic instability. In this study, experiments with a fully nonlinear quasi-geostrophic model are discussed which provide independent confirmation of the importance of barotropic versus baroclinic processes. The experiments take advantage of the steady-state balance at upper-levels between the meridional gradient in diabatic heating and the second derivative of the upper-level EP flux divergence. Simulations with standard Newtonian heating are compared to simulations with constant-in-time heating taken from the climatology of the standard run and it is found that the forced annular mode response to changes in surface friction is very similar. Moreover, as expected from the annular mode response, the eddy momentum fluxes are also very similar. This is despite the fact that the upper-level EP flux divergence is very different between the two simulations (upper-level EP flux divergence must remain constant in the constant heating simulation while in the standard simulation there is no such constraint). The upper-level balances are maintained by a large change in the baroclinic wave source (i.e. vertical EP flux), which is accompanied by little momentum flux change. Therefore the eddy momentum fluxes appear to be relatively insensitive to the wave activity source. A more detailed comparison suggests a helpful rule-of-thumb relating the amplitude of the baroclinic wave source to the upper-level vorticity flux forced by this wave source.

  7. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    NASA Astrophysics Data System (ADS)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV <44.5 erg s-1 up to at least z=1, while the contribution of the same sources and of those with log L2-10 keV >44.5 erg s-1 appear, with yet rather large uncertainties, to be comparable between z=2 and 4. Based on observations collected at the European Southern Observatory, La Silla and Paranal, Chile, and at the Telescopio Nazionale Galileo, Roque de Los Muchachos, La Palma, TF, Spain. Based also on observations made with XMM-Newton, an ESA science mission. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/409/79

  8. Renewed Activity from the X-Ray Transient SAXJ 1810.8-2609 with Integral

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Natalucci, L.; Chenevez, J.; Bazzano, A.; Tarana, A.; Ubertini, P.; Brandt, S.; Beckmann, V.; Federici, M.; Galis, R.; Hudec, R.

    2009-03-01

    We report on the results of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the neutron star low-mass X-ray binary SAX J1810.8-2609 during its latest active phase in 2007 August. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6 ×1036 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5 × 10-12 M sun yr-1 suggest that SAX J1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of kT e~ 23-30 keV and an optical depth of τ~ 1.2-1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (≈3.5 crab in 3-25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a L Edd ≈ 3.8 × 1038 erg s-1. The observed recurrence time of ~ 1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (α~ 73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X >= 0.4. INTEGRAL is an ESA project with Instruments and Science Data Center funded by ESA member states, especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain; Czech Republic and Poland; and with the participation of Russia and USA.

  9. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results

    NASA Astrophysics Data System (ADS)

    Campana, Sergio; Lazzati, Davide; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is suited to a fast and efficient analysis of images taken with the High-Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analyzed in the same fashion as the real data. Positions are recovered with errors of a few arcseconds, whereas fluxes are within a factor of 2 from their input values in more than 90% of the cases in the deepest images. Unlike the ``sliding-box'' detection algorithms, the WDA also provides a reliable description of the source extension, allowing for a complete search of, e.g., supernova remnants or clusters of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of ~3×10-15 ergs s-1 cm-2 can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or the presence of extended or bright sources (e.g., clusters of galaxies and stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms, such as XIMAGE and EXSAS. Analysis with the WDA of the large set of HRI data will allow us to survey ~400 deg2 down to a limiting flux of ~10-13 ergs s-1 cm-2, and ~0.3 deg2 down to ~3×10-15 ergs s-1 cm-2. A complete catalog will result from our analysis, consisting of the Brera Multiscale Wavelet Bright Source Catalog (BMW-BSC), with sources detected with a significance of >~4.5 σ, and the Faint Source Catalog (BMW-FSC), with sources at >~3.5 σ. A conservative estimate based on the extragalactic log N-log S indicates that at least 16,000 sources will be revealed in the complete analysis of the entire HRI data set.

  10. AmeriFlux Site and Data Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    The AmeriFlux network was established in 1996. The network provides continuous observations of ecosystem-level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. The current network, including both active and inactive sites, consists of 141 sites in North, Central, and South America. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the AmeriFlux network including long-term data storage and dissemination. AmeriFlux offers a broad suite of value-added data products: Level 1 data products at 30 minute or hourly time intervals provided by the site teams, Level 2 data processed by CDIAC and Level 3 and 4 files created using CarboEurope algorithms. CDIAC has developed a relational database to house the vast array of AmeriFlux data and information and a web-based interface to the database, the AmeriFlux Site and Data Exploration System (http://ameriflux.ornl.gov), to help users worldwide identify, and more recently, download desired AmeriFlux data. AmeriFlux and CDIAC offer numerous value-added AmeriFlux data products (i.e., Level 1-4 data products, biological data) and most of these data products are or will be available through the new data system. Vital site information (e.g., location coordinates, dominant species, land-use history) is also displayed in the new system. The data system provides numerous ways to explore and extract data. Searches can be done by site, location, measurement status, available data products, vegetation types, and by reported measurements just to name a few. Data can be accessed through the links to full data sets reported by a site, organized by types of data products, or by creating customized datasets based on user search criteria. The new AmeriFlux download module contains features intended to ease compliance of the AmeriFlux fair-use data policy, acknowledge the contributions of submitting investigators, inform AmeriFlux investigators of users of their data, and facilitate meaningful usage statistics. Comprehensive site descriptions are available via the same interface along with site-related publications and data visualization functionality. This presentation reflects the present state and functionality of the AmeriFlux Site and Data Exploration System as well as future plans for expansion. For example, future plans call for expansion of the relational database to house similar data from large-scale ecosystem experiments (e.g., FACE, NGEE - Next Generation Ecosystem Experiment) and inclusion of enhanced query capabilities (e.g., sorting data via day and night).

  11. SELFI: an object-based, Bayesian method for faint emission line source detection in MUSE deep field data cubes

    NASA Astrophysics Data System (ADS)

    Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme

    2016-04-01

    We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).

  12. A normal abundance of faint satellites in the fossil group NGC 6482

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.

    2013-11-01

    A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76

  13. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  14. Lyman-α emitters in the context of hierarchical galaxy formation: predictions for VLT/MUSE surveys

    NASA Astrophysics Data System (ADS)

    Garel, T.; Guiderdoni, B.; Blaizot, J.

    2016-02-01

    The VLT/Multi Unit Spectrograph Explorer (MUSE) integral-field spectrograph can detect Lyα emitters (LAE) in the redshift range 2.8 ≲ z ≲ 6.7 in a homogeneous way. Ongoing MUSE surveys will notably probe faint Lyα sources that are usually missed by current narrow-band surveys. We provide quantitative predictions for a typical wedding-cake observing strategy with MUSE based on mock catalogues generated with a semi-analytic model of galaxy formation coupled to numerical Lyα radiation transfer models in gas outflows. We expect ≈1500 bright LAEs (FLyα ≳ 10-17 erg s-1 cm-2) in a typical shallow field (SF) survey carried over ≈100 arcmin2 , and ≈2000 sources as faint as 10-18 erg s-1 cm-2 in a medium-deep field (MDF) survey over 10 arcmin2 . In a typical deep field (DF) survey of 1 arcmin2 , we predict that ≈500 extremely faint LAEs (FLyα ≳ 4 × 10-19 erg s-1 cm-2) will be found. Our results suggest that faint Lyα sources contribute significantly to the cosmic Lyα luminosity and SFR budget. While the host haloes of bright LAEs at z ≈ 3 and 6 have descendants with median masses of 2 × 1012 and 5 × 1013 M⊙, respectively, the faintest sources detectable by MUSE at these redshifts are predicted to reside in haloes which evolve into typical sub-L* and L* galaxy haloes at z = 0. We expect typical DF and MDF surveys to uncover the building blocks of Milky Way-like objects, even probing the bulk of the stellar mass content of LAEs located in their progenitor haloes at z ≈ 3.

  15. The Spectral Energy Distributions and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey

    2012-05-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙ 1013 L ⊙. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR(8-1000 μm)/νL ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 μm flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 μm flux density ratios (e.g., observed-frame 250/350 μm ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 μm ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. Themore » rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 {mu}m flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 {mu}m flux density ratios (e.g., observed-frame 250/350 {mu}m ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 {mu}m ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both.« less

  17. Solar Energetic Proton Nowcast for Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Winter, L. M.; Quinn, R. A.

    2013-12-01

    Solar energetic proton flux levels above > 10 pfu can damage spacecraft and pose a hazard to astronauts as well as passengers and crew on polar commercial flights. While the GOES satellites provide real-time data of SEP levels in geosynchronous orbit, it is also important to determine the risk to objects in lower altitude orbits. To assess this risk in real-time, we created a web-based nowcast of SEP flux. The tool determines the current solar energetic proton flux level given input position (latitude, longitude, and altitude) and energy of the protons (e.g., > 10 MeV). The effective cutoff energy is calculated for the location and current geomagnetic storm level (i.e., the Kp value from SWPC) using the Shea & Smart (e.g., Smart et al. 1999abc, 2000) geomagnetic cutoff model, which uses a trajectory tracing technique through the Tsyganenko magnetospheric model for the geomagnetic field. With the cutoff energy and GOES proton flux measurements, a map of the current predicted proton flux level at the input energy is displayed along with the calculated integral spectrum for the input position. This operational tool is a powerful new diagnostic for assessing the risk to spacecraft from current solar proton levels, with easy to read color-coded maps generated for all GOES integral proton flux energies and a range of altitudes (1000 - 35000 km). The figures show example maps over a ';'quiet'' (03-26-13) and active (10-30-03) time, with high proton levels easily distinguishable at or above the NOAA warning level (yellow-orange-red). The tool also displays the current GOES integral spectrum and fit, and the estimated spectrum at a user-defined location and altitude.

  18. The Flux Variability of Markarian 501 in Very High Energy Gamma Rays

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Breslin, A. C.; Buckley, J. H.; Burdett, A. M.; Gordo, J. Bussons; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Fegan, D. J.; Finley, J. P.; Gaidos, J. A.; Hall, T.; Hillas, A. M.; Krennrich, F.; Lamb, R. C.; Lessard, R. W.; Masterson, C.; McEnery, J. E.; Moriarty, P.; Rodgers, A. J.; Rose, H. J.; Samuelson, F. W.; Sembroski, G. H.; Srinivasan, R.; Vassiliev, V. V.; Weekes, T. C.

    1999-06-01

    The BL Lacertae object Markarian 501 was identified as a source of γ-ray emission at the Whipple Observatory in 1995 March. Here we present a flux variability analysis on several timescales of the 233 hr data set accumulated over 213 nights (from March 1995 to July 1998) with the Whipple Observatory 10 m atmospheric Cerenkov imaging telescope. In 1995, with the exception of a single night, the flux from Markarian 501 was constant on daily and monthly timescales and had an average flux of only 10% that of the Crab Nebula, making it the weakest very high energy source detected to date. In 1996, the average flux was approximately twice the 1995 flux and showed significant month-to-month variability. No significant day-scale variations were detected. The average γ-ray flux above ~350 GeV in the 1997 observing season rose to 1.4 times that of the Crab Nebula--14 times the 1995 discovery level--allowing a search for variability on timescales shorter than 1 day. Significant hour-scale variability was present in the 1997 data, with the shortest, observed on MJD 50,607, having a doubling time of ~2 hr. In 1998 the average emission level decreased considerably from that of 1997 (to ~20% of the Crab Nebula flux), but two significant flaring events were observed. Thus the emission from Markarian 501 shows large amplitude and rapid flux variability at very high energies, as does Markarian 421. It also shows large mean flux level variations on year-to-year timescales, behavior that has not been seen from Markarian 421 so far.

  19. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    PubMed

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  20. Uncertainties in (E)UV model atmosphere fluxes

    NASA Astrophysics Data System (ADS)

    Rauch, T.

    2008-04-01

    Context: During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims: In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods: We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results: Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (T_eff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions: The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.

  1. X-ray observations of the burst source MXB 1728 - 34

    NASA Technical Reports Server (NTRS)

    Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.

    1984-01-01

    Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.

  2. ERTS/Nimbus radiation environment information

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    The results of the ERTS/Nimbus satellite investigation of electron flux levels are presented. Flux calculations were made with the use of two electron environment models, both of which are static and describe the environment during the solar maximum conditions of October 1967. It is concluded that the construction of these models makes it possible to infer a change of the average quiet time electron flux levels as a function of the solar cycle.

  3. Flux trap effect study in a sub-critical neutron assembly using activation methods

    NASA Astrophysics Data System (ADS)

    Routsonis, K.; Stoulos, S.; Clouvas, A.; Catsaros, N.; Varvayianni, M.; Manolopoulou, M.

    2016-09-01

    The neutron flux trap effect was experimentally studied in the subcritical assembly of the Atomic and Nuclear Physics Laboratory of the Aristotle University of Thessaloniki, using delayed gamma neutron activation analysis. Measurements were taken within the natural uranium fuel grid, in vertical levels symmetrical to the Am-Be neutron source, before and after the removal of fuel elements, permitting likewise a basic study of the vertical flux profile. Three identical flux traps of diamond shape were created by removing four fuel rods for each one. Two (n, γ) reactions and one (n, p) threshold reaction were selected for thermal, epithermal and fast flux study. Results of thermal and epithermal flux obtained through the 197Au (n, γ) 198Au and 186W (n, γ) 187W reactions, with and without Cd covers, to differentiate between the two flux regions. The 58Ni (n, p) 58Co reaction was used for the fast flux determination. An interpolation technique based on local procedures was applied to fit the cross sections data and the neutron flux spectrum. End results show a maximum thermal flux increase of 105% at the source level, pointing to a high potential to increase in the available thermal flux for future experiments. The increase in thermal flux is not accompanied by a comparable decrease in epithermal or fast flux, since thermal flux gain is higher than epithermal and fast neutron flux loss. So, the neutron reflection is mainly responsible for the thermal neutron increase, contributing to 89% at the central axial position.

  4. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  5. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  6. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  7. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  8. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    NASA Astrophysics Data System (ADS)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  9. Deep UBVRI photometric calibration of high-latitude fields: SA 57 (1307+30) and Hercules (1720+50)

    NASA Technical Reports Server (NTRS)

    Majewski, S. R.; Kron, R. G.; Koo, D. C.; Bershady, M. A.

    1994-01-01

    We present CCD photometric calibration sequences in the magnitude range V = 17-22 for two fields at high Galactic latitude: SA 57 (at the North Galactic Pole) and Hercules (l = 77, b = 35). Photometry to a precision of about 0.02 mag at V = 20 and, in general, better than 0.10 mag at V = 22 was obtained in the Johnson UBV as well as the Kron-Cousins R and I bands. These data are suitable for setting magnitude zero-points in catalogues of faint stars, galaxies, and QSOs, and we apply them to our own photographic catalogs in these two fields. We also note a significant deviation in the (V-R, R-I) color-color diagram for the locus of faint (V is greater than 20) M dwarfs compared to the locus provided by much brighter M dwarfs. This deviation may indicate differences in spectral properties between Population I and older populations of late dwarfs; however we do not discount the possibility that this locus for the faint stars, which appears as a saturation in V-R color with increasing R-I color, is the result of systematic photometric error.

  10. Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    NASA Astrophysics Data System (ADS)

    Spavone, M.

    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings.

  11. The novel functional nucleic acid iRed effectively regulates target genes following cytoplasmic delivery by faint electric treatment

    NASA Astrophysics Data System (ADS)

    Hasan, Mahadi; Tarashima, Noriko; Fujikawa, Koki; Ohgita, Takashi; Hama, Susumu; Tanaka, Tamotsu; Saito, Hiroyuki; Minakawa, Noriaki; Kogure, Kentaro

    2016-01-01

    An intelligent shRNA expression device (iRed) contains the minimum essential components needed for shRNA production in cells, and could be a novel tool to regulate target genes. However, general delivery carriers consisting of cationic polymers/lipids could impede function of a newly generated shRNA via electrostatic interaction in the cytoplasm. Recently, we found that faint electric treatment (fET) of cells enhanced delivery of siRNA and functional nucleic acids into the cytoplasm in the absence of delivery carriers. Here, we examined fET of cells stably expressing luciferase in the presence of iRed encoding anti-luciferase shRNA. Transfection of lipofectamine 2000 (LFN)/iRed lipoplexes showed an RNAi effect, but fET-mediated iRed transfection did not, likely because of the endosomal localization of iRed after delivery. However, fET in the presence of lysosomotropic agent chloroquine significantly improved the RNAi effect of iRed/fET to levels that were higher than those for the LFN/iRed lipoplexes. Furthermore, the amount of lipid droplets in adipocytes significantly decreased following fET with iRed against resistin in the presence of chloroquine. Thus, iRed could be a useful tool to regulate target genes following fET-mediated cytoplasmic delivery with endosomal escape devices.

  12. Europe's space camera unmasks a cosmic gamma-ray machine

    NASA Astrophysics Data System (ADS)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce brighter flashes when the electrons hit a phosphor screen. Since Hubble's launch in 1990, the Faint Object Camera has examined many different kinds of cosmic objects, from the moons of Jupiter to remote galaxies and quasars. When the space telescope's optics were corrected at the end of 1993 the Faint Object Camera immediately celebrated the event with the discovery of primeval helium in intergalactic gas. In their search for Pulsar 1055-52, the astronomers chose a near-ultraviolet filter to sharpen the Faint Object Camera's vision and reduce the adjacent star's huge advantage in intensity. In May 1996, the Hubble Space Telescope operators aimed at the spot which radio astronomers had indicated, as the source of the radio pulsations of Pulsar 1055-52. The neutron star appeared precisely in the centre of the field of view, and it was clearly separated from the glare of the adjacent star. At magnitude 24.9, Pulsar 1055-52 was comfortably within the power of the Faint Object Camera, which can see stars 20 times fainter still. "The Faint Object Camera is the instrument of choice for looking for neutron stars," says Giovanni Bignami, speaking on behalf of the Italian team. "Whenever it points to a judiciously selected neutron star it detects the corresponding visible or ultraviolet light. The Faint Object Camera has now identified three neutron stars in that way, including Pulsar 1055-52, and it has examined a few that were first detected by other instruments." Mysteries of the neutron stars The importance of the new result can be gauged by the tally of only eight neutron stars seen so far at optical wavelengths, compared with about 760 known from their radio pulsations, and about 21 seen emitting X-rays. Since the first pulsar was detected by radio astronomers in Cambridge, England, nearly 30 years ago, theorists have come to recognize neutron stars as fantastic objects. They are veritable cosmic laboratories in which Nature reveals the behaviour of matter under extreme stress, just one step short of a black hole. A neutron star is created by the force of a supernova explosion in a large star, which crushes the star's core to an unimaginable density. A mass greater than the Sun's is squeezed into a ball no wider than a city. The gravity and magnetic fields are billions of times stronger than the Earth's. The neutron star revolves rapidly, which causes it to wink like a cosmic lighthouse as it swivels its magnetic poles towards and away from the Earth. Pulsar 1055-52 spins at five revolutions per second. At its formation in a supernova explosion, a neutron star is endowed with two main forms of energy. One is heat, at temperatures of millions of degrees, which the neutron star radiates mainly as X-rays, with only a small proportion emerging as visible light. The other power supply for the neutron star comes from its high rate of spin and a gradual slowing of the rotation. By a variety of processes involving the magnetic field and accelerated particles in the neutron star's vicinity, the spin energy of the neutron star is converted into radiation at many different wavelengths, from radio waves to gamma-rays. The exceptional gamma-ray intensity of Pulsar 1055-52 was first appreciated in observations by NASA's Compton Gamma Ray Observatory. The team in Milan recently used the Hubble Space Telescope to find the distance of the peculiar neutron star Geminga, which is not detectable by radio pulses but is a strong source of gamma-rays (see ESA Information Note 04-96, 28 March 1996). Pulsar 1055-52 is even more powerful in that respect. About 50 per cent of its radiant energy is gamma-rays, compared with 15 per cent from Geminga and 0.1 per cent from the famous Crab Pulsar, the first neutron star seen by visible light. Making the gamma-rays requires the acceleration of electrons through billions of volts. The magnetic environment of Pulsar 1055-52 fashions a natural gamma-ray machine of amazing power. The orientation of the neutron star's magnetic field with respect to the Earth may contribute to its brightness in gamma-rays. Geminga, Pulsar 1055-52 and another object, Pulsar 0656+14, make a trio that the Milanese astronomers call the Three Musketeers. All have been observed with the Faint Object Camera. They are isolated, elderly neutron stars, some hundreds of thousands of years old, contrasting with the 942 year-old Crab Pulsar which is still surrounded by dispersing debris of a supernova seen by Chinese astronomers in the 11th Century. The mysteries of the neutron stars will keep astronomers busy for years to come, and the Faint Object Camera in the Hubble Space Telescope will remain the best instrument for spotting their faint visible light. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Maryland. Note to editors: An image is available of (i) PSR 1055-52 seen by ESA's Faint Object Camera in the Hubble Space Telescope, and (ii) the same region of the sky seen by the European Southern Observatory's New Technology Telescope, with the position of PSR 1055-52 indicated. The image is available on the World Wide Web at http://ecf.hq.eso.org/stecf-pubrel.html http://www.estec.esa.nl/spdwww/h2000/html/snlmain.htm

  13. Effect of membrane flux and dialyzer biocompatibility on survival in end-stage diabetic nephropathy.

    PubMed

    Götz, Angela K; Böger, Carsten A; Popal, Massoud; Banas, Bernhard; Krämer, Bernhard K

    2008-01-01

    We examined the effects of dialyzer membrane flux and biocompatibility on mortality in diabetic dialysis patients. We enrolled 402 prevalent chronic hemodialysis patients from 30 centers in Germany in 1999 for a prospective observational study until 2003. We compared 2 groups in post hoc analysis: high-flux (HF, n = 166) versus low-flux (LF, n = 236) membrane, and high biocompatibility (HB, n = 300) versus low biocompatibility (LB, n = 102). All-cause mortality (ACM) was the primary endpoint. Death causes were the secondary endpoints. Multivariate Cox regression analysis showed no significant difference in risk for ACM with respect to flux (hazard ratio, HR, 0.79; p = 0.08; ACM 63% in HF vs. 70% in LF dialysis) and biocompatibility level (HR 1.00; p = 0.98; ACM 67% for HB vs. 66% for LB). The multivariate analysis of different causes of death did not reveal any outcome differences dependent on flux and biocompatibility level apart from a slightly better cumulative survival regarding the death cause 'infectious' in our HF dialysis group (HR 0.48; p = 0.07, Kaplan-Meier analysis p = 0.03). Our data indicate that mortality of hemodialysis patients with type-2 diabetic nephropathy is influenced neither by dialyzer flux level nor by biocompatibility. Copyright 2008 S. Karger AG, Basel.

  14. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  15. Mapping AmeriFlux footprints: Towards knowing the flux source area across a network of towers

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Pastorello, G.; Metzger, S.; Poindexter, C.; Agarwal, D.; Papale, D.

    2014-12-01

    The AmeriFlux network collects long-term carbon, water and energy flux measurements obtained with the eddy covariance method. In order to attribute fluxes to specific areas of the land surface, flux source calculations are essential. Consequently, footprint models can support flux up-scaling exercises to larger regions, often based on remote sensing data. However, flux footprints are not currently being routinely calculated; different approaches exist but have not been standardized. In part, this is due to varying instrumentation and data processing methods at the site level. The goal of this work is to map tower footprints for a future standardized AmeriFlux product to be generated at the network level. These footprints can be estimated by analytical models, Lagrangian simulations, and large-eddy simulations. However, for many sites, the datasets currently submitted to central databases generally do not include all variables required. The AmeriFlux network is moving to collection of raw data and expansion of the variables requested from sites, giving the possibility to calculate all parameters and variables needed to run most of the available footprint models. In this pilot study, we are applying state of the art footprint models across a subset of AmeriFlux sites, to evaluate the feasibility and merit of developing standardized footprint results. In addition to comparing outcomes from several footprint models, we will attempt to verify and validate the results in two ways: (i) Verification of our footprint calculations at sites where footprints have been experimentally estimated. (ii) Validation at towers situated in heterogeneous landscapes: here, variations in the observed fluxes are expected to correlate with spatiotemporal variations of the source area composition. Once implemented, the footprint results can be used as additional information within the AmeriFlux database that can support data interpretation and data assimilation. Lastly, we will explore the expandability of this approach to other flux networks by collaborating with and including sites from the ICOS and NEON networks in our analyses. This can enable utilizing the footprint model output to improve network interoperability, thus further promoting synthesis analyses and understanding of system-level questions in the future.

  16. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    PubMed

    Olivier, Brett G; Bergmann, Frank T

    2015-09-04

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  17. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    PubMed

    Olivier, Brett G; Bergmann, Frank T

    2015-06-01

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  18. Multi-axial interferometry: demonstration of deep nulling

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Ruilier, Cyril; Barillot, Marc; Lierstuen, Lars; Perdigués Armengol, Josep Maria

    2017-11-01

    The ESA-Darwin mission is devoted to direct detection and spectroscopic characterization of earthlike exoplanets. Starlight rejection is achieved by nulling interferometry from space so as to make detectable the faintly emitting planet in the neighborhood. In that context, Alcatel Alenia Space has developed a nulling breadboard for ESA in order to demonstrate in laboratory conditions the rejection of an on-axis source. This device, the Multi Aperture Imaging Interferometer (MAII) demonstrated high rejection capability at a relevant level for exoplanets, in singlepolarized and mono-chromatic conditions. In this paper we report on the new multi-axial configuration of MAII and we summarize our late nulling results.

  19. The XMM-Newton Wide-Field Survey in the COSMOS Field. II. X-Ray Data and the logN-logS Relations

    NASA Astrophysics Data System (ADS)

    Cappelluti, N.; Hasinger, G.; Brusa, M.; Comastri, A.; Zamorani, G.; Böhringer, H.; Brunner, H.; Civano, F.; Finoguenov, A.; Fiore, F.; Gilli, R.; Griffiths, R. E.; Mainieri, V.; Matute, I.; Miyaji, T.; Silverman, J.

    2007-09-01

    We present data analysis and X-ray source counts for the first season of XMM-Newton observations in the COSMOS field. The survey covers ~2 deg2 within the region of sky bounded by 09h57m30s

  20. Variability of Fram Strait Ice Flux and North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, Ron

    1999-01-01

    An important term in the mass balance of the Arctic Ocean sea ice is the ice export. We estimated the winter sea ice export through the Fram Strait using ice motion from satellite passive microwave data and ice thickness data from moored upward looking sonars. The average winter area flux over the 18-year record (1978-1996) is 670,000 square km, approximately 7% of the area of the Arctic Ocean. The winter area flux ranges from a minimum of 450,000 sq. km in 1984 to a maximum of 906,000 sq km in 1995. The daily, monthly and interannual variabilities of the ice area flux are high. There is an upward trend in the ice area flux over the 18-year record. The average winter volume flux over the winters of October 1990 through May 1995 is 1745 cubic km ranging from a low of 1375 cubic km in 1990 to a high of 2791 cubic km in 1994. The sea-level pressure gradient across the Fram Strait explains more than 80% of the variance in the ice flux over the 18-year record. We use the coefficients from the regression of the time-series of area flux versus pressure gradient across the Fram Strait and ice thickness data to estimate the summer area and volume flux. The average 12-month area flux and volume flux are 919,000 sq km and 2366 cubic km. We find a significant correlation (R =0.86) between the area flux and positive phases of the North Atlantic Oscillation (NAO) index over the months of December through March. Correlation between our six years of volume flux estimates and the NAO index gives R =0.56. During the high NAO years, a more intense Icelandic low increases the gradient in the sea-level pressure by almost 1 mbar across the Fram Strait thus increasing the atmospheric forcing on ice transport. Correlation is reduced during the negative NAO years because of decreased dominance of this large-scale atmospheric pattern on the sea-level pressure gradient across the Fram Strait. Additional information is contained in the original.

  1. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming.

    PubMed

    Davidson, Thomas A; Audet, Joachim; Svenning, Jens-Christian; Lauridsen, Torben L; Søndergaard, Martin; Landkildehus, Frank; Larsen, Søren E; Jeppesen, Erik

    2015-12-01

    Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes. © 2015 John Wiley & Sons Ltd.

  2. A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas

    NASA Astrophysics Data System (ADS)

    Tessler, Zachary D.; Vörösmarty, Charles J.; Overeem, Irina; Syvitski, James P. M.

    2018-03-01

    Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning and affect the long-term sustainability of these landscapes for human and for natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea level rise across 46 global deltas. We model scenarios of contemporary and future water resource management schemes and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea level rise in delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea level rise result in delta relative sea level rise rates that average 6.8 mm/y. Assessment of impacts of planned and under-construction dams on relative sea level rise rates suggests increases on the order of 1 mm/y in deltas with new upstream construction. Sediment fluxes are estimated to decrease by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Meghna if all currently planned dams are constructed. Reduced sediment retention on deltas caused by increased river channelization and management has a larger impact, increasing relative sea level rise on average by nearly 2 mm/y. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Local and regional strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea level rise.

  3. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    PubMed

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-07

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.

  4. The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters

    Treesearch

    Katrin Premke; Katrin Attermeyer; Jurgen Augustin; Alvaro Cabezas; Peter Casper; Detlef Deumlich; Jorg Gelbrecht; Horst H. Gerke; Arthur Gessler; Hans-Peter Grossart; Sabine Hilt; Michael Hupfer; Thomas Kalettka; Zachary Kayler; Gunnar Lischeid; Michael Sommer; Dominik Zak

    2016-01-01

    Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and...

  5. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees

    Treesearch

    Aaron B. Berdanier; Chelcy F. Miniat; James S. Clark

    2016-01-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements...

  6. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  7. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  8. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  9. Luminosity function of faint galaxies with ultraviolet continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanyan, D.A.

    1985-05-01

    The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less

  10. A faint field-galaxy redshift survey in quasar fields

    NASA Technical Reports Server (NTRS)

    Yee, Howard K. C.; Ellingson, Erica

    1993-01-01

    Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.

  11. A Nine-Year Hunt for Neutrinos

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth.Observatories on the HuntNeutrino observatories are often built to take advantage of pre-existing deep bodies of ice or water for their detectors. One of the most well-known neutrino observatories is IceCube, an array of detectors located far beneath the Antarctic ice. A few years ago, IceCube announced the observation of an excess of events over the expected atmospheric background the first detection of a diffuse flux of cosmic neutrinos. The next step:confirmation from another observatory.ANTARES detections across different energy bins, for both track-like (top) and shower-like (bottom) events. Plot includes data (black), model for atmospheric events (blue), and two different models for cosmic events (red). Above an energy cutoff of 20 TeV (grey line), nine excess neutrinos are detected relative to the atmospheric model. [Albert et al. 2018]Enter ANTARES, short for Astronomy with a Neutrino Telescope and Abyss Environmental Research. Completed in 2008, this neutrino telescope was built 1.5 miles beneath the surface of the Mediterranean Sea. Now the collaboration is presenting the results of their nine-year search for a diffuse cosmic neutrino flux.A Mild ExcessThe outcome? Success! sort of.The very nature of neutrinos elusiveness means that we have to draw conclusions with very small numbers of detections. Over nine years, ANTARES detected a total of 33 events above an energy cutoff of 20 TeV, whereas models predict it should have seen only 24 such events due to atmospheric particles. This detection of nine extra neutrinos may sound insubstantial but statistically, it allows the team to reject the hypothesis that there is no diffuse cosmic flux at an 85% confidence level.The mild excess of neutrinos detected by ANTARES is by no means a smoking gun, but the properties of this cosmic neutrino flux are consistent with those detected by IceCube, which is a very promising outcome. At the moment, it would seem that a diffuse flux of cosmic neutrinos is present and the next generation of neutrino observatories may be what we need to properly characterize it.CitationA. Albert et al 2018 ApJL 853 L7. doi:10.3847/2041-8213/aaa4f6

  12. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place constraints on the magnitude of the post-arc subducted H2O flux that can be accommodated by the global water cycle. Estimates of the post-arc subducted flux are up to an order of magnitude larger than the estimated mantle output flux. If the marked imbalance in the estimated global water cycle is accurate, then it must be a recent phenomenon: if propagated back in time, modeled net inward fluxes would consume half a present-day ocean volume of water in as little as 500 Myr (corresponding to ~1200 meters of sea level change given present-day hypsometry). Such changes are inconsistent with the limited sea level changed inferred from the geologic record since the end of the Archaean. The literature post-arc flux estimates reflect water carried to depth via a layer of serpentinized lithospheric mantle within the slab; however, the extent to which oceanic lithosphere may be serpentinized remains poorly constrained. A smaller post-arc subducted H2O flux of 2.3 x108 Tg/Ma would perfectly balance our mean modeled total mantle output. Such a post-arc flux corresponds to ~2% serpentinization of a 10 km thick layer of lithospheric mantle (i.e., a mean water content of ~0.25 wt% H2O).

  13. Method and apparatus for simultaneous detection and measurement of charged particles at one or more levels of particle flux for analysis of same

    DOEpatents

    Denton, M Bonner [Tucson, AZ; Sperline, Roger , Koppenaal, David W. , Barinaga, Charles J. , Hieftje, Gary , Barnes, IV, James H.; Atlas, Eugene [Irvine, CA

    2009-03-03

    A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.

  14. STUDY OF RADON FLUX FROM SOIL IN BUDHAKEDAR REGION USING SRM.

    PubMed

    Bourai, A A; Aswal, Sunita; Kandari, Tushar; Kumar, Shiv; Joshi, Veena; Sahoo, B K; Ramola, R C

    2016-10-01

    In the present study, the radon flux rate of the soil is measured using portable radon monitor (scintillation radon monitor) in the Budhakedar region of District Tehri, India. The study area falls along a fault zone named Main Central Thrust, which is relatively rich in radium-bearing minerals. Radon flux rate from the soil is one of the most important factors for the evaluation of environmental radon levels. The earlier studies in the Budhakedar region shows a high level of radon (>4000 Bq m -3 ). Hence, it is important to measure the radon flux rate. The aim of the present study is to calculate the average estimate of the surface radon flux rate as well as the effective mass exhalation rate. A positive correlation of 0.54 was found between radon flux rate and radon mass exhalation rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  16. THE GALAXY LUMINOSITY FUNCTIONS DOWN TO M{sub R} = -10 IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, Hitomi; Komiyama, Yutaka; Yagi, Masafumi

    2012-08-15

    We derived the luminosity function (LF) of dwarf galaxies in the Coma Cluster down to M{sub R} = -10 at three fields located at the center, intermediate, and outskirt of the cluster. The LF (-19 < M{sub R} < -10) shows no significant differences among the three fields. It shows a clear dip at M{sub R} {approx} -13 and is composed of two distinct components of different slopes; the bright component with -19 < M{sub R} < -13 has a flatter slope than the faint component with -13 < M{sub R} < -10 which has a steep slope. The brightmore » component (-19 < M{sub R} < -13) consists mostly of red extended galaxies including few blue galaxies whose colors are typical of late-type galaxies. On the other hand, the faint component (-13 < M{sub R} < -10) consists largely of point-spread-function-like compact galaxies. We found that both these compact galaxies and some extended galaxies are present in the center while only compact galaxies are seen in the outskirt. In the faint component, the fraction of blue galaxies is larger in the outskirt than in the center. We suggest that the dwarf galaxies in the Coma Cluster, which make up the two components in the LF, are heterogeneous with some different origins.« less

  17. Self-arranged exposure for overcoming blood-injection-injury Phobia: a case study

    PubMed Central

    Pitkin, Michelle R.; Malouff, John M.

    2014-01-01

    Blood-injection-injury (BII) phobia is both common and dangerous, because it can lead to avoidance of medical procedures for diagnosis and treatment. It also tends to prevent individuals from donating blood for use in the healthcare of others. BII phobia often has an unusual characteristic for a type of phobia – fainting. The typical treatment for BII phobia involves teaching the client how to avoid fainting and staging multiple gradual-exposure trials for the client. In this case report, an adult with the phobia obtained initial, mostly written, guidance from a psychologist, arranged her own applied muscle-tension practice sessions to learn how to keep from fainting, created her own fear hierarchy, and staged exposure trials herself, ending years of avoidance of blood withdrawal. By the end of the trials, she was able to give blood for a medical test and to donate blood for the first time in her life and to work as a volunteer at a blood-donation center. The results provide the first evidence that adults with BII phobia can end the phobia by arranging their own sessions of applied-tension practice and gradual self-exposure. The results suggest a new option for treating specific phobias in general with some adults: initial professional guidance followed by self-arranged gradual-exposure trials. PMID:25750809

  18. A Tool for Optimizing Observation Planning for Faint Moving Objects

    NASA Astrophysics Data System (ADS)

    Arredondo, Anicia; Bosh, Amanda S.; Levine, Stephen

    2016-10-01

    Observations of small solar system bodies such as trans-Neptunian objects and Centaurs are vital for understanding the basic properties of these small members of our solar system. Because these objects are often very faint, large telescopes and long exposures may be necessary, which can result in crowded fields in which the target of interest may be blended with a field star. For accurate photometry and astrometry, observations must be planned to occur when the target is free of background stars; this restriction results in limited observing windows. We have created a tool that can be used to plan observations of faint moving objects. Features of the tool include estimates of best times to observe (when the object is not too near another object), a finder chart output, a list of possible astrometric and photometric reference stars, and an exposure time calculator. This work makes use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (S.E. Levine and D.G. Monet 2000), the JPL Horizons online ephemeris service (Giorgini et al. 1996), the Minor Planet Center's MPChecker (http://cgi.minorplanetcenter.net/cgi-bin/checkmp.cgi), and source extraction software SExtractor (Bertin & Arnouts 1996). Support for this work was provided by NASA SSO grant NNX15AJ82G.

  19. First identification of pure rotation lines of NH in the infrared solar spectrum

    NASA Technical Reports Server (NTRS)

    Geller, M.; Farmer, C. B.; Norton, R. H.; Sauval, A. J.; Grevesse, N.

    1991-01-01

    Pure rotation lines of NH of the v = 0 level and v = 1 level are detected in high-resolution solar spectra obtained from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experimental observations. It is pointed out that the identification of the lines is favored by the typical appearance of the triplet lines of nearly equal intensities. The observed equivalent widths of these triplet lines are compared with predicted intensities, and it is observed that these widths are systematically larger than the predicted values. It is noted that because these very faint lines are observed in a region where the signal is very low, a systematic error in the measurements of the equivalent widths cannot be ruled out; therefore, the disagreement between the observed and predicted intensities is not considered to be real.

  20. X-Ray Luminosity Functions of Normal Galaxies in the Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew; Mobasher, Bahram; Hornschemeier, Ann; Bauer, Franz; Norman, Colin

    2007-10-01

    We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGNs from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. A key advantage of the MCMC approach is that it explicitly takes into account upper limits and allows errors on ``derived'' quantities, such as luminosity densities, to be computed directly (i.e., without potentially questionable assumptions concerning the propagation of errors). The slopes of the early-type galaxy XLFs tend to be slightly flatter than the late-type galaxy XLFs, although the effect is significant at only the 90% and 97% levels for z~0.25 and 0.75. The XLFs differ between z<0.5 and z>0.5 at >99% significance levels for early-type, late-type, and all (early- and late-type) galaxies. We also fit Schechter and lognormal models to the XLFs, fitting the low- and high-redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of lognormal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint- and bright-end slopes (similar to ``fixing'' these parameters at the FIR values, except here the FIR uncertainty is included). The best-fit values of the change in logL* with redshift were ΔlogL*=0.23+/-0.16 dex (for early-type galaxies) and 0.34+/-0.12 dex (for late-type galaxies), corresponding to (1+z)1.6 and (1+z)2.3. These results were insensitive to whether the Schechter or lognormal function was adopted.

Top