Science.gov

Sample records for falciparum malaria patients

  1. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria.

    PubMed

    Barman, Bhupen; Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive treatment. To the best of our knowledge there are very few reports of acute pancreatitis due to malaria. Falciparum malaria therefore should be added to the list of infectious agents causing acute pancreatitis especially in areas where malaria is endemic.

  2. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria

    PubMed Central

    Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive treatment. To the best of our knowledge there are very few reports of acute pancreatitis due to malaria. Falciparum malaria therefore should be added to the list of infectious agents causing acute pancreatitis especially in areas where malaria is endemic. PMID:26894117

  3. Pharmacokinetics of quinine in African patients with acute falciparum malaria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Sowunmi, A; Walker, O

    1998-06-01

    The pharmacokinetics of quinine were studied in six Nigerian patients during acute uncomplicated falciparum malaria and convalescent periods. An oral dose of 10 mg/kg quinine dihydrochloride administered 8-hourly for 7 days gave parasite and fever clearance times of 36.0 +/- 16.6 h and 18.0 +/- 6.4 h, respectively. From the individual quinine plasma profiles the mean plasma concentration of quinine at the time of parasite clearance was estimated as 4.5 +/- 1.1 micrograms/ml. Plasma quinine levels during malaria rose rapidly reaching a peak around the second and third days and declining thereafter as patients improved clinically. In acute malaria plasma quinine levels were more than two-fold higher than in convalescence; the mean AUC(0-12) in malaria was 37.9 +/- 14.7 micrograms.h/ml compared to 17.9 +/- 8.5 micrograms.h/ml in convalescence. The apparent oral clearance (CL/F) and volume of distribution (Vd/F) during the acute phase of the malaria (1.9 +/- 0.7 ml/min/kg and 1.8 +/- 0.9 l/kg, respectively) were significantly lower than in convalescence (4.5 +/- 2.1 ml/min/kg and 4.2 +/- 3.2 l/kg). The present data suggest that malaria parasites in African patients are still very sensitive to quinine and that the current dosage of quinine is effective for the treatment of acute falciparum malaria in African patients without augmenting therapy with any other drug such as tetracycline or sulphadoxine-pyrimethamine. It also confirms that malaria significantly alters the pharmacokinetics of quinine in humans.

  4. Imported Plasmodium falciparum malaria in HIV-infected patients: a report of two cases

    PubMed Central

    2012-01-01

    As HIV becomes a chronic infection, an increasing number of HIV-infected patients are travelling to malaria-endemic areas. Association of malaria with HIV/AIDS can be clinically severe. Severe falciparum malaria is a medical emergency that is associated with a high mortality, even when treated in an Intensive Care Unit. This article describes two cases of HIV-positive patients, who returned from malaria-endemic areas and presented a parasitaemia > 5% of erythrocytes and clinical signs of severe falciparum malaria, both with > 350 CD4 cell count/μl, absence of chemoprophylaxis and successful response. Factors like drug interactions and the possible implication of anti-malarial therapy bioavailability are all especially interesting in HIV-malaria co-infections. PMID:22540214

  5. Cellular-mediated immune responses in the liver tissue of patients with severe Plasmodium falciparum malaria.

    PubMed

    Punsawadl, Chuchard; Setthapramote, Chayanee; Viriyavejakul, Parnpen

    2014-09-01

    The immune responses against Plasmodiumfalciparum malaria infections are complex and poorly understood. No published studies have yet reported the lymphocyte subsets involved in the human liver tissue of P. falciparum malaria patients. To understand the cellular-mediated immune responses in the liver during malaria infection, we determined the numbers of the various lymphocyte subsets in tissue samples obtained at autopsy from patients who died with P. falciparum malaria infection. All the liver tissue specimens had been stored at the Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Thailand. On the basis of total bilirubin (TB) levels prior to death, patients were divided into 2 groups: those with hyperbilirubinemia [total bilirubin (TB) > or =51.3 micromol/l) (n = 9)] and those without hyperbilirubinemia (TB < 51.3 micromol/l) (n = 12). Normal liver specimens (n = 10) were used as controls. An immunohistochemistry method was used to analyze the types and numbers of lymphocytes (T and B lymphocytes), and Kupffer cells, using specific antibodies against CD3+, CD4+, CD8+, CD20+, and CD68+. Our findings reveal the numbers of T lymphocytes (CD3+ T-cells) and their subsets (CD4+ and CD8+ T-cells) were significantly greater in the portal tracts and sinusoids of liver tissue obtained from P. falciparum malaria cases with hyperbilirubinemia than those without hyperbilirubinemia or controls. CD8+ T-cells were the major lymphocyte subset in the liver tissue of patients with severe falciparum malaria. A significant positive correlation was seen between the numbers of CD4+ and CD8+ T-cells and the liver enzyme levels among P. falciparum malaria patients. The number of CD68+ cells (Kupffer cells) was significantly greater in the liver sinusoids of P. falciparum malaria cases with hyperbilirubinemia than those without hyperbilirubinemia. These findings suggest T-cells, especially CD8+ T-cells and Kupffer cells are an important part of the

  6. Leukogram Profile and Clinical Status in vivax and falciparum Malaria Patients from Colombia.

    PubMed

    Tobón-Castaño, Alberto; Mesa-Echeverry, Esteban; Miranda-Arboleda, Andrés Felipe

    2015-01-01

    Introduction. Hematological alterations are frequent in malaria patients; the relationship between alterations in white blood cell counts and clinical status in malaria is not well understood. In Colombia, with low endemicity and unstable transmission for malaria, with malaria vivax predominance, the hematologic profile in malaria patients is not well characterized. The aim of this study was to characterize the leukogram in malaria patients and to analyze its alterations in relation to the clinical status. Methods. 888 leukogram profiles of malaria patients from different Colombian regions were studied: 556 with P. falciparum infection (62.6%), 313 with P. vivax infection (35.2%), and 19 with mixed infection by these species (2.1%). Results. Leukocyte counts at diagnosis were within normal range in 79% of patients and 18% had leucopenia; the most frequent alteration was lymphopenia (54%) followed by monocytosis (11%); the differential granulocyte count in 298 patients revealed eosinophilia (15%) and high basophil counts (8%). Leukocytosis, eosinopenia, and neutrophilia were associated with clinical complications. The utility of changes in leukocyte counts as markers of severity should be explored in depth. A better understanding of these hematological parameters will allow their use in prompt diagnosis of malaria complications and monitoring treatment response.

  7. Leukogram Profile and Clinical Status in vivax and falciparum Malaria Patients from Colombia

    PubMed Central

    Tobón-Castaño, Alberto; Mesa-Echeverry, Esteban; Miranda-Arboleda, Andrés Felipe

    2015-01-01

    Introduction. Hematological alterations are frequent in malaria patients; the relationship between alterations in white blood cell counts and clinical status in malaria is not well understood. In Colombia, with low endemicity and unstable transmission for malaria, with malaria vivax predominance, the hematologic profile in malaria patients is not well characterized. The aim of this study was to characterize the leukogram in malaria patients and to analyze its alterations in relation to the clinical status. Methods. 888 leukogram profiles of malaria patients from different Colombian regions were studied: 556 with P. falciparum infection (62.6%), 313 with P. vivax infection (35.2%), and 19 with mixed infection by these species (2.1%). Results. Leukocyte counts at diagnosis were within normal range in 79% of patients and 18% had leucopenia; the most frequent alteration was lymphopenia (54%) followed by monocytosis (11%); the differential granulocyte count in 298 patients revealed eosinophilia (15%) and high basophil counts (8%). Leukocytosis, eosinopenia, and neutrophilia were associated with clinical complications. The utility of changes in leukocyte counts as markers of severity should be explored in depth. A better understanding of these hematological parameters will allow their use in prompt diagnosis of malaria complications and monitoring treatment response. PMID:26664413

  8. Prevalence of PCR detectable malaria infection among febrile patients with a negative Plasmodium falciparum specific rapid diagnostic test in Zanzibar.

    PubMed

    Baltzell, Kimberly A; Shakely, Deler; Hsiang, Michelle; Kemere, Jordan; Ali, Abdullah Suleiman; Björkman, Anders; Mårtensson, Andreas; Omar, Rahila; Elfving, Kristina; Msellem, Mwinyi; Aydin-Schmidt, Berit; Rosenthal, Philip J; Greenhouse, Bryan

    2013-02-01

    We screened for malaria in 594 blood samples from febrile patients who tested negative by a Plasmodium falciparum-specific histidine-rich protein-2-based rapid diagnostic test at 12 health facilities in Zanzibar districts North A and Micheweni, from May to August 2010. Screening was with microscopy, polymerase chain reaction (PCR) targeting the cytochrome b gene (cytbPCR) of the four major human malaria species, and quantitative PCR (qPCR). The prevalence of cytbPCR-detectable malaria infection was 2% (12 of 594), including 8 P. falciparum, 3 Plasmodium malariae, and 1 Plasmodium vivax infections. Microscopy identified 4 of 8 P. falciparum infections. Parasite density as estimated by microscopy or qPCR was > 4,000 parasites/μL in 5 of 8 cytbPCR-detectable P. falciparum infections. The infections that were missed by the rapid diagnostic test represent a particular challenge in malaria elimination settings and highlight the need for more sensitive point-of-care diagnostic tools to improve case detection of all human malaria species in febrile patients.

  9. Plasmodium falciparum isolates from patients with uncomplicated malaria promote endothelial inflammation.

    PubMed

    Vásquez, Ana María; Blair, Silvia; García, Luis F; Segura, Cesar

    2017-02-01

    The ability of Plasmodium falciparum infected erythrocytes (Pf-IEs) to activate endothelial cells has been described; however, the interaction of the endothelium with Pf-IEs field isolates from patients has been less characterized. Previous reports have shown that isolates alter the endothelial permeability and apoptosis. In this study, the adhesion of 19 uncomplicated malaria isolates to Human Dermal Microvascular Endothelial Cells (HDMEC), and their effect on the expression of ICAM-1 and proinflammatory molecules (sICAM-1, IL-6, IL-8, and MCP-1) was evaluated. P. falciparum isolates adhered to resting and TNFα-activated HDEMC cells at different levels. All isolates increased the ICAM-1 expression on the membrane (mICAM-1) of HDMEC and increased the release of its soluble form (sICAM-1), as well the production of IL-6, IL-8 and MCP-1 by HDMEC with no signs of cell apoptosis. No correlation between parasite adhesion and production of cytokines was observed. In conclusion, isolates from uncomplicated malaria can induce a proinflammatory response in endothelial cells that may play a role during the initial inflammatory response to parasite infection; however, a continuous activation of the endothelium can contribute to pathogenesis.

  10. [P. falciparum malaria related with travel: four cases].

    PubMed

    Güven, Tümer; Eser, Fatma Civelek; Yılmaz, Gül R; Güner, Rahmet; Taşyaran, Mehmet A

    2013-01-01

    Malaria is still an important public health problem in the world. Although the number of malaria cases in Turkey has been declining in recent years, the febrile patients with a history of travel to the endemic regions should raise the suspicion of malaria. P. vivax is the most common cause of malaria in Turkey; and those caused by other Plasmodium spp. are imported cases. Since P. falciparum malaria may cause fatal complications, urgent therapy is necessary. We hereby report four falciparum malaria cases with a history of travel to Sudan and Uganda.

  11. Plasmodium falciparum Malaria: reduction of endothelial cell apoptosis in vitro.

    PubMed

    Hemmer, Christoph Josef; Lehr, Hans Anton; Westphal, Kathi; Unverricht, Marcus; Kratzius, Manja; Reisinger, Emil Christian

    2005-03-01

    Organ failure in Plasmodium falciparum malaria is associated with neutrophil activation and endothelial damage. This study investigates whether neutrophil-induced endothelial damage involves apoptosis and whether it can be prevented by neutralization of neutrophil secretory products. Endothelial cells from human umbilical veins were coincubated with neutrophils from healthy donors and with sera from eight patients with P. falciparum malaria, three patients with P. vivax malaria, and three healthy controls. Endothelial apoptosis was demonstrated by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and annexin V staining. The rate of apoptosis of cells was markedly increased after incubation with patient serum compared to that with control serum. Apoptosis was most pronounced after incubation with sera from two patients with fatal cases of P. falciparum malaria, followed by sera of survivors with severe P. falciparum malaria and, finally, by sera of patients with mild P. falciparum and P. vivax malaria. Ascorbic acid, tocopherol, and ulinastatin reduced the apoptosis rate, but gabexate mesilate and pentoxifylline did not. Furthermore, in fatal P. falciparum malaria, apoptotic endothelial cells were identified in renal and pulmonary tissue by TUNEL staining. These findings show that apoptosis caused by neutrophil secretory products plays a major role in endothelial cell damage in malaria. The antioxidants ascorbic acid and tocopherol and the protease inhibitor ulinastatin can reduce malaria-associated endothelial apoptosis in vitro.

  12. Pharmacokinetics and Ex Vivo Pharmacodynamic Antimalarial Activity of Dihydroartemisinin-Piperaquine in Patients with Uncomplicated Falciparum Malaria in Vietnam ▿

    PubMed Central

    Nguyen, Dao Van Hoang; Nguyen, Quoc Phuc; Nguyen, Ngoa Dang; Le, Thuy Thi Thanh; Nguyen, The Duy; Dinh, Duy Ngoc; Nguyen, Thanh Xuan; Bui, Dai; Chavchich, Marina; Edstein, Michael D.

    2009-01-01

    Compared to healthy subjects, malaria patients show a reduction in the mean oral clearance (1.19 versus 5.87 liters/h/kg of body weight) and apparent volume of distribution (1.47 versus 8.02 liters/kg) of dihydroartemisinin in Vietnamese patients following treatment with dihydroartemisinin-piperaquine (Artekin) for uncomplicated Plasmodium falciparum. Dihydroartemisinin is responsible for most of the ex vivo antimalarial activity of dihydroartemisinin-piperaquine. PMID:19528277

  13. Distinct physiological states of Plasmodium falciparum in malaria-infected patients.

    PubMed

    Daily, J P; Scanfeld, D; Pochet, N; Le Roch, K; Plouffe, D; Kamal, M; Sarr, O; Mboup, S; Ndir, O; Wypij, D; Levasseur, K; Thomas, E; Tamayo, P; Dong, C; Zhou, Y; Lander, E S; Ndiaye, D; Wirth, D; Winzeler, E A; Mesirov, J P; Regev, A

    2007-12-13

    Infection with the malaria parasite Plasmodium falciparum leads to widely different clinical conditions in children, ranging from mild flu-like symptoms to coma and death. Despite the immense medical implications, the genetic and molecular basis of this diversity remains largely unknown. Studies of in vitro gene expression have found few transcriptional differences between different parasite strains. Here we present a large study of in vivo expression profiles of parasites derived directly from blood samples from infected patients. The in vivo expression profiles define three distinct transcriptional states. The biological basis of these states can be interpreted by comparison with an extensive compendium of expression data in the yeast Saccharomyces cerevisiae. The three states in vivo closely resemble, first, active growth based on glycolytic metabolism, second, a starvation response accompanied by metabolism of alternative carbon sources, and third, an environmental stress response. The glycolytic state is highly similar to the known profile of the ring stage in vitro, but the other states have not been observed in vitro. The results reveal a previously unknown physiological diversity in the in vivo biology of the malaria parasite, in particular evidence for a functional mitochondrion in the asexual-stage parasite, and indicate in vivo and in vitro studies to determine how this variation may affect disease manifestations and treatment.

  14. Minireview: Invasive fungal infection complicating acute Plasmodium falciparum malaria.

    PubMed

    Däbritz, Jan; Schneider, Markward; Just-Nuebling, Gudrun; Groll, Andreas H

    2011-07-01

    Malaria is the most important parasitic infection in people, affecting 5-10% of the world's population with more than two million deaths a year. Whereas invasive bacterial infections are not uncommon during severe Plasmodium falciparum malaria, only a few cases of opportunistic fungal infections have been reported. Here, we present a fatal case of disseminated hyalohyphomycosis associated with acute P. falciparum malaria in a non-immune traveller, review the cases reported in the literature and discuss the theoretical foundations for the increased susceptibility of non-immune individuals with severe P. falciparum malaria to opportunistic fungal infections. Apart from the availability of free iron as sequelae of massive haemolysis, tissue damage, acidosis and measures of advanced life support, patients with complicated P. falciparum malaria also are profoundly immunosuppressed by the organism's interaction with innate and adaptive host immune mechanisms.

  15. Transcriptional Profiling of Plasmodium falciparum Parasites from Patients with Severe Malaria Identifies Distinct Low vs. High Parasitemic Clusters

    PubMed Central

    Krupka, Malkie; Williams, Chris; Seydel, Karl; Taylor, Terrie E.; Van de Peer, Yves; Regev, Aviv; Wirth, Dyann

    2012-01-01

    Background In the past decade, estimates of malaria infections have dropped from 500 million to 225 million per year; likewise, mortality rates have dropped from 3 million to 791,000 per year. However, approximately 90% of these deaths continue to occur in sub-Saharan Africa, and 85% involve children less than 5 years of age. Malaria mortality in children generally results from one or more of the following clinical syndromes: severe anemia, acidosis, and cerebral malaria. Although much is known about the clinical and pathological manifestations of CM, insights into the biology of the malaria parasite, specifically transcription during this manifestation of severe infection, are lacking. Methods and Findings We collected peripheral blood from children meeting the clinical case definition of cerebral malaria from a cohort in Malawi, examined the patients for the presence or absence of malaria retinopathy, and performed whole genome transcriptional profiling for Plasmodium falciparum using a custom designed Affymetrix array. We identified two distinct physiological states that showed highly significant association with the level of parasitemia. We compared both groups of Malawi expression profiles with our previously acquired ex vivo expression profiles of parasites derived from infected patients with mild disease; a large collection of in vitro Plasmodium falciparum life cycle gene expression profiles; and an extensively annotated compendium of expression data from Saccharomyces cerevisiae. The high parasitemia patient group demonstrated a unique biology with elevated expression of Hrd1, a member of endoplasmic reticulum-associated protein degradation system. Conclusions The presence of a unique high parasitemia state may be indicative of the parasite biology of the clinically recognized hyperparasitemic severe disease syndrome. PMID:22815802

  16. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria

    PubMed Central

    Bertin, Gwladys I.; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M.; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  17. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria.

    PubMed

    Imwong, Mallika; Woodrow, Charles J; Hendriksen, Ilse C E; Veenemans, Jacobien; Verhoef, Hans; Faiz, M Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D; Day, Nicholas P J; Dondorp, Arjen M; White, Nicholas J

    2015-04-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.

  18. Anti-JK-a Antibody in a Case of SLE Patient with Plasmodium falciparum Malaria Infection.

    PubMed

    Datta, Suvro Sankha; Mukherjee, Somnath; Bhattacharya, Prasun; Mukherjee, Krishnendu

    2013-06-01

    A 58 year old lady presented with high grade fever, pallor, abdominal pain, loss of appetite and swelling of legs. She was subsequently diagnosed with SLE along with infection of Plasmodium falciparum malaria. She was clinically pale and advised for two units of packed red cell transfusion. One of the two units was incompatible, so only one unit was issued. Subsequently, DAT and auto control were positive. Later antibody specificity was identified, which came out to be anti JK-a. Because of recent transfusion 2 weeks back, her antigenic phenotype could not be elicited. Though we could not make out whether this antibody was the result of pregnancy or transfusion induced allo anti-JK-a or SLE induced auto anti JK-a, this antibody is highly clinically significant from transfusion point of view.

  19. Fosmidomycin plus Clindamycin for Treatment of Pediatric Patients Aged 1 to 14 Years with Plasmodium falciparum Malaria

    PubMed Central

    Borrmann, Steffen; Lundgren, Ingrid; Oyakhirome, Sunny; Impouma, Bénido; Matsiegui, Pierre-Blaise; Adegnika, Ayola A.; Issifou, Saadou; Kun, Jürgen F. J.; Hutchinson, David; Wiesner, Jochen; Jomaa, Hassan; Kremsner, Peter G.

    2006-01-01

    Fosmidomycin plus clindamycin was shown to be efficacious in the treatment of uncomplicated Plasmodium falciparum malaria in a small cohort of pediatric patients aged 7 to 14 years, but more data, including data on younger children with less antiparasitic immunity, are needed to determine the potential value of this new antimalarial combination. We conducted a single-arm study to improve the precision of efficacy estimates for an oral 3-day fixed-ratio combination of fosmidomycin and clindamycin at 30 and 10 mg/kg of body weight, respectively, every 12 hours for the treatment of uncomplicated P. falciparum malaria in 51 pediatric outpatients aged 1 to 14 years. Fosmidomycin plus clindamycin was generally well tolerated, but relatively high rates of treatment-associated neutropenia (8/51 [16%]) and falls of hemoglobin concentrations of ≥2 g/dl (7/51 [14%]) are of concern. Asexual parasites and fever were cleared within median periods of 42 h and 38 h, respectively. All patients who could be evaluated were parasitologically and clinically cured by day 14 (49/49; 95% confidence interval [CI], 93 to 100%). The per-protocol, PCR-adjusted day 28 cure rate was 89% (42/47; 95% CI, 77 to 96%). Efficacy appeared to be significantly reduced in children aged 1 to 2 years, with a day 28 cure rate of only 62% for this small subgroup (5/8). The inadequate efficacy in children of <3 years highlights the need for continued systematic studies of the current dosing regimen, which should include randomized trial designs. PMID:16870763

  20. Field Evaluation of the ICT Malaria P.f/P.v Immunochromatographic Test for Detection of Plasmodium falciparum and Plasmodium vivax in Patients with a Presumptive Clinical Diagnosis of Malaria in Eastern Indonesia

    PubMed Central

    Tjitra, Emiliana; Suprianto, Sri; Dyer, Mary; Currie, Bart J.; Anstey, Nicholas M.

    1999-01-01

    In areas such as eastern Indonesia where both Plasmodium falciparum and Plasmodium vivax occur, rapid antigen detection tests for malaria need to be able to detect both species. We evaluated the new combined P. falciparum-P. vivax immunochromatographic test (ICT Malaria P.f/P.v.) in Radamata Primary Health Centre, Sumba, Indonesia, from February to May 1998 with 560 symptomatic adults and children with a presumptive clinical diagnosis of malaria. Blinded microscopy was used as the “gold standard,” with all discordant and 20% of concordant results cross-checked blindly. Only 50% of those with a presumptive clinical diagnosis of malaria were parasitemic. The ICT Malaria P.f/P.v immunochromatographic test was sensitive (95.5%) and specific (89.8%) for the diagnosis of falciparum malaria, with a positive predictive value (PPV) and a negative predictive value (NPV) of 88.1 and 96.2%, respectively. HRP2 and panmalarial antigen line intensities were associated with parasitemia density for both species. Although the specificity and NPV for the diagnosis of vivax malaria were 94.8 and 98.2%, respectively, the overall sensitivity (75%) and PPV (50%) for the diagnosis of vivax malaria were less than the desirable levels. The sensitivity for the diagnosis of P. vivax malaria was 96% with parasitemias of >500/μl but only 29% with parasitemias of <500/μl. Nevertheless, compared with the test with HRP2 alone, use of the combined antigen detection test would reduce the rate of undertreatment from 14.7 to 3.6% for microscopy-positive patients, and this would be at the expense of only a modest increase in the rate of overtreatment of microscopy-negative patients from 7.1 to 15.4%. Cost remains a major obstacle to widespread use in areas of endemicity. PMID:10405377

  1. Field evaluation of the ICT malaria P.f/P.v immunochromatographic test for detection of Plasmodium falciparum and Plasmodium vivax in patients with a presumptive clinical diagnosis of malaria in eastern Indonesia.

    PubMed

    Tjitra, E; Suprianto, S; Dyer, M; Currie, B J; Anstey, N M

    1999-08-01

    In areas such as eastern Indonesia where both Plasmodium falciparum and Plasmodium vivax occur, rapid antigen detection tests for malaria need to be able to detect both species. We evaluated the new combined P. falciparum-P. vivax immunochromatographic test (ICT Malaria P.f/P.v.) in Radamata Primary Health Centre, Sumba, Indonesia, from February to May 1998 with 560 symptomatic adults and children with a presumptive clinical diagnosis of malaria. Blinded microscopy was used as the "gold standard," with all discordant and 20% of concordant results cross-checked blindly. Only 50% of those with a presumptive clinical diagnosis of malaria were parasitemic. The ICT Malaria P.f/P.v immunochromatographic test was sensitive (95. 5%) and specific (89.8%) for the diagnosis of falciparum malaria, with a positive predictive value (PPV) and a negative predictive value (NPV) of 88.1 and 96.2%, respectively. HRP2 and panmalarial antigen line intensities were associated with parasitemia density for both species. Although the specificity and NPV for the diagnosis of vivax malaria were 94.8 and 98.2%, respectively, the overall sensitivity (75%) and PPV (50%) for the diagnosis of vivax malaria were less than the desirable levels. The sensitivity for the diagnosis of P. vivax malaria was 96% with parasitemias of >500/microl but only 29% with parasitemias of <500/microl. Nevertheless, compared with the test with HRP2 alone, use of the combined antigen detection test would reduce the rate of undertreatment from 14.7 to 3.6% for microscopy-positive patients, and this would be at the expense of only a modest increase in the rate of overtreatment of microscopy-negative patients from 7.1 to 15. 4%. Cost remains a major obstacle to widespread use in areas of endemicity.

  2. Skeletal muscle involvement in falciparum malaria: biochemical and ultrastructural study.

    PubMed

    Davis, T M; Pongponratan, E; Supanaranond, W; Pukrittayakamee, S; Helliwell, T; Holloway, P; White, N J

    1999-10-01

    Biochemical evidence of skeletal muscle damage is common in malaria, but rhabdomyolysis appears to be rare. To investigate the relationship between serum creatine kinase and myoglobin levels, muscle histology, and renal function in Plasmodium falciparum infections, we studied 13 patients with uncomplicated malaria, 13 with severe noncerebral malaria, and 10 with cerebral malaria. A muscle biopsy specimen was obtained from each patient for light microscopy and electron microscopy. Mean serum creatine kinase concentrations +/- SD were raised but similar for the three groups (258 +/- 277, 149 +/- 158, and 203 +/- 197 U/L, respectively; P = .5). The mean serum myoglobin level +/- SD was highest in cerebral malaria (457 +/- 246 vs. 170 +/- 150 and 209 +/- 125 ng/mL in uncomplicated and severe malaria, respectively; P < .01) and correlated with the mean serum creatinine level (r = .39 for 36 patients; P = .02). The number of intravascular parasites, proportion of mature forms, and glycogen depletion were highest in biopsy specimens from patients with cerebral malaria. Myonecrosis was not observed. Muscle appears to be an important site for P. falciparum sequestration, which could contribute to metabolic and renal complications.

  3. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  4. Enhanced expression of Fas and FasL modulates apoptosis in the lungs of severe P. falciparum malaria patients with pulmonary edema

    PubMed Central

    Punsawad, Chuchard; Viriyavejakul, Parnpen; Setthapramote, Chayanee; Palipoch, Sarawoot

    2015-01-01

    Apoptosis mediated by Fas/FasL has been implicated in pulmonary disorders. However, little is known about the relationship between Fas and FasL in the process of lung injury during malaria infection. Paraffin-embedded lung tissues from malaria patients were divided into two groups: those with pulmonary edema (PE) and those without pulmonary edema (non-PE). Normal lung tissues were used as the control group. Cellular expression of Fas, FasL, and the markers of apoptotic caspases, including cleaved caspase-3 and cleaved caspase-8 in the lung tissues were investigated by the immunohistochemistry (IHC) method. Semi-quantitative analysis of IHC staining revealed that cellular expression of Fas, FasL, cleaved caspase-8, and cleaved caspase-3 were significantly increased in the lungs of patients with PE compared with the lungs of patients with non-PE and control groups (all P < 0.05). In addition, significant positive correlations were obtained between Fas and apoptosis (rs = 0.937, P < 0.001) and FasL and apoptosis (rs = 0.808, P < 0.001). Significant positive correlations were found between Fas and FasL expression (rs = 0.827, P < 0.001) and between cleaved caspase-8 and cleaved caspase-3 expression (rs = 0.823, P < 0.001), which suggests that Fas-dependent initiator and effector caspases, including cleaved caspase-8 and caspase-3, are necessary for inducing apoptosis in the lungs of patients with severe P. falciparum malaria. The Fas/FasL system and downstream activation of caspases are important mediators of apoptosis and may be involved in the pathogenesis of pulmonary edema in severe P. falciparum malaria patients. The proper regulation of the Fas/FasL pathway can be a potential treatment for pulmonary complications in falciparum malaria patients. PMID:26617708

  5. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria

    PubMed Central

    White, Nicholas J.; Duong, Tran T.; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P.; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S.; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T.; Pertel, Peter; Leong, F. Joel

    2016-01-01

    Background KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. Methods We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Results Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. Conclusions KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P

  6. Automated erythrocytapheresis in the treatment of severe falciparum malaria.

    PubMed

    Macallan, D C; Pocock, M; Bishop, E; Bevan, D H; Parker-Williams, J; Harrison, T; Robinson, G T

    1999-11-01

    Removal of parasitized erythrocytes is generally considered to be of value as adjunctive therapy in severe falciparum malaria with high parasitaemia. This is commonly achieved by exchange transfusion. We describe three cases of severe falciparum malaria treated by automated erythrocytapheresis (red cell exchange) in addition to quinine and conventional supportive therapy. Erythrocytapheresis consists of removal of the red-cell fraction by apheresis. Plasma, leukocyte and platelet fractions are returned to the patient. In all cases, dramatic reduction in parasitaemia was achieved within 2 h with subsequent complete clinical recovery. Erythrocytapheresis has significant advantages over exchange transfusion in terms of speed, efficiency, haemodynamic stability and retention of plasma components such as clotting factors and may thus represent an improvement in adjunctive therapy for severe malaria.

  7. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand.

    PubMed

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M

    2015-11-30

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak.

  8. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    PubMed

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  9. Natural antisense transcripts in Plasmodium falciparum isolates from patients with complicated malaria.

    PubMed

    Subudhi, Amit Kumar; Boopathi, P A; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Pakalapati, Deepak; Saxena, Vishal; Aiyaz, Mohammed; Orekondy, Harsha B; Mugasimangalam, Raja C; Sirohi, Paramendra; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2014-06-01

    Mechanisms regulating gene expression in malaria parasites are not well understood. Little is known about how the parasite regulates its gene expression during transition from one developmental stage to another and in response to various environmental conditions. Parasites in a diseased host face environments which differ from the static, well adapted in vitro conditions. Parasites thus need to adapt quickly and effectively to these conditions by establishing transcriptional states which are best suited for better survival. With the discovery of natural antisense transcripts (NATs) in this parasite and considering the various proposed mechanisms by which NATs might regulate gene expression, it has been speculated that these might be playing a critical role in gene regulation. We report here the diversity of NATs in this parasite, using isolates taken directly from patients with differing clinical symptoms caused by malaria infection. Using a custom designed strand specific whole genome microarray, a total of 797 NATs targeted against annotated loci have been detected. Out of these, 545 NATs are unique to this study. The majority of NATs were positively correlated with the expression pattern of the sense transcript. However, 96 genes showed a change in sense/antisense ratio on comparison between uncomplicated and complicated disease conditions. The antisense transcripts map to a broad range of biochemical/metabolic pathways, especially pathways pertaining to the central carbon metabolism and stress related pathways. Our data strongly suggests that a large group of NATs detected here are unannotated transcription units antisense to annotated gene models. The results reveal a previously unknown set of NATs that prevails in this parasite, their differential regulation in disease conditions and mapping to functionally well annotated genes. The results detailed here call for studies to deduce the possible mechanism of action of NATs, which would further help in

  10. [Treatment of fulminant falciparum malaria with erythrapheresis].

    PubMed

    Rouvier, B; Maudan, P; Debue, J F; Joussemet, M; Roué, R

    1988-01-01

    Ten days after his return from Cameroon, a twenty-six year old Frenchman, serving on voluntary service overseas, presented with fulminant falciparum malaria: shock, altered consciousness, haemolytic anaemia, threatening disseminated coagulation (platelets less than 150 X 10(-6).l-1; prothrombin time and Stuart factor less than 50%; fibrinogen less than 1.5 g.l-1). In spite of quinine therapy, parasitaemia increased from 4 to 35% within 24 h. Using an Haemonetics V50, the exchange of one and a half red blood cell masses was carried out with 17 red blood cell packs. Calcium gluconate was used to prevent the hypocalcaemia induced by the anticoagulant solution. The patient's platelets and plasma were completely reinjected. The result was very satisfactory. This kind of exchange, well tolerated clinically and biologically, would seem better than the classical exchange transfusion. When 10% of the red blood cells are infected by Plasmodium falciparum, it is necessary to exchange from one and a half to two blood masses. Lesser exchanges are always associated with important relapses and quinine therapy must be carried on during and after the exchange. Restricting this exchange only to red blood cells enabled the patient to benefit from his own coagulation factors, antibodies and platelets, and consequently to reduce the number of blood donors involved. However, metabolites (especially bilirubin and circulating immune complexes) were not eliminated. Partial plasmapheresis may be associated with erythropheresis using human albumin as plasma substitute. This technique needs to be assessed, in order to optimize immediate efficiency and post-transfusion infectious risk.

  11. Dynamic alteration in splenic function during acute falciparum malaria

    SciTech Connect

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  12. Severe Plasmodium falciparum and Plasmodium vivax malaria among adults at Kassala Hospital, eastern Sudan

    PubMed Central

    2013-01-01

    Background There have been few published reports on severe Plasmodium falciparum and Plasmodium vivax malaria among adults in Africa. Methods Clinical pattern/manifestations of severe P. falciparum and P. vivax (according to World Health Organization 2000 criteria) were described in adult patients admitted to Kassala Hospital, eastern Sudan. Results A total of 139 adult patients (80 males, 57.6%) with a mean (SD) age of 37.2 (1.5) years presented with severe P. falciparum (113, 81.3%) or P. vivax (26, 18.7%) malaria. Manifestations among the 139 patients included hypotension (38, 27.3%), cerebral malaria (23, 16.5%), repeated convulsions (18, 13.0%), hypoglycaemia (15, 10.8%), hyperparasitaemia (14, 10.1%), jaundice (14, 10.1%), severe anaemia (10, 7.2%), bleeding (six, 4.3%), renal impairment (one, 0.7%) and more than one criteria (27, 19.4%). While the geometric mean of the parasite count was significantly higher in patients with severe P. vivax than with severe P. falciparum malaria (5,934.2 vs 13,906.6 asexual stage parasitaemia per μL, p = 0.013), the different disease manifestations were not significantly different between patients with P. falciparum or P. vivax malaria. Three patients (2.2%) died due to severe P. falciparum malaria. One had cerebral malaria, the second had renal impairment, jaundice and hypoglycaemia, and the third had repeated convulsions and hypotension. Conclusions Severe malaria due to P. falciparum and P. vivax malaria is an existing entity among adults in eastern Sudan. Patients with severe P. falciparum and P. vivax develop similar disease manifestations. PMID:23634728

  13. Immunoglobulin A nephropathy associated with Plasmodium falciparum malaria.

    PubMed

    Yoo, Dong Eun; Kim, Jeong Ho; Kie, Jeong Hae; Park, Yoonseon; Chang, Tae Ik; Oh, Hyung Jung; Kim, Seung Jun; Yoo, Tae-Hyun; Choi, Kyu Hun; Kang, Shin-Wook; Han, Seung Hyeok

    2012-04-01

    Glomerulonephritis occurs as a rare form of renal manifestation in Plasmodium falciparum malaria. Herein, we report a case of falciparum malaria-associated IgA nephropathy for the first time. A 49-yr old male who had been to East Africa was diagnosed with Plasmodium falciparum malaria. Microhematuria and proteinuria along with acute kidney injury developed during the course of the disease. Kidney biopsy showed mesangial proliferation and IgA deposits with tubulointerstitial inflammation. Laboratory tests after recovery from malaria showed disappearance of urinary abnormalities and normalization of kidney function. Our findings suggest that malaria infection might be associated with IgA nephropathy.

  14. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    PubMed

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  15. Spatial and temporal distribution of falciparum malaria in China

    PubMed Central

    Lin, Hualiang; Lu, Liang; Tian, Linwei; Zhou, Shuisen; Wu, Haixia; Bi, Yan; Ho, Suzanne C; Liu, Qiyong

    2009-01-01

    Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance

  16. Thiamin supplementation does not reduce the frequency of adverse events after anti-malarial therapy among patients with falciparum malaria in southern Laos

    PubMed Central

    2014-01-01

    Background In a recent study one third of Lao patients presenting with uncomplicated Plasmodium falciparum malaria had biochemical evidence of thiamin deficiency, which was associated with a higher incidence of adverse events. Thiamin supplementation might, therefore, reduce adverse events in this population. Methods An exploratory, double-blind, parallel group, placebo-controlled, superiority trial of thiamin supplementation in patients of all ages with uncomplicated and severe falciparum malaria was conducted in Xepon District, Savannakhet Province, southern Laos. Patients were randomly assigned to either oral thiamin 10 mg/day for 7 days immediately after standard anti-malarial treatment then 5 mg daily until day 42, or identical oral placebo. Results After interim analyses when 630 patients (314 in thiamin and 316 in placebo groups) had been recruited, the trial was discontinued on the grounds of futility. On admission biochemical thiamin deficiency (alpha ≥ 25%) was present in 27% of patients and 9% had severe deficiency (alpha > 31%). After 42 days of treatment, the frequency of thiamin deficiency was lower in the thiamin (2%, 1% severe) compared to the placebo (11%, 3% severe) groups (p < 0.001 and p = 0.05), respectively. Except for diarrhoea, 7% in the placebo compared to 3% in the thiamin group (p = 0.04), and dizziness on day 1 (33% vs 25%, p = 0.045), all adverse events were not significantly different between the groups (p > 0.05). Clinical, haematological, and parasitological responses to treatment did not differ significantly between the two groups. Conclusion Thiamin supplementation reduced biochemical thiamin deficiency among Lao malaria patients following anti-malarial drug treatment, but it did not reduce the frequency of adverse events after anti-malarial therapy or have any detected clinical or parasitological impact. Trial registration ISRCTN 85411059 PMID:25027701

  17. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria

    PubMed Central

    Plewes, Katherine; Maude, Richard J.; Hanson, Josh; Herdman, M. Trent; Leopold, Stije J.; Ngernseng, Thatsanun; Charunwatthana, Prakaykaew; Phu, Nguyen Hoan; Ghose, Aniruddha; Hasan, M. Mahtab Uddin; Fanello, Caterina I.; Faiz, Md Abul; Hien, Tran Tinh; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.

    2017-01-01

    Background Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. Methods Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African ‘AQUAMAT’ trial comparing artesunate and quinine (children), and the Vietnamese ‘AQ’ study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. Results Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the ‘AQUAMAT’ study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. Conclusions The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid

  18. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti

    PubMed Central

    Campo, Joseph J.; Cicéron, Micheline; Raccurt, Christian P.; Beau De Rochars, Valery E. M.

    2017-01-01

    Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals

  19. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti.

    PubMed

    Lehmann, Jason S; Campo, Joseph J; Cicéron, Micheline; Raccurt, Christian P; Boncy, Jacques; Beau De Rochars, Valery E M; Cannella, Anthony P

    2017-01-01

    Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals

  20. [Acute renal failure and Plasmodium falciparum malaria: a case report].

    PubMed

    Kissou, S A; Cessouma, R; Barro, M; Traoré, H; Nacro, B

    2012-01-01

    Malaria is an endemic disease caused by one of the several Plasmodium species. Severe malaria is mainly due to Plasmodium falciparum in highly endemic areas. Acute renal failure (ARF) is a criterion of malaria severity as defined by WHO. Often observed in adults, particularly in India and Southeast Asia, this complication remains a rare complication of malaria in children. We report a case of oliguric ARF that occurred in a 7-year-old girl a few days after the onset of fever. The vascular obstruction by parasitized erythrocytes often causing tubular necrosis is the primary mechanism of renal failure. As a possible diagnosis, hemolytic uremic syndrome, renal failure and quartan hemoglobinuric nephropathy are other possible causes of renal failure in malaria. Renal biopsy, which was not performed in our patient, would have been a great help, but was not available. The outcome was favorable with recovery of renal function after 3 weeks of diuretic therapy. This development is not always the rule and the prognosis depends on early diagnosis and treatment options.

  1. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  2. Low Prevalence of Pfcrt Resistance Alleles among Patients with Uncomplicated Falciparum Malaria in Niger Six Years after Chloroquine Withdrawal

    PubMed Central

    Salissou, Adamou; Zamanka, Halima; Biyghe Binze, Brigitte; Rivière, Taiana; Tichit, Magalie; Ibrahim, Maman Laminou; Fandeur, Thierry

    2014-01-01

    Chloroquine (CQ) resistance is widespread in Africa, but few data are available for Niger. Pfcrt haplotypes (aa 56–118) and ex vivo responses to CQ and amodiaquine were characterized for 26 isolates collected in South Niger from children under 15 years of age suffering from uncomplicated falciparum malaria, six years after the introduction of artemisinin-based combinations and the withdrawal of CQ. The wild-type Pfcrt haplotype CVMNK was found in 22 of the 26 isolates, with CVIET sequences observed in only three of the samples. We also describe for the first time a new CVINT haplotype. The ex vivo responses were better for CVMNK than for CVIET parasites. Pfcrt sequence data were compared with those obtained for 26 additional parasitized blood samples collected in Gabon, from an area of CQ resistance used as a control. Our findings suggest that there has been a significant decline in CQ-resistant genotypes since the previous estimates for Niger were obtained. No such decline in molecular resistance to CQ was observed in the subset of samples collected in similar conditions from Gabon. These results have important implications for public health and support the policy implemented in Niger since 2005, which aims to increase the efficacy and availability of antimalarial drugs whilst controlling the spread of resistance. PMID:25506465

  3. Cytokine Profiling in Immigrants with Clinical Malaria after Extended Periods of Interrupted Exposure to Plasmodium falciparum

    PubMed Central

    Moncunill, Gemma; Mayor, Alfredo; Bardají, Azucena; Puyol, Laura; Nhabomba, Augusto; Barrios, Diana; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Gascón, Joaquim; Dobaño, Carlota

    2013-01-01

    Immunity to malaria is believed to wane with time in the absence of exposure to Plasmodium falciparum infection, but immunoepidemiological data on longevity of immunity remain controversial. We quantified serum cytokines and chemokines by suspension array technology as potential biomarkers for durability of immunity in immigrants with clinical malaria after years without parasite exposure. These were compared to serum/plasma profiles in naïve adults (travelers) and semi-immune adults under continuous exposure, with malaria, along with immigrant and traveler patients without malaria. Immigrants had higher levels of IL-2, IL-5 and IL-8 compared to semi-immune adults with malaria (P≤0.0200). Time since immigration correlated with increased IL-2 (rho=0.2738P=0.0495) and IFN-γ (rho=0.3044P=0.0282). However, immigrants did not show as high IFN-γ concentrations as travelers during a first malaria episode (P<0.0001). Immigrants and travelers with malaria had higher levels of IFN-γ, IL-6, and IL-10 (P<0.0100) than patients with other diseases, and IL-8 and IL-1β were elevated in immigrants with malaria (P<0.0500). Therefore, malaria patients had a characteristic strong pro-inflammatory/Th1 signature. Upon loss of exposure, control of pro-inflammatory responses and tolerance to P. falciparum appeared to be reduced. Understanding the mechanisms to maintain non-pathogenic effector responses is important to develop new malaria control strategies. PMID:23967342

  4. Urinary bile casts in bile cast nephropathy secondary to severe falciparum malaria

    PubMed Central

    Mohapatra, Manoj Kumar; Behera, Ashok Kumar; Karua, Purna Chandra; Bariha, Prafulla Kumar; Rath, Ashutosh; Aggrawal, Kailash Chandra; Nahak, Snigdha Rani; Gudaganatti, Santosh Shankar

    2016-01-01

    Background Severe cholestatic jaundice may complicate with bile cast nephropathy (BCN) causing severe acute kidney injury (AKI). In this study, we investigate BCN in severe falciparum malaria complicated with jaundice and AKI. Methods This prospective study was conducted in a tertiary health care institution with high prevalence of malaria. A cohort of 110 patients with falciparum malaria complicated with cerebral malaria, jaundice and AKI were enrolled. Species diagnosis was made from peripheral blood smear or rapid diagnostic test. Severe malaria was diagnosed from WHO criteria. BCN was diagnosed with the detection of bile casts in urine or in biopsy. The recovery pattern and outcome with and without BCN was assessed. Results Out of 110 patients, 20 (18.2%) patients had BCN and 15 (13.6%) patients had hepato-renal syndrome. Patients with BCN had high conjugated bilirubin (26.5 ± 4.1 mg/dL), urea (75.9 ± 10.3 mg/dL) and creatinine (7.2 ± 0.8 mg/dL), longer duration of illness (6.4 ± 1.1 days), higher mortality (25.0%) and prolonged recovery time of hepatic (9.6 ± 2.4 days) and renal dysfunction (15.1 ± 6.5 days) compared with patients without BCN. Conclusions Prolonged duration of illness and increased bilirubin cause BCN among patients with severe falciparum malaria with jaundice and AKI, which is associated with high mortality and morbidity. PMID:27478612

  5. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    PubMed Central

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  6. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    PubMed Central

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Joergen AL; Addae, Michael M; Ollaga, Edwin; Tetteh, John KA; Dodoo, Daniel; Ofori, Michael F; Obeng-Adjei, George; Hirayama, Kenji; Awandare, Gordon A; Akanmori, Bartholomew D

    2007-01-01

    Background Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT) and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ) and the regulatory proteins [complement receptor 1 (CD35) and decay accelerating factor (CD55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. Results Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were positive for C3d alone while 16/131 (12.2%) were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p < 0.001). DCT correlated significantly with RD (β = -304, p = 0.006), but multiple regression analysis revealed that, Hb (β = -0.341, p = 0.012) and coma (β = -0.256, p = 0.034) were stronger predictors of RD than DCT (β = 0.228, p = 0.061). DCT was also not associated with IVH, p = 0.19, while spleen size was inversely correlated with Hb (r = -402, p = 0.001). Flow cytometry showed similar mean fluorescent intensity (MFI) values of CD35, CD55 and C3bαβ levels on the surfaces of RBC in patients and asymptomatic controls (AC). However, binding of C3bαβ correlated significantly with CD35 or CD55 (p < 0.001). Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In

  7. Clinico-pathological studies of Plasmodium falciparum and Plasmodium vivax - malaria in India and Saudi Arabia.

    PubMed

    Khan, Wajihullah; Zakai, Haytham A; Umm-E-Asma

    2014-06-01

    Malaria is one of the most devastating diseases of tropical countries with clinical manifestations such as anaemia, splenomegaly, thrombocytopenia, hepatomegaly and acute renal failures. In this study, cases of thrombocytopenia and haemoglobinemia were more prominent in subjects infected with Plasmodium falciparum (Welch, 1897) than those with Plasmodium vivax (Grassi et Feletti, 1890). However, anaemia, jaundice, convulsions and acute renal failure were significantly high (3-4 times) in subjects infected with P. falciparum than those infected with P. vivax. The incidence of splenomegaly and neurological sequelae were 2 and 6 times higher in P. falciparum infections compared to the infections of P. vivax. Both in P. vivax and P. falciparum malaria, the cases of splenomegaly, jaundice and neurological sequelae were almost double in children (<10 years) compared to older patients. The liver enzymes were generally in normal range in cases of low and mild infections. However, the AST, ALT, ALP activities and serum bilirubin, creatinine, and the urea content were increased in P. falciparum and P. vivax malaria patients having high parasitaemia, confirming liver dysfunction and renal failures in few cases of severe malaria both in India and Saudi Arabia.

  8. Deletion of the APOBEC3B gene strongly impacts susceptibility to falciparum malaria.

    PubMed

    Jha, Pankaj; Sinha, Swapnil; Kanchan, Kanika; Qidwai, Tabish; Narang, Ankita; Singh, Prashant Kumar; Pati, Sudhanshu S; Mohanty, Sanjib; Mishra, Saroj K; Sharma, Surya K; Awasthi, Shally; Venkatesh, Vimala; Jain, Sanjeev; Basu, Analabha; Xu, Shuhua; Mukerji, Mitali; Habib, Saman

    2012-01-01

    APOBEC3B, a gene involved in innate response, exhibits insertion-deletion polymorphism across world populations. We observed the insertion allele to be nearly fixed in malaria endemic regions of sub-Saharan Africa as well as populations with high malaria incidence in the past. This prompted us to investigate the possible association of the polymorphism with falciparum malaria. We studied the distribution of APOBEC3B, in 25 diverse Indian populations comprising of 500 samples and 176 severe or non-severe Plasmodium falciparum patients and 174 ethnically-matched uninfected individuals from a P. falciparum endemic and a non-endemic region of India. The deletion frequencies ranged from 0% to 43% in the Indian populations. The frequency of the insertion allele strikingly correlated with the endemicity map of P. falciparum malaria in India. A strong association of the deletion allele with susceptibility to falciparum malaria in the endemic region (non-severe vs. control, Odds ratio=4.96, P value=9.5E(-06); severe vs. control, OR=4.36, P value=5.76E(-05)) was observed. Although the frequency of deletion allele was higher in the non-endemic region, there was a significant association of the homozygous deletion genotype with malaria (OR=3.17, 95% CI=1.10-10.32, P value=0.0177). Our study also presents a case for malaria as a positive selection force for the APOBEC3B insertion and suggests a major role for this gene in innate immunity against malaria.

  9. Symmetrical peripheral gangrene: A rare complication of plasmodium falciparum malaria

    PubMed Central

    Rana, Atul; Singh, DP; Kaur, Gurdeep; Verma, SK; Mahur, Hemant

    2015-01-01

    Malaria, the most important of the parasitic diseases of humans, is transmitted in 108 countries containing 3 billion people and causes nearly 1 million deaths each year. With the re-emergence of malaria various life-threatening complications of malaria have been observed. Unarousable coma/cerebral malaria, severe normochromic, normocytic anemia, renal failure, pulmonary edema/adult respiratory distress syndrome, hypoglycemia, hypotension/shock, bleeding/disseminated intravascular coagulation (DIC), hemoglobinuria and jaundice are few of the common complications of severe malaria. Symmetrical peripheral gangrene (SPG) has been reported as a rare complication of malaria. We report a rare and unique case of Plasmodium falciparum malaria complicated by DIC, severe normocytic normochromic anemia, and SPG. PMID:26629458

  10. Monocyte polarization in children with falciparum malaria: relationship to nitric oxide insufficiency and disease severity

    PubMed Central

    Weinberg, J. Brice; Volkheimer, Alicia D.; Rubach, Matthew P.; Florence, Salvatore M.; Mukemba, Jackson P.; Kalingonji, Ayam R.; Langelier, Charles; Chen, Youwei; Bush, Margaret; Yeo, Tsin W.; Granger, Donald L.; Anstey, Nicholas M.; Mwaikambo, Esther D.

    2016-01-01

    We earlier established that nitric oxide (NO) is protective against severe malaria and that arginine and NO levels are reduced in malaria patients. We now show that an M2-like blood monocyte phenotype is significantly associated with hypoargininemia, NO insufficiency, and disease severity in Tanzanian children with falciparum malaria. Compared to control children (n = 106), children with moderately severe (n = 77) and severe falciparum malaria (n = 129) had significantly higher mononuclear cell arginase 1 mRNA, protein, and enzyme activity; lower NOS2 mRNA; lower plasma arginine; and higher plasma IL-10, IL-13, and IL-4. In addition, monocyte CD206 and CD163 and plasma soluble CD163 were elevated. Multivariate logistic regression analysis revealed a significant correlation of risk of severe malaria with both plasma IL-10 and soluble CD163 levels. Monocyte M2 skewing likely contributes to NO bioinsufficiency in falciparum malaria in children. Treatments that reverse the M2 polarization may have potential as adjunctive treatment for malaria. PMID:27385484

  11. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    PubMed

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  12. A modified Plasmodium falciparum growth inhibition assay (GIA) to assess activity of plasma from malaria endemic areas.

    PubMed

    Mlambo, Godfree; Kumar, Nirbhay

    2007-02-01

    Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).

  13. Efficacy and safety of the six-dose regimen of artemether-lumefantrine in pediatrics with uncomplicated Plasmodium falciparum malaria: a pooled analysis of individual patient data.

    PubMed

    Makanga, Michael; Premji, Zul; Falade, Catherine; Karbwang, Juntra; Mueller, Edgar A; Andriano, Kim; Hunt, Philip; De Palacios, Patricia Ibarra

    2006-06-01

    Patient data from eight clinical trials were pooled and analyzed to study the efficacy and safety of the six-dose versus four-dose regimen of artemether-lumefantrine (coartemether; Coartem) in children weighing 5-25 kg. A total of 544 patients with uncomplicated P. falciparum malaria (six-dose: 343; four-dose: 201), matched for demographic and baseline characteristics and individual coartemether doses were included in the analysis. Analysis of day 28 cure rate based on the intention-to-treat and evaluable populations yielded corrected cure rates for the six-dose regimen of 93% and 96% compared with 61% and 76%, respectively, for the four-dose regimen (P < 0.0001 for both comparisons). Similarly high cure rates were achieved with the six-dose regimen in non-immune infants weighing as little as 5 kg. The six- and four-dose regimens were equally well tolerated. The main finding of this analysis is that the six-dose regimen of coartemether is safe and more efficacious than the four-dose regimen in children.

  14. Progression of skeletal muscle damage during treatment of severe falciparum malaria.

    PubMed

    Davis, T M; Supanaranond, W; Pukrittayakamee, S; Holloway, P; Chubb, P; White, N J

    2000-10-02

    To assess the relationship between severity of malaria and progression of skeletal muscle damage during initial treatment, we studied 28 Thai adults with slide-positive falciparum malaria. Six had uncomplicated malaria (Group 1), 12 had severe non-cerebral malaria (Group 2) and ten had cerebral malaria (Group 3). There were no significant differences between baseline serum creatine kinase (CK) levels in the three groups (P=0.071). There was no change in serum CK during the first 48 h of treatment in Group 1 cases. In Group 2 patients, the median peak serum CK was nine times that at baseline while in Group 3, serum CK peaked at a median concentration 20 times that at presentation. In Groups 2 and 3, the peak serum CK occurred at least 24 h after presentation in more than half the patients, and was independent of intramuscular injections and convulsions during initial therapy. These longitudinal data suggest that: (i) severe falciparum malaria is associated with skeletal muscle damage that increases during initial therapy especially in patients with coma; (ii) the effect of other major treatment or infection-specific factors that are associated with muscle damage does not diminish this relationship; and (iii) cerebral malaria in combination with a high baseline and rising serum CK should pre-empt monitoring and management strategies aimed at preserving renal function including renal dialysis.

  15. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria

    PubMed Central

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E. M.; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status. PMID:25906165

  16. TRALI Syndrome During the Treatment of a Plasmodium falciparum Malaria Case.

    PubMed

    Çaşkurlu, Hülya; Nurmuhammedov, Rahman; Htway, Zarni

    2016-12-01

    Malaria, which is one of the three most important infectious diseases globally, is endemic in many areas of the world. Plasmodium falciparum is not endemic to Turkey but can be seen after travel to epidemic countries. Transfusion-related acute lung injury (TRALI) syndrome is a rare disease, which may develop following the transfusion of all types of blood products, including plasma. Here we describe a case of TRALI syndrome in a 29-year-old male, who presented with fever after 15 days of returning from a business trip to Burkina Faso. It developed immediately after the infusion of fresh frozen plasma during the treatment of P. falciparum malaria. The patient's condition improved on respiratory support treatment in the intensive care unit for 48 hours without the need of mechanical ventilation. This case indicated that TRALI syndrome has to be considered in the differential diagnosis as an emerging acute lung disease during the treatment of malaria.

  17. [Imported severe falciparum malaria in France in 2000-2011: epidemiological trends and the need for new treatments].

    PubMed

    Danis, Martin; Thellier, Marc; Jauréguiberry, Stéphane; Bricaire, François; Buffet, Pierre

    2013-03-01

    In France malaria is monitored by the Centre National de Référence (CNR) du Paludisme (French National Malaria Reference Centre). The annual incidence of imported malaria currently ranges from 4 800 to 3 500 cases and has fallen gradually since 2000. However, the proportion of patients with severe P. falciparum malaria is increasing (2.5% in 2000, 7% in 2011), particularly among French residents from sub-Saharan Africa who neglect preventive measures. Overall mortality remains stable at 0.4%, but survival is improving in severe cases. The survival rate is higher among patients of African origin than among Europeans. Nonetheless, between 10 and 20 patients die of malaria every year in France. Two large controlled trials published in 2005 and 2010 showed that IV artesunate, a new treatment for severe falciparum malaria, is associated with a 22-38% absolute reduction in mortality relative to quinine. Artesunate is not licensed in Europe but has been available in France since May 2011 through a named-patient program controlled by the French Agency for Drug Safety [ANSM]. The first 99 patients treated with artesunate up to September 2012 experienced satisfactory efficacy and tolerability. Delayed, sometimes persistent anemia was observed in 13 patients, a rate similar to that noted in recent reports on imported malaria in Europe. This unexpected adverse effect requires further investigation. IV artesunate is now recommended as the first-line treatment for severe falciparum malaria in France.

  18. [Therapeutic efficacy of 3 treatment protocols for non-complicated Plasmodium falciparum malaria, Antioquia, Colombia, 2002].

    PubMed

    Blair, Silvia; López, Mary Luz; Piñeros, Juan Gabriel; Alvarez, Tania; Tobón, Alberto; Carmona, Jaime

    2003-09-01

    High resistance of Plasmodium falciparum malaria to chloroquine poses malaria as a major public health problem in Colombia. In this context, the therapeutic response of uncomplicated P. falciparum malaria patients to chloroquine (CQ), sulfadoxine/pirymethamine (SDXP) and combined therapy (SDXP/CQ) was evaluated according to the WHO/PAHO protocols of 1998. The comparisons were based on a sample of 160 patients with uncomplicated P. falciparum malaria in Turbo and Zaragoza (Antioquia, Colombia). Patients were randomly assigned each of the treatment categories. The results were statistically similar in each municipality. In Turbo percentage of treatment failure was 87.5%, 22.2% and 22.6% for CQ, SDXP and SDXP/CQ, respectively, whereas in Zaragoza, the corresponding treatment failure was 77.7%, 26.5% and 12.1%. During follow up, 50% of subjects with late treatment failure were asymptomatic in Turbo, while 33.3% were asymptomatic in Zaragoza. A high level of treatment failure occurred with CQ monotherapy, while SDXP and SDXP/CQ had acceptable levels of failure, i.e., below 25%. The high percentage of late treatment failure in asymptomatic patients may contribute to increased risk of persistent transmission.

  19. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  20. Malaria vaccines: identifying Plasmodium falciparum liver-stage targets

    PubMed Central

    Longley, Rhea J.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2015-01-01

    The development of a highly efficacious and durable vaccine for malaria remains a top priority for global health researchers. Despite the huge rise in recognition of malaria as a global health problem and the concurrent rise in funding over the past 10–15 years, malaria continues to remain a widespread burden. The evidence of increasing resistance to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious and durable preventative vaccine for malaria is urgently needed. Vaccines are one of the most cost-effective tools and have successfully been used in the prevention and control of many diseases, however, the development of a vaccine for the Plasmodium parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite delivered vaccination strategies, we know that a vaccine for malaria is an achievable goal, with sub-unit vaccines holding great promise as they are simple and cheap to both manufacture and deploy. However a major difficulty in development of sub-unit vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit malaria vaccine should preferably contain a liver-stage target. In this article we review progress in identifying and screening Plasmodium falciparum liver-stage targets for use in a malaria vaccine. PMID:26441899

  1. Severe malaria in immigrant haematological patient

    PubMed Central

    Vázquez-Sánchez, R.; Martínez-Núñez, M.E.; Molina-García, T.

    2015-01-01

    Severe malaria is a life-threatening condition caused by Plasmodium falciparum. Rupture of red blood cells when merozoites release to the bloodstream is responsible for the clinical manifestations, febrile fever reaching 39 °C, and other unspecific symptoms. P. falciparum is considered as the worst form of malaria. Moreover, this species has cytoadherence to red blood cells. This can lead to an organic dysfunction. People coming from hyper endemic areas have developed a partial immunity, but immunodepressed people are a group with a greater risk. Due to the high mortality rate associated to this disease, early diagnosis and a prompt treatment implementation are essential. However, the missed or delayed diagnosis is one of the major reasons of reaching a severe malaria disease. This case reflects the complexity of the diagnosis in an immigrant and immunodepressed patient with a haematological neoplasm with a severe infection by P. falciparum due to the unspecified symptoms and the overlapping of the same. PMID:26793463

  2. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  3. Increased Carboxyhemoglobin in Adult Falciparum Malaria is Associated With Disease Severity and Mortality

    PubMed Central

    Yeo, Tsin W.; Lampah, Daniel A.; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N.; Anstey, Nicholas M.

    2013-01-01

    Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%–13%) and in 20 with severe sepsis (8%; 95% CI, 5%–12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%–8%) and 36 controls (3.6%; 95% CI, 3%–5%; P < .001). An increased carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02–1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models. PMID:23852587

  4. Continuous peritoneal dialysis in acute renal failure from severe falciparum malaria.

    PubMed

    Indraprasit, S; Charoenpan, P; Suvachittanont, O; Mavichak, V; Kiatboonsri, S; Tanomsup, S

    1988-03-01

    Severe falciparum malaria complicated by acute renal failure resulted in very high mortality. Ten patients with acute renal failure from falciparum malaria (infected rbc up to 80%) were continuously dialysed using Tenckhoff peritoneal catheter. Five were oliguric and BUN was maintained between 60 to 80 mg/dl (21.4 to 28.6 mmol/l) by hourly 1 to 1.5 liter dialysate exchange during the acute phase. The peritoneal urea clearance (mean +/- SD) was 12.1 +/- 1.2 ml/min with urea nitrogen removal of 13.4 +/- 2.3 g/day. In nonoliguric cases dialysis was also needed for additional removal of waste products since the remaining renal function could not cope with the hypercatabolic state. Peritoneal glucose absorption (135 to 565 g/day) gave considerable caloric supply without volume load and also contributed to the prevention of hypoglycemia. Varying degree of acute respiratory failure developed in all patients with 5 cases (2 oliguric and 3 nonoliguric) progressing to pulmonary edema. Swan-Ganz catheterization and hemodynamic study suggested the role of increased capillary permeability and volume overload from endogenous water formation in the development of pulmonary complication. Continuous removal of fluid and waste products minimized these problems and may prevent the progression of respiratory failure. One patient died of severe sepsis and the other nine survived. This study showed the beneficial contribution of continuous peritoneal dialysis in the management of acute renal failure from severe falciparum malaria.

  5. Increased Oxidative Stress and Inflammation Independent of Body Adiposity in Diabetic and Nondiabetic Controls in falciparum Malaria

    PubMed Central

    Acquah, Samuel; Boampong, Johnson Nyarko; Eghan Jnr, Benjamin Ackon

    2016-01-01

    Information on the extent to which oxidative stress and inflammation occur in the presence of falciparum malaria and type 2 diabetes mellitus in the same individual is limited. This study sought to investigate the extent of inflammation and oxidative stress in adult uncomplicated malaria by measuring fasting levels of lipid peroxides, C-reactive protein (CRP), and total antioxidant power (TAP) before and during falciparum malaria, in 100 respondents with type 2 diabetes and 100 age-matched controls in the Cape Coast metropolis of Ghana. Also, body adiposity index, body mass index, and waist-to-hip ratio were computed. Before and during falciparum malaria, diabetes patients exhibited higher (P < 0.05) levels of CRP and peroxides than controls but TAP and BAI were comparable (P > 0.05) between the two groups. Baseline CRP correlated positively (r = 0.341, P = 0.002) with peroxide only in the diabetic group. During malaria, TAP level in both study groups declined (P < 0.05) by 80% of their baseline levels. CRP correlated negatively (r = −0.352, P = 0.011) with TAP in the control but not the diabetic group. Uncomplicated falciparum malaria elevated inflammation and peroxidation but decreased antioxidant power independent of adiposity. This finding may have implication on cardiovascular health. PMID:27298824

  6. Differences in Gene Transcriptomic Pattern of Plasmodium falciparum in Children with Cerebral Malaria and Asymptomatic Carriers

    PubMed Central

    Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida

    2014-01-01

    The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum. PMID:25479608

  7. Differences in gene transcriptomic pattern of Plasmodium falciparum in children with cerebral malaria and asymptomatic carriers.

    PubMed

    Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida

    2014-01-01

    The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.

  8. Therapeutic efficacy test in malaria falciparum in Antioquia, Colombia

    PubMed Central

    Blair, Silvia; Carmona-Fonseca, Jaime; Piñeros, Juan G; Ríos, Alexandra; Álvarez, Tania; Álvarez, Gonzalo; Tobón, Alberto

    2006-01-01

    Objective Evaluate the frequency of failure of eight treatments for non-complicated malaria caused by Plasmodium falciparum in patients from Turbo (Urabá region), El Bagre and Zaragoza (Bajo Cauca region), applying the 1998 protocol of the World Health Organization (WHO). Monotherapies using chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ) and sulphadoxine-pyrimethamine (SP), and combinations using chloroquine-sulphadoxine-pyrimethamine (CQ-SP), amodiaquine-sulphadoxine-pyrimethamine (AQ-SP), mefloquine-sulphadoxine-pyrimethamine (MQ-SP) and artesunate-sulphadoxine-pyrimethamine (AS-SP), were examined. Methodology A balanced experimental design with eight groups. Samples were selected based on statistical and epidemiological criteria. Patients were followed for 21 to 28 days, including seven or eight parasitological and clinical evaluations, with an active search for defaulting patients. A non-blinded evaluation of the antimalarial treatment response (early failure, late failure, adequate response) was performed. Results Initially, the loss of patients to follow-up was higher than 40%, but the immediate active search for the cases and the monetary help for transportation expenses of patients, reduced the loss to 6%. The treatment failure was: CQ 82%, AQ 30%, MQ 4%, SP 24%, CQ-SP 17%, AQ-SP 2%, MQ-S-P 0%, AS-SP 3%. Conclusion The characteristics of an optimal epidemiological monitoring system of antimalarial treatment response in Colombia are discussed. It is proposed to focus this on early failure detection, by applying a screening test every two to three years, based on a seven to 14-day follow-up. Clinical and parasitological assessment would be carried out by a general physician and a field microscopist from the local hospital, with active measures to search for defaulter patients at follow-up. PMID:16504002

  9. Possible clinical failure of artemether-lumefantrine in an italian traveler with uncomplicated falciparum malaria.

    PubMed

    Repetto, Ernestina C; Traverso, Antonio; Giacomazzi, Claudio G

    2011-01-01

    Artemisinin-combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in endemic areas with multidrug resistant Plasmodium falciparum. We report a case of possible artemether-lumefantrine clinical failure in an Italian traveler with uncomplicated P. falciparum malaria imported from Democratic Republic of Congo.

  10. Multicenter Pivotal Clinical Trial of Urine Malaria Test for Rapid Diagnosis of Plasmodium falciparum Malaria

    PubMed Central

    Ezeigwe, Nnenna; Ntadom, Godwin; Oladosu, Oladipo O.; Rainwater-Loveth, Kaitlin; O'Meara, Wendy; Okpokoro, Evaezi; Brieger, William

    2016-01-01

    ABSTRACT The need to expand malaria diagnosis capabilities alongside policy requirements for mandatory testing before treatment motivates exploration of noninvasive rapid diagnostic tests (RDTs). We report the outcome of the first cross-sectional, single-blind clinical performance evaluation of a urine malaria test (UMT) for diagnosis of Plasmodium falciparum malaria in febrile patients. Matched urine and finger-prick blood samples from participants ≥2 years of age with fever (axillary temperature of ≥37.5°C) or with a history of fever in the preceding 48 h were tested with UMT and microscopy (as the gold standard). BinaxNOW (Pf and Pan versions) blood RDTs were done to assess relative performance. Urinalysis and rheumatoid factor (RF) tests were conducted to evaluate possible interference. Diagnostic performance characteristics were computed at 95% confidence intervals (CIs). Of 1,800 participants screened, 1,691 were enrolled; of these 566 (34%) were febrile, and 1,125 (66%) were afebrile. Among enrolled participants, 341 (20%) tested positive by microscopy, 419 (25%) were positive by UMT, 676 (40%) were positive by BinaxNOW Pf, and 368 (22%) were positive by BinaxNow Pan. UMT sensitivity among febrile patients (for whom the test was indicated) was 85%, and specificity was 84%. Among febrile children ≤5 years of age, UMT sensitivity was 93%, and specificity was 83%. The area under the receiver-operator characteristic curve (AUC) of UMT (0.84) was not significantly different from that of BinaxNOW Pf (0.86) or of BinaxNOW Pan (0.87), indicating that the tests do not differ in overall performance. Gender, seasons, and RF did not impact UMT performance. Leukocytes, hematuria, and urobilinogen concentrations in urine were associated with lower UMT specificities. UMT performance was comparable to that of the BinaxNOW Pf/Pan tests, making UMT a promising tool to expand malaria testing in public and private health care settings where there are challenges to blood

  11. The Limits and Intensity of Plasmodium falciparum Transmission: Implications for Malaria Control and Elimination Worldwide

    PubMed Central

    Guerra, Carlos A; Gikandi, Priscilla W; Tatem, Andrew J; Noor, Abdisalan M; Smith, Dave L; Hay, Simon I; Snow, Robert W

    2008-01-01

    Background The efficient allocation of financial resources for malaria control using appropriate combinations of interventions requires accurate information on the geographic distribution of malaria risk. An evidence-based description of the global range of Plasmodium falciparum malaria and its endemicity has not been assembled in almost 40 y. This paper aims to define the global geographic distribution of P. falciparum malaria in 2007 and to provide a preliminary description of its transmission intensity within this range. Methods and Findings The global spatial distribution of P. falciparum malaria was generated using nationally reported case-incidence data, medical intelligence, and biological rules of transmission exclusion, using temperature and aridity limits informed by the bionomics of dominant Anopheles vector species. A total of 4,278 spatially unique cross-sectional survey estimates of P. falciparum parasite rates were assembled. Extractions from a population surface showed that 2.37 billion people lived in areas at any risk of P. falciparum transmission in 2007. Globally, almost 1 billion people lived under unstable, or extremely low, malaria risk. Almost all P. falciparum parasite rates above 50% were reported in Africa in a latitude band consistent with the distribution of Anopheles gambiae s.s. Conditions of low parasite prevalence were also common in Africa, however. Outside of Africa, P. falciparum malaria prevalence is largely hypoendemic (less than 10%), with the median below 5% in the areas surveyed. Conclusions This new map is a plausible representation of the current extent of P. falciparum risk and the most contemporary summary of the population at risk of P. falciparum malaria within these limits. For 1 billion people at risk of unstable malaria transmission, elimination is epidemiologically feasible, and large areas of Africa are more amenable to control than appreciated previously. The release of this information in the public domain will

  12. Symmetrical peripheral gangrene due to Plasmodium falciparum malaria

    PubMed Central

    Abdali, Nasar; Malik, Azharuddin Mohammed; Kamal, Athar; Ahmad, Mehtab

    2014-01-01

    A 45-year-old man presented with a 4-day history of high-grade fever with rigours and a 2-day history of painful bluish black discolouration of extremities (acrocyanosis). He was haemodynamically stable and all peripheral pulses palpable, but the extremities were cold with gangrene involving bilateral fingers and toes. Mild splenomegaly was present on abdominal examination but rest of the physical examinations were normal. On investigating he was found to have anaemia, thrombocytopaenia with gametocytes of Plasmodium falciparum on peripheral blood smear. His blood was uncoagulable during performance of prothrombin time with a raised D-dimer. Oxygen saturation was normal and the arterial Doppler test showed reduced blood flow to the extremities. A diagnosis of complicated P. falciparum malaria with disseminated intravascular coagulation (DIC) leading to symmetrical peripheral gangrene was performed. Artemisinin combination therapy was started and heparin was given for DIC. A final line of demarcation of gangrene started forming by 12th day. PMID:24862424

  13. [Descriptive analysis of Plasmodium falciparum malaria in an expatriate community in Yaounde-Cameroon].

    PubMed

    Vanhecke, C; Nguimfack, R Ndi Kweti; Berry, A; Marchou, B

    2014-12-01

    Malaria is an endemic disease in Cameroon. Expatriate population is also affected by malaria risk. Many studies are published on malaria, but few are focused on the expatriate population. The objective was to describe epidemiological characteristics andmanagement ofmalaria at Plasmodium falciparum in Yaounde expatriate population. This is a retrospective analysis of all patients treated at health center of the French Embassy in Yaounde in 2013 with a diagnosis of malaria. 103 cases were recruited. Out of them, 32.7% came from the outskirts of Yaounde, 25.2% from the coastal area of Cameroon, and 20.4% from the center of Yaounde. 22 patients were hospitalized, including 6 in Emergency department. 3 deaths were reported during this period. Severe malaria cases are regularly detected in expatriate population inYaounde and preferentially patients, who are over 50 years old, long stay residents in Cameroon and they paid less attention on prevention and vector control. This study confirms the presence of urban malaria in Yaounde and the need to adopt measures including prophylaxis. To the ignorance of risk and the poor adherence to prophylactic measures, it appears important that the various embassies in northern countries have specific information to their expatriates living in endemic areas.

  14. Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers.

    PubMed

    Ray, Sandipan; Renu, Durairaj; Srivastava, Rajneesh; Gollapalli, Kishore; Taur, Santosh; Jhaveri, Tulip; Dhali, Snigdha; Chennareddy, Srinivasarao; Potla, Ankit; Dikshit, Jyoti Bajpai; Srikanth, Rapole; Gogtay, Nithya; Thatte, Urmila; Patankar, Swati; Srivastava, Sanjeeva

    2012-01-01

    This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n = 20), vivax malaria (VM) (n = 17) and healthy controls (HC) (n = 20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates the

  15. Proteomics of the human malaria parasite Plasmodium falciparum.

    PubMed

    Sims, Paul F G; Hyde, John E

    2006-02-01

    The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.

  16. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru

    PubMed Central

    2012-01-01

    Background Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturally acquired immunity and immunity generated by parasite blood stage vaccine candidates. The hypotheses tested in this study were 1) that antibody responses against specific P. falciparum invasion ligands (EBL and PfRh) differ between symptomatic and asymptomatic individuals living in the low-transmission region of the Peruvian Amazon and 2), such antibody responses might have an association, either direct or indirect, with clinical immunity observed in asymptomatically parasitaemic individuals. Methods ELISA was used to assess antibody responses (IgG, IgG1 and IgG3) against recombinant P. falciparum invasion ligands of the EBL (EBA-175, EBA-181, EBA-140) and PfRh families (PfRh1, PfRh2a, PfRh2b, PfRh4 and PfRh5) in 45 individuals infected with P. falciparum from Peruvian Amazon. Individuals were classified as having symptomatic malaria (N=37) or asymptomatic infection (N=8). Results Antibody responses against both EBL and PfRh family proteins were significantly higher in asymptomatic compared to symptomatic individuals, demonstrating an association with clinical immunity. Significant differences in the total IgG responses were observed with EBA-175, EBA-181, PfRh2b, and MSP119 (as a control). IgG1 responses against EBA-181, PfRh2a and PfRh2b were significantly higher in the asymptomatic individuals. Total IgG antibody responses against PfRh1, PfRh2a, PfRh2b, PfRh5, EBA-175, EBA-181 and MSP119 proteins were negatively correlated with level of parasitaemia. IgG1 responses against EBA-181, PfRh2a and PfRh2b and IgG3 response for PfRh2a were also negatively correlated with parasitaemia. Conclusions These data suggest that falciparum malaria patients who develop clinical immunity

  17. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010–2012

    PubMed Central

    Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V.; Sánchez, Juan F.; Macedo, Silvia; Conde, Silvia; Tapia, L. Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A.; Udhayakumar, Venkatachalam; Lescano, Andrés G.

    2015-01-01

    During 2010–2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998–2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events. PMID:25897626

  18. High prevalence of mefloquine-resistant falciparum malaria in eastern Thailand.

    PubMed Central

    Fontanet, A. L.; Johnston, D. B.; Walker, A. M.; Rooney, W.; Thimasarn, K.; Sturchler, D.; Macdonald, M.; Hours, M.; Wirth, D. F.

    1993-01-01

    In order to assess the risk and predictors of mefloquine resistance we monitored a cohort of 113 patients in eastern Thailand who had been treated for uncomplicated falciparum malaria with a single dose of 15 mg/kg of the drug and followed up for 42 days. The overall treatment failure rate at day 42 was 59.1% (95% confidence interval (CI) = 50%, 68%) with only 2.7% of the patients being lost to follow-up. There were 6.4% RIII, 20.9% RII, 31.8% RI, and 40.9% sensitive responses, based on a modified WHO classification. A low haemoglobin level on the day of treatment and diarrhoea during the first two days after treatment were independent predictors of treatment failure. These findings remained statistically significant in a Cox proportional hazards model, after controlling for other baseline characteristics and adverse effects. Although a history of digestive disorders prior to treatment was associated with diarrhoea on day 2 (P = 0.024), it was in itself not a predictor of treatment failure (adjusted hazard ratio = 1.16; 95% CI = 0.35, 2.14). A total of 60 patients with an R response were hospitalized for 7 days to receive supervised treatment with quinine-tetracycline. Only three had a positive thick smear for asexual forms of Plasmodium falciparum 14 days later, and quinine-tetracycline therefore remains a good alternative treatment for mefloquine-resistant falciparum malaria. PMID:8324857

  19. International population movements and regional Plasmodium falciparum malaria elimination strategies

    PubMed Central

    Tatem, Andrew J.; Smith, David L.

    2010-01-01

    Calls for the eradication of malaria require the development of global and regional strategies based on a strong and consistent evidence base. Evidence from the previous global malaria eradication program and more recent transborder control campaigns have shown the importance of accounting for human movement in introducing infections to areas targeted for elimination. Here, census-based migration data were analyzed with network analysis tools, Plasmodium falciparum malaria transmission maps, and global population databases to map globally communities of countries linked by relatively high levels of infection movements. The likely principal sources and destinations of imported cases in each region were also mapped. Results indicate that certain groups of countries, such as those in West Africa and central Asia are much more strongly connected by relatively high levels of population and infection movement than others. In contrast, countries such as Ethiopia and Myanmar display significantly greater isolation in terms of likely infection movements in and out. The mapping here of both communities of countries linked by likely higher levels of infection movement, and “natural” migration boundaries that display reduced movement of people and infections between regions has practical utility. These maps can inform the design of malaria elimination strategies by identifying regional communities of countries afforded protection from recolonization by surrounding regions of reduced migration. For more isolated countries, a nationally focused control or elimination program is likely to stand a better chance of success than those receiving high levels of visitors and migrants from high-transmission regions. PMID:20566870

  20. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission

    PubMed Central

    Bobenchik, April M.; Witola, William H.; Augagneur, Yoann; Nic Lochlainn, Laura; Garg, Aprajita; Pachikara, Niseema; Choi, Jae-Yeon; Zhao, Yang O.; Usmani-Brown, Sahar; Lee, Albert; Adjalley, Sophie H.; Samanta, Swapna; Fidock, David A.; Voelker, Dennis R.; Fikrig, Erol; Ben Mamoun, Choukri

    2013-01-01

    Efficient transmission of Plasmodium species between humans and Anopheles mosquitoes is a major contributor to the global burden of malaria. Gametocytogenesis, the process by which parasites switch from asexual replication within human erythrocytes to produce male and female gametocytes, is a critical step in malaria transmission and Plasmodium genetic diversity. Nothing is known about the pathways that regulate gametocytogenesis and only few of the current drugs that inhibit asexual replication are also capable of inhibiting gametocyte development and blocking malaria transmission. Here we provide genetic and pharmacological evidence indicating that the pathway for synthesis of phosphatidylcholine in Plasmodium falciparum membranes from host serine is essential for parasite gametocytogenesis and malaria transmission. Parasites lacking the phosphoethanolamine N-methyltransferase enzyme, which catalyzes the limiting step in this pathway, are severely altered in gametocyte development, are incapable of producing mature-stage gametocytes, and are not transmitted to mosquitoes. Chemical screening identified 11 inhibitors of phosphoethanolamine N-methyltransferase that block parasite intraerythrocytic asexual replication and gametocyte differentiation in the low micromolar range. Kinetic studies in vitro as well as functional complementation assays and lipid metabolic analyses in vivo on the most promising inhibitor NSC-158011 further demonstrated the specificity of inhibition. These studies set the stage for further optimization of NSC-158011 for development of a class of dual activity antimalarials to block both intraerythrocytic asexual replication and gametocytogenesis. PMID:24145416

  1. [Falciform anemia and Plasmodium falciparum malaria: a threat to flap survival?].

    PubMed

    Mariéthoz, S; Pittet, B; Loutan, L; Humbert, J; Montandon, D

    1999-02-01

    Plasmodium falciparum malaria, a parasitic disease, and sickle cell anemia, a hereditary disease, are two diseases affecting erythrocyte cycle, occurring with a high prevalence in tropical Africa. They may induce microthrombosis inducing vaso-occlusion, organ dysfunction and flap necrosis. During the acute phase of Plasmodium falciparum malaria, destruction of parasitized and healthy erythrocytes, release of parasite and erythrocyte material into the circulation, and secondary host reaction occur. Plasmodium falciparum infected erythrocytes also sequester in the microcirculation of vital organs and may interfere with microcirculatory flow in the flap during the postoperative period. The lower legs of homozygous sickle cell anemia patients are areas of marginal vascularity where minor abrasions become foci of inflammation. Inflammation results in decreased local oxygen tension, sickling of erythrocytes, increased blood viscosity and thrombosis with consequent ischemia, tissue breakdown and leg ulcer. Tissue transfer has become the procedure of choice for reconstruction of the lower third of the leg although flaps may become necrotic. The aim of this study is to analyse circumstances predisposing to surgical complications and to define preventive and therapeutic measures. A review of the literature will describe the current research and the new perspectives to treat sickle cell anemia, for example hydroxyurea and vasoactive substances (pentoxifylline, naftidrofuryl, buflomedil).

  2. Evaluation of a rapid and inexpensive dipstick assay for the diagnosis of Plasmodium falciparum malaria.

    PubMed Central

    Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.

    1999-01-01

    Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878

  3. pfk13-Independent Treatment Failure in Four Imported Cases of Plasmodium falciparum Malaria Treated with Artemether-Lumefantrine in the United Kingdom

    PubMed Central

    Lansdell, Paul; Sanders, Mandy; Muwanguzi, Julian; van Schalkwyk, Donelly A.; Kaur, Harparkash; Tucker, Julie; Bennett, Hayley M.; Otto, Thomas D.; Berriman, Matthew; Patel, Trupti A.; Lynn, Roderick; Gkrania-Klotsas, Effrossyni; Chiodini, Peter L.

    2017-01-01

    ABSTRACT We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015 to 2016. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitemia within 6 weeks of treatment with no intervening travel to countries where malaria is endemic. Parasite isolates, all of African origin, harbored variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended. PMID:28137810

  4. Ethics, economics, and the use of primaquine to reduce falciparum malaria transmission in asymptomatic populations.

    PubMed

    Lubell, Yoel; White, Lisa; Varadan, Sheila; Drake, Tom; Yeung, Shunmay; Cheah, Phaik Yeong; Maude, Richard J; Dondorp, Arjen; Day, Nicholas P J; White, Nicholas J; Parker, Michael

    2014-08-01

    Yoel Lubell and colleagues consider ethical and economic perspectives on mass drug administration of primaquine to limit transmission of P. falciparum malaria. Please see later in the article for the Editors' Summary.

  5. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria.

    PubMed

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-08-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made.

  6. Therapy of Falciparum Malaria in Sub-Saharan Africa: from Molecule to Policy

    PubMed Central

    Winstanley, Peter; Ward, Stephen; Snow, Robert; Breckenridge, Alasdair

    2004-01-01

    The burden of falciparum malaria remains as great as ever, and, as has probably always been the case, it is carried mainly by tropical Africa. Of the various means available for the control of malaria, the use of effective drugs remains the most important and is likely to remain so for a considerable time to come. Unfortunately, the extensive development of resistance by the parasite threatens the utility of most of the affordable classes of drug: the development of novel antimalarials has never been more urgently needed. Any attempt to understand the vast complexities of falciparum malaria in Africa requires an ability to think “from molecule to policy.” In consequence, the review ambitiously tries to examine the current pharmacopeia, the process by which new drugs are developed and the ways in which drugs are actually used, in both the formal and informal health sectors. The informal sector is particularly important in Africa, where around half of all antimalarial treatments are bought from informal outlets and taken at home without supervision by health care professionals: the potential impact of adherence on clinical outcome is discussed. Given that the full costs are carried by the patient in a large proportion of cases, the importance of drug affordability is explored. The review also discusses the splicing of new drugs into national policy. The various parameters that feed into deliberations on changes in drug policy are discussed. PMID:15258096

  7. Treatment of acute uncomplicated falciparum malaria with artemether-lumefantrine in nonimmune populations: a safety, efficacy, and pharmacokinetic study.

    PubMed

    Hatz, Christoph; Soto, Jaime; Nothdurft, Hans Dieter; Zoller, Thomas; Weitzel, Thomas; Loutan, Louis; Bricaire, Francois; Gay, Frederick; Burchard, Gerd-Dieter; Andriano, Kim; Lefèvre, Gilbert; De Palacios, Patricia Ibarra; Genton, Blaise

    2008-02-01

    The efficacy and safety of artemether-lumefantrine for the treatment of malaria in nonimmune populations are not well defined. In this study, 165 nonimmune patients from Europe and non-malarious areas of Colombia with acute, uncomplicated falciparum malaria or mixed infection including P. falciparum were treated with the six-dose regimen of artemether-lumefantrine. The parasitologic cure rate at 28 days was 96.0% for the per protocol population (119/124 patients). Median times to parasite clearance and fever clearance were 41.5 and 36.8 hours, respectively. No patient had gametocytes after Day 7. Treatment was well tolerated; most adverse events were mild to moderate and seemed to be related to malaria. There were few serious adverse events, none of which were considered to be drug-related. No significant effects on ECG or laboratory parameters were observed. In conclusion, the six-dose regimen of artemether-lumefantrine was effective and well tolerated in the treatment of acute uncomplicated falciparum malaria in nonimmune patients.

  8. Falciparum malaria: sticking up, standing out and out-standing.

    PubMed

    Cooke, B; Coppel, R; Wahlgren, M

    2000-10-01

    Cytoadherence is believed to be fundamental for the survival of Plasmodium falciparum in vivo and, uniquely, is a major determinant of the virulence of this parasite. Despite the widely professed importance of cytoadhesion in the development of severe disease, there are a number of aspects of this highly complex process that remain poorly understood. Recent progress in the understanding of cytoadhesive phenomena was discussed extensively at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000. Here, Brian Cooke, Mats Wahlgren and Ross Coppel consider just how far we have progressed during the past 30 years and highlight what is still missing in our understanding of the mechanisms and clinical relevance of this apparently vital process.

  9. Role of S180L polymorphism in etiology of malaria caused by Plasmodium falciparum in a small group of Pakistani population.

    PubMed

    Nawaz, Syed Kashif; Ahmed, Bisma; Arshad, Najma; Rani, Asima; Rasool, Hamadia; Arshad, Muhammad

    2015-08-19

    The aim of our study was to investigate the role of S180L polymorphism in modulation of acquisition of malaria caused by Plasmodium falciparum in a small group of Pakistani population. A total of 133 individuals including 60 controls and 73 patients of malaria, caused by Plasmodium falciparum, were genotyped using allele-specific PCR. Ninety-two samples successfully demonstrated the PCR amplification results, while forty-one samples could not be genotyped due to failure in PCR amplification. The allele frequency for S180L polymorphism was deviant from Hardy-Weinberg equilibrium (HWE) of the population under observation. Association was found between the observed polymorphism and the occurrence of malaria caused by Plasmodium falciparum (p = 0.01). Chances of malaria caused by Plasmodium falciparum were low in CC genotype carriers in comparison to other genotypes (Odds ratio: 0.3016; 95% CI: 0.124-0.729). The present findings suggest that S180L polymorphism is important in modulating the probability of acquisition of malaria caused by Plasmodium falciparum in Pakistani population. The CC genotype plays a protective role in local population against this type of malaria.

  10. In vivo efficacy of artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria in Dembia District, northwest Ethiopia

    PubMed Central

    Deressa, Tekalign; Seid, Mengistu Endris; Birhan, Wubet; Aleka, Yetemwork; Tebeje, Biniam Mathewos

    2017-01-01

    Background Artemether–lumefantrine (AL) has been used as a first-line treatment for uncomplicated Plasmodium falciparum malaria in Ethiopia since 2004. Antimalarial drug resistance is one of the major obstacles for malaria control and curtails the lifespan of several drugs. Thus, continued monitoring of the efficacy of AL is of great public health importance in malaria endemic areas. Objective This study aimed to investigate the therapeutic efficacy and safety of AL for the treatment of uncomplicated P. falciparum malaria in the Dembia district, northwest Ethiopia. Methods A prospective study was conducted from April 2015 to February 2016 at Kola Diba Health Center (KHC) in the Dembia district to determine the therapeutic efficacy and safety of AL for the treatment of uncomplicated P. falciparum monoinfection. Patients were treated with the six-dose regimen of AL over 3 days and followed up for 28 days as per the World Health Organization protocol. Results Of the total 80 patients enrolled in the AL efficacy study, 75 patients completed the 28 days follow-up. None of the participants reported major adverse events. No early treatment failure or late clinical failure were observed during the study, but there were 6 (8.0%) late parasitological failures. The uncorrected per protocol cure rate of AL was 92.0 (95% CI: 85.7–98.3). Treatment with AL cleared parasitemia and fever in >95% of the patients by day 3. Conclusion This study showed that AL is well tolerated and remains efficacious for treatment of uncomplicated P. falciparum malaria in northwest Ethiopia. However, the observed late parasitological failures in this study are of a concern and warrant continued monitoring of drug efficacy as per the World Health Organization recommendations. PMID:28243110

  11. Epidemiological and clinical features of Plasmodium falciparum malaria in united nations personnel in Western Bahr el Ghazal State, South Sudan.

    PubMed

    He, Dengming; Zhang, Yuqi; Liu, Xiaofeng; Guo, Shimin; Zhao, Donghong; Zhu, Yunjie; Li, Huaidong; Kong, Li

    2013-01-01

    Western Bahr el Ghazal State is located in northwestern South Sudan, which is a tropical area subject to Plasmodium falciparum malaria epidemics. The aim of this study is to explore the epidemiological and clinical features of Plasmodium falciparum malaria in United Nations personnel stationed in this area. From July 2006 to June 2009, epidemiological data and medical records of 678 patients with Plasmodium falciparum malaria at the U.N. level 2 hospital were analyzed. The U.N. personnel were divided into individuals not immune to Plasmodium falciparum and individuals semi-immune to Plasmodium falciparum. The patients were divided into a chemoprophylaxis group (non-immune individuals who complied with the chemoprophylaxis regimen, 582 cases) and a no/incomplete chemoprophylaxis group (non-immune individuals who either did not fully comply with chemoprophylaxis or did not use it at all and semi-immune individuals who did not use chemoprophylaxis, 96 cases). Overall morbidity was about 11.3%. There was a significant difference in the morbidity of semi-immune and non-immune individuals (1.3% vs. 15.1%, P<0.001). Out of the total, 82.9% of cases occurred during the rainy season. The incidence of fever in the chemoprophylaxis group was significantly lower than in the no/incomplete chemoprophylaxis group (36.8% vs. 96.9%, P<0.001). Significant differences were observed between the two groups with respect to all other malaria-like symptoms except gastrointestinal symptoms, serum glucose level, platelet count, and alanine aminotransferase level. The incidence of complications was 1.2% (chemoprophylaxis group) and 44.8% (no/incomplete chemoprophylaxis group).The most common complication was thrombocytopenia, which was seen in 40.6% of the no/incomplete chemoprophylaxis group. In summary, Plasmodium falciparum malaria mainly occurred in rainy season. Gastrointestinal symptoms are an important precursor of malaria. Blood smears and rapid diagnostic tests should be performed

  12. Molecular epidemiology of malaria in Cameroon. XVIII. Polymorphisms of the Plasmodium falciparum merozoite surface antigen-2 gene in isolates from symptomatic patients.

    PubMed

    Basco, Leonardo K; Tahar, Rachida; Escalante, Ananias

    2004-03-01

    Merozoite surface antigen-2 (MSA-2) is a polymorphic genetic marker that is highly discriminatory for characterizing Plasmodium falciparum field isolates. Genetic diversity of isolates obtained from symptomatic patients residing in Yaounde, Cameroon was analyzed by an allele-specific polymerase chain reaction and direct sequencing of amplification products. Of 137 isolates, 25 (18%) had only FC27-type alleles, 40 (29%) had only 3D7-type alleles, and 72 (53%) had multiple parasite populations with both alleles. Of 295 fragments, 145 (49.2%) and 150 (50.8%) belonged to FC27 and 3D7 alleles, respectively. There were 23 different MSA-2 alleles (10 FC27-type and 13 3D7-type that yielded 44 different combinations in multiple infections). DNA sequencing showed distinct individual sequences. Sequences belonging to the FC27 allelic family were relatively conserved, with most of the polymorphism arising from differences in the number of repeat units. In contrast, the sequences within the GSA-rich region in 3D7 allelic family were less conserved, but many of the sequences in Cameroonian isolates have been identified in other isolates from geographically distant origins. Our results show an extensive diversity of the central region of MSA-2 in size, allelic family, combinations of these two features in multiple infections, and sequence variations underlying the complex population structure of P. falciparum clinical isolates in Yaounde, Cameroon.

  13. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study

    PubMed Central

    Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Dek, Dalin; Try, Vorleak; Amato, Roberto; Blessborn, Daniel; Song, Lijiang; Tullo, Gregory S; Fay, Michael P; Anderson, Jennifer M; Tarning, Joel; Fairhurst, Rick M

    2016-01-01

    Background Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin–piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. Methods In this prospective cohort study, we enrolled patients aged 2–65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin–piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. Findings Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations

  14. Inhibition of Plasmodium falciparum Field Isolates-Mediated Endothelial Cell Apoptosis by Fasudil: Therapeutic Implications for Severe Malaria

    PubMed Central

    Zang-Edou, Estelle S.; Bisvigou, Ulrick; Taoufiq, Zacharie; Lékoulou, Faustin; Lékana-Douki, Jean Bernard; Traoré, Yves; Mazier, Dominique; Touré-Ndouo, Fousseyni S.

    2010-01-01

    Plasmodium falciparum infection can abruptly progress to severe malaria, a life-threatening complication resulting from sequestration of parasitized red blood cells (PRBC) in the microvasculature of various organs such as the brain and lungs. PRBC adhesion can induce endothelial cell (EC) activation and apoptosis, thereby disrupting the blood-brain barrier. Moreover, hemozoin, the malarial pigment, induces the erythroid precursor apoptosis. Despite the current efficiency of antimalarial drugs in killing parasites, severe malaria still causes up to one million deaths every year. A new strategy targeting both parasite elimination and EC protection is urgently needed in the field. Recently, a rho-kinase inhibitior Fasudil, a drug already in clinical use in humans for cardio- and neuro-vascular diseases, was successfully tested on laboratory strains of P. falciparum to protect and to reverse damages of the endothelium. We therefore assessed herein whether Fasudil would have a similar efficiency on P. falciparum taken directly from malaria patients using contact and non-contact experiments. Seven (23.3%) of 30 PRBC preparations from different patients were apoptogenic, four (13.3%) acting by cytoadherence and three (10%) via soluble factors. None of the apoptogenic PRBC preparations used both mechanisms indicating a possible mutual exclusion of signal transduction ligand. Three PRBC preparations (42.9%) induced EC apoptosis by cytoadherence after 4 h of coculture (“rapid transducers”), and four (57.1%) after a minimum of 24 h (“slow transducers”). The intensity of apoptosis increased with time. Interestingly, Fasudil inhibited EC apoptosis mediated both by cell-cell contact and by soluble factors but did not affect PRBC cytoadherence. Fasudil was found to be able to prevent endothelium apoptosis from all the P. falciparum isolates tested. Our data provide evidence of the strong anti-apoptogenic effect of Fasudil and show that endothelial cell-P. falciparum

  15. Treatment Failure of Dihydroartemisinin/Piperaquine for Plasmodium falciparum Malaria, Vietnam

    PubMed Central

    Phuc, Bui Quang; Duong, Tran Thanh; Dong, Le Than; Loi, Mai Anh; Ménard, Didier; Tarning, Joel; Bustos, Dorina; Ringwald, Pascal; Galappaththy, Gawrie Loku; Thieu, Nguyen Quang

    2017-01-01

    We conducted a study in Binh Phuoc, Vietnam, in 2015 on the therapeutic efficacy of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria. A high number of treatment failures (14/40) was found, and piperaquine resistance in Vietnam was confirmed. A change in the malaria treatment policy for Vietnam is in process. PMID:28322709

  16. Estimation of the In Vivo MIC of Cipargamin in Uncomplicated Plasmodium falciparum Malaria

    PubMed Central

    Hien, Tran Tinh; White, Nicholas J.; Thuy-Nhien, Nguyen Thanh; Hoa, Nhu Thi; Thuan, Phung Duc; Nosten, François; Magnusson, Baldur; Jain, Jay Prakash

    2016-01-01

    ABSTRACT The MIC of an antimalarial drug for a particular infection is the drug level associated with a net parasite multiplication rate of one per asexual cycle. To ensure the cure of malaria, the MIC must be exceeded until all parasites have been eliminated. The development of highly sensitive and accurate PCR quantitation of low-density malaria parasitemia enables the prospective pharmacokinetic-pharmacodynamic (PK-PD) characterization of antimalarial drug effects and now allows identification of the in vivo MIC. An adaptive design and a PK-PD modeling approach were used to determine prospectively the MIC of the new antimalarial cipargamin (KAE609) in adults with uncomplicated Plasmodium falciparum malaria in an open-label, dose-ranging phase 2a study. Vietnamese adults with acute P. falciparum malaria were allocated sequentially to treatment with a single 30-mg (n = 6), 20-mg (n = 5), 10-mg (n = 7), or 15-mg (n = 7) dose of cipargamin. Artemisinin-based combination therapy was given after parasite densities had fallen and then risen as cipargamin levels declined below the MIC but before a return of signs or symptoms. The rates of parasite clearance were dose dependent, with near saturation of the effect being seen at an adult dose of 30 mg. The developed PK-PD model accurately predicted the therapeutic responses in 23/25 patients. The predicted median in vivo MIC was 0.126 ng/ml (range, 0.038 to 0.803 ng/ml). Pharmacometric characterization of the relationship between antimalarial drug concentrations and parasite clearance rates following graded subtherapeutic antimalarial drug dosing is safe and provides a rational framework for dose finding in antimalarial drug development. (This study has been registered at ClinicalTrials.gov under identifier NCT01836458.) PMID:27872070

  17. International Funding for Malaria Control in Relation to Populations at Risk of Stable Plasmodium falciparum Transmission

    PubMed Central

    Snow, Robert W; Guerra, Carlos A; Mutheu, Juliette J; Hay, Simon I

    2008-01-01

    Background The international financing of malaria control has increased significantly in the last ten years in parallel with calls to halve the malaria burden by the year 2015. The allocation of funds to countries should reflect the size of the populations at risk of infection, disease, and death. To examine this relationship, we compare an audit of international commitments with an objective assessment of national need: the population at risk of stable Plasmodium falciparum malaria transmission in 2007. Methods and Findings The national distributions of populations at risk of stable P. falciparum transmission were projected to the year 2007 for each of 87 P. falciparum–endemic countries. Systematic online- and literature-based searches were conducted to audit the international funding commitments made for malaria control by major donors between 2002 and 2007. These figures were used to generate annual malaria funding allocation (in US dollars) per capita population at risk of stable P. falciparum in 2007. Almost US$1 billion are distributed each year to the 1.4 billion people exposed to stable P. falciparum malaria risk. This is less than US$1 per person at risk per year. Forty percent of this total comes from the Global Fund to Fight AIDS, Tuberculosis and Malaria. Substantial regional and national variations in disbursements exist. While the distribution of funds is found to be broadly appropriate, specific high population density countries receive disproportionately less support to scale up malaria control. Additionally, an inadequacy of current financial commitments by the international community was found: under-funding could be from 50% to 450%, depending on which global assessment of the cost required to scale up malaria control is adopted. Conclusions Without further increases in funding and appropriate targeting of global malaria control investment it is unlikely that international goals to halve disease burdens by 2015 will be achieved. Moreover, the

  18. Clinical Efficacy of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria at the China-Myanmar Border.

    PubMed

    Wang, Ying; Yang, Zhaoqing; Yuan, Lili; Zhou, Guofa; Parker, Daniel; Lee, Ming-Chieh; Yan, Guiyun; Fan, Qi; Xiao, Yuping; Cao, Yaming; Cui, Liwang

    2015-09-01

    Artemisinin-based combination therapies (ACTs) are currently used as the first-line therapy for uncomplicated Plasmodium falciparum malaria. However, the recent emergence and/or spread of artemisinin resistance in parts of Greater Mekong Subregion (GMS) of southeast Asia requires close monitoring of the therapeutic efficacy of ACTs. This study was conducted from March 2012 to December 2013 in four clinics and seven villages along the China-Myanmar border. A total of 109 patients with uncomplicated falciparum malaria were treated with dihydroartemisinin-piperaquine (DP) and followed up on days 1, 2, 3, 7, 14, 21, 28, and 42 after treatment. A total of 71 patients (22 children and 49 adults) completed the 42-day follow-up. DP remained highly efficacious for treatment of uncomplicated falciparum malaria with an overall 42-day cure rate of 100%. The day 3 parasite-positive rate was 7.04% (5/71). Within 14 days of treatment, a total of 13 (18.31%) patients had detectable gametocytes and a large proportion of these were persistent from the first three days of treatment. The presence of gametocytes in patients through 14 days after DP treatment suggests that the incorporation of a single dose of primaquine for clearing gametocytemia should be considered for blocking parasite transmission.

  19. The role of interleukin-6 in vitamin A deficiency during Plasmodium falciparum malaria and possible consequences for vitamin A supplementation.

    PubMed Central

    Tabone, M D; Muanza, K; Lyagoubi, M; Jardel, C; Pied, S; Amedee-Manesme, O; Grau, G E; Mazier, D

    1992-01-01

    Kinetics of serum levels of interleukin-6 (IL-6) were studied in patients with acute Plasmodium falciparum malaria in relation to vitamin A and its binding proteins, retinol binding protein (RBP) and pre-albumin. It was found that IL-6 levels followed the rise and decrease of parasitaemia by 12 hr and correlated inversely with levels of vitamin A and its binding proteins. These data suggest that vitamin A supplementation alone might still be insufficient to restore a malaria-induced vitamin A deficiency. PMID:1572702

  20. Protection against Plasmodium falciparum malaria by PfSPZ Vaccine

    PubMed Central

    Epstein, Judith E.; Paolino, Kristopher M.; Richie, Thomas L.; Sedegah, Martha; Singer, Alexandra; Ruben, Adam J.; Chakravarty, Sumana; Stafford, April; Ruck, Richard C.; Eappen, Abraham G.; Billingsley, Peter F.; Manoj, Anita; Moser, Kara; Nielsen, Robin; Tosh, Donna; Cicatelli, Susan; Ganeshan, Harini; Case, Jessica; Padilla, Debbie; Davidson, Silas; Saverino, Elizabeth; Murshedkar, Tooba; Gunasekera, Anusha; Twomey, Patrick S.; Reyes, Sharina; Moon, James E.; James, Eric R.; KC, Natasha; Li, Minglin; Abot, Esteban; Belmonte, Arnel; Hauns, Kevin; Belmonte, Maria; Huang, Jun; Vasquez, Carlos; Remich, Shon; Carrington, Mary; Abebe, Yonas; Tillman, Amy; Hickey, Bradley; Regules, Jason; Villasante, Eileen; Sim, B. Kim Lee

    2017-01-01

    BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [–35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research

  1. Population Pharmacokinetics of Lumefantrine in Pregnant and Nonpregnant Women With Uncomplicated Plasmodium falciparum Malaria in Uganda

    PubMed Central

    Kloprogge, F; Piola, P; Dhorda, M; Muwanga, S; Turyakira, E; Apinan, S; Lindegårdh, N; Nosten, F; Day, N P J; White, N J; Guerin, P J; Tarning, J

    2013-01-01

    Pregnancy alters the pharmacokinetic properties of many antimalarial compounds. The objective of this study was to evaluate the pharmacokinetic properties of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda after a standard fixed oral artemether–lumefantrine treatment. Dense venous (n = 26) and sparse capillary (n = 90) lumefantrine samples were drawn from pregnant patients. A total of 17 nonpregnant women contributed with dense venous lumefantrine samples. Lumefantrine pharmacokinetics was best described by a flexible absorption model with multiphasic disposition. Pregnancy and body temperature had a significant impact on the pharmacokinetic properties of lumefantrine. Simulations from the final model indicated 27% lower day 7 concentrations in pregnant women compared with nonpregnant women and a decreased median time of 0.92 and 0.42 days above previously defined critical concentration cutoff values (280 and 175 ng/ml, respectively). The standard artemether–lumefantrine dose regimen in P. falciparum malaria may need reevaluation in nonimmune pregnant women. PMID:24226803

  2. Population Pharmacokinetics of Lumefantrine in Pregnant and Nonpregnant Women With Uncomplicated Plasmodium falciparum Malaria in Uganda.

    PubMed

    Kloprogge, F; Piola, P; Dhorda, M; Muwanga, S; Turyakira, E; Apinan, S; Lindegårdh, N; Nosten, F; Day, N P J; White, N J; Guerin, P J; Tarning, J

    2013-11-13

    Pregnancy alters the pharmacokinetic properties of many antimalarial compounds. The objective of this study was to evaluate the pharmacokinetic properties of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda after a standard fixed oral artemether-lumefantrine treatment. Dense venous (n = 26) and sparse capillary (n = 90) lumefantrine samples were drawn from pregnant patients. A total of 17 nonpregnant women contributed with dense venous lumefantrine samples. Lumefantrine pharmacokinetics was best described by a flexible absorption model with multiphasic disposition. Pregnancy and body temperature had a significant impact on the pharmacokinetic properties of lumefantrine. Simulations from the final model indicated 27% lower day 7 concentrations in pregnant women compared with nonpregnant women and a decreased median time of 0.92 and 0.42 days above previously defined critical concentration cutoff values (280 and 175 ng/ml, respectively). The standard artemether-lumefantrine dose regimen in P. falciparum malaria may need reevaluation in nonimmune pregnant women.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e83; doi:10.1038/psp.2013.59; advance online publication 13 November 2013.

  3. Plasmodium falciparum and P. malariae epidemiology in a West African village.

    PubMed Central

    Boudin, C.; Robert, V.; Verhave, J. P.; Carnevale, P.; Ambroise-Thomas, P.

    1991-01-01

    Transmission of Plasmodium falciparum and P. malariae was studied in a village in Burkina Faso. Consecutive captures of mosquitos were organized twice a month over a year and the species of the mosquitos identified. Also, the prevalences and densities of Plasmodium spp. were determined every 2 months in a sample of children who lived in the village. Anopheles gambiae, A. funestus, and A. nili were the local vectors, but only the first two played a predominant role in both P. falciparum and P. malariae transmission. The parasitological sporozoite index (SI) was 4.48% for A. gambiae and 4.22% for A. funestus. The immunological SIs were higher: 5.82% of A. gambiae were infected with P. falciparum and only 0.16% with P. malariae; the corresponding proportions for A. funestus were 6.45% and 0.41%. Transmission of Plasmodium spp. by A. gambiae was important during the rainy season (July-October) and by A. funestus at the beginning of the dry season (September-November). Each child in the study village could receive about 396 P. falciparum-infected bites per year but only 22 of P. malariae. The P. falciparum parasite indices were maximum during the middle of the rainy season (August), while those for P. malariae reached a peak during the dry season (February). PMID:1677615

  4. Cost-effectiveness analysis of artesunate and quinine + tetracycline for the treatment of uncomplicated falciparum malaria in Chanthaburi, Thailand.

    PubMed Central

    Honrado, E. R.; Fungladda, W.; Kamoiratanaku, P.; Kitayaporn, D.; Karbwang, J.; Thimasarn, K.; Masngammueng, R.

    1999-01-01

    A randomized, controlled, malaria-clinic-based field trial was carried out to compare the cost-effectiveness of a 5-day 700-mg oral artesunate and a 7-day quinine + tetracycline regimen for the treatment of uncomplicated falciparum malaria in Thailand. Cost-effectiveness was determined from the providers' perspective and based on curative effectiveness. A total of 137 patients, aged 15-60 years, attending a malaria clinic were followed for 28 days, 60 of them received quinine + tetracycline and 77 received artesunate. Cure rates were assessed on day 5 (artesunate) and day 7 (quinine + tetracycline), using the intention-to-treat approach. Cost-effectiveness and sensitivity analyses were performed by varying the day 5/day 7 curative effectiveness and cost of artesunate. The cure rate with artesunate (100%) was significantly higher than with quinine + tetracycline (77.4%) (relative risk adjusted for sex (aRR) = 1.32, 95% confidence interval (CI) = 1.12-1.55; referent quinine + tetracycline). Artesunate was more cost-effective than quinine + tetracycline at the following costs: artesunate, < or = US$0.36 per 50-mg tablet; quinine, US$0.06 per 300-mg tablet; tetracycline, US$0.02 per 250-mg capsule; and services per case found, < or = US$11.49. Because of the higher cure rate and higher cost-effectiveness of the artesunate regimen compared with quinine + tetracycline, we recommend its use for the treatment of uncomplicated falciparum malaria in malaria clinics in Thailand. PMID:10212514

  5. Efficacy and safety of the six-dose regimen of artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in adolescents and adults: a pooled analysis of individual patient data from randomized clinical trials.

    PubMed

    Mueller, Edgar A; van Vugt, Michele; Kirch, Wilhelm; Andriano, Kim; Hunt, Philip; de Palacios, Patricia Ibarra

    2006-11-01

    To demonstrate the superiority of the six-dose over the four-dose regimen of artemether-lumefantrine (co-artemether, Coartem) in patients >12 years, data from 11 randomized clinical trials were pooled and analyzed. A total of 1368 patients with uncomplicated Plasmodium falciparum malaria (six-dose: 598; four-dose: 770) were included in the analysis, together with 717 patients treated with comparators. Analysis of the 28-day cure rate based on the ITT and evaluable populations yielded corrected cure rates for the six-dose regimen of 87% and 97% compared with 74% and 87%, respectively, with the four-dose regimen (P<0.0001, for both comparisons). For mefloquine/artesunate, the most frequently used comparator, cure rates were 87% and 99%, respectively. The six-dose regimen was well tolerated and not markedly different to the four-dose regimen. The main finding of our analysis is that the six-dose regimen of co-artemether is more effective than the four-dose regimen in adolescents and adults without compromising safety.

  6. Dynamics of Plasmodium falciparum Parasitemia Regarding Combined Treatment Regimens for Acute Uncomplicated Malaria, Antioquia, Colombia

    PubMed Central

    Álvarez, Gonzalo; Tobón, Alberto; Piñeros, Juan-Gabriel; Ríos, Alexandra; Blair, Silvia

    2010-01-01

    Selecting suitable anti-malarial treatment represents one of the best tools for reducing morbidity and mortality caused by this disease. Sexual and asexual parasite dynamics were thus evaluated in patients involved in antimalarial drug efficacy studies by using combined treatment with and without artemisinin derivatives for treating uncomplicated acute Plasmodium falciparum malaria in Antioquia, Colombia. All treatment doses were supervised and administered according to patients' weight; sexual and asexual parasitemia were evaluated during 28- or 42-days follow-up in 468 patients. Artemisinin-based combination therapy showed greater parasiticidal ability, showing a mean asexual parasitemia survival rate of one day and mean gametocyte survival rate of 1–2 days. Sexual and asexual parasitemias were eliminated more quickly and effectively in the group receiving artemisinin-based combination therapy. Adding 45 mg of primaquine to treatment with artesunate and mefloquine reduced gametocyte and asexual parasite survival by one day. PMID:20595483

  7. Dynamics of Plasmodium falciparum parasitemia regarding combined treatment regimens for acute uncomplicated malaria, Antioquia, Colombia.

    PubMed

    Alvarez, Gonzalo; Tobón, Alberto; Piñeros, Juan-Gabriel; Ríos, Alexandra; Blair, Silvia

    2010-07-01

    Selecting suitable anti-malarial treatment represents one of the best tools for reducing morbidity and mortality caused by this disease. Sexual and asexual parasite dynamics were thus evaluated in patients involved in antimalarial drug efficacy studies by using combined treatment with and without artemisinin derivatives for treating uncomplicated acute Plasmodium falciparum malaria in Antioquia, Colombia. All treatment doses were supervised and administered according to patients' weight; sexual and asexual parasitemia were evaluated during 28- or 42-days follow-up in 468 patients. Artemisinin-based combination therapy showed greater parasiticidal ability, showing a mean asexual parasitemia survival rate of one day and mean gametocyte survival rate of 1-2 days. Sexual and asexual parasitemias were eliminated more quickly and effectively in the group receiving artemisinin-based combination therapy. Adding 45 mg of primaquine to treatment with artesunate and mefloquine reduced gametocyte and asexual parasite survival by one day.

  8. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  9. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.

    PubMed

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-02

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  10. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  11. Plasmodium falciparum malaria: Convergent evolutionary trajectories towards delayed clearance following artemisinin treatment.

    PubMed

    Wilairat, Prapon; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2016-05-01

    Malaria is a major global health challenge with 300million new cases every year. The most effective regimen for treating Plasmodium falciparum malaria is based on artemisinin and its derivatives. The drugs are highly effective, resulting in rapid clearance of parasites even in severe P. falciparum malaria patients. During the last five years, artemisinin-resistant parasites have begun to emerge first in Cambodia and now in Thailand and Myanmar. At present, the level of artemisinin resistance is relatively low with clinical presentation of delayed artemisinin clearance (a longer time to reduce parasite load) and a small decrease in artemisinin sensitivity in cultured isolates. Nevertheless, multiple genetic loci associated with delayed parasite clearance have been reported, but they cannot account for a large portion of cases. Even the most well-studied kelch 13 propeller mutations cannot always predict the outcome of artemisinin treatment in vitro and in vivo. Here we propose that delayed clearance by artemisinin could be the result of convergent evolution, driven by multiple trajectories to overcome artemisinin-induced stress, but precluded to become full blown resistance by high fitness cost. Genetic association studies by several genome-wide approaches reveal linkage disequilibrium between multiple loci and delayed parasite clearance. Genetic manipulations at some of these loci already have resulted in loss in artemisinin sensitivity. The notion presented here is by itself consistent with existing evidence on artemisinin resistance and has the potential to be explored using available genomic data. Most important of all, molecular surveillance of artemisinin resistance based on multi-genic markers could be more informative than relying on any one particular molecular marker.

  12. Haplotypes associated with resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum in two malaria endemic locations in Colombia.

    PubMed

    Hernández, Diana Carolina; Guerra, Angela Patricia; Cucunubá, Zulma Milena; Nicholls, Ruben Santiago; Barrera, Sandra Milena

    2013-08-01

    Colombia has four main malaria transmission zones. In vivo efficacy studies carried out in these areas showed big differences in the response of Plasmodium falciparum to treatment with sulphadoxine-pyrimethamine. In addition, there is still insufficient information about the genetics of P. falciparum populations. The objective of this study was to determine the haplotypes in dhfr and dhps genes of P. falciparum circulating in two distinct endemic zones. Samples from patients with non-complicated P. falciparum malaria were collected: 135 from Tumaco and 206 from Tierralta. Alleles 108 and 51 of the dhfr gene, and 437 and 540 of the dhps gene were analyzed by PCR/enzymatic restriction, while alleles 59 and 164 (dhfr), and 581(dhps) by PCR/dot blot/hybridization. Five different haplotypes were found, of which the triple mutant 51I/C59/108N/I164/437G/K540/A581 was the most frequent (54.6%). In Tumaco, the parasites with wild haplotype predominated, while mutant parasites predominated in Tierralta. Another interesting finding is the presence of the C59R mutation in the dhfr gene in two samples, a mutation rarely found in South America. These data provide information about parasite population genetics and highlight the importance of starting a long term molecular surveillance program.

  13. Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria.

    PubMed

    Righi, Elda; Merelli, Maria; Arzese, Alessandra; Siega, Paola Della; Scarparo, Claudio; Bassetti, Matteo

    2016-03-01

    Procalcitonin (PCT) and C-reactive protein (CRP) may be useful to predict complicated forms of malaria. A total of 30 consecutive travelers diagnosed with Plasmodium falciparum malaria over a two-year period were included in the study. Patients with complicated Plasmodium falciparum malaria showed higher levels of parasitemia (P = 0.0001), PCT (P = 0.0018), CRP (P = 0.0005), bilirubinemia (P = 0.004), and a lower platelet count (P<0.0001) compared with patients with uncomplicated forms. PCT levels above 5 ng/mL showed the highest value of specificity (0.86) and positive predictive factor (0.67) among other parameters, and equal sensitivity (0.67) was displayed by CRP levels above 150 mg/dl. None of the patients with complicated malaria showed PCT levels within normal limits (<0.5 ng/ml). Both PCT and CRP correlated with parasitemia (P<0.001) and showed areas under ROC curve of 0.83. At multivariate analysis, only PCT was associated with an increased risk of complicated malaria (OR 8.2, IC 95% 1.2-57.2, P = 0.03). The determination of PCT on admission showed better results compared to CRP, platelet count, and bilirubinemia and can be useful in non-endemic areas for the initial clinical assessment of disease severity in travelers with Plasmodium falciparum malaria.

  14. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Zani, Babalwa; Gathu, Michael; Donegan, Sarah; Olliaro, Piero L; Sinclair, David

    2014-01-01

    Background The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. Objectives To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. Selection criteria Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy’ and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrine In Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower

  15. Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007

    PubMed Central

    Hay, Simon I.; Okiro, Emelda A.; Gething, Peter W.; Patil, Anand P.; Tatem, Andrew J.; Guerra, Carlos A.; Snow, Robert W.

    2010-01-01

    Background The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. Methods and Findings In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349–552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national

  16. Monocyte activation and cytokine production in Malawian children presenting with P. falciparum malaria.

    PubMed

    Mandala, W L; Msefula, C L; Gondwe, E N; Drayson, M T; Molyneux, M E; MacLennan, C A

    2016-05-01

    Malaria in malaria-naïve adults is associated with an inflammatory response characterized by expression of specific activation markers on innate immune cells. Here, we investigate activation and adhesion marker expression, and cytokine production in monocytes from children presenting with cerebral malaria (CM, n = 36), severe malarial anaemia (SMA, n = 42) or uncomplicated malaria (UM, n = 66), and healthy aparasitemic children (n = 52) in Blantyre, Malawi. In all malaria groups, but particularly in the two severe malaria groups, monocyte expression of CD11b, CD11c, CD18, HLA-DR and CD86, and percentages of TNF-α- and IL-6-producing monocytes were lower than in healthy controls, while expression of CD11a, TLR2 and TLR4 was lower in children with severe malaria compared with controls. These levels mostly normalized during convalescence, but percentages of cytokine-producing monocytes remained suppressed in children with SMA. In all malaria groups, especially the SMA group, a greater proportion of monocytes were loaded with haemozoin than among controls. In a P. falciparum hyperendemic area, monocytes in children with acute symptomatic malaria have reduced expression of adhesion molecules and activation markers and reduced inflammatory cytokine production. This immune suppression could be due to accumulation of haemozoin and/or previous exposure to P. falciparum.

  17. Possible association of the Plasmodium falciparum T1526C resa2 gene mutation with severe malaria

    PubMed Central

    2012-01-01

    Background Plasmodium falciparum exports proteins that remodel the erythrocyte membrane. One such protein, called Pf155/RESA (RESA1) contributes to parasite fitness, optimizing parasite survival during febrile episodes. Resa1 gene is a member of a small family comprising three highly related genes. Preliminary evidence led to a search for clues indicating the involvement of RESA2 protein in the pathophysiology of malaria. In the present study, cDNA sequence of resa2 gene was obtained from two different strains. The proportion of P. falciparum isolates having a non-stop T1526C mutation in resa2 gene was evaluated and the association of this genotype with severity of malaria was investigated. Methods Resa2 cDNAs of two different strains (a patient isolate and K1 culture adapted strain) was obtained by RT-PCR and DNA sequencing was performed to confirm its gene structure. The proportion of isolates having a T1526C mutation was evaluated using a PCR-RFLP methodology on groups of severe malaria and uncomplicated patients recruited in 1991–1994 in Senegal and in 2009 in Benin. Results A unique ORF with an internal translation stop was found in the patient isolate (Genbank access number : JN183870), while the K1 strain harboured the T1526C mutation (Genbank access number : JN183869) which affects the internal stop codon and restores a full length coding sequence. About 14% of isolates obtained from Senegal and Benin harboured mutant T1526C parasites. Some isolates had both wild and mutant resa alleles. The analysis excluding those mixed isolates showed that the resa2 T1526C mutation was found more frequently in severe malaria cases than in uncomplicated cases (p = 0.008). The association of the presence of the mutant allele and parasitaemia >4% was shown in multivariate analysis (p = 0.03) in the group of Beninese children. Conclusions All T1526C mutant parasites theoretically have the ability to give rise to a full-length RESA2 protein. This study raises the

  18. Increasing Plasmodium falciparum malaria in southwest London: a 25 year observational study

    PubMed Central

    Williams, J; Chitre, M; Sharland, M

    2002-01-01

    Aims: To identify changes in the presenting number and species of imported malaria in children in southwest London. Methods: A prospective single observer study over 25 years (1975–99) of all cases of paediatric malaria seen at St George's Hospital. Results: A confirmed diagnosis was made in 249 children (56% boys; 44% girls; median age 8.0 years). Of these, 53% were UK residents and 44% were children travelling to the UK. A significant increase was noted in the number of cases over the 25 years (1975–79: mean 4.8 cases/year; 1990–99: mean 13.7 cases/year). Over the 25 years Plasmodium falciparum was seen in 77%, P vivax in 14%, P ovale in 6%, and P malariae in 3% of cases. P falciparum had increased in frequency (1975–79: P falciparum 50%, P vivax 50%; 1990–99: P falciparum 82%, P vivax 6%), associated with an increase in the proportion of children acquiring their infection in sub-Saharan Africa. Median time between arrival in the UK to the onset of fever was: P falciparum, 5 days; P ovale, 25 days; P malariae, 37 days; and P vivax, 62 days. Median time interval between the onset of fever to commencement of treatment was 4 days. This had not improved over the 25 year period. Only 41% of UK resident children presenting to hospital had taken prophylaxis and the overall number of symptomatic children taking no prophylaxis was increasing. Conclusion: Imported childhood P falciparum malaria is increasing in southwest London associated with increasing travel from sub-Saharan Africa. Over the 25 year period there has been no improvement in chemoprophylaxis rates or time to diagnosis. PMID:12023177

  19. The accuracy of the first response histidine-rich protein2 rapid diagnostic test compared with malaria microscopy for guiding field treatment in an outbreak of falciparum malaria

    PubMed Central

    Ghouth, Abdulla Salim Bin; Nasseb, Faraj Mubarak; Al-Kaldy, Khaled Hussin

    2012-01-01

    Background: Recent WHO guidelines recommended a universal “test and treat” strategy for malaria mainly by use of the rapid diagnostic test (RDT) in all areas. There are concerns about RDT that use the antigen histidine-rich protein2 (HRP2) to detect Plasmodium falciparum, because infection can persist after effective treatment. Aim: The aim of this paper is to describe the accuracy of the first response (HRP2)-RDT compared with malaria microscopy used for guiding the field treatment of patients in an outbreak situation in the Al-Rahabah area in Al-Rydah district in Hadramout/Yemen. Materials and Methods: An ad hoc cross sectional survey of all febrile patients in the affected area was conducted in May 2011. The field team was developed including the case management group and the entomology group. The group of case management prepared their plan based on “test and treat” strategy by using First Response Malaria Antigen HRP2 rapid diagnostic test for falciparum malaria, artemsinin-based combination therapy (ACT) according to the national policy of anti-malaria drugs in Yemen were supplied to treat those who were found to be RDT positive in the field; also blood smear films were taken from every patient with fever in order to validate the use of the RDT in the field. Blood film slides prepared and read by skilled lab technicians, the fourth reading was done by one lab expert in the malaria referral lab. Results: The accuracy parameters of HRP2 compared with microscopy are: Sensitivity (74%), specificity (94%). The positive predictive value is 68% and the negative predictive value is 96%. Total agreement is 148/162 (93%) and the overall prevalence is 14%. All the positive malaria cases were of P. falciparum either coming from RDT or microscopy. Conclusions: HRP2–rapid test is an acceptable test as a guide for field treatment in an outbreak situation where prompt response is indicated. Good prepared blood film slides should be used as it is feasible to

  20. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India).

    PubMed

    Kochar, Dhanpat Kumar; Das, Ashis; Kochar, Abhishek; Middha, Sheetal; Acharya, Jyoti; Tanwar, Gajanand Singh; Gupta, Anjana; Pakalapati, Deepak; Garg, Shilpi; Saxena, Vishal; Subudhi, Amit Kumar; Boopathi, P A; Sirohi, Parmendra; Kochar, Sanjay Kumar

    2010-01-01

    The occurrence, relation and magnitude of thrombocytopenia in different species of malaria are not clearly defined. This study included 1,064 patients admitted with malaria to study thrombocytopenia (platelet count <150,000 /cumm) in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) mono infection and mixed infection (Pf + Pv). The species diagnosis was done by peripheral blood film (PBF) and rapid diagnostic test (RDT). Validation by polymerase chain reaction (PCR) was done only in patients with severe thrombocytopenia (platelet count <20,000 /cumm). The breakup of patients was 525 (49.34%) Pf, 460 (43.23%) Pv and 79 (7.42%) mixed malaria (Pf + Pv). Thrombocytopenia was observed in 24.6% (262/1064) patients. The risk was greatest in the mixed infections in comparison to monoinfection individually (43.04% [34/79]; mixed vs Pv monoinfection: Odds Ratio [OR] = 1.675 [95% Confidence Interval (CI) 1.029-2.726], p < 0.0366; mixed vs Pf monoinfection: OR=3.911 [95% CI 2.367-6.463], p < 0.0001). Pv monoinfection (31.09% [143/460]) had greater risk compared to Pf monoinfection (16.19% [85/525]; OR = 2.335 [95% CI 1.722-3.167], p < 0.0001). The occurrence of severe thrombocytopenia was also higher in Pv monoinfection (18.18% [26/143]) in comparison to either Pf monoinfection (10.59% [9/85], OR = 1.877 (95% CI 0.834-4.223)) or mixed infection (11.76% [4/34]; OR = 1.667 (95% CI 0.540-5.142) but this association was statistically not significant. Six patients (3 Pv, 2 Pf and 1 mixed) developed severe epistaxis requiring platelet transfusion. There was no relation between parasite density and platelet count as many patients with severe thrombocytopenia had parasite density similar to patients without thrombocytopenia. We found that the association of thrombocytopenia was statistically more significant with P. vivax monoinfection as compared to P. falciparum.

  1. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum

  2. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Karyana, Muhammad; Burdarm, Lenny; Yeung, Shunmay; Kenangalem, Enny; Wariker, Noah; Maristela, Rilia; Umana, Ketut Gde; Vemuri, Ram; Okoseray, Maurits J; Penttinen, Pasi M; Ebsworth, Peter; Sugiarto, Paulus; Anstey, Nicholas M; Tjitra, Emiliana; Price, Richard N

    2008-01-01

    Background Multidrug resistance has emerged to both Plasmodium vivax and Plasmodium falciparum and yet the comparative epidemiology of these infections is poorly defined. Methods All laboratory-confirmed episodes of malaria in Timika, Papua, Indonesia, presenting to community primary care clinics and an inpatient facility were reviewed over a two-year period. In addition information was gathered from a house-to-house survey to quantify the prevalence of malaria and treatment-seeking behaviour of people with fever. Results Between January 2004 and December 2005, 99,158 laboratory-confirmed episodes of malaria were reported, of which 58% (57,938) were attributable to P. falciparum and 37% (36,471) to P. vivax. Malaria was most likely to be attributable to pure P. vivax in children under one year of age (55% 2,684/4,889). In the household survey, the prevalence of asexual parasitaemia was 7.5% (290/3,890) for P. falciparum and 6.4% (248/3,890) for P. vivax. The prevalence of P. falciparum infection peaked in young adults aged 15–25 years (9.8% 69/707), compared to P. vivax infection which peaked in children aged 1 to 4 years (9.5% 61/642). Overall 35% (1,813/5,255) of people questioned reported a febrile episode in the preceding month. Of the 60% of people who were estimated to have had malaria, only 39% would have been detected by the surveillance network. The overall incidence of malaria was therefore estimated as 876 per 1,000 per year (Range: 711–906). Conclusion In this region of multidrug-resistant P. vivax and P. falciparum, both species are associated with substantial morbidity, but with significant differences in the age-related risk of infection. PMID:18673572

  3. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    PubMed Central

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  4. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011–2013

    PubMed Central

    Hawkes, Michael; Conroy, Andrea L.; Opoka, Robert O.; Namasopo, Sophie; Zhong, Kathleen; Liles, W. Conrad; John, Chandy C.

    2015-01-01

    Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance. PMID:26079933

  5. Opsoclonus myoclonus ataxia syndrome due to falciparum malaria in two Indian children

    PubMed Central

    Bose, Kallol; Saha, Sudip; Islam, Md. Rahiul; Chakraborty, Chayan; Laskar, Mustakim

    2016-01-01

    Opsoclonus-myoclonus ataxia (OMA) syndrome is rare in children, mostly caused by neuroblastoma. Here, we present two very rare cases presenting with OMA due to falciparum malaria. Both of them responded to a high dose of adrenocorticotrophin hormone and intravenous immunoglobulin without recurrence and complication. PMID:27958213

  6. A non-pharmaceutical form of Artemisia annua is not effective in preventing Plasmodium falciparum malaria.

    PubMed

    Lagarce, Laurence; Lerolle, Nicolas; Asfar, Pierre; Le Govic, Yohann; Lainé-Cessac, Pascale; de Gentile, Ludovic

    2016-05-01

    Non-pharmaceutical forms of Artemisia annua (a Chinese plant containing artemisinin) are used by some travellers who believe these products are safer than anti-malarial drugs. We report two cases of severe Plasmodium falciparum malaria requiring hospitalization in an Intensive Care Unit following prophylaxis with non-pharmaceutical A. annua in French travellers.

  7. Opsoclonus myoclonus ataxia syndrome due to falciparum malaria in two Indian children.

    PubMed

    Bose, Kallol; Saha, Sudip; Islam, Md Rahiul; Chakraborty, Chayan; Laskar, Mustakim

    2016-11-01

    Opsoclonus-myoclonus ataxia (OMA) syndrome is rare in children, mostly caused by neuroblastoma. Here, we present two very rare cases presenting with OMA due to falciparum malaria. Both of them responded to a high dose of adrenocorticotrophin hormone and intravenous immunoglobulin without recurrence and complication.

  8. Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria

    PubMed Central

    Ojurongbe, Olusola; Adegbayi, Adebola M; Bolaji, Oloyede S; Akindele, Akeem A; Adefioye, Olusegun A; Adeyeba, Oluwaseyi A

    2011-01-01

    BACKGROUND: Malaria and intestinal helminths are parasitic diseases causing high morbidity and mortality in most tropical parts of the world, where climatic conditions and sanitation practices favor their prevalence. The aim of this study was to determine the prevalence and possible impact of falciparum malaria and intestinal helminths co-infection among school children in Kajola, Osun state, Nigeria. METHODS: Fresh stool and blood samples were collected from 117 primary school children age range 4-15 years. The stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal parasitic infections. Blood was collected by finger prick to determine malaria parasitemia using thick film method; and packed cell volume (PCV) was determined by hematocrit. Univariate analysis and chi-square statistical tests were used to analyze the data. RESULTS: The prevalence of Plasmodium falciparum, intestinal helminth infections, and co-infection of malaria and helminth in the study were 25.6%, 40.2% and 4.3%, respectively. Five species of intestinal helminths were recovered from the stool samples and these were Ascaris lumbricoides (34.2%), hookworm (5.1%), Trichuris trichiura (2.6%), Diphyllobothrium latum (0.9%) and Trichostrongylus species (0.9%). For the co-infection of both malaria and intestinal helminths, females (5.9%) were more infected than males (2.0%) but the difference was not statistically significant (p = 0.3978). Children who were infected with helminths were equally likely to be infected with malaria as children without intestinal helminths [Risk Ratio (RR) = 0.7295]. Children with A. lumbricoides (RR = 1.359) were also likely to be infected with P. falciparum as compared with uninfected children. CONCLUSIONS: Asymptomatic falciparum malaria and intestinal helminth infections do co-exist without clinical symp-toms in school children in Nigeria. PMID:22091292

  9. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria.

    PubMed

    Paris, Daniel H; Imwong, Mallika; Faiz, Abul M; Hasan, Mahtabuddin; Yunus, Emran Bin; Silamut, Kamolrat; Lee, Sue J; Day, Nicholas P J; Dondorp, Arjen M

    2007-11-01

    A recently described loop-mediated isothermal polymerase chain reaction (LAMP) for molecular detection of Plasmodium falciparum was compared with microscopy, PfHRP2-based rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR) as the "gold standard" in 115 Bangladeshi in-patients with fever. DNA extraction for LAMP was conducted by conventional methods or simple heating of the sample; test results were either assessed visually or by gel electrophoresis. Conventional DNA extraction followed by gel electrophoresis had the highest agreement with the reference method (81.7%, kappa = 0.64), with a sensitivity (95% CI) of 76.1% (68.3-83.9%), comparable to RDT and microscopy, but a specificity of 89.6% (84.0-95.2%) compared with 100% for RDT and microscopy. DNA extraction by heat treatment deteriorated specificity to unacceptable levels. LAMP enables molecular diagnosis of falciparum malaria in settings with limited technical resources but will need further optimization. The results are in contrast with a higher accuracy reported in an earlier study comparing LAMP with a non-validated PCR method.

  10. Can urine dipstick tests detect renal impairment in Plasmodium falciparum malaria in a rural setup?

    PubMed

    Pati, Sudhanshu S; Mishra, Saroj K

    2010-04-01

    Renal impairment in falciparum malaria leads to poor prognosis. Serum creatinine is the mainstay of diagnosis. However, the serum creatinine concentration is only observed when the glomerular filtration rate falls below 50%. We evaluated the use of the urine dipstick method to predict renal impairment in 77 patients. Twenty-three (29.8%) had haematuria and 52 (67.5%) had urinary protein > or = 300 mg/L. Renal impairment (plasma creatinine > or = 1.2 mg/dL) was observed in 17 patients. The sensitivity and specificity of haematuria in the detection of renal impairment was 94.1% and 90.8%, but for proteinuria it was 88.2% and 62.7%, respectively. There was a positive correlation of plasma urea and creatinine with haematuria (r = 0.56, P < 0.001; r = 0.46, P < 0.01) but not with proteinuria. The detection of haematuria using a dipstick seems to be a highly specific and sensitive method of observing renal impairment in malaria. This is probably the first study which utilizes a commonly available tool that can be easily adopted for early recognition in rural areas.

  11. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity.

    PubMed

    Ray, Sandipan; Kumar, Vipin; Bhave, Amruta; Singh, Vaidhvi; Gogtay, Nithya J; Thatte, Urmila M; Talukdar, Arunansu; Kochar, Sanjay K; Patankar, Swati; Srivastava, Sanjeeva

    2015-09-08

    India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India.

  12. Early treatment of imported falciparum malaria in the intermediate and intensive care unit setting: an 8-year single-center retrospective study

    PubMed Central

    Schwake, Lukas; Streit, Judith Pamela; Edler, Lutz; Encke, Jens; Stremmel, Wolfgang; Junghanss, Thomas

    2008-01-01

    Introduction Imported falciparum malaria is characterized by a broad spectrum of potentially life-threatening complications that may arise even after initiation of appropriate antimalarial drug therapy. Hence, at Heidelberg University Hospital, all patients with newly diagnosed falciparum malaria are initially treated in the intermediate care unit (IMC) or intensive care unit (ICU). The present study was undertaken to evaluate critically the benefit of this strategy, which includes daily consultation with senior specialists in tropical medicine. Methods We conducted a retrospective cohort study at the 14-bed combined IMC/ICU of a 1,685-bed university hospital. A cohort of 122 patients with imported falciparum malaria admitted from 1 January 1996 to 31 December 2003 was included. Results Thirty-four patients (27.9%) developed complications, defined according to the current World Health Organization classification. Most patients (80.3%) studied did not take the recommended chemoprophylaxis against malaria. The majority of patients (89.3% [n = 109]) could be adequately treated in the IMC. Life-threatening complications requiring ICU support occurred in 13 patients (10.7%). All complications were successfully managed. Fifty-five patients (45.1%) fulfilling recently published criteria for outpatient treatment had an excellent therapeutic response and did not require ICU support. Conclusion This retrospective evaluation demonstrated favourable therapeutic results in hospitalized patients with imported falciparum malaria. Both initial treatment in the medical IMC/ICU and close collaboration between intensivists and specialists in tropical medicine may improve disease outcome among affected patients. Prospective studies are needed to confirm these preliminary findings. PMID:18294371

  13. Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome.

    PubMed

    Ladhani, Shamez; Lowe, Brett; Cole, Andrew O; Kowuondo, Ken; Newton, Charles R J C

    2002-12-01

    Little is known about the changes in white blood cells and platelets in children with falciparum malaria in endemic areas. We measured the white cell count (WCC) and platelets of 230 healthy children from the community, 1369 children admitted to hospital with symptomatic malaria, and 1461 children with other medical conditions. Children with malaria had a higher WCC compared with community controls, and leucocytosis was strongly associated with younger age, deep breathing, severe anaemia, thrombocytopenia and death. The WCC was not associated with a positive blood culture. In children with malaria, high lymphocyte and low monocyte counts were independently associated with mortality. A platelet count of less than 150 x 109/l was found in 56.7% of children with malaria, and was associated with age, prostration and parasite density, but not with bleeding problems or mortality. The mean platelet volume was also higher in children with malaria compared with other medical conditions. This may reflect early release from the bone marrow in response to peripheral platelet destruction. Thus, leucocytosis was associated with both severity and mortality in children with falciparum malaria, irrespective of bacteraemia, whereas thrombocytopenia, although very common, was not associated with adverse outcome.

  14. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    PubMed Central

    Tran, Tuan M.; Jones, Marcus B.; Ongoiba, Aissata; Bijker, Else M.; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G.; Whalen, Elizabeth; Presnell, Scott; O’Connell, Elise M.; Kayentao, Kassoum; Doumbo, Ogobara K.; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B.; Ottenhoff, Tom H. M.; Haks, Mariëlle C.; Traore, Boubacar; Kirkness, Ewen F.; Sauerwein, Robert W.; Crompton, Peter D.

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria. PMID:27506615

  15. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.

    PubMed

    Tran, Tuan M; Jones, Marcus B; Ongoiba, Aissata; Bijker, Else M; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G; Whalen, Elizabeth; Presnell, Scott; O'Connell, Elise M; Kayentao, Kassoum; Doumbo, Ogobara K; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B; Ottenhoff, Tom H M; Haks, Mariëlle C; Traore, Boubacar; Kirkness, Ewen F; Sauerwein, Robert W; Crompton, Peter D

    2016-08-10

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria.

  16. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia.

    PubMed

    Valero, M V; Amador, L R; Galindo, C; Figueroa, J; Bello, M S; Murillo, L A; Mora, A L; Patarroyo, G; Rocha, C L; Rojas, M

    1993-03-20

    Preclinical and clinical studies have established the safety and immunogenicity of the chemically synthesised SPf66 malaria vaccine. The present study is a phase III randomised, double-blind, placebo-controlled, efficacy trial completed in La Tola, Colombia. 1548 volunteers over one year of age received three doses of either the vaccine (n = 738) or placebo (n = 810). Active and passive case detection methods were used to document clinical episodes of malaria among the study population. The follow-up period began one month after the third dose and lasted for one year. 168 and 297 episodes of Plasmodium falciparum malaria were documented in the SPf66 group and the placebo group, respectively; this corresponds to a crude protective efficacy of 38.8%. Incidence rates for first or only P falciparum malarial episodes were 22.3% per annum among the vaccinee group and 33.5% among the placebo group (RR = 1.5; 95% Cl 1.23, 1.84). Therefore, the protective efficacy of SPf66 against first or only episodes was 33.6% (95% Cl 18.8, 45.7), being highest in children aged 1-4 years (77%) and adults older than 45 years (67%). The estimated protective efficacy against second episodes was 50.5% (95% Cl 12.9-71.9). Our study shows that the chemically synthesised SPf66 malaria vaccine is safe, immunogenic, and protective against P falciparum malaria in semi-immune populations subject to natural challenge.

  17. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria.

    PubMed

    Happi, C T; Gbotosho, G O; Folarin, O A; Bolaji, O M; Sowunmi, A; Kyle, D E; Milhous, W; Wirth, D F; Oduola, A M J

    2006-07-01

    This study investigated the association between Plasmodium falciparum chloroquine resistance transporter (pfcrt) T76 and P. falciparum multidrug resistance gene 1 (pfmdr1) Y86 alleles and in vivo amodiaquine (AQ) resistance, as well as the clearance of parasites harboring these two alleles in children treated with AQ in southwest Nigeria. One hundred one children with acute uncomplicated P. falciparum malaria infections were treated with the standard dosage of AQ and followed-up for 28 days. Blood samples were collected on filter paper samples at enrollment and during follow-up for identification of parasite genotypes and pfcrt and pfmdr1 mutations using polymerase chain reaction and restriction fragment length polymorphism approaches. Parasitologic assessment of response to treatment showed that 87% and 13% (RI) of patients were cured and failed treatment, respectively. Although infections in patients were polyclonal (as determined by merozoite surface protein 2 genotyping), the presence of both mutants pfcrtT76 and pfmdr1Y86 alleles in parasites is associated with in vivo AQ resistance (odds ratio = 7.58, 95% confidence interval = 1.58-36.25, P = 0.006) and is selected by the drug in children who failed AQ treatment. Treatment failure with the combination of mutant pfcrtT76 and pfmdr1Y86 alleles as well as the ability of patients to clear these resistant parasites is dependent on age, suggesting a critical role of host immunity in clearing AQ-resistant P. falciparum. The combination of mutant pfcrtT76 and pfmdr1Y86 alleles may be useful markers for monitoring the development and spread of AQ resistance, when combining this drug with other antimalarials for treatment of malaria in Africa.

  18. [Curative treatment of malaria Plasmodium falciparum, P. vivax and P. ovale malaria with mefloquine].

    PubMed

    Danis, M; Felix, H; Brucker, G; Druilhe, P; Datry, A; Richard-Lenoble, D; Gentilini, M

    1982-01-01

    Mefloquine (WR 142-490, RO 21.5998), and antimalarial 4-quinoleine-methanol, active on multiresistant strains of P. falciparum is a resourceful product because of its pharmacocinetics and the possibility it opens of a single day curative therapy. Its mean half-live is 15 days, with important individual variations from 8 to 23 days as well as racial one within North-American, Asiatic or African patients. A 1,25 to 1,50 g dose divided in 2 or 3 intakes during 16 hours has proved to be effective in 34 P. falciparum cases. Lower doses, near 1 g seem sufficient for P. vivax (6 cases) and P. ovale fits (4 cases). Clinical and biological acceptance are good, according to this limited study. The use of mefloquine might nowadays be reserved for geographical areas where resistance to P. falciparum is significantly high. Its diffusion in Africa, south of the Sahara, though conceivable, might be discarded for the time beeing.

  19. Tailoring a Pediatric Formulation of Artemether-Lumefantrine for Treatment of Plasmodium falciparum Malaria

    PubMed Central

    Ogutu, Bernhards; Djimde, Abdoulaye; Stricker, Kirstin; Hamed, Kamal

    2015-01-01

    Specially created pediatric formulations have the potential to improve the acceptability, effectiveness, and accuracy of dosing of artemisinin-based combination therapy (ACT) in young children, a patient group that is inherently vulnerable to malaria. Artemether-lumefantrine (AL) Dispersible is a pediatric formulation of AL that is specifically tailored for the treatment of children with uncomplicated Plasmodium falciparum malaria, offering benefits relating to efficacy, convenience and acceptance, accuracy of dosing, safety, sterility, stability, and a pharmacokinetic profile and bioequivalence similar to those of crushed and intact AL tablets. However, despite being the first pediatric antimalarial to meet World Health Organization (WHO) specifications for use in infants and children who are ≥5 kg in body weight and its inclusion in WHO Guidelines, there are few publications that focus on AL Dispersible. Based on a systematic review of the recent literature, this paper provides a comprehensive overview of the clinical experience with AL Dispersible to date. A randomized, phase 3 study that compared the efficacy and safety of AL Dispersible to those of crushed AL tablets in 899 African children reported high PCR-corrected cure rates at day 28 (97.8% and 98.5% for AL Dispersible and crushed tablets, respectively), and the results of several subanalyses of these data indicate that this activity is observed regardless of patient weight, food intake, and maximum plasma concentrations of artemether or its active metabolite, dihydroartemisinin. These and other clinical data support the continued use of pediatric antimalarial formulations in all children <5 years of age with uncomplicated malaria when accompanied by continued monitoring for the emergence of resistance. PMID:26014953

  20. Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum).

    PubMed

    Hughes, Austin L; Verra, Federica

    2010-10-01

    Phylogenetic analyses of the mitochondrial cytochrome b (cytb), apicoplast caseinolytic protease C (clpC), and 18S rRNA sequences of Plasmodium isolates from chimpanzees along with those of the virulent human malaria parasite P. falciparum showed that the common chimpanzee (Pan troglodytes) malaria parasites, assigned by Rich et al. (2009) to P. reichenowi, constitute a paraphyletic assemblage. The assumption that P. falciparum diverged from P. reichenowi as recently as 5000-50,000 years ago would require a rate of synonymous substitution/site/year in cytb and clpC on the order of 10(-5)-10(-6), several orders of magnitude higher than any known from eukaryotic organelle genomes, and would imply an unrealistically recent timing of the most recent common ancestor of P. falciparum mitochondrial genomes. The available data are thus most consistent with the hypothesis that P. reichenowi (in the strict sense) and P. falciparum co-speciated with their hosts about 5-7 million years ago.

  1. Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: a systematic review

    PubMed Central

    2014-01-01

    Background Severe malaria remains a major cause of pediatric hospital admission across Africa. Invasive bacterial infection (IBI) is a recognized complication of Plasmodium falciparum malaria, resulting in a substantially worse outcome. Whether a biological relationship exists between malaria infection and IBI susceptibility remains unclear. We, therefore, examined the extent, nature and evidence of this association. Methods We conducted a systematic search in August 2012 of three major scientific databases, PubMed, Embase and Africa Wide Information, for articles describing bacterial infection among children with P. falciparum malaria using the search string ‘(malaria OR plasmodium) AND (bacteria OR bacterial OR bacteremia OR bacteraemia OR sepsis OR septicaemia OR septicemia).’ Eligiblity criteria also included studies of children hospitalized with malaria or outpatient attendances in sub-Saharan Africa. Results A total of 25 studies across 11 African countries fulfilled our criteria. They comprised twenty cohort analyses, two randomized controlled trials and three prospective epidemiological studies. In the meta-analysis of 7,208 children with severe malaria the mean prevalence of IBI was 6.4% (95% confidence interval (CI) 5.81 to 6.98%). In a further meta-analysis of 20,889 children hospitalised with all-severity malaria and 27,641 children with non-malarial febrile illness the mean prevalence of IBI was 5.58 (95% CI 5.5 to 5.66%) in children with malaria and 7.77% (95% CI 7.72 to 7.83%) in non-malaria illness. Ten studies reported mortality stratified by IBI. Case fatality was higher at 81 of 336, 24.1% (95% CI 18.9 to 29.4) in children with malaria/IBI co-infection compared to 585 of 5,760, 10.2% (95% CI 9.3 to 10.98) with malaria alone. Enteric gram-negative organisms were over-represented in malaria cases, non-typhoidal Salmonellae being the most commonest isolate. There was weak evidence indicating IBI was more common in the severe anemia manifestation

  2. Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum.

    PubMed

    Carucci, D J

    2001-05-01

    Infection with any of the four species of Plasmodium single cell parasites that infects humans causes the clinical disease, malaria. Of these, it is Plasmodium falciparum that is responsible for the majority of the 1.5-2.3 million deaths due to this disease each year. Worldwide there are between 300-500 million cases of malaria annually. To date there is no licensed vaccine and resistance to most of the available drugs used to prevent and/or treat malaria is spreading. There is therefore an urgent need to develop new and effective drugs and vaccines against this devastating parasite. We have outlined a strategy using a combination of DNA-based vaccines and the data derived from the soon-to-be completed P. falciparum genome and the genomes of other species of Plasmodium to develop new vaccines against malaria. Much of the technology that we are developing for vaccine target identification is directly applicable to the identification of potential targets for drug discovery. The publicly available genome sequence data also provides a means for researchers whose focus may not be primarily malaria to leverage their research on cancer, yeast biology and other research areas to the biological problems of malaria.

  3. Population pharmacokinetics and pharmacodynamics of artemether and lumefantrine during combination treatment in children with uncomplicated falciparum malaria in Tanzania.

    PubMed

    Hietala, Sofia Friberg; Mårtensson, Andreas; Ngasala, Billy; Dahlström, Sabina; Lindegårdh, Niklas; Annerberg, Anna; Premji, Zul; Färnert, Anna; Gil, Pedro; Björkman, Anders; Ashton, Michael

    2010-11-01

    The combination of artemether (ARM) and lumefantrine is currently the first-line treatment of uncomplicated falciparum malaria in mainland Tanzania. While the exposure to lumefantrine has been associated with the probability of adequate clinical and parasitological cure, increasing exposure to artemether and the active metabolite dihydroartemisinin (DHA) has been shown to decrease the parasite clearance time. The aim of this analysis was to describe the pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine in African children with uncomplicated malaria. In addition to drug concentrations and parasitemias from 50 Tanzanian children with falciparum malaria, peripheral parasite densities from 11 asymptomatic children were included in the model of the parasite dynamics. The population pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine were modeled in NONMEM. The distribution of artemether was described by a two-compartment model with a rapid absorption and elimination through metabolism to dihydroartemisinin. Dihydroartemisinin concentrations were adequately illustrated by a one-compartment model. The pharmacokinetics of artemether was time dependent, with typical oral clearance increasing from 2.6 liters/h/kg on day 1 to 10 liters/h/kg on day 3. The pharmacokinetics of lumefantrine was sufficiently described by a one-compartment model with an absorption lag time. The typical value of oral clearance was estimated to 77 ml/h/kg. The proposed semimechanistic model of parasite dynamics, while a rough approximation of the complex interplay between malaria parasite and the human host, adequately described the early effect of ARM and DHA concentrations on the parasite density in malaria patients. However, the poor precision in some parameters illustrates the need for further data to support and refine this model.

  4. Earth Observation, Geographic Information Systems and Plasmodium falciparum Malaria in Sub-Saharan Africa

    PubMed Central

    Hay, S.I.; Omumbo, J.A.; Craig, M.H.; Snow, R. W.

    2011-01-01

    This review highlights the progress and current status of remote sensing (RS) and geographical information systems (GIS) as currently applied to the problem of Plasmodium falciparum malaria in sub-Saharan Africa (SSA). The burden of P. falciparum malaria in SSA is first summarized and then contrasted with the paucity of accurate and recent information on the nature and extent of the disease. This provides perspective on both the global importance of the pathogen and the potential for contribution of RS and GIS techniques. The ecology of P. falciparum malaria and its major anopheline vectors in SSA is then outlined, to provide the epidemiological background for considering disease transmission processes and their environmental correlates. Because RS and GIS are recent techniques in epidemiology, all mosquito-borne diseases are considered in this review in order to convey the range of ideas, insights and innovation provided. To conclude, the impact of these initial studies is assessed and suggestions provided on how these advances could be best used for malaria control in an appropriate and sustainable manner, with key areas for future research highlighted. PMID:10997207

  5. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors

    NASA Astrophysics Data System (ADS)

    Lai, Shengjie; Wardrop, Nicola A.; Huang, Zhuojie; Bosco, Claudio; Sun, Junling; Bird, Tomas; Wesolowski, Amy; Zhou, Sheng; Zhang, Qian; Zheng, Canjun; Li, Zhongjie; Tatem, Andrew J.; Yu, Hongjie

    2016-12-01

    Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011–2015, 8653 P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P = 0.006), parasite prevalence in Africa (P < 0.001), and the amount of official development assistance from China (P < 0.001) with investment in resource extraction having the strongest relationship with parasite importation. Risk factors for deaths from imported cases were related to the capacity of malaria diagnosis and diverse socioeconomic factors. The spatial heterogeneity uncovered, principal drivers explored, and risk factors for mortality found in the rising rates of P. falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted.

  6. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors

    PubMed Central

    Lai, Shengjie; Wardrop, Nicola A.; Huang, Zhuojie; Bosco, Claudio; Sun, Junling; Bird, Tomas; Wesolowski, Amy; Zhou, Sheng; Zhang, Qian; Zheng, Canjun; Li, Zhongjie; Tatem, Andrew J.; Yu, Hongjie

    2016-01-01

    Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011–2015, 8653 P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P = 0.006), parasite prevalence in Africa (P < 0.001), and the amount of official development assistance from China (P < 0.001) with investment in resource extraction having the strongest relationship with parasite importation. Risk factors for deaths from imported cases were related to the capacity of malaria diagnosis and diverse socioeconomic factors. The spatial heterogeneity uncovered, principal drivers explored, and risk factors for mortality found in the rising rates of P. falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted. PMID:28000753

  7. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.

    PubMed

    Hikosaka, Kenji; Hirai, Makoto; Komatsuya, Keisuke; Ono, Yasuo; Kita, Kiyoshi

    2015-06-01

    The intraerythrocytic form of the human malaria parasite Plasmodium falciparum relies on glycolysis for its energy requirements. In glycolysis, lactate is an end product. It is therefore known that lactate accumulates in in vitro culture; however, its influence on parasite growth remains unknown. Here we investigated the effect of lactate on the development of P. falciparum during in vitro culture under lactate supplementation in detail. Results revealed that lactate retarded parasite development and reduced the number of merozoites in the schizont stage. These findings suggest that lactate has the potential to affect parasite development.

  8. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  9. Effect of Plasmodium falciparum malaria parasites on haematological parameters in Ghanaian children.

    PubMed

    Squire, D S; Asmah, R H; Brown, C A; Adjei, D N; Obeng-Nkrumah, N; Ayeh-Kumi, P F

    2016-06-01

    Malaria is hyper-endemic in Ghana. Haematological alterations in the disease pathology may offer complimentary criteria to improve clinical and microscopy diagnosis. Our primary outcome was to evaluate haematological parameters in children with Plasmodium falciparum infections and report their predictive risk and diagnostic performance for malaria infections in Ghana. Haematological data, including thin and thick blood films were examined for children less than 12 years of age in a multicenter-based active case finding approach. Haematological changes were common in P. falciparum infected children and more pronounced in severe malaria cases. More so, a unit increase in parasiteamia increased the odds for severe malaria infection by 93 % [OR, 95 % CI: 1.93 (1.28-2.91); P value = 0.02]. In multivariate regression, low haemoglobin was a significant haematological change in predicting P. falciparum infections [OR, 95 % CI: 3.20 (1.26-7.09); P value = 0.001]. Low haemoglobin levels <11 g/dl was the most reliable indicator for P. falciparum infections [with a sensitivity of (64 %), specificity (71 %), positive predictive value (83 %) and likelihood ratio (2.2)]-even when evaluated in combination with leucocytosis, lymphocytopaenia and high neutrophil counts >7,500 µL. In malaria endemic settings, low haemoglobin concentration (<11 g/dl) in children with febrile illness should prompt a more diligent search for the malarial parasite to limit the misuse and abuse of anti-malarial drugs.

  10. Sterile Protective Immunity to Malaria is Associated with a Panel of Novel P. falciparum Antigens*

    PubMed Central

    Trieu, Angela; Kayala, Matthew A.; Burk, Chad; Molina, Douglas M.; Freilich, Daniel A.; Richie, Thomas L.; Baldi, Pierre; Felgner, Philip L.; Doolan, Denise L.

    2011-01-01

    The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized. PMID:21628511

  11. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density

    PubMed Central

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-01-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density. PMID:22438699

  12. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density.

    PubMed

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-12-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density.

  13. Anti-malaria antibody-producing B cell frequencies in adults after a Plasmodium falciparum outbreak in Madagascar.

    PubMed Central

    Migot, F; Chougnet, C; Henzel, D; Dubois, B; Jambou, R; Fievet, N; Deloron, P

    1995-01-01

    The central highlands of Madagascar offer a unique opportunity to explore the malaria immune memory, as the last murderous epidemic in the study area occurred 8 years ago. Quantification of the circulating memory B lymphocytes reacting to Plasmodium falciparum was assessed among 14 Madagascans by using a limiting dilution assay, applied to the EL4 culture system, which leads to activation, proliferation and differentiation into antibody-secreting cells (ASC) of most peripheral B cells. This system allowed us to observe, without any malaria-specific restimulation, a geometric mean frequency of one anti-P. falciparum ASC among 2992 circulating B cells, except for one Madagascan who did not have any detectable ASC. A geometric mean frequency of one anti-P. falciparum ASC among 1403 was obtained for six malaria hyperimmune Cameroonians, but conversely, no anti-malaria ASC was detected in the blood of six malaria non-immune French control subjects. Anti-P. falciparum ASC frequencies and serum specific antibodies were strongly related. Our results indicate that anti-malaria ASC are still present in peripheral blood of Madagascan subjects, who have not been exposed to P. falciparum for several years. These responder B cells reflect the malaria B cell memory acquired during the last epidemic. PMID:8536368

  14. Parasitaemia and Its Relation to Hematological Parameters and Liver Function among Patients Malaria in Abs, Hajjah, Northwest Yemen.

    PubMed

    Al-Salahy, Mohamed; Shnawa, Bushra; Abed, Gamal; Mandour, Ahmed; Al-Ezzi, Ali

    2016-01-01

    Plasmodium falciparum malaria is the most common infection in Yemen. The present study aims to investigate changes in hematological and hepatic function indices of P. falciparum infected individuals. This study included 67 suspected falciparum malarial patients attended in clinics and rural Abs Hospital (Tehama, Hajjah), Yemen, from October 2013 to April 2014. The diagnosis of malaria was confirmed by thick and thin film with Giemsa staining of malaria parasite. Hematological parameters and serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and bilirubin (total and direct) as test indicators of liver function were studied. Patients with parasitaemia tended to have significantly lower hemoglobin, hematocrit, white blood cell count, lymphocytes, and platelets, compared with healthy normal subjects. Neutrophils levels were significantly higher in cases of falciparum malaria in comparison to healthy normal subjects. Serums AST, ALT, ALP, and bilirubin (total and direct) in falciparum malaria patients were significantly higher (p < 0.0001) than those of falciparum malaria of free individuals. Hematological and liver dysfunctions measured parameters were seen associated with moderate and severe parasitaemia infection. This study concludes that hematological and hepatic dysfunction parameters could be indicator of malaria in endemic regions.

  15. Defining the protein interaction network of human malaria parasite Plasmodium falciparum.

    PubMed

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225 million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network.

  16. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: inferred malaria dispersal and implications for malaria control.

    PubMed

    Lum, J K; Kaneko, A; Taleo, G; Amos, M; Reiff, D M

    2007-08-01

    A comparison of the patterns of gene flow within and between islands and the genetic diversities of the three species required for malaria transmission (humans, Plasmodium falciparum, and Anopheles farauti s.s.) within the model island system of Vanuatu, shows that the active dispersal of An. farauti s.s. is responsible for within island movement of parasites. In contrast, since both P. falciparum and An. farauti s.s. populations are largely restricted to islands, movement of parasites between islands is likely due to human transport. Thus, control of vectors is crucial for controlling malaria within islands, while control of human movement is essential to control malaria transmission across the archipelago.

  17. Focused Screening and Treatment (FSAT): a PCR-based strategy to detect malaria parasite carriers and contain drug resistant P. falciparum, Pailin, Cambodia.

    PubMed

    Hoyer, Stefan; Nguon, Sokomar; Kim, Saorin; Habib, Najibullah; Khim, Nimol; Sum, Sarorn; Christophel, Eva-Maria; Bjorge, Steven; Thomson, Andrew; Kheng, Sim; Chea, Nguon; Yok, Sovann; Top, Samphornarann; Ros, Seyha; Sophal, Uth; Thompson, Michelle M; Mellor, Steve; Ariey, Frédéric; Witkowski, Benoit; Yeang, Chhiang; Yeung, Shunmay; Duong, Socheat; Newman, Robert D; Menard, Didier

    2012-01-01

    Recent studies have shown that Plasmodium falciparum malaria parasites in Pailin province, along the border between Thailand and Cambodia, have become resistant to artemisinin derivatives. To better define the epidemiology of P. falciparum populations and to assess the risk of the possible spread of these parasites outside Pailin, a new epidemiological tool named "Focused Screening and Treatment" (FSAT), based on active molecular detection of asymptomatic parasite carriers was introduced in 2010. Cross-sectional malariometric surveys using PCR were carried out in 20 out of 109 villages in Pailin province. Individuals detected as P. falciparum carriers were treated with atovaquone-proguanil combination plus a single dose of primaquine if the patient was non-G6PD deficient. Interviews were conducted to elicit history of cross-border travel that might contribute to the spread of artemisinin-resistant parasites. After directly observed treatment, patients were followed up and re-examined on day 7 and day 28. Among 6931 individuals screened, prevalence of P. falciparum carriers was less than 1%, of whom 96% were asymptomatic. Only 1.6% of the individuals had a travel history or plans to go outside Cambodia, with none of those tested being positive for P. falciparum. Retrospective analysis, using 2010 routine surveillance data, showed significant differences in the prevalence of asymptomatic carriers discovered by FSAT between villages classified as "high risk" and "low risk" based on malaria incidence data. All positive individuals treated and followed-up until day 28 were cured. No mutant-type allele related to atovaquone resistance was found. FSAT is a potentially useful tool to detect, treat and track clusters of asymptomatic carriers of P. falciparum along with providing valuable epidemiological information regarding cross-border movements of potential malaria parasite carriers and parasite gene flow.

  18. Focused Screening and Treatment (FSAT): A PCR-Based Strategy to Detect Malaria Parasite Carriers and Contain Drug Resistant P. falciparum, Pailin, Cambodia

    PubMed Central

    Hoyer, Stefan; Nguon, Sokomar; Kim, Saorin; Habib, Najibullah; Khim, Nimol; Sum, Sarorn; Christophel, Eva-Maria; Bjorge, Steven; Thomson, Andrew; Kheng, Sim; Chea, Nguon; Yok, Sovann; Top, Samphornarann; Ros, Seyha; Sophal, Uth; Thompson, Michelle M.; Mellor, Steve; Ariey, Frédéric; Witkowski, Benoit; Yeang, Chhiang; Yeung, Shunmay; Duong, Socheat; Newman, Robert D.; Menard, Didier

    2012-01-01

    Recent studies have shown that Plasmodium falciparum malaria parasites in Pailin province, along the border between Thailand and Cambodia, have become resistant to artemisinin derivatives. To better define the epidemiology of P. falciparum populations and to assess the risk of the possible spread of these parasites outside Pailin, a new epidemiological tool named “Focused Screening and Treatment” (FSAT), based on active molecular detection of asymptomatic parasite carriers was introduced in 2010. Cross-sectional malariometric surveys using PCR were carried out in 20 out of 109 villages in Pailin province. Individuals detected as P. falciparum carriers were treated with atovaquone-proguanil combination plus a single dose of primaquine if the patient was non-G6PD deficient. Interviews were conducted to elicit history of cross-border travel that might contribute to the spread of artemisinin-resistant parasites. After directly observed treatment, patients were followed up and re-examined on day 7 and day 28. Among 6931 individuals screened, prevalence of P. falciparum carriers was less than 1%, of whom 96% were asymptomatic. Only 1.6% of the individuals had a travel history or plans to go outside Cambodia, with none of those tested being positive for P. falciparum. Retrospective analysis, using 2010 routine surveillance data, showed significant differences in the prevalence of asymptomatic carriers discovered by FSAT between villages classified as “high risk” and “low risk” based on malaria incidence data. All positive individuals treated and followed-up until day 28 were cured. No mutant-type allele related to atovaquone resistance was found. FSAT is a potentially useful tool to detect, treat and track clusters of asymptomatic carriers of P. falciparum along with providing valuable epidemiological information regarding cross-border movements of potential malaria parasite carriers and parasite gene flow. PMID:23049687

  19. Plasmodium falciparum complicated malaria: Modulation and connectivity between exportome and variant surface antigen gene families.

    PubMed

    Subudhi, Amit Kumar; Boopathi, P A; Pandey, Isha; Kohli, Ramandeep; Karwa, Rohan; Middha, Sheetal; Acharya, Jyoti; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2015-05-01

    In temperate and sub-tropical regions of Asia and Latin America, complicated malaria manifested as hepatic dysfunction or renal dysfunction is seen in all age groups. There has been a concerted focus on understanding the patho-physiological and molecular basis of complicated malaria in children, much less is known about it in adults. We report here, the analysis of data from a custom, cross strain microarray (Agilent Platform) using material from adult patient samples, showing hepatic dysfunction or renal failure. These are the most common manifestations seen in adults along with cerebral malaria. The data has been analyzed with reference to variant surface antigens, encoded by the var, rifin and stevor gene families. The differential regulation profiles of key genes (comparison between Plasmodium falciparum complicated and uncomplicated isolates) have been observed. The exportome has been analyzed using similar parameters. Gene ontology term based functional enrichment of differentially regulated genes identified, up-regulated genes statistically enriched (P<0.05) to critical biological processes like generation of precursor metabolite and energy, chromosome organization and electron transport chain. Systems network based functional enrichment of overall differentially regulated genes yielded a similar result. We are reporting here, up-regulation of var group B and C genes whose proteins are predicted to interact with CD36 receptor in the host, the up-regulation of domain cassette 13 (DC13) containing var group A, as also the up-regulation of group A rifins and many of the stevors. This is contrary to most other reports from pediatric patients, with cerebral malaria where the up-regulation of mostly var A group genes have been seen. A protein-protein interaction based network has been created and analysis performed. This co-expression and text mining based network has shown overall connectivity between the variant surface antigens (VSA) and the exportome. The up

  20. A Malaria Diagnostic Tool Based on Computer Vision Screening and Visualization of Plasmodium falciparum Candidate Areas in Digitized Blood Smears

    PubMed Central

    Walliander, Margarita; Mårtensson, Andreas; Diwan, Vinod; Rahtu, Esa; Pietikäinen, Matti; Lundin, Mikael; Lundin, Johan

    2014-01-01

    Introduction Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. Methods Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective (0.1 µm/pixel) to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. Results The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls). From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. Conclusion We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for visual examination and

  1. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.

    PubMed

    Mita, Toshihiro; Tachibana, Shin-Ichiro; Hashimoto, Muneaki; Hirai, Makoto

    2016-01-01

    Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.

  2. Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria

    PubMed Central

    2011-01-01

    Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure–activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug–drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate. PMID:24900364

  3. NF135.C10: A New Plasmodium falciparum Clone for Controlled Human Malaria Infections

    PubMed Central

    Teirlinck, Anne C.; Roestenberg, Meta; van de Vegte-Bolmer, Marga; Scholzen, Anja; Heinrichs, Moniek J. L.; Siebelink-Stoter, Rianne; Graumans, Wouter; van Gemert, Geert-Jan; Teelen, Karina; Vos, Martijn W.; Nganou-Makamdop, Krystelle; Borrmann, Steffen; Rozier, Yolanda P. A.; Erkens, Marianne A. A.; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sim, B. Kim Lee; van Lieshout, Lisette; Hoffman, Stephen L.; Visser, Leo G.; Sauerwein, Robert W.

    2013-01-01

    We established a new field clone of Plasmodium falciparum for use in controlled human malaria infections and vaccine studies to complement the current small portfolio of P. falciparum strains, primarily based on NF54. The Cambodian clone NF135.C10 consistently produced gametocytes and generated substantial numbers of sporozoites in Anopheles mosquitoes and diverged from NF54 parasites by genetic markers. In a controlled human malaria infection trial, 3 of 5 volunteers challenged by mosquitoes infected with NF135.C10 and 4 of 5 challenged with NF54 developed parasitemia as detected with microscopy. The 2 strains induced similar clinical signs and symptoms as well as cellular immunological responses. Clinical Trials Registration NCT01002833. PMID:23186785

  4. Protection of Humans against Malaria by Immunization with Radiation-Attenuated Plasmodium falciparum Sporozoites

    DTIC Science & Technology

    2002-04-15

    departments of the Navy or Army. a Present affiliations: Celera Genomics , Rockville, Maryland (S.L.H.); Pe- diatric Specialty Center, Monroe, Louisiana...Stephen L. Hoffman, Biologics, Celera Genomics , 45 W. Gude Dr., Rockville, MD 20850 (stephen.hoffman@celera.com). Received 1 August 2001; revised 19...Protection of Humans against Malaria by Immunization with Radiation-Attenuated Plasmodium falciparum Sporozoites Stephen L. Hoffman,1,a Lucy M. L

  5. Activities of artemether-lumefantrine and amodiaquine-sulfalene-pyrimethamine against sexual-stage parasites in falciparum malaria in children.

    PubMed

    Sowunmi, Akintunde; Balogun, Tunde; Gbotosho, Grace O; Happi, Christian T; Adedeji, Ahmed A; Bolaji, Olayinka M; Fehintola, Fatai A; Folarin, Onikepe A

    2008-01-01

    The activities of artemether-lumefantrine and amodiaquine-sulfalene-pyrimethamine against sexual-stage parasites were evaluated in 42 of 181 Nigerian children with uncomplicated Plasmodium falciparum malaria who had gametocytaemia before, during or after treatment with the two combination therapies. The children were randomized to the standard dose regimens. Clinical recovery from illness occurred in all children who carried gametocytes. Gametocytaemia was detected in 20 patients (11%) before treatment and in another 22 patients (12.2%) after treatment. Gametocyte carriage rates were similar in both combination treatment groups, but the area under the curve of gametocytaemia plotted against time was 8-fold higher in the amodiaquine-sulfalene-pyrimethamine-treated than in the artemether-lumefantrine-treated children. The pretreatment gametocyte sex ratio was female biased in both treatment groups. During follow-up, there was a short-lived but significant increase in the gametocyte sex ratio in children treated with amodiaquine-sulfalene-pyrimethamine but not in those treated with artemether-lumefantrine. These results indicate that both combination therapies had moderate effects on gametocyte carriage, but artemether-lumefantrine may be more potent at reducing transmissibility in P. falciparum malaria by exerting greater effects on post-treatment gametocyte density and gametocyte sex ratio.

  6. PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria.

    PubMed

    Normark, Johan; Nilsson, Daniel; Ribacke, Ulf; Winter, Gerhard; Moll, Kirsten; Wheelock, Craig E; Bayarugaba, Justus; Kironde, Fred; Egwang, Thomas G; Chen, Qijun; Andersson, Björn; Wahlgren, Mats

    2007-10-02

    An infection with Plasmodium falciparum may lead to severe malaria as a result of excessive binding of infected erythrocytes in the microvasculature. Vascular adhesion is mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP1), which is encoded for by highly polymorphic members of the var-gene family. Here, we profile var gene transcription in fresh P. falciparum trophozoites from Ugandan children with malaria through var-specific DBL1alpha-PCR amplification and sequencing. A method for subsectioning region alignments into homology areas (MOTIFF) was developed to examine collected sequences. Specific PfEMP1-DBL1alpha amino acid motifs correlated with rosetting and severe malaria, with motif location corresponding to distinct regions of receptor interaction. The method is potentially applicable to other families of variant proteins and may be useful in identifying sequence-phenotype relationships. The results suggest that certain PfEMP1 sequences are predisposed to inducing severe malaria.

  7. Fate of haem iron in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Egan, Timothy J; Combrinck, Jill M; Egan, Joanne; Hearne, Giovanni R; Marques, Helder M; Ntenteni, Skhumbuzo; Sewell, B Trevor; Smith, Peter J; Taylor, Dale; van Schalkwyk, Donelly A; Walden, Jason C

    2002-01-01

    Chemical analysis has shown that Plasmodium falciparum trophozoites contain 61+/-2% of the iron within parasitized erythrocytes, of which 92+/-6% is located within the food vacuole. Of this, 88+/-9% is in the form of haemozoin. (57)Fe-Mössbauer spectroscopy shows that haemozoin is the only detectable iron species in trophozoites. Electron spectroscopic imaging confirms this conclusion. PMID:12033986

  8. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria.

    PubMed

    Llewellyn, David; Miura, Kazutoyo; Fay, Michael P; Williams, Andrew R; Murungi, Linda M; Shi, Jianguo; Hodgson, Susanne H; Douglas, Alexander D; Osier, Faith H; Fairhurst, Rick M; Diakite, Mahamadou; Pleass, Richard J; Long, Carole A; Draper, Simon J

    2015-09-16

    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.

  9. Predictors of the failure of treatment with pyrimethamine-sulfadoxine in children with uncomplicated falciparum malaria.

    PubMed

    Sowunmi, A; Fateye, B A; Adedeji, A A; Gbotosho, G O; Happi, T C; Bamgboye, A E; Bolaji, O M; Oduola, A M J

    2006-04-01

    The prevalence of pyrimethamine-sulfadoxine (PS)-resistant Plasmodium falciparum malaria has been increasing in sub-Saharan Africa or other parts of the world in the last one or two decades. The factors that identify children at risk of treatment failure after being given PS were evaluated in 291 children with acute, symptomatic, uncomplicated, P. falciparum malaria. The children took part in four antimalarial drug trials between July 1996 and July 2004 in a hyperendemic area of southwestern Nigeria. Following treatment, 64 (22%) of 291 children failed treatment by day 7 or 14. In a multivariate analysis, an age < or = 1.5 years (AOR=2.9, 95% CI 1.3-6.4, P = 0.009) and presence of fever (AOR = 3.3, 95% CI 1.28-7.14, P = 0.01) were independent predictors of the failure of treatment with PS at presentation. Following treatment, delay in parasite clearance >3 days (AOR = 2.56, CI 1.19-5.56, P = 0.016) was an independent predictor of the failure of treatment with PS. In addition, compared with the children who had no fever then, children with fever three or more days after starting treatment were more likely to be treatment failures. These findings may have implications for malaria control efforts in some sub-Saharan African countries where treatment of malaria disease depends almost entirely on PS monotherapy, and for programmes employing PS or PS-based combination therapy.

  10. Plasmodium falciparum malaria in 1(st)-2(nd) century CE southern Italy.

    PubMed

    Marciniak, Stephanie; Prowse, Tracy L; Herring, D Ann; Klunk, Jennifer; Kuch, Melanie; Duggan, Ana T; Bondioli, Luca; Holmes, Edward C; Poinar, Hendrik N

    2016-12-05

    The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults.

  11. A phase-III clinical trial of mefloquine in children with chloroquine-resistant falciparum malaria in Thailand*

    PubMed Central

    Chongsuphajaisiddhi, T.; Sabchareon, A.; Chantavanich, P.; Singhasivanon, V.; Attanath, P.; Wernsdorfer, W. H.; Sheth, U. K.

    1987-01-01

    Mefloquine is a highly effective drug for the treatment of falciparum malaria among adults, but studies of its effects on children are lacking. An open, noncomparative trial of mefloquine was therefore carried out among 84 children aged 5-12 years who were patients at the Hospital for Tropical Diseases, Mahidol University, Bangkok, Thailand. The drug was administered as a single dose of 18-29 mg base per kg body weight. Eighty-two of the 84 children completed a 42-day period of post-treatment observation. The drug was well tolerated also by 11 children with glucose-6-phosphate dehydrogenase deficiency, and all the children in the study cleared their parasitaemia initially (average clearance time, 65 hours). Furthermore, the clinical-chemical parameters measured exhibited no drug-related changes during the study. The radical cure rate of nearly 98% and high tolerance indicate that mefloquine can be used effectively and safely for the treatment of children aged 5-12 years who are suffering from uncomplicated falciparum malaria. PMID:3301042

  12. High levels of anti-phospholipid antibodies in uncomplicated and severe Plasmodium falciparum and in P. vivax malaria.

    PubMed Central

    Facer, C A; Agiostratidou, G

    1994-01-01

    The majority (75%) of adult patients with uncomplicated Plasmodium falciparum and P. vivax malaria are positive for anti-phospholipid antibodies (aPLA) as demonstrated by ELISA using a panel of anionic and cationic phospholipids. The highest IgG and IgM binding was to the anionic phospholipids, phosphatidylserine (PS), phosphatidic acid (PA) and cardiolipin (CL), but excluding phosphatidylinositol (PI) to which only low antibody levels were found. Comparison of the mean IgG and IgM aPLA showed a trend for anti-PA > CL > PS > PC > PE > PI. Anti-PI levels were compared in two groups of African children, one group with non-severe and the other with severe (cerebral) falciparum malaria. Children with cerebral disease had significantly lower IgM anti-PI. The results are discussed with the view that serum-derived aPLA may have a role in 'anti-disease' immune responses. Their possible role in the opsonization and phagocytosis of parasitized erythrocytes and in thrombocytopenia is also considered. PMID:8306506

  13. In vivo drug resistance of falciparum malaria in mining areas of Venezuela.

    PubMed

    Aché, A; Escorihuela, M; Vivas, E; Páez, E; Miranda, L; Matos, A; Pérez, W; Díaz, O; Izarra, E

    2002-09-01

    The Lot Quality Assurance Double-Sampling Plan (LQADSP) technique was used in three areas, Maripa, Kilómetro 88 and Ikabaru, to assess the efficacy of antimalarials used routinely by the Venezuelan Malaria Programme. The use of chloroquine (25 mg/kg), chloroquine (40 mg/kg) and the combination of sulfadoxine (500 mg) and pyrimethamine (25 mg) registered treatment failures above the threshold level of 25% in Maripa and Kilómertro 88. In Ikabaru the use of chloroquine (40 mg/kg) did not surpass that quality level and could possibly be less than 10%. Quinine (30 mg/kg) was totally effective in curing patients in all three areas. The use of this technique seems adequate for rapid field evaluations and in this case for providing appropriate information to assist this health programme. However, whilst being an ideal technique for surveying areas in which considerable variation may exist among lots and particularly for Plasmodium falciparum infections in these areas, repeated surveys should be carried out in the same areas over time to monitor changes in the susceptibility of this parasite to first-, second- and third-line drugs. In that way, national drug policies can be modified adequately.

  14. Effects of Maternal Plasmodium falciparum Malaria and HIV infection on Birth Weight in Southeastern Nigeria

    PubMed Central

    Uneke, Chigozie J.; Duhlinska, Dochka D.; Ujam, Treasure N.

    2009-01-01

    The effects of malaria and HIV infection on birth weight were assessed among 300 women in childbirth in Southeastern Nigeria using standard techniques. Prevalence of maternal Plasmodium falciparum malaria infection was 16.0%. Individuals of younger age, primigravidae, anemic (with Hgb <11.0g/dl) and those who had never attended antenatal clinic (ANC) were more likely to have malaria infection. Prevalence of HIV infection was 3.6% and malaria prevalence was significantly higher among HIV-positive than HIV-negative women (37.5%, 95% CI, 4.0-71.0% versus 14.3%, 95% CI., 9.6-19.0%), (χ2 =13.3, P<0.05). Malaria-infected women had a significantly higher proportion of lBW babies than the uninfected (F-ratio=15.05, P<0.05). A higher proportion of low birth weight (lBW) was recorded among anemic women, primigravidae and those who never attended ANC. lBW babies were significantly higher among HIV-positive than HIV-negative women (25.0% vs 16.6%), (F-ratio=130.8, P<0.05). Malaria and HIV interventions via ANC are crucial for reduction of their adverse effects on pregnancy outcome. PMID:21152333

  15. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015

    PubMed Central

    Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; Wenger, E.A.; Briët, O.; Penny, M.A.; Smith, T.A.; Bennett, A.; Yukich, J.; Eisele, T.P.; Griffin, J.T.; Fergus, C.A.; Lynch, M.; Lindgren, F.; Cohen, J.M.; Murray, C.L.J.; Smith, D.L.; Hay, S.I.; Cibulskis, R.E.; Gething, P.W.

    2016-01-01

    Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015 and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies. PMID:26375008

  16. Interferon-γ responses to Plasmodium falciparum vaccine candidate antigens decrease in the absence of malaria transmission

    PubMed Central

    Ochola, Lyticia; Ngwena, Gideon A.M.; Ayodo, George; Hodges, James S.; Noland, Gregory S.; John, Chandy C.

    2017-01-01

    Background Malaria elimination campaigns are planned or active in many countries. The effects of malaria elimination on immune responses such as antigen-specific IFN- γ responses are not well characterized. Methods IFN- γ responses to the P. falciparum antigens circumsporozoite protein, liver stage antigen-1, thrombospondin-related adhesive protein, apical membrane antigen-1, MB2, and merozoite surface protein-1 were tested by ELISA in 243 individuals in highland Kenya in April 2008, October 2008, and April 2009, after a one-year period of interrupted malaria transmission from April 2007 to March 2008. Results While one individual (0.4%) tested positive for P. falciparum by PCR inOctober 2008 and another two (0.9%) tested positive in April 2009, no clinical malaria cases were detected during weekly visits. Levels of IFN-γ to all antigens decreased significantly from April 2008 to April 2009 (all P < 0.001). Discussion Naturally acquired IFN- γ responses to P. falciparum antigensare short-lived in the absence of repeated P. falciparum infection. Even short periods of malaria interruption may significantly decrease IFN-γ responses to P. falciparum antigens. PMID:28097063

  17. A Randomised Controlled Trial to Assess the Efficacy of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Falciparum Malaria in Peru

    PubMed Central

    Grande, Tanilu; Bernasconi, Andrea; Erhart, Annette; Gamboa, Dioni; Casapia, Martin; Delgado, Christopher; Torres, Kathy; Fanello, Caterina; Llanos-Cuentas, Alejandro; D'Alessandro, Umberto

    2007-01-01

    Background Multi-drug resistant falciparum malaria is an important health problem in the Peruvian Amazon region. We carried out a randomised open label clinical trial comparing mefloquine-artesunate, the current first line treatment in this region, with dihydroartemisinin-piperaquine. Methods and Findings Between July 2003 and July 2005, 522 patients with P. falciparum uncomplicated malaria were recruited, randomized (260 with mefloquine-artesunate and 262 with dihydroartemisinin-piperaquine), treated and followed up for 63 days. PCR-adjusted adequate clinical and parasitological response, estimated by Kaplan Meier survival and Per Protocol analysis, was extremely high for both drugs (99.6% for mefloquine-artesunate and 98.4% and for dihydroartemisinin-piperaquine) (RR: 0.99, 95%CI [0.97−1.01], Fisher Exact p = 0.21). All recrudescences were late parasitological failures. Overall, gametocytes were cleared faster in the mefloquine-artesunate group (28 vs 35 days) and new gametocytes tended to appear more frequently in patients treated with dihydroartemisinin-piperaquine (day 7: 8 (3.6%) vs 2 (0.9%), RR: 3.84, 95%CI [0.82–17.87]). Adverse events such as anxiety and insomnia were significantly more frequent in the mefloquine-artesunate group, both in adults and children. Conclusion Dihydroartemisinin-piperaquine is as effective as mefloquine-artesunate in treating uncomplicated P. falciparum malaria but it is better tolerated and more affordable than mefloquine-artesunate (US$1.0 versus US$18.65 on the local market). Therefore, it should be considered as a potential candidate for the first line treatment of P.falciparum malaria in Peru. Trial Registration ClinicalTrials.gov NCT00373607 PMID:17971864

  18. Persistent Epstein-Barr viral reactivation in young African children with a history of severe Plasmodium falciparum malaria.

    PubMed

    Yone, Clarisse L R P; Kube, Dieter; Kremsner, Peter G; Luty, Adrian J F

    2006-07-01

    Epstein-Barr virus (EBV) and Plasmodium falciparum have overlapping distributions and are thought to have causal interactions, particularly with regard to the aetiology of endemic Burkitt's lymphoma. Using real-time PCR, we quantified and compared EBV DNA levels in the blood before and after antimalarial treatment of age- and gender-matched groups of Gabonese children who presented with either mild or severe P. falciparum malaria. Following treatment, the prevalence of EBV DNA declined in the mild malaria group but increased in the severe malaria group, and a significantly higher proportion of the latter had EBV DNA detectable in their blood when they were healthy and parasite free (67% vs. 39%; P=0.013). High EBV DNA loads were associated with more malaria attacks and with elevated plasma concentrations of both TNF-alpha and IL-12p40. Significantly more under 5 year olds had EBV DNA, highlighting the strong age dependence of the interaction between the two pathogens. These findings confirm that EBV is reactivated during acute P. falciparum malaria but, importantly, also reveal that: (i) EBV activity persists at a higher frequency in children with a history of severe malaria; and (ii) higher peripheral blood EBV DNA loads are associated with susceptibility to more frequent P. falciparum episodes and with altered cytokine activity.

  19. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times.

    PubMed

    Okoth, Sheila Akinyi; Chenet, Stella M; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes.

  20. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times

    PubMed Central

    Okoth, Sheila Akinyi; Chenet, Stella M.; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  1. Relationship between Antibody Levels, IgG Binding to Plasmodium falciparum-Infected Erythrocytes, and Disease Outcome in Hospitalized Urban Malaria Patients from Dakar, Sénégal

    PubMed Central

    Mbengue, Babacar; Fall, Mouhamadou Mansour; Sylla Niang, Maguette; Niang, Birahim; Varela, Marie Louise; Diatta, Antoine Marie; Mbow, Moustapha; Ndiaye, Kantome; Ndiaye Diallo, Rokhaya; Dieye, Alioune; Perraut, Ronald

    2016-01-01

    Background. Management of clinical malaria requires the development of reliable diagnostic methods and efficient biomarkers for follow-up of patients. Protection is partly based on IgG responses to parasite antigens exposed at the surface of infected erythrocytes (iRBCs). These IgG responses appeared low during clinical infection, particularly in severe disease. Methods. We analyzed the IgG binding capacity to the surface of live erythrocytes infected by knob positive FCR3 strain. Sera from 69 cerebral malaria (CM) and 72 mild malaria (MM) cases were analyzed by ELISA for IgG responses to five antigens from iRBC and by flow cytometry for IgG binding as expressed in labeling index ratio (LIR). The relationship between IgG levels, LIR, parasitemia, age, and the clinical outcomes was evaluated. Results. We found a significant decrease of LIR in adult CM fatal cases compared to surviving patients (p = 0.019). In MM, LIRs were correlated to IgG anti-iRBC and anti-PfEMP3/5 levels. In CM, no correlation was found between LIR, IgG levels, and parasitemia. Conclusion. The IgG binding assay was able to discriminate outcome of cerebral malaria cases and it deserves further development as a potential functional-associated assay for symptomatic malaria analysis. PMID:27563669

  2. K13-Propeller Polymorphisms in Plasmodium falciparum Isolates from Patients in Mayotte in 2013 and 2014

    PubMed Central

    Torrentino-Madamet, Marylin; Collet, Louis; Lepère, Jean François; Benoit, Nicolas; Amalvict, Rémy; Ménard, Didier

    2015-01-01

    Plasmodium falciparum isolates were collected from 29 malaria patients treated with artemether-lumefantrine in Mayotte in 2013 and 2014. Twenty-four cases (83%) consisted of imported malaria. Seventeen percent of the isolates presented mutations in one of the six K13-propeller blades (N490H, F495L, N554H/K, and E596G). A total of 23.8% of the isolates from the Union of Comoros showed K13-propeller polymorphisms. Three of the 18 isolates (16.7%) from Grande Comore showed polymorphisms (N490H, N554K, and E596G). PMID:26416865

  3. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.

  4. Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination

    PubMed Central

    Noviyanti, Rintis; Coutrier, Farah; Utami, Retno A. S.; Trimarsanto, Hidayat; Tirta, Yusrifar K.; Trianty, Leily; Kusuma, Andreas; Sutanto, Inge; Kosasih, Ayleen; Kusriastuti, Rita; Hawley, William A.; Laihad, Ferdinand; Lobo, Neil; Marfurt, Jutta; Clark, Taane G.; Price, Ric N.; Auburn, Sarah

    2015-01-01

    Background Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. Methodology/ Principal Findings Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. Conclusions/ Significance Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given

  5. Epidemiology of Plasmodium falciparum and P. vivax malaria endemic in northern Afghanistan.

    PubMed

    Faulde, Michael K; Hoffmann, Ralf; Fazilat, Khair M; Hoerauf, Achim

    2008-12-01

    In 2002, the total malaria burden in Afghanistan was estimated to be 3 million cases annually, mainly from Takhar and Kunduz Provinces. Field investigations from 2001 to 2007 revealed a rapid resurgence of Plasmodium falciparum & P. vivax malaria, with annual incidence rates between 0.0026 & 4.39, and between 0.88 & 13.37 episodes/1,000 person years, respectively. Both diseases peaked during 2002, and then declined independently, indicating two differing modes of transmission and epidemiology. Although control campaigns against malaria tropica, transmitted by the freshwater breeder Anopheles superpictus, were successful, malaria tertiana remained endemic and associated with rice-growing areas, transmitted by the anthropophilic, endophilic or exophilic rice-field breeder, A. pulcherrimus and A. hyrcanus. P. vivax polymorph VK 247 prevailed in 90% of infected mosquito pools. Data documented anthropogenically induced increases in rice-field malaria tertiana in the rice-growing areas of northern Afghanistan and the need for further control strategies, including large-scale larval mosquito eradication in rice-growing areas.

  6. Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis

    PubMed Central

    Hoglund, Richard M.; Edstein, Michael D.; Thanh, Nguyen Xuan; Zongo, Issaka; Ouedraogo, Jean Bosco; Borrmann, Steffen; Mwai, Leah; Nsanzabana, Christian; Parikh, Sunil; Ashley, Elizabeth A.; Lwin, Khin Maung; Day, Nicholas P. J.; Barnes, Karen I.

    2017-01-01

    Background Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. Methods and Findings Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration–time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers’ currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3–44.3) ng/ml in small children compared to 38.1 (25.8–56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%–32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413–0.711) y of age. An evidence

  7. Incidence of Severe Malaria Syndromes and Status of Immune Responses among Khat Chewer Malaria Patients in Ethiopia.

    PubMed

    Ketema, Tsige; Bacha, Ketema; Alemayehu, Esayas; Ambelu, Argaw

    2015-01-01

    Although more emphasis has been given to the genetic and environmental factors that determine host vulnerability to malaria, other factors that might have a crucial role in burdening the disease have not been evaluated yet. Therefore, this study was designed to assess the effect of khat chewing on the incidence of severe malaria syndromes and immune responses during malaria infection in an area where the two problems co-exist. Clinical, physical, demographic, hematological, biochemical and immunological data were collected from Plasmodium falciparum mono-infected malaria patients (age ≥ 10 years) seeking medication in Halaba Kulito and Jimma Health Centers. In addition, incidences of severe malaria symptoms were assessed. The data were analyzed using SPSS (version 20) software. Prevalence of current khat chewer malaria patients was 57.38% (95%CI =53-61.56%). Malaria symptoms such as hyperpyrexia, prostration and hyperparasitemia were significantly lower (P<0.05) among khat chewer malaria patients. However, relative risk to jaundice and renal failure were significantly higher (P<0.05) in khat chewers than in non-khat chewer malaria patients. Longer duration of khat use was positively associated with incidence of anemia. IgM and IgG antibody titers were significantly higher (P<0.05) among khat chewer malaria patients than among malaria positive non-chewers. Although levels of IgG subclasses in malaria patients did not show significant differences (P>0.05), IgG3 antibody was significantly higher (P<0.001) among khat chewer malaria patients. Moreover, IgM, IgG, IgG1and IgG3 antibodies had significant negative association (P<0.001) with parasite burden and clinical manifestations of severe malaria symptoms, but not with severe anemia and hypoglycemia. Additionally, a significant increment (P<0.05) in CD4+ T-lymphocyte population was observed among khat users. Khat might be an important risk factor for incidence of some severe malaria complications. Nevertheless, it

  8. Acute disseminated encephalomyelitis (ADEM)--a rare complication of falciparum malaria.

    PubMed

    Rachita, Sarangi; Satyasundar, Mahapatra; Mrutunjaya, Dash; Birakishore, Rath

    2013-06-01

    A 4-y-old girl was admitted with fever and altered sensorium. Peripheral blood smear and quantified buffy coat test showed Plasmodium falciparum infection. She received antimalarial therapy and got discharged on seventh day without any neurological deficit. Seven days later she was readmitted with fever and disorientation. Neurological examination revealed coma and decerebration. The deep tendon reflexes were exaggerated and babiniski response was positive in the right lower limb. MRI of brain revealed multifocal asymmetrical T2W/FLAIR hyperintensities in cerebral hemispheres, sub cortical white matter and midbrain. There was minimal patchy enhancement on contrast study. Any feature of grey matter involvement was not observed. The child improved remarkably after the treatment with methyl prednisolone. A follow up MRI after one year showed a complete resolution of demyelinating lesions. Diagnosis of acute disseminated encephalomyelitis (ADEM) as a complication of falciparum malaria was made based on sudden onset of neurological events, MRI findings and prompt response to corticosteroid therapy.

  9. Comparative Study on Antenatal and Perinatal Outcome of Vivax and Falciparum Malaria in a Tertiary Care Hospital of Kolkata, India

    PubMed Central

    Datta, Mousumi; Dasgupta, Shyamal; Banerjee, Kaushik; Choudhury, Subhendu; Sengupta, Sandip Kumar; Das, Prakash

    2017-01-01

    Introduction Malaria occurring in pregnancy is associated with considerable maternal and perinatal morbidity. In India, the problem is compounded by dual parasitological aetiology of Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. falciparum). Aim To compare the outcome of infections by P. vivax and P. falciparum species among pregnant women in a hospital setting. Materials and Methods Pregnant women who tested positive for malaria either by microscopy of peripheral blood smear or ELISA test for double antigen were enrolled in the study. They were followed up till their delivery and discharge from hospital. Demographic, clinical and laboratory data was collected at enrolment, on event of complication and at delivery. Data was analyzed for univariate and multivariate associations. Results There were 64 pregnant women diagnosed with malaria. A total of 76.6% study subjects had vivax infection rest were infected with p. falciparum. Anaemia (84%) was the commonest complication. A total of 60.9% women had pathological placenta. Preterm delivery, low birth weight and Apgar score <7 were the adverse pregnancy outcomes which were more frequent with falciparum infection. There were three perinatal deaths. Multigravidas were at significantly higher risk for low birth weight and low Apgar score of newborn. Infection in later trimester was associated with low Apgar score. Conclusion Both types of malaria cause considerable morbidity in pregnant women. More cases occurred among primigravida but multigravida and later trimester of pregnancy had more severe disease. PMID:28274003

  10. Haemoglobin-E in the presence of oxidative substances from fava bean may be protective against Plasmodium falciparum malaria.

    PubMed

    Kitayaporn, D; Nelson, K E; Charoenlarp, P; Pholpothi, T

    1992-01-01

    A case-control study was carried out at a community hospital in eastern Thailand in order to study the association between haemoglobin E and Plasmodium falciparum malaria; 271 P. falciparum cases and 271 controls were enrolled. After adjusting for age, sex, time since last malaria attack, history of mosquito net use, and history of fava bean consumption in the previous month, neither heterozygous nor homozygous haemoglobin E provided significant protection against P. falciparum infection, with odds ratios (OR) = 0.91 (95% confidence limits = 0.61, 1.36) and 0.78 (0.34, 1.82) respectively when compared to persons with haemoglobin A who were not consumers of fava beans. However, haemoglobin E carriers who ate fava beans were significantly protected against P. falciparum malaria with OR = 0.26 (0.09, 0.76) and OR = 0.001 (0.00, 1120.59) for subjects with heterozygous and homozygous haemoglobin E, respectively. The study suggests a possible synergistic protective effect of haemoglobin E on the risk of P. falciparum malaria in subjects who have consumed fava beans.

  11. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    PubMed

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru.

  12. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru

    PubMed Central

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M.; Llanos-Cuentas, Alejandro

    2015-01-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru. PMID:26483126

  13. Optimizing Intradermal Administration of Cryopreserved Plasmodium falciparum Sporozoites in Controlled Human Malaria Infection.

    PubMed

    Lyke, Kirsten E; Laurens, Matthew B; Strauss, Kathy; Adams, Matthew; Billingsley, Peter F; James, Eric; Manoj, Anita; Chakravarty, Sumana; Plowe, Christopher V; Li, Ming Lin; Ruben, Adam; Edelman, Robert; Green, Michael; Dube, Tina J; Sim, B Kim Lee; Hoffman, Stephen L

    2015-12-01

    Controlled human malaria infection (CHMI) is a powerful tool to evaluate malaria vaccine and prophylactic drug efficacy. Until recently CHMI was only carried out by the bite of infected mosquitoes. A parenteral method of CHMI would standardize Plasmodium falciparum sporozoite (PfSPZ) administration, eliminate the need for expensive challenge facility infrastructure, and allow for use of many P. falciparum strains. Recently, intradermal (ID) injection of aseptic, purified, cryopreserved PfSPZ was shown to induce P. falciparum malaria; however, 100% infection rates were not achieved by ID injection. To optimize ID PfSPZ dosing so as to achieve 100% infection, 30 adults aged 18-45 years were randomized to one of six groups composed of five volunteers each. The parameters of dose (1 × 10(4) versus 5 × 10(4) PfSPZ total dose per volunteer), number of injections (two versus eight), and aliquot volume per ID injection (10 μL versus 50 μL) were studied. Three groups attained 100% infection: 1 × 10(4) PfSPZ in 50 μL/2 doses, 1 × 10(4) PfSPZ in 10 μL/2 doses, and 5 × 10(4) PfSPZ in 10 μL/8 doses. The group that received 5 × 10(4) PfSPZ total dose in eight 10 μL injections had a 100% infection rate and the shortest prepatent period (mean of 12.7 days), approaching the prepatent period for the current CHMI standard of five infected mosquitoes.

  14. Optimizing Intradermal Administration of Cryopreserved Plasmodium falciparum Sporozoites in Controlled Human Malaria Infection

    PubMed Central

    Lyke, Kirsten E.; Laurens, Matthew B.; Strauss, Kathy; Adams, Matthew; Billingsley, Peter F.; James, Eric; Manoj, Anita; Chakravarty, Sumana; Plowe, Christopher V.; Li, Ming Lin; Ruben, Adam; Edelman, Robert; Green, Michael; Dube, Tina J.; Kim Lee Sim, B.; Hoffman, Stephen L.

    2015-01-01

    Controlled human malaria infection (CHMI) is a powerful tool to evaluate malaria vaccine and prophylactic drug efficacy. Until recently CHMI was only carried out by the bite of infected mosquitoes. A parenteral method of CHMI would standardize Plasmodium falciparum sporozoite (PfSPZ) administration, eliminate the need for expensive challenge facility infrastructure, and allow for use of many P. falciparum strains. Recently, intradermal (ID) injection of aseptic, purified, cryopreserved PfSPZ was shown to induce P. falciparum malaria; however, 100% infection rates were not achieved by ID injection. To optimize ID PfSPZ dosing so as to achieve 100% infection, 30 adults aged 18–45 years were randomized to one of six groups composed of five volunteers each. The parameters of dose (1 × 104 versus 5 × 104 PfSPZ total dose per volunteer), number of injections (two versus eight), and aliquot volume per ID injection (10 μL versus 50 μL) were studied. Three groups attained 100% infection: 1 × 104 PfSPZ in 50 μL/2 doses, 1 × 104 PfSPZ in 10 μL/2 doses, and 5 × 104 PfSPZ in 10 μL/8 doses. The group that received 5 × 104 PfSPZ total dose in eight 10 μL injections had a 100% infection rate and the shortest prepatent period (mean of 12.7 days), approaching the prepatent period for the current CHMI standard of five infected mosquitoes. PMID:26416102

  15. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings: The vaccine regimen...falciparum malaria vaccine, in healthy, malaria -nave adults’’, work unit number 62787A 870 F 1432. The funders had no role in study design, data...fused to hepatitis B surface protein. RTS,S provides 50% protection against controlled human malaria infection, mediated primarily by the induction of

  16. Plasmodium falciparum Malaria: Band 3 as a Possible Receptor during Invasion of Human Erythrocytes

    NASA Astrophysics Data System (ADS)

    Okoye, Vincent C. N.; Bennett, Vann

    1985-01-01

    Human erythrocyte band 3, a major membrane-spanning protein, was purified and incorporated into liposomes. These liposomes, at nanomolar concentrations of protein, inhibited invasion of human erythrocytes in vitro by the malaria parasite Plasmodium falciparum. Liposomes containing human band 3 were ten times more effective in inhibiting invasion than those with pig band 3 and six times more effective than liposomes containing human erythrocyte glycophorin. Liposomes alone or liposomes containing erythrocyte glycolipids did not inhibit invasion. These results suggest that band 3 participates in the invasion process in a step involving a specific, high-affinity interaction between band 3 and some component of the parasite.

  17. An open, randomized, phase III clinical trial of mefloquine and of quinine plus sulfadoxine—pyrimethamine in the treatment of symptomatic falciparum malaria in Brazil

    PubMed Central

    de Souza, J. M.; Sheth, U. K.; de Oliveira, R. M. G.; Roulet, H.; de Souza, S. D.

    1985-01-01

    The clinical and parasitological response of adult male patients to mefloquine and to a combination of quinine and sulfadoxine—pyrimethamine during the treatment of falciparum malaria was compared. These patients were from an area in Brazil where Plasmodium falciparum is showing increasing resistance to quinine and to sulfadoxine—pyrimethamine. The drugs were administered to 100 patients (50 in each group), based on a randomized study design. The rates of clearance of parasitaemia and fever were similar in both groups. However, the parasitological cure rate (“S” response) was 100% for mefloquine but only 92% for quinine plus sulfadoxine—pyrimethamine. Tolerance was good in both groups. The main side-effects (nausea, vomiting, abdominal pain, and dizziness) were mild, transient and required no specific treatment. Nausea and vomiting were more frequent in patients who received quinine plus sulfadoxine—pyrimethamine, while abdominal pain and loose stools or mild diarrhoea were more frequent in the mefloquine group. Tinnitus and hearing difficulty were observed following the administration of quinine plus sulfadoxine—pyrimethamine, but not after mefloquine treatment. Laboratory tests of various haematological and biochemical parameters were not adversely affected in either group after drug administration. It can be concluded that mefloquine, given in a single oral dose of 1000 mg, is highly effective, well tolerated, and safe for the treatment of falciparum malaria in adult males in Brazil. PMID:3899397

  18. Artemether–lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Ehrhardt, Stephan; Meyer, Christian G

    2009-01-01

    The World Health Organization strongly recommends artemisinin-based combination therapy (ACT) regimens for the treatment of uncomplicated Plasmodium falciparum malaria cases in endemic areas. Among the combinations of compounds that are available at present, excellent results have been obtained for the artemisinin derivative artemether, in a combination galenic preparation with lumefantrine (artemether–lumefantrine, AL). Here, the pharmacological properties and the therapeutic options of both substances are briefly reviewed and a cursory overview is given on recent trials that have compared the therapeutic effects of AL in the standard 6-dose regimen with other antimalarials and combinations. In order to ensure the most achievable and reliable adherence and compliance of children in the treatment of malaria, a dispersible formulation of AL is now attainable. Recent reports on the emergence of resistance to ACT regimens in Asia, however, are alarming. PMID:19851528

  19. Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia

    PubMed Central

    2014-01-01

    Background Massive implementation of malaria diagnostics in low-resource countries is regarded as a pivotal strategy in control and elimination efforts. Although malaria rapid diagnostic tests (RDTs) are considered a viable alternative, there are still obstacles to the widespread implementation of this strategy, such as reporting constraints and lack of proper quality assurance of RDT-based programmes at point-of-care (POC). Methods A prospective cohort of patients, seeking routine care for febrile episodes at health centres in malaria-endemic areas of Colombia, was used to assess the diagnostic performance of a device based on smartphone technology (Deki ReaderTM, former codename “GenZero”), that assists users at POC to process RDTs. After informed consent, patients were enrolled into the study and blood samples were collected for thick blood smear (TBS) and RDT. The RDT results were interpreted by both visual inspection and Deki Reader device and concordance between visual and device interpretation was measured. Microscopy corrected by real-time polymerase chain reaction (PCR) and microscopy were “gold standard” tests to assess the diagnostic performance. Results In total, 1,807 patients were enrolled at seven health centres in malaria-endemic areas of Colombia. Thirty-three Plasmodium falciparum and 100 Plasmodium vivax cases were positive by corrected microscopy. Both sensitivity and specificity were 93.9% (95% CI 69.7-95.2) and 98.7% (95% CI 98.5-99.4) for P. falciparum, and 98.0% (95% CI 90.3-98.9) and 97.9% (95% CI 97.1-98.5) for P. vivax. Percentage concordance between visual and device interpretation of RDT was 98.5% and 99.0% for P. vivax and P. falciparum, respectively.The RDT, when compared to TBS, showed high sensitivity and specificity for P. falciparum in both visual and device interpretation, and good overall diagnostic performance for P. vivax. Comparison between PCR as gold standard and visual and device interpretation showed acceptable

  20. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  1. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  2. Population pharmacokinetics of lumefantrine in pregnant women treated with artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria.

    PubMed

    Tarning, Joel; McGready, Rose; Lindegardh, Niklas; Ashley, Elizabeth A; Pimanpanarak, Mupawjay; Kamanikom, Benjamas; Annerberg, Anna; Day, Nicholas P J; Stepniewska, Kasia; Singhasivanon, Pratap; White, Nicholas J; Nosten, François

    2009-09-01

    Artemether-lumefantrine has become one of the most widely used antimalarial drugs in the world. The objective of this study was to determine the population pharmacokinetic properties of lumefantrine in pregnant women with uncomplicated multidrug-resistant Plasmodium falciparum malaria on the northwestern border of Thailand. Burmese and Karen women (n = 103) with P. falciparum malaria and in the second and third trimesters of pregnancy were treated with artemether-lumefantrine (80/480 mg) twice daily for 3 days. All patients provided five capillary plasma samples for drug quantification, and the collection times were randomly distributed over 14 days. The concentration-time profiles of lumefantrine were assessed by nonlinear mixed-effects modeling. The treatment failure rate (PCR-confirmed recrudescent infections at delivery) was high; 16.5% (95% confidence interval, 9.9 to 25.1). The population pharmacokinetics of lumefantrine were described well by a two-compartment open model with first-order absorption and elimination. The final model included interindividual variability in all pharmacokinetic parameters and a linear covariate relationship between the estimated gestational age and the central volume of distribution. A high proportion of all women (40%, 41/103) had day 7 capillary plasma concentrations of <355 ng/ml (which corresponds to approximately <280 ng/ml in venous plasma), a threshold previously associated with an increased risk of therapeutic failure in nonpregnant patients in this area. Predictive modeling suggests that a twice-daily regimen given for 5 days would be preferable in later pregnancy. In conclusion, altered pharmacokinetic properties of lumefantrine contribute to the high rates of failure of artemether-lumefantrine treatment in later pregnancy. Dose optimization is urgently needed.

  3. Genomics and Integrated Systems Biology in Plasmodium falciparum: A Path to Malaria Control and Eradication

    PubMed Central

    Le Roch, Karine G.; Chung, Duk-Won D.; Ponts, Nadia

    2011-01-01

    The first draft of the human malaria parasite's genome was released in 2002. Since then, the malaria scientific community has witnessed a steady embrace of new and powerful functional genomic studies. Over the years, these approaches have slowly revolutionized malaria research and enabled the comprehensive, unbiased investigation of various aspects of the parasite's biology. These genome-wide analyses delivered a refined annotation of the parasite's genome, a better knowledge of its RNA, proteins, and metabolite derivatives, and fostered the discovery of new vaccine and drug targets. Despite the positive impacts of these genomic studies, most research and investment still focus on protein targets, drugs and vaccine candidates that were known before the publication of the parasite genome sequence. However, recent access to next-generation sequencing technologies, along with an increased number of genome-wide applications are expanding the impact of the parasite genome on biomedical research, contributing to a paradigm shift in research activities that may possibly lead to new optimized diagnosis and treatments. This review provides an update of Plasmodium falciparum genome sequences and an overview of the rapid development of genomics and system biology applications that have an immense potential of creating powerful tools for a successful malaria eradication campaign. PMID:21995286

  4. The Plasmodium falciparum-Specific Human Memory B Cell Compartment Expands Gradually with Repeated Malaria Infections

    PubMed Central

    Weiss, Greta E.; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Doumbo, Safiatou; Doumtabe, Didier; Kone, Younoussou; Dia, Seydou; Guindo, Agnes; Traore, Abdramane; Huang, Chiung-Yu; Miura, Kazutoyo; Mircetic, Marko; Li, Shanping; Baughman, Amy; Narum, David L.; Miller, Louis H.; Doumbo, Ogobara K.; Pierce, Susan K.; Crompton, Peter D.

    2010-01-01

    Immunity to Plasmodium falciparum (Pf) malaria is only acquired after years of repeated infections and wanes rapidly without ongoing parasite exposure. Antibodies are central to malaria immunity, yet little is known about the B-cell biology that underlies the inefficient acquisition of Pf-specific humoral immunity. This year-long prospective study in Mali of 185 individuals aged 2 to 25 years shows that Pf-specific memory B-cells and antibodies are acquired gradually in a stepwise fashion over years of repeated Pf exposure. Both Pf-specific memory B cells and antibody titers increased after acute malaria and then, after six months of decreased Pf exposure, contracted to a point slightly higher than pre-infection levels. This inefficient, stepwise expansion of both the Pf-specific memory B-cell and long-lived antibody compartments depends on Pf exposure rather than age, based on the comparator response to tetanus vaccination that was efficient and stable. These observations lend new insights into the cellular basis of the delayed acquisition of malaria immunity. PMID:20502681

  5. Plasmodium falciparum Malaria in Children Aged 0-2 Years: The Role of Foetal Haemoglobin and Maternal Antibodies to Two Asexual Malaria Vaccine Candidates (MSP3 and GLURP)

    PubMed Central

    Kangoye, David Tiga; Nebie, Issa; Yaro, Jean-Baptiste; Debe, Siaka; Traore, Safiatou; Ouedraogo, Oumarou; Sanou, Guillaume; Soulama, Issiaka; Diarra, Amidou; Tiono, Alfred; Marsh, Kevin

    2014-01-01

    Background Children below six months are reported to be less susceptible to clinical malaria. Maternally derived antibodies and foetal haemoglobin are important putative protective factors. We examined antibodies to Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate-rich protein (GLURP), in children in their first two years of life in Burkina Faso and their risk of malaria. Methods A cohort of 140 infants aged between four and six weeks was recruited in a stable transmission area of south-western Burkina Faso and monitored for 24 months by active and passive surveillance. Malaria infections were detected by examining blood smears using light microscopy. Enzyme-linked immunosorbent assay was used to quantify total Immunoglobulin G to Plasmodium falciparum antigens MSP3 and two regions of GLURP (R0 and R2) on blood samples collected at baseline, three, six, nine, 12, 18 and 24 months. Foetal haemoglobin and variant haemoglobin fractions were measured at the baseline visit using high pressure liquid chromatography. Results A total of 79.6% of children experienced one or more episodes of febrile malaria during monitoring. Antibody titres to MSP3 were prospectively associated with an increased risk of malaria while antibody responses to GLURP (R0 and R2) did not alter the risk. Antibody titres to MSP3 were higher among children in areas of high malaria risk. Foetal haemoglobin was associated with delayed first episode of febrile malaria and haemoglobin CC type was associated with reduced incidence of febrile malaria. Conclusions We did not find any evidence of association between titres of antibodies to MSP3, GLURP-R0 or GLURP-R2 as measured by enzyme-linked immunosorbent assay and early protection against malaria, although anti-MSP3 antibody titres may reflect increased exposure to malaria and therefore greater risk. Foetal haemoglobin was associated with protection against febrile malaria despite the study limitations and its role is therefore

  6. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  7. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum.

    PubMed

    Lee, Andrew H; Symington, Lorraine S; Fidock, David A

    2014-09-01

    Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.

  8. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population.

    PubMed

    Chang, Hsiao-Han; Park, Daniel J; Galinsky, Kevin J; Schaffner, Stephen F; Ndiaye, Daouda; Ndir, Omar; Mboup, Souleymane; Wiegand, Roger C; Volkman, Sarah K; Sabeti, Pardis C; Wirth, Dyann F; Neafsey, Daniel E; Hartl, Daniel L

    2012-11-01

    Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.

  9. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  10. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum

    PubMed Central

    2009-01-01

    Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria. PMID:20042123

  11. Metabolomic analysis of patient plasma yields evidence of plant-like α-linolenic acid metabolism in Plasmodium falciparum.

    PubMed

    Lakshmanan, Viswanathan; Rhee, Kyu Y; Wang, Wei; Yu, Yiting; Khafizov, Kamil; Fiser, Andras; Wu, Peng; Ndir, Omar; Mboup, Souleymane; Ndiaye, Daouda; Daily, Johanna P

    2012-07-15

    Metabolomics offers a powerful means to investigate human malaria parasite biology and host-parasite interactions at the biochemical level, and to discover novel therapeutic targets and biomarkers of infection. Here, we used an approach based on liquid chromatography and mass spectrometry to perform an untargeted metabolomic analysis of metabolite extracts from Plasmodium falciparum-infected and uninfected patient plasma samples, and from an enriched population of in vitro cultured P. falciparum-infected and uninfected erythrocytes. Statistical modeling robustly segregated infected and uninfected samples based on metabolite species with significantly different abundances. Metabolites of the α-linolenic acid (ALA) pathway, known to exist in plants but not known to exist in P. falciparum until now, were enriched in infected plasma and erythrocyte samples. In vitro labeling with (13)C-ALA showed evidence of plant-like ALA pathway intermediates in P. falciparum. Ortholog searches using ALA pathway enzyme sequences from 8 available plant genomes identified several genes in the P. falciparum genome that were predicted to potentially encode the corresponding enzymes in the hitherto unannotated P. falciparum pathway. These data suggest that our approach can be used to discover novel facets of host/malaria parasite biology in a high-throughput manner.

  12. Expression of Plasmodium falciparum Circumsporozoite Proteins in Escherichia coli for Potential Use in a Human Malaria Vaccine

    NASA Astrophysics Data System (ADS)

    Young, James F.; Hockmeyer, Wayne T.; Gross, Mitchell; Ripley Ballou, W.; Wirtz, Robert A.; Trosper, James H.; Beaudoin, Richard L.; Hollingdale, Michael R.; Miller, Louis H.; Diggs, Carter L.; Rosenberg, Martin

    1985-05-01

    The circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum may be the most promising target for the development of a malaria vaccine. In this study, proteins composed of 16, 32, or 48 tandem copies of a tetrapeptide repeating sequence found in the CS protein were efficiently expressed in the bacterium Escherichia coli. When injected into mice, these recombinant products resulted in the production of high titers of antibodies that reacted with the authentic CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro. These CS protein derivatives are therefore candidates for a human malaria vaccine.

  13. On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos

    PubMed Central

    Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges

    2010-01-01

    The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187

  14. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  15. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.

    PubMed

    Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

    2014-01-01

    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.

  16. Open-label trial on efficacy of artemether/lumefantrine against the uncomplicated Plasmodium falciparum malaria in Metema district, Northwestern Ethiopia

    PubMed Central

    Wudneh, Feven; Assefa, Ashenafi; Nega, Desalegn; Mohammed, Hussien; Solomon, Hiwot; Kebede, Tadesse; Woyessa, Adugna; Assefa, Yibeltal; Kebede, Amha; Kassa, Moges

    2016-01-01

    Purpose Following the increased Plasmodium falciparum resistance to chloroquine and sulfadoxine/pyrimethamine, Ethiopia adopted artemether/lumefantrine (AL) as the first-line treatment for uncomplicated P. falciparum in 2004. According to the recommendation of the World Health Organization, this study was carried out for regular monitoring of the efficacy of AL in treating the uncomplicated P. falciparum malaria in Metema district, Gondar Zone, Northwest Ethiopia. Patients and methods This is a one-arm prospective 28-day in vivo therapeutic efficacy study among the uncomplicated P. falciparum malaria patients aged 6 months and older. The study was conducted from October 2014 to January 2015, based on the revised World Health Organization protocol of 2009 for surveillance of antimalarial drug therapeutic efficacy study. Standard six-dose regimen of AL was given twice daily for 3 days, and then the treatment outcomes were assessed on days 0, 1, 2, 3, 7, 14, 21, 28, and any other unscheduled day for emergency cases. Results There were 91 study subjects enrolled in this study, of whom 80 study subjects completed the full follow-up schedules and showed adequate clinical and parasitological responses on day 28, with no major adverse event. Per protocol analysis, the unadjusted cure rate of Coartem® was 98.8% (95% confidence interval: 93.3%–100%) in the study area. Recurrence of one P. falciparum case was detected on day 28, with a late parasitological failure rate of 1.2%. No early treatment failure occurred. Complete parasite and fever clearance was observed on day 3. Gametocyte carriage was 4.4% at enrollment that cleared on day 21. Although the difference is statistically not significant, a slight increase in the level of mean hemoglobin from baseline to day 28 was observed. Conclusion The study showed high efficacy and tolerability of Coartem® against uncomplicated P. falciparum malaria, suggesting the continuation as a first-line drug in the study district

  17. Relationship between entomological inoculation rate, Plasmodium falciparum prevalence rate, and incidence of malaria attack in rural Gabon.

    PubMed

    Elissa, N; Migot-Nabias, F; Luty, A; Renaut, A; Touré, F; Vaillant, M; Lawoko, M; Yangari, P; Mayombo, J; Lekoulou, F; Tshipamba, P; Moukagni, R; Millet, P; Deloron, P

    2003-03-01

    To assess the relationships between variations of Plasmodium falciparum transmission and those of peripheral parasitaemia prevalence or malaria attack incidence rates in regions with limited fluctuations of transmission, we conducted a follow-up in two Gabonese populations. Entomological surveys were carried out from May 1995 to April 1996 in Dienga, and from May 1998 to April 1999 in Benguia. In Dienga, malaria transmission was seasonal, being not detected during two 3-month periods. Mean entomological inoculation rate (EIR) was 0.28 infective bite/person/night. In Benguia, malaria transmission was perennial with seasonal fluctuations, mean EIR being 0.76 infective bite/person/night. In Dienga, 301 schoolchildren were followed from October 1995 to March 1996. Clinical malaria attack was defined as fever associated with >5000 parasites/microl of blood. P. falciparum prevalence varied from 28 to 42%, and monthly malaria attack incidence from 30 to 169 per thousand. In Benguia, the entire population (122 persons) was followed from November 1998 to April 1999. Prevalence varied from 22 to 50%, and monthly malaria attack incidence from 52 to 179 per thousand. In each area, entomological variations were not related to parasite prevalence, but preceded malaria attack incidence with 1- or 2-month time lag, corresponding to the pre-patency period that differs in the two populations, possibly according to differences in immunity related to parasite transmission.

  18. High incidence of co-infection with Malaria and Typhoid in febrile HIV infected and AIDS patients in Ekpoma, Edo State, Nigeria

    PubMed Central

    Agwu, E.; Ihongbe, J.C.; Okogun, G.R.A.; Inyang, N.J.

    2009-01-01

    This survey was designed to determine the prevalence of Plasmodium falciparum and Salmonella Typhi among febrile HIV/AIDS patients in Ekpoma. Malaria and typhoid risk factors in Ekpoma included occupation, poor health facilities and poor sanitation. Malaria and typhoid are highly prevalent among Ekpoma HIV/AIDS patients. PMID:24031367

  19. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity

    PubMed Central

    Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I

    2008-01-01

    Background The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. Methods First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Results Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences

  20. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  1. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  2. Mild Plasmodium falciparum Malaria following an Episode of Severe Malaria Is Associated with Induction of the Interferon Pathway in Malawian Children

    PubMed Central

    Krupka, Malkie; Seydel, Karl; Feintuch, Catherine M.; Yee, Kenny; Kim, Ryung; Lin, Chang-Yun; Calder, R. Brent; Petersen, Christine; Taylor, Terrie

    2012-01-01

    Infection with Plasmodium falciparum can lead to a range of severe to minimal symptoms, occasionally resulting in death in young children or nonimmune adults. In areas of high transmission, older children and adults generally suffer only mild or asymptomatic malaria infections and rarely develop severe disease. The immune features underlying this apparent immunity to severe disease remain elusive. To gain insight into host responses associated with severe and mild malaria, we conducted a longitudinal study of five children who first presented with severe malaria and, 1 month later, with mild malaria. Employing peripheral blood whole-genome profiling, we identified 68 genes that were associated with mild malaria compared to their expression in the severe malaria episode (paired Students t test, P < 0.05). These genes reflect the interferon (IFN) pathway and T cell biology and include IFN-induced protein transcripts 1 to 3, oligoadenylate synthetases 1 and 3, and the T cell markers cathepsin W and perforin. Gene set enrichment analysis identified Gene Ontology (GO) pathways associated with mild malaria to include the type I interferon-mediated signaling pathway (GO 0060337), T cell activation (GO 0042110), and other GO pathways representing many aspects of immune activation. In contrast, only six genes were associated with severe malaria, including thymidine kinase 1, which was recently found to be a biomarker of cerebral malaria susceptibility in the murine model, and carbonic anhydrase, reflecting the blood's abnormal acid base environment during severe disease. These data may provide potential insights to inform pathogenesis models and the development of therapeutics to reduce severe disease outcomes due to P. falciparum infection. PMID:22232187

  3. Use of HRP-2-based rapid diagnostic test for Plasmodium falciparum malaria: assessing accuracy and cost-effectiveness in the villages of Dielmo and Ndiop, Senegal

    PubMed Central

    2010-01-01

    Background In 2006, the Senegalese National Malaria Control Programme (NMCP) has recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria and, in 2007, mandated testing for all suspected cases of malaria with a Plasmodium falciparum HRP-2-based rapid diagnostic test for malaria (RDT(Paracheck®). Given the higher cost of ACT compared to earlier anti-malarials, the objectives of the present study were i) to study the accuracy of Paracheck® compared to the thick blood smear (TBS) in two areas with different levels of malaria endemicity and ii) analyse the cost-effectiveness of the strategy of the parasitological confirmation of clinically suspected malaria cases management recommended by the NMCP. Methods A cross-sectional study was undertaken in the villages of Dielmo and Ndiop (Senegal) nested in a cohort study of about 800 inhabitants. For all the individuals consulting between October 2008 and January 2009 with a clinical diagnosis of malaria, a questionnaire was filled and finger-prick blood samples were taken both for microscopic examination and RDT. The estimated costs and cost-effectiveness analysis were made considering five scenarios, the recommendations of the NMCP being the reference scenario. In addition, a sensitivity analysis was performed assuming that all the RDT-positive patients and 50% of RDT-negative patients were treated with ACT. Results A total of 189 consultations for clinically suspected malaria occurred during the study period. The sensitivity, specificity, positive and negative predictive values were respectively 100%, 98.3%, 80.0% and 100%. The estimated cost of the reference scenario was close to 700€ per 1000 episodes of illness, approximately twice as expensive as most of the other scenarios. Nevertheless, it appeared to us cost-effective while ensuring the diagnosis and the treatment of 100% of malaria attacks and an adequate management of 98.4% of episodes of illness. The

  4. A lethal case of Plasmodium falciparum infection in a young patient with end-stage renal failure who underwent regular hemodialysis.

    PubMed

    Hartopo, Anggoro Budi; Wijisaksono, Doni Priambodo

    2010-01-01

    Acute renal failure associated with Plasmodium falciparum infection is already well recognized. Nevertheless, end-stage chronic renal failure and falciparum malaria comorbidity is a rare condition. We report a case of Plasmodium falciparum infection in a young male Javanese patient with end-stage chronic renal failure who underwent regular hemodialysis. This rare comorbidity led to rapid deterioration of consciousness and metabolic disturbances which had already existed in end-stage renal failure. Because of the immunosuppressive condition due to organ failure, the patient did not survive despite anti-malarial chemotherapy.

  5. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies.

    PubMed

    Chan, Chim W; Sakihama, Naoko; Tachibana, Shin-Ichiro; Idris, Zulkarnain Md; Lum, J Koji; Tanabe, Kazuyuki; Kaneko, Akira

    2015-01-01

    Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81-31.23%) than in P. vivax (-0.53-3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.

  6. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  7. Malaria vaccine candidate antigen targeting the pre-erythrocytic stage of Plasmodium falciparum produced at high level in plants.

    PubMed

    Voepel, Nadja; Boes, Alexander; Edgue, Güven; Beiss, Veronique; Kapelski, Stephanie; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fendel, Rolf; Scheuermayer, Matthias; Spiegel, Holger; Fischer, Rainer

    2014-11-01

    Plants have emerged as low-cost production platforms suitable for vaccines targeting poverty-related diseases. Besides functional efficacy, the stability, yield, and purification process determine the production costs of a vaccine and thereby the feasibility of plant-based production. We describe high-level plant production and functional characterization of a malaria vaccine candidate targeting the pre-erythrocytic stage of Plasmodium falciparum. CCT, a fusion protein composed of three sporozoite antigens (P. falciparum cell traversal protein for ookinetes and sporozoites [PfCelTOS], P. falciparum circumsporozoite protein [PfCSP], and P. falciparum thrombospondin-related adhesive protein [PfTRAP]), was transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, accumulated to levels up to 2 mg/g fresh leaf weight (FLW), was thermostable up to 80°C and could be purified to >95% using a simple two-step procedure. Reactivity of sera from malaria semi-immune donors indicated the immunogenic conformation of the purified fusion protein consisting of PfCelTOS, PfCSP_TSR, PfTRAP_TSR domains (CCT) protein. Total IgG from the CCT-specific mouse immune sera specifically recognized P. falciparum sporozoites in immunofluorescence assays and induced up to 35% inhibition in hepatocyte invasion assays. Featuring domains from three promising sporozoite antigens with different roles (attachment and cell traversal) in the hepatocyte invasion process, CCT has the potential to elicit broader immune responses against the pre-erythrocytic stage of P. falciparum and represents an interesting new candidate, also as a component of multi-stage, multi-subunit malaria vaccine cocktails.

  8. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    DOE PAGES

    Davenport, Gregory C.; Hittner, James B.; Otieno, Vincent; ...

    2016-01-01

    Bmore » acteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) entericacilli and Plasmodium falciparum ( Pf [+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/ μ L), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children ( n = 206 , aged <3 yrs): healthy; Pf [+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN- γ , and IFN- α and decreased TNF- α relative to malaria alone. Children with G[−] coinfection had higher IL-1 β and IL-1Ra and lower IL-10 than the Pf [+] group and higher IFN- γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN- γ . Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden.« less

  9. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    PubMed Central

    Davenport, Gregory C.; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Ong'echa, John M.

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[−] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  10. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem bark in human adult volunteers with diagnosed uncomplicated falciparum malaria. Part 2: a clinical phase IIB trial.

    PubMed

    Mesia, Kahunu; Tona, Lutete; Mampunza, Ma Miezi; Ntamabyaliro, Nsengi; Muanda, Tsobo; Muyembe, Tamfum; Musuamba, Tshinanu; Mets, Tony; Cimanga, Kanyanga; Totté, Jozef; Pieters, Luc; Vlietinck, Arnold J

    2012-06-01

    According to the promising results of the Phase I and Phase IIA clinical trials with the herbal medicinal product PR 259 CT1 consisting of an 80 % ethanolic extract of the stem bark of Nauclea pobeguinii containing 5.6 % strictosamide, a Phase IIB study was conducted as a single blind prospective trial in 65 patients with proven Plasmodium falciparum malaria to evaluate the effectiveness and safety of this herbal drug. The study was carried out simultaneously using an artesunate-amodiaquine combination (Coarsucam®) as a positive control. This combination is the standard first-line treatment for uncomplicated malaria recommended by the National Programme of Malaria Control in the Democratic Republic of Congo (DR Congo). With regard to PR 259 CT1, patients were treated with a drug regimen of two 500-mg capsules three times daily for three days in the inpatient clinic, followed by out-patient treatment of one 500-mg capsule three times daily during the next four days; the positive control group received two tablets containing 100 mg artesunate and 270 mg amodiaquine (fixed-dose) once daily during three consecutive days. Antimalarial responses were evaluated according to the WHO 2003 guideline for a 14-day test. The results from the physical and laboratory examinations did not show any significant changes in values of vital signs, ECG, biochemical, and haematological parameters. The study showed a significant decreased parasitaemia in patients treated with PR 29 CT1 and artesunate-amodiaquine with adequate clinical parasitological responses (APCR) at day 14 of 87.9 and 96.9 %, respectively. The former product was better tolerated than the latter since more side effects were observed for the artesunate-amodiaquine combination. These results indicated that PR 259 CT1 can be considered as a promising candidate for the development of a herbal medicine for the treatment of uncomplicated falciparum malaria.

  11. [Malaria attack: a difficult diagnosis in a region of high Plasmodium falciparum endemicity].

    PubMed

    Carme, B; Yombi, B; Plassart, H

    1989-01-01

    The diagnosis of malaria attack in regions for highly endemic P. falciparum is difficult. It is more so since the wide use of antimalarials by the infected populations and the spread of drug resistance. A positive test is not evidence for a malarial attack since in certain schools, in both rural regions and in some districts of big towns, over 3/4 of the children attending school are carriers of Plasmodium. On the other hand, true attacks, even severe forms, can occur without evidence of parasitaemia. The parasitic load is thus an important factor but the following must be taken into consideration: age, level of immunity, the extent of transmission and whether if is continuous or not, self medication and the initial systematic treatments, the possibility of drug resistance, ... The difficulties are illustrated by data collected in the Congo.

  12. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  13. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Adjalley, Sophie H; Chabbert, Christophe D; Klaus, Bernd; Pelechano, Vicent; Steinmetz, Lars M

    2016-03-15

    A comprehensive map of transcription start sites (TSSs) across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  14. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.

    PubMed

    Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application.

  15. Plasmodium falciparum line-dependent association of in vitro growth-inhibitory activity and risk of malaria.

    PubMed

    Rono, Josea; Färnert, Anna; Olsson, Daniel; Osier, Faith; Rooth, Ingegerd; Persson, Kristina E M

    2012-05-01

    Plasmodium falciparum's ability to invade erythrocytes is essential for its survival within the human host. Immune mechanisms that impair this ability are therefore expected to contribute to immunity against the parasite. Plasma of humans who are naturally exposed to malaria has been shown to have growth-inhibitory activity (GIA) in vitro. However, the importance of GIA in relation to protection from malaria has been unclear. In a case-control study nested within a longitudinally followed population in Tanzania, plasma samples collected at baseline from 171 individuals (55 cases and 116 age-matched controls) were assayed for GIA using three P. falciparum lines (3D7, K1, and W2mef) chosen based on their erythrocyte invasion phenotypes. Distribution of GIA differed between the lines, with most samples inhibiting the growth of 3D7 and K1 and enhancing the growth of W2mef. GIA to 3D7 was associated with a reduced risk of malaria within 40 weeks of follow-up (odds ratio, 0.45; 95% confidence interval [CI], 0.21 to 0.96; P = 0.04), whereas GIA to K1 and W2mef was not. These results show that GIA, as well as its association with protection from malaria, is dependent on the P. falciparum line and can be explained by differences in erythrocyte invasion phenotypes between parasite lines. Our study contributes knowledge on the biological importance of growth inhibition and the potential influence of P. falciparum erythrocyte invasion phenotypic differences on its relationship to protective immunity against malaria.

  16. Parasite Lactate Dehydrogenase for Diagnosis of Plasmodium Falciparum. Phase II.

    DTIC Science & Technology

    1997-04-01

    Diagnosis of Plasmodium Falciparum PRINCIPAL INVESTIGATOR: Robert C. Piper, Ph.D. CONTRACTING ORGANIZATION: Flow, Incorporated Portland, Oregon 97201...Phase 11 (24 Mar 95 - 23 Mar 97) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Parasite Lactate Dehydrogenase for Diagnosis of Plasmodium Falciparum DAMD...that infected patients become ill. Four species of Plasmodium infect humans. P. falciparum accounts for -85 % of the world’s malaria. P. falciparum is

  17. Erythrocyte sequestration and anemia in severe falciparum malaria. Analysis of acute changes in venous hematocrit using a simple mathematical model.

    PubMed Central

    Davis, T M; Krishna, S; Looareesuwan, S; Supanaranond, W; Pukrittayakamee, S; Attatamsoonthorn, K; White, N J

    1990-01-01

    Microvascular erythrocyte sequestration, the characteristic pathological feature of falciparum malaria, was evaluated using a mathematical model in 46 patients with severe infections. From admission radioisotopic circulating red cell volumes and simultaneous venous hematocrits, the model-derived sequestrum hematocrit (mean [95% confidence limits]: 0.70 [0.43-0.97], n = 29) was twice that of peripheral blood (0.33 [0.30-0.36]). Serial reticulocyte and radiolabeled erythrocyte counts indicated that small numbers of cells enter the circulation during initial therapy. The mean fall in hematocrit over 84 h in 26 nontransfused patients conformed to a three-term equation. A first-order decline (t1/2 2.0 h [0.6-3.4]) suggested an average 7.5% plasma volume expansion through rehydration. A zero-order 6.3% (3.1-9.5) fall (t1/2 25.7 h [21.2-30.2]) occurred contemporaneously with a fall in mean parasitemia from 4.5% (3.6-5.4); from these data the model-derived average sequestered erythrocyte volume (4.8% of the admission hematocrit) was similar to the peripheral parasite burden. A second, first-order fall (t1/2 1,047 h [278-1,816]) indicated loss of uninfected erythrocytes with mean lifespan 62 d. Predicted total plasma volume expansion during initial therapy (21.2%) was similar to radioisotopic estimates in 11 patients (17.3% [2.0-33.1]). Application of the model to individual patient data showed wide variations in relative proportions of circulating and sequestered parasitized cells. The model provides evidence of the nature and fate of all parasitized erythrocytes in malaria. PMID:2203822

  18. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

    PubMed Central

    Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

    2012-01-01

    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

  19. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  20. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles.

    PubMed

    Kumar, Rajesh; Ray, Paresh C; Datta, Dibyadyuti; Bansal, Geetha P; Angov, Evelina; Kumar, Nirbhay

    2015-09-22

    Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinetes. The latter has undergone extensive evaluation in pre-clinical and phase I clinical trials and remains one of the leading target antigens for the development of TBV. Pfs25 has a complex tertiary structure characterized by four EGF-like repeat motifs formed by 11 disulfide bonds, and it has been rather difficult to obtain Pfs25 as a homogenous product in native conformation in any heterologous expression system. Recently, we have reported expression of codon-harmonized recombinant Pfs25 in Escherichia coli (CHrPfs25) and which elicited highly potent malaria transmission-blocking antibodies in mice. In the current study, we investigated CHrPfs25 along with gold nanoparticles of different shapes, size and physicochemical properties as adjuvants for induction of transmission blocking immunity. The results revealed that CHrPfs25 delivered with various gold nanoparticles elicited strong transmission blocking antibodies and suggested that gold nanoparticles based formulations can be developed as nanovaccines to enhance the immunogenicity of vaccine antigens.

  1. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum.

    PubMed

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    2012-08-01

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.

  2. Nanovaccines for Malaria Using Plasmodium falciparum Antigen Pfs25 Attached Gold Nanoparticles

    PubMed Central

    Kumar, Rajesh; Ray, Paresh C.; Datta, Dibyadyuti; Bansal, Geetha P.; Angov, Evelina; Kumar, Nirbhay

    2015-01-01

    Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinetes. The latter has undergone extensive evaluation in pre-clinical and phase I clinical trials and remains one of the leading target antigens for the development of TBV. Pfs25 has a complex tertiary structure characterized by four EGF-like repeat motifs formed by 11 disulfide bonds, and it has been rather difficult to obtain Pfs25 as a homogenous product in native conformation in any heterologous expression system. Recently, we have reported expression of codon-harmonized recombinant Pfs25 in E. coli (CHrPfs25) and which elicited highly potent malaria transmission-blocking antibodies in mice. In the current study, we investigated CHrPfs25 along with gold nanoparticles of different shapes, size and physicochemical properties as adjuvants for induction of transmission blocking immunity. The results revealed that CHrPfs25 delivered with various gold nanoparticles elicited strong transmission blocking antibodies and suggested that gold nanoparticles based formulations can be developed as nanovaccines to enhance the immunogenicity of vaccine antigens. PMID:26299750

  3. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem bark in human adult volunteers with diagnosed uncomplicated falciparum malaria. Part 1: a clinical phase IIA trial.

    PubMed

    Mesia, Kahunu; Tona, Lutete; Mampunza, Ma Miezi; Ntamabyaliro, Nsengi; Muanda, Tsobo; Muyembe, Tamfum; Cimanga, Kanyanga; Totté, Jozef; Mets, Tony; Pieters, Luc; Vlietinck, Arnold J

    2012-02-01

    The aim of this phase IIA clinical trial was to assess the efficacy of an 80 % ethanolic quantified extract (containing 5.6 % strictosamide as the putative active constituent) from Nauclea pobeguinii stem bark denoted as PR 259 CT1 in a small group of adult patients diagnosed with uncomplicated falciparum malaria. Results obtained from a phase I clinical trial on healthy male volunteers indicated that the oral administration during meals of two 500 mg capsules three times daily (each eight hours) during seven days was well tolerated and showed only mild and self-resolving adverse effects. This PR 259 CT1 drug regimen was obtained by mathematical conversion of animal doses obtained in several in vivo studies in mice to human equivalent doses as in falciparum malaria patients. The phase IIA study was an open cohort study in eleven appraisable adult patients suffering from proven Plasmodium falciparum malaria. The study was specifically designed to assess the efficacy of PR 259 CT1 administered with a dose regimen of two 500 mg capsules three times daily for three days, followed by outpatient treatment of one 500 mg capsule three times daily for the next four days, in order to prove that this therapeutic dose, which was calculated from animal doses, was effective to treat adult malaria patients and consequently useful for a future Phase IIB clinical trial. This study would then substitute a dose-escalating trial, which in general is used to find the appropriate dose for clinical studies. The phase IIA clinical trial was carried out according to the WHO 2003 14-day test, and the results revealed that all eleven patients were completely cleared of parasitemia and fever on days 3, 7, and 14 except for one patient, who experienced a recurrence of parasitemia at days 7 until 14. Besides this adequate clinical and parasitological response (ACPR), this trial also demonstrated that PR 259 CT1 was well tolerated with only mild and self-resolving adverse effects

  4. The Potential Contribution of Mass Treatment to the Control of Plasmodium falciparum Malaria

    PubMed Central

    Okell, Lucy C.; Griffin, Jamie T.; Kleinschmidt, Immo; Hollingsworth, T. Déirdre; Churcher, Thomas S.; White, Michael J.; Bousema, Teun; Drakeley, Chris J.; Ghani, Azra C.

    2011-01-01

    Mass treatment as a means to reducing P. falciparum malaria transmission was used during the first global malaria eradication campaign and is increasingly being considered for current control programmes. We used a previously developed mathematical transmission model to explore both the short and long-term impact of possible mass treatment strategies in different scenarios of endemic transmission. Mass treatment is predicted to provide a longer-term benefit in areas with lower malaria transmission, with reduced transmission levels for at least 2 years after mass treatment is ended in a scenario where the baseline slide-prevalence is 5%, compared to less than one year in a scenario with baseline slide-prevalence at 50%. However, repeated annual mass treatment at 80% coverage could achieve around 25% reduction in infectious bites in moderate-to-high transmission settings if sustained. Using vector control could reduce transmission to levels at which mass treatment has a longer-term impact. In a limited number of settings (which have isolated transmission in small populations of 1000–10,000 with low-to-medium levels of baseline transmission) we find that five closely spaced rounds of mass treatment combined with vector control could make at least temporary elimination a feasible goal. We also estimate the effects of using gametocytocidal treatments such as primaquine and of restricting treatment to parasite-positive individuals. In conclusion, mass treatment needs to be repeated or combined with other interventions for long-term impact in many endemic settings. The benefits of mass treatment need to be carefully weighed against the risks of increasing drug selection pressure. PMID:21629651

  5. Passive immunoprotection of Plasmodium falciparum-infected mice designates the CyRPA as candidate malaria vaccine antigen.

    PubMed

    Dreyer, Anita M; Matile, Hugues; Papastogiannidis, Petros; Kamber, Jolanda; Favuzza, Paola; Voss, Till S; Wittlin, Sergio; Pluschke, Gerd

    2012-06-15

    An effective malaria vaccine could prove to be the most cost-effective and efficacious means of preventing severe disease and death from malaria. In an endeavor to identify novel vaccine targets, we tested predicted Plasmodium falciparum open reading frames for proteins that elicit parasite-inhibitory Abs. This has led to the identification of the cysteine-rich protective Ag (CyRPA). CyRPA is a cysteine-rich protein harboring a predicted signal sequence. The stage-specific expression of CyRPA in late schizonts resembles that of proteins known to be involved in merozoite invasion. Immunofluorescence staining localized CyRPA at the apex of merozoites. The entire protein is conserved as shown by sequencing of the CyRPA encoding gene from a diverse range of P. falciparum isolates. CyRPA-specific mAbs substantially inhibited parasite growth in vitro as well as in a P. falciparum animal model based on NOD-scid IL2Rγ(null) mice engrafted with human erythrocytes. In contrast to other P. falciparum mouse models, this system generated very consistent results and evinced a dose-response relationship and therefore represents an unprecedented in vivo model for quantitative comparison of the functional potencies of malaria-specific Abs. Our data suggest a role for CyRPA in erythrocyte invasion by the merozoite. Inhibition of merozoite invasion by CyRPA-specific mAbs in vitro and in vivo renders this protein a promising malaria asexual blood-stage vaccine candidate Ag.

  6. Plasmodium falciparum Clearance Is Rapid and Pitting Independent in Immune Malian Children Treated With Artesunate for Malaria

    PubMed Central

    Ndour, Papa Alioune; Lopera-Mesa, Tatiana M.; Diakité, Seidina A. S.; Chiang, Serena; Mouri, Oussama; Roussel, Camille; Jauréguiberry, Stéphane; Biligui, Sylvestre; Kendjo, Eric; Claessens, Antoine; Ciceron, Liliane; Mazier, Dominique; Thellier, Marc; Diakité, Mahamadou; Fairhurst, Rick M.; Buffet, Pierre A.

    2015-01-01

    Background In Plasmodium falciparum–infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). Methods We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. Results In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5–4 years, O-iRBCs peaked at higher concentrations than in children aged 9–13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5–4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = −0.501; P = .0006) and peak O-iRBC concentration (r = −0.420; P = .0033). Conclusions Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa. PMID:25183768

  7. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria.

    PubMed

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau; Lavstsen, Thomas; Aide, Pedro; Rubio, Mercedes; Jiménez, Alfons; Turner, Louise; Valmaseda, Aida; Gupta, Himanshu; De Las Salas, Briegel; Mandomando, Inacio; Wang, Christian W; Petersen, Jens E V; Muñoz, Jose; Gascón, Joaquim; Macete, Eusebio; Alonso, Pedro L; Chitnis, Chetan E; Bassat, Quique; Mayor, Alfredo

    2016-11-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction.

  8. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria

    PubMed Central

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau; Lavstsen, Thomas; Aide, Pedro; Jiménez, Alfons; Turner, Louise; Gupta, Himanshu; De Las Salas, Briegel; Mandomando, Inacio; Wang, Christian W.; Petersen, Jens E. V.; Muñoz, Jose; Gascón, Joaquim; Macete, Eusebio; Alonso, Pedro L.; Chitnis, Chetan E.

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction. PMID:27835682

  9. Construction of a human functional single-chain variable fragment (scFv) antibody recognizing the malaria parasite Plasmodium falciparum.

    PubMed

    Wajanarogana, Sumet; Prasomrothanakul, Teerawat; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2006-04-01

    Falciparum malaria is one of the most deadly and profound human health problems around the tropical world. Antimalarial drugs are now considered to be a powerful treatment; however, there are drugs currently being used that are resistant to Plasmodium falciparum parasites spreading in different parts of the world. Although the protective immune response against intraerythrocytic stages of the falciparum malaria parasite is still not fully understood, immune antibodies have been shown to be associated with reduced parasite prevalence. Therefore antibodies of the right specificity present in adequate concentrations and affinity are reasonably effective in providing protection. In the present study, VH (variable domain of heavy chain) and VL (variable domain of light chain) were isolated from human blood lymphocytes of P. falciparum in one person who had high serum titre to RESA (ring-infected erythrocyte surface antigen). Equal amounts of VH and VL were assembled together with universal linker (G4S)3 to generate scFvs (single-chain variable fragments). The scFv antibodies were expressed with a phage system for the selection process. Exclusively, an expressed scFv against asynchronous culture of P. falciparum-infected erythrocytes was selected and characterized. Sequence analysis of selected scFv revealed that this clone could be classified into a VH family-derived germline gene (VH1) and Vkappa family segment (Vkappa1). Using an indirect immunofluorescence assay, we could show that soluble expressed scFv reacted with falciparum-infected erythrocytes. The results encourage the further study of scFvs for development as a potential immunotherapeutic agent.

  10. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.

    PubMed

    Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

    2013-04-23

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.

  11. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  12. Categorical complexities of Plasmodium falciparum malaria in individuals is associated with genetic variations in ADORA2A and GRK5 genes.

    PubMed

    Gupta, Himanshu; Jain, Aditya; Saadi, Abdul Vahab; Vasudevan, Thanvanthri G; Hande, Manjunath H; D'Souza, Sydney C; Ghosh, Susanta K; Umakanth, Shashikiran; Satyamoorthy, Kapaettu

    2015-08-01

    In the erythrocytes, malaria parasite entry and infection is mediated through complex membrane sorting and signaling processes. We investigated the effects of single-locus and multilocus interactions to test the hypothesis that the members of the GPCR family genes, adenosine A2a receptor (ADORA2A) and G-protein coupled receptor kinase5 (GRK5), may contribute to the pathogenesis of malaria caused by Plasmodium falciparum (Pf) independently or through complex interactions. In a case-control study of adults, individuals affected by Pf malaria (complicated n=168; uncomplicated n=282) and healthy controls (n=450) were tested for their association to four known SNPs in GRK5 (rs2230345, rs2275036, rs4752307 and rs11198918) and two in ADORA2A (rs9624472 and rs5751876) genes with malaria susceptibility, using techniques of polymerase chain reaction-restriction fragment length polymorphisms and direct DNA sequencing. Single-locus analysis showed significant association of 2 SNPs; rs5751876 (OR=3.2(2.0-5.2); p=0.0006) of ADORA2A and rs2230345 (OR=0.3(0.2-0.5); p=0.0006) of GRK5 with malaria. The mean of the serum creatinine levels were significantly higher in patients with variant GG (p=0.006) of rs9624472 in ADORA2A gene compared to AA and AG genotypes in complicated Pf malaria cases, with the G allele also showing increased risk for malaria (OR=1.3(1.1-1.6); p=0.017). Analyses of predicted haplotypes of the two ADORA2A and the four GRK5 SNPs have identified the haplotypes that conferred risk as well as resistance to malaria with statistical significance. Molecular docking analysis of evolutionary rs2230345 SNP indicated a stable activity of GRK5 for the mutant allele compared to the wild type. Further, generalized multifactor dimensionality reduction to test the contribution of individual effects of the six polymorphisms and higher-order interactions to risk of symptoms/clinical complications of malaria suggested a best six-locus model showing statistical significance. The

  13. Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite

    PubMed Central

    Ostera, Graciela; Tokumasu, Fuyuki; Oliveira, Fabiano; Sa, Juliana; Furuya, Tetsuya; Teixeira, Clarissa; Dvorak, James

    2008-01-01

    Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P.falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite, PMID:18504040

  14. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.

  15. Activity of Herbal Medicines on Plasmodium falciparum Gametocytes: Implications for Malaria Transmission in Ghana

    PubMed Central

    Amoah, Linda Eva; Kakaney, Courage; Kwansa-Bentum, Bethel; Kusi, Kwadwo Asamoah

    2015-01-01

    Background Malaria still remains a major health issue in Ghana despite the introduction of Artemisinin-based combination therapy (ACT) coupled with other preventative measures such as the use of insecticide treated nets (ITNs). The global quest for eradication of malaria has heightened the interest of identifying drugs that target the sexual stage of the parasite, referred to as transmission-blocking drugs. This study aimed at assessing the efficacy and gametocydal effects of some commonly used herbal malaria products in Ghana. Methodology/Principal Findings After identifying herbal anti-malarial products frequently purchased on the Ghanaian market, ten of them were selected and lyophilized. In vitro drug sensitivity testing of different concentrations of the herbal products was carried out on asexual and in vitro generated gametocytes of the 3D7 strain of Plasmodium falciparum. The efficacies of the products were assessed by microscopy. Cultures containing low dose of RT also produced the least number of late stage gametocytes. Two of the herbal products CM and RT inhibited the growth of late stage gametocytes by > 80% at 100 μg/ml whilst KG was the most inhibitory to early stage gametocytes at that same concentration. However at 1 μg/ml, only YF significantly inhibited the survival of late stage gametocytes although at that same concentration YF barely inhibited the survival of early stage gametocytes. Conclusions/Significance Herbal product RT (Aloe schweinfurthii, Khaya senegalensis, Piliostigma thonningii and Cassia siamea) demonstrated properties of a highly efficacious gametocydal product. Low dose of herbal product RT exhibited the highest gametocydal activity and at 100 μg/ml, RT exhibited >80% inhibition of late stage gametocytes. However inhibition of asexual stage parasite by RT was not optimal. Improving the asexual inhibition of RT could convert RT into an ideal antimalarial herbal product. We also found that generally C. sanguinolenta containing

  16. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  17. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

    PubMed Central

    Phyo, Aung Pyae; Ashley, Elizabeth A.; Anderson, Tim J. C.; Bozdech, Zbynek; Carrara, Verena I.; Sriprawat, Kanlaya; Nair, Shalini; White, Marina McDew; Dziekan, Jerzy; Ling, Clare; Proux, Stephane; Konghahong, Kamonchanok; Jeeyapant, Atthanee; Woodrow, Charles J.; Imwong, Mallika; McGready, Rose; Lwin, Khin Maung; Day, Nicholas P. J.; White, Nicholas J.; Nosten, Francois

    2016-01-01

    Background. Deployment of mefloquine–artesunate (MAS3) on the Thailand–Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. Methods. Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. Results. Polymerase chain reaction (PCR)–adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. Conclusions. The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand–Myanmar border. PMID:27313266

  18. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination

    PubMed Central

    Bousema, Teun; Drakeley, Chris

    2011-01-01

    Summary: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed. PMID:21482730

  19. Lumefantrine and Desbutyl-Lumefantrine Population Pharmacokinetic-Pharmacodynamic Relationships in Pregnant Women with Uncomplicated Plasmodium falciparum Malaria on the Thailand-Myanmar Border.

    PubMed

    Kloprogge, Frank; McGready, Rose; Hanpithakpong, Warunee; Blessborn, Daniel; Day, Nicholas P J; White, Nicholas J; Nosten, François; Tarning, Joel

    2015-10-01

    Artemether-lumefantrine is the most widely used antimalarial artemisinin-based combination treatment. Recent studies have suggested that day 7 plasma concentrations of the potent metabolite desbutyl-lumefantrine correlate better with treatment outcomes than those of lumefantrine. Low cure rates have been reported in pregnant women with uncomplicated falciparum malaria treated with artemether-lumefantrine in northwest Thailand. A simultaneous pharmacokinetic drug-metabolite model was developed based on dense venous and sparse capillary lumefantrine and desbutyl-lumefantrine plasma samples from 116 pregnant patients on the Thailand-Myanmar border. The best model was used to evaluate therapeutic outcomes with a time-to-event approach. Lumefantrine and desbutyl-lumefantrine concentrations, implemented in an Emax model, both predicted treatment outcomes, but lumefantrine provided better predictive power. A combined model including both lumefantrine and desbutyl-lumefantrine did not improve the model further. Simulations suggested that cure rates in pregnant women with falciparum malaria could be increased by prolonging the treatment course. (These trials were registered at controlled-trials.com [ISRCTN 86353884].).

  20. Single nucleotide polymorphisms of ADRB2 gene and their association with susceptibility for Plasmodium falciparum malaria and asthma in an Indian population.

    PubMed

    Saadi, Abdul Vahab; Gupta, Himanshu; Angural, Arshia; Dhanya, Sreeja Kumari; Mony, Sridevi; Oberoi, Devesh; D'Souza, Sydney C; Sahoo, Ramesh Chandra; Hande, Manjunath H; Gopinath, Puthiya Mundyat; Satyamoorthy, Kapaettu

    2013-12-01

    The essential route to blood parasitaemia in malaria, erythrocyte invasion is facilitated by activation of the G-protein coupled receptor signaling pathway mediated by the β2-adrenoreceptor as one of the proteins on the surface of red blood cells. The effectiveness of bronchodilators and inhaled corticosteroids in the clinical treatment for asthma patients also depend on polymorphisms in the β2-adrenoreceptor gene (ADRB2). In a case control study, individuals affected by Plasmodium falciparum malaria, asthma and controls were tested for association of six ADRB2 single nucleotide polymorphisms (SNPs) viz. rs1042711, rs1801704, rs1042713, rs1042714, rs1042717 and rs1042718, by direct DNA sequencing. The rs1801704 locus was significantly associated with malaria when compared against controls. The rs1042713 polymorphism was associated with forced expiratory flow between 25% and 75% of the FVC in asthma patients, pre (p=0.048) and post (p=0.038) treatment measurements. Predicted haplotype of the six SNPs computed from genotype data showed T-T-A-C-G-C conferred significant risk of malaria (p=0.02) whereas T-T-A-C-G-A was associated with risk of asthma (p=0.02). The haplotype T-T-G-C-G-C was protective against both malaria (p=0.02) as well as asthma (p=0.026) and C-C-G-G-G-C was protective uniquely for asthma (p=0.04). A significant outcome was that all variant alleles at the SNP loci were part of the haplotype conferring resistance to malaria disease and asthma, except rs1042713 and rs1042718 which showed very high frequency in asthma. The pairwise linkage disequilibrium (LD) estimates showed a distinct LD block of all SNP loci (D'=1 or >0.8) in malaria patients. This characteristic haplotype block was disrupted in the controls due to non-significant pairwise LD of the SNP loci; and a more extensive disruption of the block was noted in asthma patients. The study provides evidence for the proposed role of β2-adrenoreceptor mediated molecular mechanisms in etiology of

  1. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Shannon, Kerry L; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S; Khyang, Jacob; Ram, Malathi; Haq, M Zahirul; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E; Shields, Timothy; Nyunt, Myaing M; Khan, Wasif A; Sack, David A; Sullivan, David J

    2015-08-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case-uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07-46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42-1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria.

  2. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  3. A review of the emergence of Plasmodium falciparum-dominated malaria in irrigated areas of the Thar Desert, India.

    PubMed

    Tyagi, B K

    2004-01-01

    Recently, there has been a resurgence of malaria in several parts of India, and the Thar Desert in north-western India, is currently suffering from the impact of repeated annual epidemics. Nearly all malaria epidemics in the Thar Desert have come about with the progression of canal-irrigation work, particularly the massive Indira Gandhi Nahar Pariyojana (IGNP). Therefore, the Thar Desert provides an excellent model for understanding the underlying factors responsible for the exacerbation of malaria, pathways of evolution of the epidemics, succession in anopheline fauna, changes in the vector breeding and feeding preferences and, most importantly, the possible repercussions of mismanagement of irrigation systems. Before the initiation of canalised irrigation only Anopheles stephensi, breeding exclusively in household and community-based underground water reservoirs, and transmitting malaria at a low level, was prevalent in the interior of the Thar Desert. Since the 1980s, extensive irrigation with water from three different canal systems has altered the desert physiography, vector preponderance, distribution and vectorial capacity, whilst triggering the emergence of Plasmodium falciparum-dominated malaria in the virgin levees of the Thar Desert. The major objective of bringing the Himalayan waters to the xeric environment of the Thar was to transform it into verdure through growing irrigation-intensive crops like paddy, groundnut, cotton, mustard, wheat and sugarcane, besides providing drinking water to the desert dwellers. The change in crop pattern, retention of high surface moisture, and excessive canalisation rife with mismanagement of irrigation water have attracted several anophelines, including Anopheles culicifacies, which were earlier unknown in the desert. Thus, A. culicifacies has penetrated into the interior of the Thar Desert, along with irrigation and is now established in vast areas covered by the IGNP project. The distribution of P. falciparum

  4. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines

    PubMed Central

    Richie, Thomas L.; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Chakravarty, Sumana; Epstein, Judith E.; Lyke, Kirsten E.; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E.; Doumbo, Ogobara K.; Sauerwein, Robert W.; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G.; Seder, Robert A.; Hoffman, Stephen L.

    2016-01-01

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015–2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication. PMID:26469720

  5. Splenic Retention of Plasmodium falciparum Gametocytes To Block the Transmission of Malaria

    PubMed Central

    Duez, Julien; Holleran, John P.; Ndour, Papa Alioune; Loganathan, Sasdekumar; Amireault, Pascal; Français, Olivier; El Nemer, Wassim; Le Pioufle, Bruno; Amado, Inês F.; Garcia, Sylvie; Chartrel, Nathalie; Le Van Kim, Caroline; Lavazec, Catherine; Avery, Vicky M.

    2015-01-01

    Plasmodium falciparum is transmitted from humans to Anopheles mosquito vectors via the sexual erythrocytic forms termed gametocytes. Erythrocyte filtration through microsphere layers (microsphiltration) had shown that circulating gametocytes are deformable. Compounds reducing gametocyte deformability would induce their splenic clearance, thus removing them from the blood circulation and blocking malaria transmission. The hand-made, single-sample prototype for microsphiltration was miniaturized to a 96-well microtiter plate format, and gametocyte retention in the microsphere filters was quantified by high-content imaging. The stiffening activity of 40 pharmacological compounds was assessed in microtiter plates, using a small molecule (calyculin) as a positive control. The stiffening activity of calyculin was assessed in spleen-mimetic microfluidic chips and in macrophage-depleted mice. Marked mechanical retention (80% to 90%) of mature gametocytes was obtained in microplates following exposure to calyculin at concentrations with no effect on parasite viability. Of the 40 compounds tested, including 20 antimalarials, only 5 endoperoxides significantly increased gametocyte retention (1.5- to 2.5-fold; 24 h of exposure at 1 μM). Mature gametocytes exposed to calyculin accumulated in microfluidic chips and were cleared from the circulation of macrophage-depleted mice as rapidly as heat-stiffened erythrocytes, thus confirming results obtained using the microsphiltration assay. An automated miniaturized approach to select compounds for their gametocyte-stiffening effect has been established. Stiffening induces gametocyte clearance both in vitro and in vivo. Based on physiologically validated tools, this screening cascade can identify novel compounds and uncover new targets to block malaria transmission. Innovative applications in hematology are also envisioned. PMID:25941228

  6. Efficacy, safety and tolerability of artesunate-mefloquine in the treatment of uncomplicated Plasmodium falciparum malaria in four geographic zones of Nigeria

    PubMed Central

    Agomo, Philip U; Meremikwu, Martin M; Watila, Ismaila M; Omalu, Innocent J; Odey, Friday A; Oguche, Stephen; Ezeiru, Valentine I; Aina, Olugbenga O

    2008-01-01

    Background The combination of artesunate and mefloquine has been reported to be effective against multi-drug resistant Plasmodium falciparum malaria, which has been reported in Nigeria. The objective of this multi-centre study was to evaluate the efficacy, safety and tolerability of the co-packaged formulation of artesunate and mefloquine in the treatment of uncomplicated malaria in two weight groups: those between 15 – 29 kg and ≥ 30 kg respectively. Methods The trial was conducted in rural communities in the north-east, north-central, south-west and south-eastern parts of Nigeria. The WHO protocol for testing antimalarial drugs was followed. Outpatients having amongst other criteria, parasite density of ≥1,000 μl were enrolled. The co-packaged drugs were administered for 3 days at a dosage of artesunate, 4 mg/kg body wt/day and mefloquine, 25 mg/kg/body wt total) on days 0, 1 and 2. Patients were followed up for 28 days with the assessment of the parasitological parameters on days 1, 2, 3, 7, and 28. Results Four hundred and forty-six (446) patients were enrolled and 431 completed the study. Cure rates in both treatment groups was >90% at day 28. The mean parasite clearance times in treatment groups I and II were 40.1 and 42.4 hours respectively. The combination of artesunate and mefloquine showed good gametocidal activity, (gametocyte clearance time of 42.0 & 45.6 hours in treatment groups I and II respectively). There were no serious adverse events. Other adverse events observed were headache, dizziness, vomiting and abdominal discomfort. There was no significant derangement in the haematological and biochemical parameters. Conclusion This co-packaged formulation of artesunate + mefloquine (Artequin™) is highly efficacious, safe and well-tolerated. It is recommended for the treatment of uncomplicated P. falciparum malaria in Nigeria. PMID:18782445

  7. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia.

    PubMed

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  8. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia

    PubMed Central

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  9. Influence of age on the haemoglobin concentration of malaria-infected patients in a reference centre in the Brazilian Amazon.

    PubMed

    Siqueira, Andre M; Cavalcante, Janieldo A; Vítor-Silva, Shelia; Reyes-Lecca, Roberto C; Alencar, Aline C; Monteiro, Wuelton M; Alexandre, Márcia A A; Mourão, Maria Paula G; Guinovart, Caterina; Bassat, Quique; Alecrim, Maria das Graças C; Lacerda, Marcus V G

    2014-08-01

    Anaemia is amongst the major complications of malaria, a major public health problem in the Amazon Region in Latin America. We examined the haemoglobin (Hb) concentrations of malaria-infected patients and compared it to that of malaria-negative febrile patients and afebrile controls. The haematological parameters of febrile patients who had a thick-blood-smear performed at an infectious diseases reference centre of the Brazilian Amazon between December 2009-January 2012 were retrieved together with clinical data. An afebrile community control group was composed from a survey performed in a malaria-endemic area. Hb concentrations and anaemia prevalence were analysed according to clinical-epidemiological status and demographic characteristics. In total, 7,831 observations were included. Patients with Plasmodium falciparum infection had lower mean Hb concentrations (10.5 g/dL) followed by P. vivax-infected individuals (12.4 g/dL), community controls (12.8 g/dL) and malaria-negative febrile patients (13.1 g/dL) (p < 0.001). Age, gender and clinical-epidemiological status were strong independent predictors for both outcomes. Amongst malaria-infected individuals, women in the reproductive age had considerably lower Hb concentrations. In this moderate transmission intensity setting, both vivax and falciparum malaria are associated with reduced Hb concentrations and risk of anaemia throughout a wide age range.

  10. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum.

    PubMed

    Patra, Kailash P; Johnson, Jeff R; Cantin, Greg T; Yates, John R; Vinetz, Joseph M

    2008-06-01

    Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.

  11. Falciparum malaria in eastern Thailand: a randomized trial of the efficacy of a single dose of mefloquine.

    PubMed Central

    Fontanet, A. L.; Johnston, B. D.; Walker, A. M.; Bergqvist, Y.; Hellgren, U.; Rooney, W.

    1994-01-01

    Reported are the results of a randomized trial of a single dose of mefloquine (15 mg/kg or 25 mg/kg body weight) for the treatment of uncomplicated multidrug-resistant falciparum malaria. Of the 110 adult patients enrolled in the study 57 were randomly assigned to the 15 mg/kg group and 53 to the 25 mg/kg group. The baseline characteristics of the patients did not differ significantly in the two groups, except that those in the 15 mg/kg group had lower haemoglobin levels. Adverse effects following treatment were commoner in the 25 mg/kg group, but not significantly so. Seven patients (6%) did not complete the 42-day follow-up. The parasitological failure rates in the 15 and 25 mg/kg groups were, respectively, 50% (28/56) and 43% (25/53) on day 28, and 62% (33/53) and 56% (28/50) on day 42. Treatment failures were not correlated with the serum mefloquine concentrations on day 2, and 13 out of 19 patients with serum mefloquine concentrations > 2000 micrograms/l on day 2 showed an R response during the follow-up. The mean ratio between the concentrations of the (SR)-(-) and (RS)-(+) enantiomers of mefloquine on day 2 was 3.37, indicating that there are differences in their pharmacokinetics. Re-treatment of patients who showed an R response with seven days of quinine (30 mg.kg-1.day-1)+tetracycline (25 mg.kg-1.day-1) was successful in 93% of the cases. PMID:8131253

  12. Malaria

    PubMed Central

    Suh, Kathryn N.; Kain, Kevin C.; Keystone, Jay S.

    2004-01-01

    Malaria is a parasitic infection of global importance. Although relatively uncommon in developed countries, where the disease occurs mainly in travellers who have returned from endemic regions, it remains one of the most prevalent infections of humans worldwide. In endemic regions, malaria is a significant cause of morbidity and mortality and creates enormous social and economic burdens. Current efforts to control malaria focus on reducing attributable morbidity and mortality. Targeted chemoprophylaxis and use of insecticide-treated bed nets have been successful in some endemic areas. For travellers to malaria-endemic regions, personal protective measures and appropriate chemoprophylaxis can significantly reduce the risk of infection. Prompt evaluation of the febrile traveller, a high degree of suspicion of malaria, rapid and accurate diagnosis, and appropriate antimalarial therapy are essential in order to optimize clinical outcomes of infected patients. Additional approaches to malaria control, including genetic manipulation of mosquitoes and malaria vaccines, are areas of ongoing research. PMID:15159369

  13. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    PubMed

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  14. Therapeutic Efficacy of Artemether-Lumefantrine (Coartem®) in Treating Uncomplicated P. falciparum Malaria in Metehara, Eastern Ethiopia: Regulatory Clinical Study

    PubMed Central

    Assefa, Ashenafi; Mohamed, Hussein; Solomon, Hiwot; Woyessa, Adugna; Assefa, Yibeltal; Kebede, Amha; Kassa, Moges

    2016-01-01

    Background As per the WHO recommendation, the development of resistance by P. falciparum to most artemisinin combination therapies (ACTs) triggered the need for routine monitoring of the efficacy of the drugs every two years in all malaria endemic countries. Hence, this study was carried out to assess the therapeutic efficacy of Artemether-Lumefantrine (Coartem®) in treating the uncomplicated falciparum malaria, after 9 years of its introduction in the Metehara, Eastern Ethiopia. Method This is part of the therapeutic efficacy studies by the Federal Ministry of Health Ethiopia, which were conducted in regionally representative sentinel sites in the country from October 2014 to January 2015. Based on the study criteria set by WHO, febrile and malaria suspected outpatients in the health center were consecutively recruited to study. A standard six-dose regimen of AL was administered over three days and followed up for measuring therapeutic responses over 28 days. Data entry and analysis was done by using the WHO designed Excel spreadsheet and SPSS version 20 for Windows. Statistical significant was considered for P-value less than 0.05. Result Of the 91 patients enrolled, the day-28 analysis showed 83 adequate clinical and parasitological responses (ACPRs). Per protocol analysis, PCR-uncorrected & corrected cure rates of Coartem® among the study participants were 97.6% (95%CI: 93.6–99.5) and 98.8% (CI: 93.5–100%), respectively. No parasite detected on day 3 and onwards. Fever clearance was above 91% on day-3. Mean hemoglobin was significantly increased (P<0.000) from 12.39 g/dl at day 0 to 13.45 g/dl on day 28. No serious adverse drug reactions were observed among the study participants. Conclusion This study showed high efficacy of AL in the study area, which suggests the continuation of AL as first line drug for the treatment of uncomplicated P. falciparum malaria in the study area. This study recommends further studies on drug toxicity, particularly on

  15. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016.

    PubMed

    Thuy-Nhien, Nguyen; Tuyen, Nguyen Kim; Tong, Nguyen Thanh; Vy, Nguyen Tuong; Thanh, Ngo Viet; Van, Huynh Thuy; Huong-Thu, Pham; Quang, Huynh Hong; Boni, Maciej F; Dolecek, Christiane; Farrar, Jeremy; Thwaites, Guy E; Miotto, Olivo; White, Nicholas J; Hien, Tran Tinh

    2017-04-01

    The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites.

  16. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  17. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016

    PubMed Central

    Tuyen, Nguyen Kim; Tong, Nguyen Thanh; Vy, Nguyen Tuong; Thanh, Ngo Viet; Van, Huynh Thuy; Huong-Thu, Pham; Quang, Huynh Hong; Boni, Maciej F.; Dolecek, Christiane; Farrar, Jeremy; Thwaites, Guy E.; Miotto, Olivo; White, Nicholas J.; Hien, Tran Tinh

    2017-01-01

    ABSTRACT The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites. PMID:28137815

  18. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    PubMed Central

    Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S

    2006-01-01

    Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349

  19. A new ELISA kit which uses a combination of Plasmodium falciparum extract and recombinant Plasmodium vivax antigens as an alternative to IFAT for detection of malaria antibodies

    PubMed Central

    Doderer, Cecile; Heschung, Aurelie; Guntz, Phillippe; Cazenave, Jean-Pierre; Hansmann, Yves; Senegas, Alexandre; Pfaff, Alexander W; Abdelrahman, Tamer; Candolfi, Ermanno

    2007-01-01

    Background The methods most commonly used to measure malarial antibody titres are the Indirect Fluorescence Antibody Test (IFAT), regarded as the gold standard, and the Enzyme-Linked ImmunoSorbent Assay (ELISA). The objective here was to assess the diagnostic performance, i.e. the sensitivity and specificity, of a new malaria antibody ELISA kit in comparison to IFAT. This new ELISA kit, the ELISA malaria antibody test (DiaMed), uses a combination of crude soluble Plasmodium falciparum extract and recombinant Plasmodium vivax antigens. Methods Two groups were used: 95 samples from malaria patients to assess the clinical sensitivity and 2,152 samples from blood donors, who had not been exposed to malaria, to assess the clinical specificity. Results The DiaMed ELISA test kit had a clinical sensitivity of 84.2% and a clinical specificity of 99.6% as compared with 70.5% and 99.6% respectively, using the IFAT method. The ELISA method was more sensitive than the IFAT method for P. vivax infections (75% vs. 25%). However, in 923 malaria risk donors the analytical sensitivity of the ELISA test was 40% and its specificity 98.3%, performances impaired by large numbers of equivocal results non-concordant between ELISA and IFAT. When the overall analytical performances of ELISA was compared to IFAT, the ELISA efficiency J index was 0.84 versus 0.71 for IFAT. Overall analytical sensitivity was 93.1% and the analytical specificity 96.7%. Overall agreement between the two methods reached 0.97 with a reliability k index of 0.64. Conclusion The DiaMed ELISA test kit shows a good correlation with IFAT for analytical and clinical parameters. It may be an interesting method to replace the IFAT especially in blood banks, but further extensive investigations are needed to examine the analytical performance of the assay, especially in a blood bank setting. PMID:17313669

  20. Recovery of Endothelial Function in Severe Falciparum Malaria: Relationship with Improvement in Plasma L-Arginine and Blood Lactate Concentrations

    PubMed Central

    Yeo, Tsin W.; Lampah, Daniel A.; Gitawati, Retno; Tjitra, Emiliana; Kenangalem, Enny; McNeil, Yvette R.; Darcy, Christabelle J.; Granger, Donald L.; Weinberg, J. Brice; Lopansri, Bert K.; Price, Ric N.; Duffull, Stephen B.; Celermajer, David S.; Anstey, Nicholas M.

    2009-01-01

    Background Severe malaria is characterized by microvascular obstruction, endothelial dysfunction, and reduced levels of L-arginine and nitric oxide (NO). L-Arginine infusion improves endothelial function in moderately severe malaria. Neither the longitudinal course of endothelial dysfunction nor factors associated with recovery have been characterized in severe malaria. Methods Endothelial function was measured longitudinally in adults with severe malaria (n = 49) or moderately severe malaria (n = 48) in Indonesia, using reactive hyperemia peripheral arterial tonometry (RH-PAT). In a mixed-effects model, changes in RH-PAT index values in patients with severe malaria were related to changes in parasitemia, lactate, acidosis, and plasma L-arginine concentrations. Results Among patients with severe malaria, the proportion with endothelial dysfunction fell from 94% (46/49 patients) to 14% (6/42 patients) before discharge or death (P <.001). In severe malaria, the median time to normal endothelial function was 49 h (interquartile range, 20–70 h) after the start of antimalarial therapy. The mean increase in L-arginine concentrations in patients with severe malaria was 11 μmol/L/24 h (95% confidence interval [CI], 9–13 μmol/L/24 h), from a baseline of 49 μmol/L (95% CI, 37–45 μmol/L). Improvement of endothelial function in patients with severe malaria correlated with increasing levels of L-arginine (r = 0.56; P =.008) and decreasing levels of lactate (r = −0.44; P =.001). Conclusions Recovery of endothelial function in severe malaria is associated with recovery from hypoargininemia and lactic acidosis. Agents that can improve endothelial NO production and endothelial function, such as L-arginine, may have potential as adjunctive therapy early during the course of severe malaria. PMID:18605903

  1. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds

    PubMed Central

    Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro

    2015-01-01

    Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647

  2. A population-based clinical trial with the SPf66 synthetic Plasmodium falciparum malaria vaccine in Venezuela.

    PubMed

    Noya, O; Gabaldón Berti, Y; Alarcón de Noya, B; Borges, R; Zerpa, N; Urbáez, J D; Madonna, A; Garrido, E; Jimenéz, M A; Borges, R E

    1994-08-01

    A phase III malaria vaccine trial in 13 villages in an endemic area, South Venezuela, compared incidence rates of Plasmodium falciparum and Plasmodium vivax infections in 1422 vaccinated and 938 nonvaccinated subjects over 18 months. The SPf66 vaccine was given in three doses, on days 0, 20, and 112. Vaccination was complete in 976 subjects (68.7%). Minor side effects requiring no treatment were reported by 123 (12.6%), with an apparent increase in frequency from the first to the third vaccine dose. No autoimmune evidence was observed in a sample of subjects. Antibodies against SPf66 were present at low titers in 24.7% of tested subjects before vaccination, increasing to 53.6% after the second dose and to 73.6% after the third dose; 26.4% of subjects initially seronegative never seroconverted. The SPf66 malaria vaccine showed a protective efficacy of 55% (95% confidence interval, 21%-75%) against P. falciparum and of 41% (19%-57%) against P. vivax malaria.

  3. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    PubMed Central

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å3 Da−1). PMID:16754976

  4. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine

    PubMed Central

    Halbroth, Benedict R.; Salman, Ahmed M.; Ewer, Katie J.; Hodgson, Susanne H.; Janse, Chris J.; Khan, Shahid M.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2016-01-01

    ABSTRACT Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei-P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. PMID:28031267

  5. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites.

    PubMed

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F; Barfod, Lea; Hviid, Lars

    2014-06-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease.

  6. Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Barry, Alyssa E.; Schultz, Lee; Buckee, Caroline O.; Reeder, John C.

    2009-01-01

    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next

  7. Molecular Identification of Falciparum Malaria and Human Tuberculosis Co-Infections in Mummies from the Fayum Depression (Lower Egypt)

    PubMed Central

    Bianucci, Raffaella; Welte, Beatrix; Nerlich, Andreas G.; Kun, Jürgen F. J.; Pusch, Carsten M.

    2013-01-01

    Due to the presence of the lake Quarun and to the particular nature of its irrigation system, it has been speculated that the Fayum, a large depression 80 kilometers south- west of modern Cairo, was exposed to the hazards of malaria in historic times. Similarly, it has been speculated that, in the same area, also human tuberculosis might have been far more widespread in the antiquity than in its recent past. If these hypotheses were confirmed, it would imply that frequent cases of co-infection between the two pathogens might have occurred in ancient populations. To substantiate those speculations, molecular analyses were carried out on sixteen mummified heads recovered from the necropolis of Abusir el Meleq (Fayum) dating from the 3rd Intermediate Period (1064- 656 BC) to the Roman Period (30 BC- 300 AD). Soft tissue biopsies were used for DNA extractions and PCR amplifications using well-suited protocols. A partial 196-bp fragment of Plasmodium falciparum apical membrane antigen 1 gene and a 123-bp fragment of the Mycobacterium tuberculosis complex insertion sequence IS6110 were amplified and sequenced in six and five of the sixteen specimens, respectively. A 100% concordance rates between our sequences and those of P. falciparum and M. tuberculosis complex ones were obtained. Lastly, concomitant PCR amplification of P. falciparum and M. tuberculosis complex DNA specific fragments was obtained in four mummies, three of which are 14 C dated to the Late and Graeco-Roman Periods. Our data confirm that the hydrography of Fayum was extremely conducive to the spread of malaria. They also support the notion that the agricultural boom and dense crowding occurred in this region, especially under the Ptolemies, highly increased the probability for the manifestation and spread of tuberculosis. Here we extend back-wards to ca. 800 BC new evidence for malaria tropica and human tuberculosis co-occurrence in ancient Lower Egypt. PMID:23565222

  8. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.

    PubMed

    Kats, Lev M; Proellocks, Nicholas I; Buckingham, Donna W; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G; Coppel, Ross L; Mohandas, Narla; An, Xiuli; Cooke, Brian M

    2015-07-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.

  9. Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria.

    PubMed

    Karl, Stephan; Laman, Moses; Moore, Brioni R; Benjamin, John M; Salib, Mary; Lorry, Lina; Maripal, Samuel; Siba, Peter; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2016-08-01

    There are limited data on gametocytaemia risk factors before/after treatment with artemisinin combination therapy in children from areas with transmission of multiple Plasmodium species. We utilised data from a randomised trial comparing artemether-lumefantrine (AL) and artemisinin-naphthoquine (AN) in 230 Papua New Guinean children aged 0.5-5 years with uncomplicated malaria in whom determinants of gametocytaemia by light microscopy were assessed at baseline using logistic regression and during follow-up using multilevel mixed effects modelling. Seventy-four (32%) and 18 (8%) children presented with P. falciparum and P. vivax gametocytaemia, respectively. Baseline P. falciparum gametocytaemia was associated with Hackett spleen grade 1 (odds ratio (95% CI) 4.01 (1.60-10.05) vs grade 0; P<0.001) and haemoglobin (0.95 (0.92-0.97) per 1g/L increase; P<0.001), and P. falciparum asexual parasitaemia in slide-positive cases (0.36 (0.19-0.68) for a 10-fold increase; P=0.002). Baseline P. vivax gametocytaemia was associated with Hackett grade 2 (12.66 (1.31-122.56); P=0.028), mixed P. falciparum/vivax infection (0.16 (0.03-1.00); P=0.050), P. vivax asexual parasitaemia (5.68 (0.98-33.04); P=0.053) and haemoglobin (0.94 (0.88-1.00); P=0.056). For post-treatment P. falciparum gametocytaemia, independent predictors were AN vs AL treatment (4.09 (1.43-11.65)), haemoglobin (0.95 (0.93-0.97)), presence/absence of P. falciparum asexual forms (3.40 (1.66-0.68)) and day post-treatment (0.086 (0.82-0.90)) (P<0.001). Post-treatment P. vivax gametocytaemia was predicted by presence of P. vivax asexual forms (596 (12-28,433); P<0.001). Consistent with slow P. falciparum gametocyte maturation, low haemoglobin, low asexual parasite density and higher spleen grading, markers of increased prior infection exposure/immunity, were strong associates of pre-treatment gametocyte positivity. The persistent inverse association between P. falciparum gametocytaemia and haemoglobin during follow

  10. Therapeutic efficacy of fixed dose artesunate-mefloquine for the treatment of acute, uncomplicated Plasmodium falciparum malaria in Kampong Speu, Cambodia

    PubMed Central

    2013-01-01

    Background Cambodia stopped using co-blistered, non-fixed, artesunate-mefloquine (ASMQ) in 2008 when treatment failure rates approximated 20%. Fixed dose combination (FDC) ASMQ is efficacious against acute uncomplicated, drug resistant Plasmodium falciparum malaria in Southeast Asia but has not been tested in Cambodia. Methods A 42-day WHO therapeutic efficacy study (TES) was conducted in 2010 in Oral, Kampong Speu province, south-west Cambodia, in patients with acute uncomplicated P. falciparum. Daily administered FDC ASMQ for three days was dosed by age. Genotyping of isolates at day 0 and day of recrudescence by polymerase chain reaction (PCR) classified post-treatment recurrent falciparum parasitaemia. Ex vivo drug sensitivity testing ([3H] hypoxanthine method) was performed on baseline parasites and reported as the drug concentration inhibiting 50% parasite growth vs no drug (IC50). Results Recruited patients numbered 45; five aged <15 years. On day 3, five of 45 [11.1 (3.7-24.05)] % patients were still parasite-positive; one of whom later failed treatment on day 21. There were 5/45 (11.1%) late treatment failures on day 21, 28 and 35; all were PCR diagnosed recrudescent infections. The day 0 MQ IC50s ranged from 11.5-238.9 (median 58.6) nM. Conclusions This TES demonstrated reasonable efficacy in an area of possible reduced artemisinin sensitivity and high MQ IC50s. Efficacy testing of FDC ASMQ should continue in Cambodia and be considered for reintroduction if efficacy returns. PMID:24060207

  11. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  12. A rapid dipstick antigen capture assay for the diagnosis of falciparum malaria. WHO Informal Consultation on Recent Advances in Diagnostic Techniques and Vaccines for Malaria.

    PubMed Central

    1996-01-01

    Recent advances in the diagnosis of Plasmodium falciparum infections have made it possible to consider supplementing light microscopy with a standardized dipstick antigen capture assay based on the detection of a parasite-specific protein, which is secreted by the asexual blood stages and immature gametocytes but not by the other stages. Field trials indicate that this dipstick assay provides consistently reproducible results, with a threshold of detection of P. falciparum parasitaemia similar to that obtained by high quality routine malaria microscopy and a specificity and sensitivity of around 90% compared with standard thick blood film microscopy. The stability, reproducibility, and ease of use of the assay clearly indicate that it has potential for application in the management of malaria, particularly at the peripheral health care level, provided its accuracy can be assured and that it can be made affordable. Consideration should be given to its wider use where operational requirements and resources so justify, and where decisions are based on adequate evaluation of the existing health delivery systems. PMID:8653815

  13. Malaria.

    PubMed

    Heck, J E

    1991-03-01

    Human malaria is caused by four species of the genus plasmodium. The sexual stage of the parasite occurs in the mosquito and asexual reproduction occurs in man. Symptoms of fever, chills, headache, and myalgia result from the invasion and rupture of erythrocytes. Merozoites are released from erythrocytes and invade other cells, thus propagating the infection. The most vulnerable hosts are nonimmune travelers, young children living in the tropics, and pregnant women. P. falciparum causes the most severe infections because it infects RBCs of all ages and has the propensity to develop resistance to antimalarials. Rapid diagnosis can be made with a malarial smear, and treatment should be initiated promptly. In some regions (Mexico, Central America except Panama, and North Africa) chloroquine phosphate is effective therapy. In subsaharan Africa, South America, and Southeast Asia, chloroquine resistance has become widespread, and other antimalarials are necessary. The primary care physician should have a high index of suspicion for malaria in the traveler returning from the tropics. Malaria should also be suspected in the febrile transfusion recipient and newborns of mothers with malaria.

  14. Clearance of Asymptomatic P. falciparum Infections Interacts with the Number of Clones to Predict the Risk of Subsequent Malaria in Kenyan Children

    PubMed Central

    Liljander, Anne; Bejon, Philip; Mwacharo, Jedidah; Kai, Oscar; Ogada, Edna; Peshu, Norbert; Marsh, Kevin; Färnert, Anna

    2011-01-01

    Background Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria. Methods Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin. Results Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia. Conclusion The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect. PMID:21383984

  15. Pharmacokinetic and pharmacodynamic characteristics of a new pediatric formulation of artemether-lumefantrine in African children with uncomplicated Plasmodium falciparum malaria.

    PubMed

    Djimdé, Abdoulaye A; Tekete, Mamadou; Abdulla, Salim; Lyimo, John; Bassat, Quique; Mandomando, Inacio; Lefèvre, Gilbert; Borrmann, Steffen

    2011-09-01

    The pharmacokinetic and pharmacodynamic properties of a new pediatric formulation of artemether-lumefantrine, dispersible tablet, were determined within the context of a multicenter, randomized, parallel-group study. In an exploratory approach, we compared a new pediatric formulation with the tablet formulation administered crushed in the treatment of African children with uncomplicated Plasmodium falciparum malaria. Patients were randomized to 3 different dosing groups (weights of 5 to <15 kg, 15 and <25 kg, and 25 to <35 kg). Treatment was administered twice daily over 3 days. Plasma concentrations of artemether and its active metabolite, dihydroartemisinin (DHA), were determined at 1 and 2 h after the first dose of dispersible (n = 91) and crushed (n = 93) tablets. A full pharmacokinetic profile of lumefantrine was reconstituted on the basis of 310 (dispersible tablet) and 315 (crushed tablet) plasma samples, collected at 6 different time points (1 sample per patient). Dispersible and crushed tablets showed similar artemether and DHA maximum concentrations in plasma (C(max)) for the different body weight groups, with overall means of 175 ± 168 and 190 ± 168 ng/ml, respectively, for artemether and 64.7 ± 58.1 and 63.7 ± 65.0 ng/ml, respectively, for DHA. For lumefantrine, the population C(max) were 6.3 μg/ml (dispersible tablet) and 7.7 μg/ml (crushed tablet), whereas the areas under the concentration-time curves from time zero to the time of the last quantifiable plasma concentration measured were 574 and 636 μg · h/ml, respectively. For both formulations, descriptive quintile analyses showed no apparent association between artemether/DHA C(max) and parasite clearance time or between the lumefantrine C(max) and the occurrence of adverse events or corrected QT interval changes. The results suggest that the dispersible tablet provides adequate systemic exposure to artemether, DHA, and lumefantrine in African children with uncomplicated P. falciparum

  16. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice

    PubMed Central

    Outchkourov, Nikolay S.; Roeffen, Will; Kaan, Anita; Jansen, Josephine; Luty, Adrian; Schuiffel, Danielle; van Gemert, Geert Jan; van de Vegte-Bolmer, Marga; Sauerwein, Robert W.; Stunnenberg, Hendrik G.

    2008-01-01

    Malaria kills >1 million people each year, in particular in sub-Saharan Africa. Although asexual forms are directly responsible for disease and death, sexual stages account for the transmission of Plasmodium parasites from human to the mosquito vector and therefore the spread of the parasite in the population. Development of a malaria vaccine is urgently needed to reduce morbidity and mortality. Vaccines against sexual stages of Plasmodium falciparum are meant to decrease the force of transmission and consequently reduce malaria burden. Pfs48/45 is specifically expressed in sexual stages and is a well established transmission-blocking (TB) vaccine candidate. However, production of correctly folded recombinant Pfs48/45 protein with display of its TB epitopes has been a major challenge. Here, we show the production of a properly folded Pfs48/45 C-terminal fragment by simultaneous coexpression with four periplasmic folding catalysts in Escherichia coli. This C-terminal fragment fused to maltose binding protein was produced at medium scale with >90% purity and a stability over at least a 9-month period. It induces uniform and high antibody titers in mice and elicits functional TB antibodies in standard membrane feeding assays in 90% of the immunized mice. Our data provide a clear perspective on the clinical development of a Pfs48/45-based TB malaria vaccine. PMID:18332422

  17. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate

    PubMed Central

    Morita, Masayuki; Takashima, Eizo; Ito, Daisuke; Miura, Kazutoyo; Thongkukiatkul, Amporn; Diouf, Ababacar; Fairhurst, Rick M.; Diakite, Mahamadou; Long, Carole A.; Torii, Motomi; Tsuboi, Takafumi

    2017-01-01

    The number of malaria vaccine candidates in preclinical and clinical development is limited. To identify novel blood-stage malaria vaccine candidates, we constructed a library of 1,827P. falciparum proteins prepared using the wheat germ cell-free system (WGCFS). Also, a high-throughput AlphaScreen procedure was developed to measure antibody reactivity to the recombinant products. Purified IgGs from residents in malaria endemic areas have shown functional activity against blood-stage parasites as judged by an in vitro parasite Growth Inhibition Assay (GIA). Therefore, we evaluated the GIA activity of 51 plasma samples prepared from Malian adults living in a malaria endemic area against the WGCFS library. Using the AlphaScreen-based immunoreactivity measurements, antibody reactivity against 3 proteins was positively associated with GIA activity. Since anti-LSA3-C responses showed the strongest correlation with GIA activity, this protein was investigated further. Anti-LSA3-C-specific antibody purified from Malian adult plasmas showed GIA activity, and expression of LSA3 in blood-stage parasites was confirmed by western blotting. Taken together, we identified LSA3 as a novel blood-stage vaccine candidate, and we propose that this system will be useful for future vaccine candidate discovery. PMID:28378857

  18. Pseudo-borreliosis in patients with malaria.

    PubMed

    Berger, Stephen A; David, Liora

    2005-07-01

    Malaria and relapsing fever are arthropod-borne infections characterized by fever, myalgia, headache, and a tendency to relapse. Both are diagnosed through examination of stained blood films, and both might respond to tetracycline therapy. In at least four published case reports, the presence of malarial microgametes possibly resulted in misdiagnosis of borreliosis in patients with malaria. An additional case is presented, and the mechanism of microgamete production in clinical specimens is discussed.

  19. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies

    PubMed Central

    de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrânio N; Krettli, Antoniana Ursine

    2014-01-01

    Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332

  20. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies.

    PubMed

    de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme A M; de Melo, Isadora M M; da Silva Júnior, Eufrânio N; Krettli, Antoniana Ursine

    2014-08-01

    Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.

  1. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    PubMed

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border.

  2. Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory.

    PubMed

    Clark, Eva H; Silva, Claudia J; Weiss, Greta E; Li, Shanping; Padilla, Carlos; Crompton, Peter D; Hernandez, Jean N; Branch, OraLee H

    2012-04-01

    The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.

  3. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle

    PubMed Central

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion. PMID:26375591

  4. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    PubMed

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion.

  5. A Full-Length Plasmodium falciparum Recombinant Circumsporozoite Protein Expressed by Pseudomonas fluorescens Platform as a Malaria Vaccine Candidate

    PubMed Central

    Li, Xiangming; Coelho-dos-Reis, Jordana G. A.; Funakoshi, Ryota; Giardina, Steve; Jin, Hongfan; Retallack, Diane M.; Haverstock, Ryan; Allen, Jeffrey R.; Vedvick, Thomas S.; Fox, Christopher B.; Reed, Steven G.; Ayala, Ramses; Roberts, Brian; Winram, Scott B.; Sacci, John; Tsuji, Moriya; Zavala, Fidel; Gutierrez, Gabriel M.

    2014-01-01

    The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy

  6. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  7. High IFN-gamma and TNF production by peripheral NK cells of Colombian patients with different clinical presentation of Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background In Colombia, Plasmodium falciparum infection rarely results in severe disease or mortality compared to infections in African populations. During natural infection NK cells exhibit a cytolytic effect and regulate dendritic cells, macrophages, neutrophils as well as affect antigen specific T and B cell responses. To characterize the NK cells in P. falciparum infected patients of a highly endemic region of Colombia, the degree of NK proliferation and production of IFN gamma and TNF production in these cells were explored. Methods Seventeen patients with acute and three with severe P. falciparum malaria patients from the Northwest region of the country were recruited in the study. In addition, 20 healthy controls were included: 10 from Medellin (no-transmission area) and 10 from the Uraba region (a malaria endemic area). Immunophenotypic analysis of peripheral mononuclear cells was performed by FACS to detect total number of NK cells, subtypes and intracellular IFNγ and TNF production by NK cells in the different patient groups. Results The total mean CD56+/CD3- NK cell proportions in acute and severe malaria subjects were 9.14% (7.15%CD56dim, 2.01%CD56bright) and 19.62% (16.05%CD56dim, 3.58%CD56bright), respectively, in contrast to healthy controls from endemic (total mean CD56+/CD3-1.2%) and non-endemic area (total mean CD56+/CD3- 0.67%). Analysis of basal IFNγ and TNF levels confirmed the CD56bright NK population as the main cytokine producer (p < 0.0001) in the groups affected with malaria, with the CD56dim NK cell exhibiting the highest potential of TNF production after stimulus in the acute malaria group. Conclusions The results confirm the important role of not only CD56bright but also of CD56dim NK cell populations as producers of the two cytokines in malaria patients in Colombia. PMID:22316273

  8. Clinical malaria along the China-Myanmar border, Yunnan Province, China, January 2011-August 2012.

    PubMed

    Zhou, Guofa; Sun, Ling; Xia, Rongji; Duan, Yizhong; Xu, Jianwei; Yang, Henglin; Wang, Ying; Lee, Ming-Chieh; Xiang, Zheng; Yan, Guiyun; Cui, Liwang; Yang, Zhaoqing

    2014-04-01

    Passive surveillance for malaria cases was conducted in Yunnan Province, China, along the China-Myanmar border. Infection with Plasmodium vivax and P. falciparum protozoa accounted for 69% and 28% of the cases, respectively. Most patients were adult men. Cross-border travel into Myanmar was a key risk factor for P. falciparum malaria in China.

  9. Co-infection of Long-Term Carriers of Plasmodium falciparum with Schistosoma haematobium Enhances Protection from Febrile Malaria: A Prospective Cohort Study in Mali

    PubMed Central

    Sangala, Jules; Li, Shanping; Doumtabe, Didier; Kone, Younoussou; Traoré, Abdrahamane; Bathily, Aboudramane; Sogoba, Nafomon; Coulibaly, Michel E.; Huang, Chiung-Yu; Ongoiba, Aissata; Kayentao, Kassoum; Diallo, Mouctar; Dramane, Zongo; Nutman, Thomas B.; Crompton, Peter D.; Doumbo, Ogobara; Traore, Boubacar

    2014-01-01

    Background Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear. Methods We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥37.5°C) and parasitemia (≥2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored. Results After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode. Conclusions Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are

  10. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box.

    PubMed

    Tiwari, Neil K; Reynolds, Priscilla J; Calderón, Angela I

    2016-03-28

    Plasmodium falciparum thioredoxin reductase (PfTrxR) has been identified as a potential drug target to combat growing antimalarial drug resistance. Medicines for Malaria Venture (MMV) has pre-screened and identified a set of 400 antimalarial compounds called the Malaria Box. From those, we have evaluated their mechanisms of action through inhibition of PfTrxR and found new active chemical scaffolds. Five compounds with significant PfTrxR inhibitory activity, with IC50 values ranging from 0.9-7.5 µM against the target enzyme, were found out of the Malaria Box.

  11. Malaria-Related Anemia in Patients from Unstable Transmission Areas in Colombia

    PubMed Central

    Lopez-Perez, Mary; Álvarez, Álvaro; Gutierrez, Juan B.; Moreno, Alberto; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2015-01-01

    Information about the prevalence of malarial anemia in areas of low-malaria transmission intensity, like Latin America, is scarce. To characterize the malaria-related anemia, we evaluated 929 malaria patients from three sites in Colombia during 2011–2013. Plasmodium vivax was found to be the most prevalent species in Tierralta (92%), whereas P. falciparum was predominant in Tumaco (84%) and Quibdó (70%). Although severe anemia (hemoglobin < 7 g/dL) was almost absent (0.3%), variable degrees of non-severe anemia were observed in 36.9% of patients. In Tierralta, hemoglobin levels were negatively associated with days of illness. Moreover, in Tierralta and Quibdó, the number of previous malaria episodes and hemoglobin levels were positively associated. Both Plasmodium species seem to have similar potential to induce malarial anemia with distinct cofactors at each endemic setting. The target age in these low-transmission settings seems shifting toward adolescents and young adults. In addition, previous malaria experience seems to induce protection against anemia development. Altogether, these data suggest that early diagnosis and prompt treatment are likely preventing more frequent and serious malaria-related anemia in Colombia. PMID:25510719

  12. Evaluation of the efficacy and safety of artemether-lumefantrine in the treatment of acute uncomplicated Plasmodium falciparum malaria in Nigerian infants and children

    PubMed Central

    Falade, Catherine O; Ogunkunle, Oluwatoyin O; Dada-Adegbola, Hannah O; Falade, Adegoke G; de Palacios, Patricia Ibarra; Hunt, Philip; Virtanen, Mailis; Oduola, Ayoade M; Salako, Lateef A

    2008-01-01

    Background The six-dose regimen of artemether-lumefantrine (AL) is now considered the gold standard for the treatment of uncomplicated Plasmodium falciparum malaria. There are few reports evaluating co-artemether in very young Nigerian infants and children. Results of the evaluation of the six-dose regimen in very young infants and children in Nigeria are presented in this report. Methods As part of a larger African study, this open label, non-comparative trial, assessed the efficacy and safety of six-dose regimen of AL tablets in 103 Nigerian infants and children weighing between five and 25 kg suffering from acute uncomplicated malaria. Treatment was administered under supervision over three days with children as in-patients. 12-lead ECG tracings were taken pre-treatment and at day 3. Results Ninety-three infants and children completed the study as stipulated by the protocol. Mean fever and parasite clearance times for the intent to treat population (ITT) were 24.9 h ± (1.28) and 26 h ± (4.14) and the corresponding figures for the per-protocol population (PP) were 19.24 h ± 13.9 and 25.62 h ± 11.25 respectively. Day 14 cure rates for the ITT and PP were 95.1% and 100% respectively while day 28 cure rates were 91.3% and 95.7% respectively. The overall PCR corrected day 28 cure rate was 95.1% for the ITT. The six-dose regimen of AL was well tolerated with no drug-related serious adverse events. Although six patients recorded a QTc prolongation of > 60 ms on D3 over D0 recording, no patient recorded a QTc interval > 500 ms. Conclusion The six-dose regimen of AL tablets is safe and effective for the treatment of acute uncomplicated malaria in Nigerian infants and children weighing between five and 25 kg. Trial registration NCT00709969 PMID:19038036

  13. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    PubMed Central

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. Results We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery. PMID:26099491

  14. Hemoglobin C Trait Provides Protection From Clinical Falciparum Malaria in Malian Children

    PubMed Central

    Travassos, Mark A.; Coulibaly, Drissa; Laurens, Matthew B.; Dembélé, Ahmadou; Tolo, Youssouf; Koné, Abdoulaye K.; Traoré, Karim; Niangaly, Amadou; Guindo, Aldiouma; Wu, Yukun; Berry, Andrea A.; Jacob, Christopher G.; Takala-Harrison, Shannon; Adams, Matthew; Shrestha, Biraj; Mu, Amy Z.; Kouriba, Bourema; Lyke, Kirsten E.; Diallo, Dapa A.; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2015-01-01

    Background. Hemoglobin C trait, like hemoglobin S trait, protects against severe malaria in children, but it is unclear whether hemoglobin C trait also protects against uncomplicated malaria. We hypothesized that Malian children with hemoglobin C trait would have a lower risk of clinical malaria than children with hemoglobin AA. Methods. Three hundred children aged 0–6 years were enrolled in a cohort study of malaria incidence in Bandiagara, Mali, with continuous passive and monthly active follow-up from June 2009 to June 2010. Results. Compared to hemoglobin AA children (n = 242), hemoglobin AC children (n = 39) had a longer time to first clinical malaria episode (hazard ratio [HR], 0.19; P = .001; 364 median malaria-free days vs 181 days), fewer episodes of clinical malaria, and a lower cumulative parasite burden. Similarly, hemoglobin AS children (n = 14) had a longer time to first clinical malaria episode than hemoglobin AA children (HR, 0.15; P = .015; 364 median malaria-free days vs 181 days), but experienced the most asymptomatic malaria infections of any group. Conclusions. Both hemoglobin C and S traits exerted a protective effect against clinical malaria episodes, but appeared to do so by mechanisms that differentially affect the response to infecting malaria parasites. PMID:26019283

  15. Prevalence of Plasmodium falciparum Molecular Markers of Antimalarial Drug Resistance in a Residual Malaria Focus Area in Sabah, Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Abdullah, Noor Rain; Sastu, Umi Rubiah; Imwong, Mallika; Muniandy, Prem Kumar; Saat, Muhammad Nor Farhan; Muhammad, Amirrudin; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Rundi, Christina; Mudin, Rose Nani; Syed Mohamed, Ami Fazlin

    2016-01-01

    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control. PMID:27788228

  16. Inhibition of the SR protein-phosphorylating CLK kinases of Plasmodium falciparum impairs blood stage replication and malaria transmission.

    PubMed

    Kern, Selina; Agarwal, Shruti; Huber, Kilian; Gehring, André P; Strödke, Benjamin; Wirth, Christine C; Brügl, Thomas; Abodo, Liliane Onambele; Dandekar, Thomas; Doerig, Christian; Fischer, Rainer; Tobin, Andrew B; Alam, Mahmood M; Bracher, Franz; Pradel, Gabriele

    2014-01-01

    Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-β-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.

  17. Various pfcrt and pfmdr1 Genotypes of Plasmodium falciparum Cocirculate with P. malariae, P. ovale spp., and P. vivax in Northern Angola

    PubMed Central

    Fançony, Cláudia; Gamboa, Dina; Sebastião, Yuri; Hallett, Rachel; Sutherland, Colin; Sousa-Figueiredo, José Carlos

    2012-01-01

    Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies. PMID:22850519

  18. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies.

    PubMed

    Slater, Hannah C; Ross, Amanda; Ouédraogo, André Lin; White, Lisa J; Nguon, Chea; Walker, Patrick G T; Ngor, Pengby; Aguas, Ricardo; Silal, Sheetal P; Dondorp, Arjen M; La Barre, Paul; Burton, Robert; Sauerwein, Robert W; Drakeley, Chris; Smith, Thomas A; Bousema, Teun; Ghani, Azra C

    2015-12-03

    Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using

  19. A prospective study of the effects of ultralow volume (ULV) aerial application of malathion on epidemic Plasmodium falciparum malaria. I. Study design and perspective.

    PubMed

    Eliason, D A; Joseph, V R; Karam, J

    1975-03-01

    A large-scale prospective study was designed to test the effects of aerial ultralow volume (ULV) application of malathion on epidemic Plasmodium falciparum malaria. The study was conducted during 1972 to 1973, in the Miragoane Valley of Haiti, an area having annual anticipated outbreaks of malaria, which allowed prospective assessment. Spraying of malathion at a dosage of 4.5 fluid ounces per acre reduced populations of adult Anopheles albimanus to less than 1% of prespray levels and interrupted epidemic transmission of P. falciparum malaria. No change was measured in susceptibility of the vector mosquito to malathion after six applications of spray during a period of 50 days. Ecologic study revealed no significant impact on nontarget vertebrates. Factors that contributed to the success of this method in Haiti were: 1) a susceptible population of mosquitoes; 2) suitable topography and climate conditions for spraying; and 3) treatment of an area sufficiently large to minimize the influence of immigration of mosquitoes from unsprayed areas.

  20. Skin scarification with Plasmodium falciparum peptide vaccine using synthetic TLR agonists as adjuvants elicits malaria sporozoite neutralizing immunity

    PubMed Central

    Mitchell, Robert A.; Altszuler, Rita; Frevert, Ute; Nardin, Elizabeth H.

    2016-01-01

    Malaria eradication will require a combination of vector control, chemotherapy and an easily administered vaccine. Sterile immunity can be elicited in humans by immunization with sporozoites, the infective stage injected by bite of the mosquito vector, however, whole parasite vaccines present formidable logistical challenges for production, storage and administration. The “gold standard” for infectious disease eradiation, the Smallpox Eradication Programme, utilized mass immunization using the skin scarification (SS) route. SS may more closely mimic the natural route of malaria infection initiated by sporozoites injected by mosquito bite which elicits both neutralizing antibodies and protective cell mediated immunity. We investigated the potential of SS immunization using a malaria repeat peptide containing a protective B cell epitope of Plasmodium falciparum, the most lethal human species, and delivery vehicles containing TLR agonists as adjuvants. In a murine model, SS immunization with peptide in combination with TLR-7/8 and -9 agonists elicited high levels of systemic sporozoite neutralizing antibody, Th1- type CD4+ T cells and resistance to challenge by bites of infected mosquitoes. SS provides the potential to elicit humoral immunity to target Plasmodium at multiple stages of its complex life cycle. PMID:27624667

  1. Effective treatment with a tetrandrine/chloroquine combination for chloroquine-resistant falciparum malaria in Aotus monkeys

    PubMed Central

    2013-01-01

    Background In vitro evidence indicates that tetrandrine (TT) can potentiate the action of chloroquine 40-fold against choloquine-resistant Plasmodium falciparum. The key question emanating from that study is “would tetrandine and chloroquine be highly effective in a live Aotus monkey model with chloroquine-resistant parasites”. This study was designed to closely mimic the pharmacological/anti-malarial activity in man. Methods The Vietnam Smith/RE strain of P. falciparum, which is chloroquine-resistant was used in this study. Previous experimental procedures were followed. Panamanian owl monkeys (Aotus) were inoculated with 5×106 erythrocytes parasitized with the CQ-resistant strain of P. falciparum. Oral drug treatment was with CQ (20 mg/kg) and/or tetrandrine at 15 mg/Kg, 30 mg/Kg or 60 mg/Kg or 25 mg/Kg depending on experimental conditions. Results and Discussion Parasitaemia was cleared rapidly with CQ and TT while CQ treatment alone was ineffective. Recrudescence of malaria occurred after seven days post-infection. However, four animals were treated orally with TT and CQ parasites were cleared. It is likely that monkeys were cured via a combination of both drug and host immune responses. A single Aotus monkey infected with P. falciparum and untreated with drugs, died. No side effects were observed with these drug treatments. Conclusions This combination of chloroquine and tetrandrine forms the basis of a new attack on chloroquine-resistant malaria - one based upon inhibition of the basis of chloroquine resistance, the multiple drug resistance pump. Previous studies demonstrated that the parasite MDR pump was found on parasite membranes using 3H azidopine photoaffinity labelling. Since MDR-based choloroquine resistance is induced by chloroquine, the basis of the action of tetrandrine is the following: 1) tetrandrine inhibits the MDR pump by stimulating MDR ATPase which limits the energy of the pump by depletion of parasite ATP, 2) tetrandrine blocks the

  2. Impact of age of first exposure to Plasmodium falciparum on antibody responses to malaria in children: a randomized, controlled trial in Mozambique

    PubMed Central

    2014-01-01

    Background The impact of the age of first Plasmodium falciparum infection on the rate of acquisition of immunity to malaria and on the immune correlates of protection has proven difficult to elucidate. A randomized, double-blind, placebo-controlled trial using monthly chemoprophylaxis with sulphadoxine-pyrimethamine plus artesunate was conducted to modify the age of first P. falciparum erythrocytic exposure in infancy and assess antibodies and malaria risk over two years. Methods Participants (n = 349) were enrolled at birth to one of three groups: late exposure, early exposure and control group, and were followed up for malaria morbidity and immunological analyses at birth, 2.5, 5.5, 10.5, 15 and 24 months of age. Total IgG, IgG subclasses and IgM responses to MSP-119, AMA-1, and EBA-175 were measured by ELISA, and IgG against variant antigens on the surface of infected erythrocytes by flow cytometry. Factors affecting antibody responses in relation to chemoprophylaxis and malaria incidence were evaluated. Results Generally, antibody responses did not vary significantly between exposure groups except for levels of IgM to EBA-175, and seropositivity of IgG1 and IgG3 to MSP-119. Previous and current malaria infections were strongly associated with increased IgG against MSP-119, EBA-175 and AMA-1 (p < 0.0001). After adjusting for exposure, only higher levels of anti-EBA-175 IgG were significantly associated with reduced clinical malaria incidence (IRR 0.67, p = 0.0178). Conclusions Overall, the age of first P. falciparum infection did not influence the magnitude and breadth of IgG responses, but previous exposure was critical for antibody acquisition. IgG responses to EBA-175 were the strongest correlate of protection against clinical malaria. Trial registration ClinicalTrials.gov: NCT00231452. PMID:24674654

  3. Impact of home management of Plasmodium falciparum malaria on childhood malaria control in sub-Saharan Africa.

    PubMed

    Uneka, C J

    2009-08-01

    In sub-Saharan Africa almost all of the malaria deaths occur in children below five years of age and these deaths occur within 48 hours of onset of symptoms. Consequently, the home management of malaria (HMM), was introduced to ensure early recognition of and prompt and appropriate response to malarial illness in children within the home or the community. In this report the impact of HMM in childhood malaria control in sub-Saharan Africa was reviewed using relevant publications identified through a Medline Entrez-Pubmed and Google search. There was convincing evidence from the studies reviewed that HMM played a contributory role in reducing progress to severe malaria and overall childhood mortality. The major challenges to the implementation of HMM included failure of caregivers to complete a full course of antimalarial drug, provision of financial motivation to community drug distributors, non-adherence of health workers to recommendations on the use of antimalarial drugs, limited acceptance, possible adverse outcomes, and long term sustainability of HMM. With increased political will and commitment of all stakeholders as well as the mobilization of additional and substantial resources for implementation by the global community, the Abuja declaration of halving mortality from malaria in African may be attained in the nearest future.

  4. Population Pharmacokinetics of Pyronaridine in Pediatric Malaria Patients

    PubMed Central

    Ayyoub, Amal; Methaneethorn, Janthima; Ramharter, Michael; Djimde, Abdoulaye A.; Tekete, Mamadou; Duparc, Stephan; Borghini-Fuhrer, Isabelle; Shin, Jang-Sik

    2015-01-01

    Pyramax is a pyronaridine (PYR)-artesunate (PA) combination for the treatment of uncomplicated malaria in adult and pediatric patients. A granule formulation of this combination is being developed for treatment of uncomplicated P. falciparum and P. vivax malaria in pediatric patients. The aims of this study were to describe the pharmacokinetics of PYR using a total of 1,085 blood PYR concentrations available from 349 malaria patients younger than 16 years of age with mild to moderate uncomplicated malaria and to confirm the dosing regimen for the pediatric granule formulation. Nonlinear mixed-effects modeling using NONMEM software was used to obtain the pharmacokinetic and inter- and intraindividual variability parameter estimates. The population pharmacokinetics of PYR were described by a two-compartment model with first-order absorption and elimination. Allometric scaling was implemented to address the effect of body weight on clearance and volume parameters. The final parameter estimates of PYR apparent clearance (CL/F), central volume of distribution (V2/F), peripheral volume of distribution (V3/F), intercompartmental clearance (Q/F), and absorption rate constant (Ka) were 377 liters/day, 2,230 liters, 3,230 liters, 804 liters/day and 17.9 day−1, respectively. Covariate model building conducted using forward addition (P < 0.05) followed by backward elimination (P < 0.001) yielded two significant covariate-parameter relationships, i.e., age on V2/F and formulation on Ka. Evaluation of bootstrapping, visual predictive check, and condition number indicated that the final model displayed satisfactory robustness, predictive power, and stability. Simulations of PYR concentration-time profiles generated from the final model show similar exposures across pediatric weight ranges, supporting the proposed labeling for weight-based dosing of Pyramax granules. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00331136 [phase II study] and

  5. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) – A Receptor Associated with Severe Plasmodium falciparum Malaria

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R.; Craig, Alister; Hviid, Lars; Jensen, Anja T. R.

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields. PMID:23936131

  6. Efficacy and safety of artemether-lumefantrine (Coartem) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria.

    PubMed

    Falade, Catherine; Makanga, Michael; Premji, Zul; Ortmann, Christine-Elke; Stockmeyer, Marlies; de Palacios, Patricia Ibarra

    2005-06-01

    Approximately one million children die from malaria each year. A recently approved artemisinin-based tablet, Coartem (co-artemether), comprising artemether 120 mg plus lumefantrine 20 mg, given in four doses, provides effective antimalarial treatment for children in many sub-Saharan countries. However, this regimen is considered insufficient for non-immune infants and in areas where multidrug-resistant Plasmodium falciparum predominates. This open-label study assessed the efficacy and safety of co-artemether administered to 310 African children weighing 5-25 kg, with acute, uncomplicated falciparum malaria. Six doses of co-artemether were given over 3 days, with follow-up at 7, 14 and 28 days. Treatment rapidly cleared parasitemia and fever. The overall 28-day cure rate was 86.5%, and 93.9% when corrected by PCR for reinfection. Cure rates at 7 and 14 days exceeded 97.0% (uncorrected) and, on day 28, were similar in infants (5-<10 kg) previously exposed to malaria infection (partially immune: 88.6% uncorrected; 93.3% corrected), and in those who were non-immune (82.5% uncorrected; 95.0% corrected). Adverse events were mostly mild. There was no electrocardiographic evidence of cardiotoxicity. The co-artemether six-dose regimen, treating acute uncomplicated falciparum malaria in African children, achieved rapid parasite clearance and a high cure rate. Treatment was generally safe and well tolerated.

  7. Therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine and the sulfadoxine-pyrimethamine-amodiaquine combination against uncomplicated Plasmodium falciparum malaria in young children in Cameroon.

    PubMed Central

    Basco, Leonardo K.; Same-Ekobo, Albert; Ngane, Vincent Foumane; Ndounga, Mathieu; Metoh, Theresia; Ringwald, Pascal; Soula, Georges

    2002-01-01

    OBJECTIVE: To evaluate the therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine, and the sulfadoxine-pyrimethamine-amodiaquine combination for the treatment of uncomplicated Plasmodium falciparum malaria in young children in Cameroon. METHODS: In a randomized study we evaluated the effectiveness and tolerance of (i) sulfadoxine-pyrimethamine (SP) (25 mg/kg body weight of sulfadoxine and 1.25 mg/kg of pyrimethamine in a single oral dose), (ii) amodiaquine (AQ) (30 mg/kg body weight in three divided daily doses), and (iii) the sulfadoxine-pyrimethamine-amodiaquine combination (SP+AQ) (same doses as in the other two treatment groups, given simultaneously on day 0) in young children in southern Cameroon. The parasitological and clinical responses were studied until day 28 in accordance with the modified 1996 WHO protocol for the evaluation of the therapeutic efficacy of antimalarial drugs. FINDINGS: Of 191 enrolled patients, 6 and 8 were excluded or lost to follow-up before day 14 and between day 14 and day 28, respectively. For the AQ-treated patients, parasitological and clinical evaluation on day 14 showed late treatment failure in 2 of 61 (3.3%) and adequate clinical response with parasitological failure in one (1.6%). There was an adequate clinical response in all patients treated with SP or SP+AQ. Therapeutic failure rates on day 28 were 13.6%, 10.2% and 0% in the SP, AQ, and SP+AQ groups, respectively. Anaemia improved in all three regimens. AQ produced faster fever clearance but was associated with more transient minor side-effects than SP. SP+AQ reduced the risk of recrudescence between day 14 and day 28 but increased the incidence of minor side-effects. CONCLUSION: SP+AQ can be recommended as a temporary means of slowing the spread of multidrug resistance in Plasmodium falciparum in Africa while the introduction of other combinations, including artemisinin derivatives, is awaited. PMID:12163917

  8. Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, phase III trial in African children, adolescents, and adults with uncomplicated Plasmodium falciparum malaria.

    PubMed

    Tiono, Alfred B; Dicko, Alassane; Ndububa, Dennis A; Agbenyega, Tsiri; Pitmang, Simon; Awobusuyi, Jacob; Pamba, Allan; Duparc, Stephan; Goh, Li-Ean; Harrell, Emma; Carter, Nick; Ward, Stephen A; Greenwood, Brian; Winstanley, Peter A

    2009-12-01

    This multi-center, randomized, parallel-group, double-blind, double-dummy study compared the efficacy and safety of chlorproguanil-dapsone-artesunate (CDA) and chlorproguanil-dapsone (CPG-DDS) in the treatment of falciparum malaria in Africa (Burkina Faso, Ghana, Mali, Nigeria). Six hundred patients (>or= 1 year of age) received CDA 2.0/2.5/4.0 mg/kg, and 292 CPG-DDS 2.0/2.5 mg/kg, once daily for 3 days. Day 28 parasitologic cure rate (polymerase chain reaction [PCR]-corrected, per-protocol population) was 89.1% (416/467) for CDA, non-inferior but also superior to CPG-DDS, 83.0% (176/212) (treatment difference 6.1%; 95% confidence interval [CI] 0.3, 11.9). Glucose-6-phosphate dehydrogenase (G6PD) genotype was available for 844/892 (95%) patients. Occurrences of a composite hemoglobin safety endpoint (hemoglobin drop >or= 40 g/L or >or= 40% versus baseline, hemoglobin < 50 g/L, or blood transfusion) were CDA 13/44 (30%), CPG-DDS 7/24 (29%) in G6PD-deficient patients versus CDA 4/448 (< 1%), CPG-DDS 6/221 (3%) in G6PD-normal patients. No deaths occurred. CDA was more efficacious than CPG-DDS. However, the hemolytic potential in G6PD-deficient patients does not support further development of CDA.

  9. A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria.

    PubMed

    Mohon, Abu Naser; Elahi, Rubayet; Khan, Wasif A; Haque, Rashidul; Sullivan, David J; Alam, Mohammad Shafiul

    2014-06-01

    Molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories. Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. A new primer set has been designed targeting the 18S rRNA gene for the detection of Plasmodium falciparum in whole blood samples. The efficacy of LAMP using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers as well as with microscopy and real-time PCR as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system. The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR. Meanwhile, its specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. Moreover, the LAMP method was in very good agreement with microscopy and real-time PCR (0.94 and 0.98, respectively). This new LAMP method can detect at least 5parasites/μL of infected blood within 35min, while the other LAMP method tested in this study, could detect a minimum of 100parasites/μL of human blood after 60min of amplification. Thus, the new method is sensitive and specific, can be carried out in a very short time, and can substitute PCR in healthcare clinics and standard laboratories.

  10. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study

    PubMed Central

    McGready, R; Lee, SJ; Wiladphaingern, J; Ashley, EA; Rijken, MJ; Boel, M; Simpson, JA; Paw, MK; Pimanpanarak, M; Mu, Oh; Singhasivanon, P; White, NJ; Nosten, FH

    2012-01-01

    Summary Background The effects of malaria and its treatment in the first trimester of pregnancy remain an area of concern. We aimed to assess the outcome of malaria-exposed and malaria-unexposed first-trimester pregnancies of women from the Thai–Burmese border and compare outcomes after chloroquine-based, quinine-based, or artemisinin-based treatments. Methods We analysed all antenatal records of women in the first trimester of pregnancy attending Shoklo Malaria Research Unit antenatal clinics from May 12, 1986, to Oct 31, 2010. Women without malaria in pregnancy were compared with those who had a single episode of malaria in the first trimester. The association between malaria and miscarriage was estimated using multivariable logistic regression. Findings Of 48 426 pregnant women, 17 613 (36%) met the inclusion criteria: 16 668 (95%) had no malaria during the pregnancy and 945 (5%) had a single episode in the first trimester. The odds of miscarriage increased in women with asymptomatic malaria (adjusted odds ratio 2·70, 95% CI 2·04–3·59) and symptomatic malaria (3·99, 3·10–5·13), and were similar for Plasmodium falciparum and Plasmodium vivax. Other risk factors for miscarriage included smoking, maternal age, previous miscarriage, and non-malaria febrile illness. In women with malaria, additional risk factors for miscarriage included severe or hyperparasitaemic malaria (adjusted odds ratio 3·63, 95% CI 1·15–11·46) and parasitaemia (1·49, 1·25–1·78 for each ten-fold increase in parasitaemia). Higher gestational age at the time of infection was protective (adjusted odds ratio 0·86, 95% CI 0·81–0·91). The risk of miscarriage was similar for women treated with chloroquine (92 [26%] of 354), quinine (95 [27%) of 355), or artesunate (20 [31%] of 64; p=0·71). Adverse effects related to antimalarial treatment were not observed. Interpretation A single episode of falciparum or vivax malaria in the first trimester of pregnancy can cause

  11. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  12. Predictors of the failure of treatment with chloroquine plus chlorpheniramine, in children with acute, uncomplicated, Plasmodium falciparum malaria.

    PubMed

    Sowunmi, A; Fateye, B A; Adedeji, A A; Fehintola, F A; Gbotosho, G O; Happi, T C; Oduola, A M J

    2005-06-01

    Resistance to chloroquine in Plasmodium falciparum can be reversed, both in vitro and in vivo, by chlorpheniramine, a histamine H(1) receptor antagonist. This reversal raises the possibility of using chlorpheniramine to prolong the clinical usefulness of chloroquine in resource-poor communities. The factors that identify children at risk of treatment failure after being given chloroquine plus chlorpheniramine have now been evaluated in 281 children with uncomplicated, P. falciparum malaria. The children, who had taken part in six trials of antimalarial drugs between February 1996 and September 1999, in a hyper-endemic area of south-western Nigeria, were enrolled prospectively for the present study. Following treatment with chloroquine plus chlorpheniramine, 13 (5%) of the children failed treatment by day 7 or 14. In a multivariate analysis, an age of < or =3 years (adjusted odds ratio = 11.1; 95% confidence interval = 2.2-55.3; P = 0.003) and a parasitaemia that took >3 days to clear (adjusted odds ratio=7.9; 95% confidence interval = 1.3-49.4; P = 0.027) were found to be independent predictors of treatment failure. In addition, compared with the children who had a lower axillary temperature then, the children who had an axillary temperature of > or =38 degrees C 2 days after commencing treatment were significantly more likely to be treatment failures. In resource-poor communities using chloroquine plus chlorpheniramine, the easily identifiable predictors of treatment failure might be used to identify children requiring alternative antimalarial drugs.

  13. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.

  14. The treatment of malaria.

    PubMed

    White, N J

    1996-09-12

    Increasing drug resistance in Plasmodium falciparum and a resurgence of malaria in tropical areas have effected a change in treatment of malaria in the last two decades. Symptoms of malaria are fever, chills, headache, and malaise. The prognosis worsens as the parasite counts, counts of mature parasites, and counts of neutrophils containing pigment increase. Treatment depends on severity, age of patient, degree of background immunity, likely pattern of susceptibility to antimalarial drugs, and the cost and availability of drugs. Chloroquine should be used for P. vivax, P. malariae, and P. ovale. P. vivax has shown high resistance to chloroquine in Oceania, however. Primaquine may be needed to treat P. vivax and P. ovale to rid the body of hypnozoites that survive in the liver. Chloroquine can treat P. falciparum infections acquired in North Africa, Central America north of the Panama Canal, Haiti, or the Middle East but not in most of Africa and some parts of Asia and South America. In areas of low grade resistance to chloroquine, amodiaquine can be used to effectively treat falciparum malaria. A combination of sulfadoxine-pyrimethamine is responsive to falciparum infections with high grade resistance to chloroquine. Mefloquine, halofantrine, or quinine with tetracycline can be used to treat multidrug-resistant P. falciparum. Derivatives of artemisinin obtained from qinghao or sweet wormwood developed as pharmaceuticals in China are the most rapidly acting of all antimalarial drugs. Children tend to tolerate antimalarial drugs well. Children who weigh less than 15 kg should not be given mefloquine. Health workers should not prescribe primaquine to pregnant women or newborns due to the risk of hemolysis. Chloroquine, sulfadoxine-pyrimethamine, quinine, and quinidine can be safely given in therapeutic doses throughout pregnancy. Clinical manifestations of severe malaria are hypoglycemia, convulsions, severe anemia, acute renal failure, jaundice, pulmonary edema

  15. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: loop-mediated isothermal amplification for malaria diagnosis.

    PubMed

    Ghayour Najafabadi, Zahra; Oormazdi, Hormozd; Akhlaghi, Lame; Meamar, Ahmad Reza; Nateghpour, Mehdi; Farivar, Leila; Razmjou, Elham

    2014-08-01

    This study investigated loop-mediated isothermal amplification (LAMP) detection of Plasmodium falciparum and Plasmodium vivax in urine and saliva of malaria patients. From May to November 2011, 108 febrile patients referred to health centers in Sistan and Baluchestan Province of south-eastern Iran participated in the study. Saliva, urine, and blood samples were analyzed with nested PCR and LAMP targeting the species-specific nucleotide sequence of small subunit ribosomal RNA gene (18S rRNA) of P. falciparum and P. vivax and evaluated for diagnostic accuracy by comparison to blood nested PCR assay. When nested PCR of blood is used as standard, microscopy and nested PCR of saliva and urine samples showed sensitivity of 97.2%, 89.4% and 71% and specificity of 100%, 97.3% and 100%, respectively. LAMP sensitivity of blood, saliva, and urine was 95.8%, 47% and 29%, respectively, whereas LAMP specificity of these samples was 100%. Microscopy and nested PCR of saliva and LAMP of blood were comparable to nested PCR of blood (к=0.95, 0.83, and 0.94, respectively), but agreement for nested PCR of urine was moderate (к=0.64) and poor to fair for saliva LAMP and urine LAMP (к=0.38 and 0.23, respectively). LAMP assay showed low sensitivity for detection of Plasmodium DNA in human saliva and urine compared to results with blood and to nested PCR of blood, saliva, and urine. However, considering the advantages of LAMP technology and of saliva and urine sampling, further research into the method is worthwhile. LAMP protocol and precise preparation protocols need to be defined and optimized for template DNA of saliva and urine.

  16. Differential Recognition of Terminal Extracellular Plasmodium falciparum VAR2CSA Domains by Sera from Multigravid, Malaria-Exposed Malian Women

    PubMed Central

    Travassos, Mark A.; Coulibaly, Drissa; Bailey, Jason A.; Niangaly, Amadou; Adams, Matthew; Nyunt, Myaing M.; Ouattara, Amed; Lyke, Kirsten E.; Laurens, Matthew B.; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Berry, Andrea A.; Takala-Harrison, Shannon; Kone, Abdoulaye K.; Kouriba, Bourema; Rowe, J. Alexandra; Doumbo, Ogobara K.; Thera, Mahamadou A.; Laufer, Miriam K.; Felgner, Philip L.; Plowe, Christopher V.

    2015-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria. PMID:25918203

  17. Multicentric assessment of the efficacy and tolerability of dihydroartemisinin-piperaquine compared to artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa

    PubMed Central

    2011-01-01

    Background The choice of appropriate artemisinin-based combination therapy depends on several factors (cost, efficacy, safety, reinfection rate and simplicity of administration). To assess whether the combination dihydroartemisinin-piperaquine (DP) could be an alternative to artemether-lumefantrine (AL), the efficacy and the tolerability of the two products for the treatment of uncomplicated falciparum malaria in sub-Saharan Africa have been compared. Methods A multicentric open randomized controlled clinical trial of three-day treatment of DP against AL for the treatment of two parallel groups of patients aged two years and above and suffering from uncomplicated falciparum malaria was carried out in Cameroon, Côte d'Ivoire and Senegal. Within each group, patients were randomly assigned supervised treatment. DP was given once a day for three days and AL twice a day for three days. Follow-up visits were performed on day 1 to 4 and on day 7, 14, 21, 28 to evaluate clinical and parasitological results. The primary endpoint was the recovery rate by day 28. Results Of 384 patients enrolled, 197 were assigned DP and 187 AL. The recovery rates adjusted by genotyping, 99.5% in the DP group and 98.9% in the AL group, were not statistically different (p = 0.538). No Early Therapeutic Failure (ETF) was observed. At day 28, two patients in the DP group and five in AL group had recurrent parasitaemia with Plasmodium falciparum. In the DP group, after PCR genotyping, one of the two recurrences was classified as a new infection and the other as recrudescence. In AL group, two recurrences were classified after correction by PCR as recrudescence. All cases of recrudescence were classified as Late Parasitological Failure (LPF). In each group, a rapid recovery from fever and parasitaemia was noticed. More than 90% of patients did no longer present fever or parasitaemia 48 hours after treatment. Both drugs were well tolerated. Indeed, no serious adverse events were reported during

  18. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  19. Detection of Plasmodium falciparum and Plasmodium vivax subclinical infection in non-endemic region: implications for blood transfusion and malaria epidemiology

    PubMed Central

    2014-01-01

    Background In Brazil, malaria is endemic in the Amazon River basin and non-endemic in the extra-Amazon region, which includes areas of São Paulo state. In this state, a number of autochthonous cases of malaria occur annually, and the prevalence of subclinical infection is unknown. Asymptomatic infections may remain undetected, maintaining transmission of the pathogen, including by blood transfusion. In these report it has been described subclinical Plasmodium infection in blood donors from a blood transfusion centre in São Paulo, Brazil. Methods In this cross-sectional study, representative samples of blood were obtained from 1,108 healthy blood donors at the Fundação Pró-Sangue Hemocentro de São Paulo, the main blood transfusion centre in São Paulo. Malaria exposure was defined by the home region (exposed: forest region; non-exposed: non-forest region). Real-time PCR was used to detect Plasmodium falciparum and Plasmodium vivax. Subclinical malaria cases were geo-referenced. Results Eighty-four (7.41%) blood donors tested positive for Plasmodium; 57 of these were infected by P. falciparum, 25 by P. vivax, and 2 by both. The prevalence of P. falciparum and P. vivax was 5.14 and 2.26, respectively. The overall prevalence ratio (PR) was 3.23 (95% confidence interval (CI) 2.03, 5.13); P. falciparum PR was 16.11 (95% CI 5.87, 44.21) and P. vivax PR was 0.47 (95% CI 0.2, 1.12). Plasmodium falciparum subclinical malaria infection in the Atlantic Forest domain was present in the mountain regions while P. vivax infection was observed in cities from forest-surrounded areas. Conclusions The presence of Plasmodium in healthy blood donors from a region known as non-endemic, which is important in the context of transfusion biosafety, was described. Infected recipients may become asymptomatic carriers and a reservoir for parasites, maintaining their transmission. Furthermore, P. falciparum PR was positively associated with the forest environment, and P. vivax was

  20. In silico comparative genome analysis of malaria parasite Plasmodium falciparum and Plasmodium vivax chromosome 4.

    PubMed

    Taherian Fard, Atefeh; Salman, Amna; Kazemi, Bahram; Bokhari, Habib

    2009-06-01

    Malarial parasite has long been a subject of research for a large community of scientists and has yet to be conquered. One of the main obstacles to effectively control this disease is rapidly evolving genetic structure of Plasmodium parasite itself. In this study, we focused on chromosome 4 of the Plasmodium falciparum and Plasmodium vivax species and carried out comparative studies of genes that are responsible for antigenic variation in respective species. Comparative analysis of genes responsible for antigenic variation (var and vir genes in P. falciparum and P. vivax, respectively) showed significant difference in their respective nucleotide sequence lengths as well as amino acid composition. The possible association of exon's length on pathogenecity of respective Plasmodium species was also investigated, and analysis of gene structure showed that on the whole, exon lengths in P. falciparum are larger compared to P. vivax. Analysis of tandem repeats across the genome has shown that the size of repetitive sequences has a direct effect on chromosomes length, which can also be a potential reason for P. falciparum's greater variability and hence pathogenecity than P. vivax.

  1. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.

    PubMed

    Zhang, Yao; Huang, Changjin; Kim, Sangtae; Golkaram, Mahdi; Dixon, Matthew W A; Tilley, Leann; Li, Ju; Zhang, Sulin; Suresh, Subra

    2015-05-12

    During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.

  2. Molecular epidemiology of malaria in Cameroon. XXII. Geographic mapping and distribution of Plasmodium falciparum dihydrofolate reductase (dhfr) mutant alleles.

    PubMed

    Tahar, Rachida; Basco, Leonardo K

    2006-09-01

    Sulfadoxine-pyrimethamine (SP) is still a useful drug to combat chloroquine-resistant Plasmodium falciparum malaria in Cameroon. Because of several disadvantages of the in vivo test and in vitro drug sensitivity assays, molecular assays are an alternative laboratory tool to monitor the evolution of antifolate resistance, especially over the entire country that is characterized by several epidemiologic strata and malaria transmission patterns. In this study, 1,430 blood samples from either symptomatic children or asymptomatic carriers were collected from 14 sites throughout the country between 1999 and 2003 for the analysis of dihydrofolate reductase (dhfr) sequence. Of 1,368 samples (95.7%) that were successfully amplified, 1,180 were analyzed by direct sequencing of the polymerase chain reaction product, and 188 were analyzed by restriction enzymes. The prevalences of the wild-type, single Asn-108 mutation, double Arg-59/Asn-108 mutations, double Ile-51/Asn-108 mutations, triple Ile-51/Arg-59/Asn-108 mutations, and mixed alleles were 20.8%, 2.8%, 5.7%, 0.8%, 62.2%, and 7.6%, respectively. The proportions of triple dhfr mutations were > 60% at all study sites, with the exception of the eastern province (42% triple mutants in Bertoua in 1999) and the northern provinces (11-35% triple mutants in Ngaoundere, Garoua, and Maroua). In these two provinces, the proportion of mutant parasites increased significantly (P < 0.05) over the period of 2-4 years. Furthermore, there was a higher proportion (P < 0.05) of wild-type parasites in the northern provinces, compared with the rest of the country. The geographic mapping of molecular markers offers a novel tool for monitoring the epidemiology of drug-resistant malaria.

  3. Rosette-Disrupting Effect of an Anti-Plasmodial Compound for the Potential Treatment of Plasmodium falciparum Malaria Complications

    PubMed Central

    Ch’ng, Jun-Hong; Moll, Kirsten; Quintana, Maria del Pilar; Chan, Sherwin Chun Leung; Masters, Ellen; Moles, Ernest; Liu, Jianping; Eriksson, Anders B.; Wahlgren, Mats

    2016-01-01

    The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality. PMID:27403804

  4. The T-Cell Inhibitory Molecule Butyrophilin-Like 2 Is Up-regulated in Mild Plasmodium falciparum Infection and Is Protective During Experimental Cerebral Malaria

    PubMed Central

    Subramaniam, Krishanthi S.; Spaulding, Emily; Ivan, Emil; Mutimura, Eugene; Kim, Ryung S.; Liu, Xikui; Dong, Chen; Feintuch, Catherine M.; Zhang, Xingxing; Anastos, Kathryn; Lauvau, Gregoire; Daily, Johanna P.

    2015-01-01

    Plasmodium falciparum infection can result in severe disease that is associated with elevated inflammation and vital organ dysfunction; however, malaria-endemic residents gain protection from lethal outcomes and manifest only mild symptoms during infection. To characterize host responses associated with this more effective antimalarial response, we characterized whole-blood transcriptional profiles in Rwandan adults during a mild malaria episode and compared them with findings from a convalescence sample. We observed transcriptional up-regulation in many pathways, including type I interferon, interferon γ, complement activation, and nitric oxide during malaria infection, which provide benchmarks of mild disease physiology. Transcripts encoding negative regulators of T-cell activation, such as programmed death ligand 1 (PD-L1), programmed death 1 ligand 2 (PD-L2), and the butyrophilin family member butyrophilin-like 2 (BTNL2) were also increased. To support an important functional role for BTNL2 during malaria infection, we studied chimeric mice reconstituted with BTNL2−/− or wild-type hematopoietic cells that were inoculated with Plasmodium berghei ANKA, a murine model of cerebral malaria. We found that BTNL2−/− chimeric mice had a significant decrease in survival compared with wild-type counterparts. Collectively these data characterize the immune responses associated with mild malaria and uncover a novel role for BTNL2 in the host response to malaria. PMID:25883389

  5. The T-Cell Inhibitory Molecule Butyrophilin-Like 2 Is Up-regulated in Mild Plasmodium falciparum Infection and Is Protective During Experimental Cerebral Malaria.

    PubMed

    Subramaniam, Krishanthi S; Spaulding, Emily; Ivan, Emil; Mutimura, Eugene; Kim, Ryung S; Liu, Xikui; Dong, Chen; Feintuch, Catherine M; Zhang, Xingxing; Anastos, Kathryn; Lauvau, Gregoire; Daily, Johanna P

    2015-10-15

    Plasmodium falciparum infection can result in severe disease that is associated with elevated inflammation and vital organ dysfunction; however, malaria-endemic residents gain protection from lethal outcomes and manifest only mild symptoms during infection. To characterize host responses associated with this more effective antimalarial response, we characterized whole-blood transcriptional profiles in Rwandan adults during a mild malaria episode and compared them with findings from a convalescence sample. We observed transcriptional up-regulation in many pathways, including type I interferon, interferon γ, complement activation, and nitric oxide during malaria infection, which provide benchmarks of mild disease physiology. Transcripts encoding negative regulators of T-cell activation, such as programmed death ligand 1 (PD-L1), programmed death 1 ligand 2 (PD-L2), and the butyrophilin family member butyrophilin-like 2 (BTNL2) were also increased. To support an important functional role for BTNL2 during malaria infection, we studied chimeric mice reconstituted with BTNL2(-/-) or wild-type hematopoietic cells that were inoculated with Plasmodium berghei ANKA, a murine model of cerebral malaria. We found that BTNL2(-/-) chimeric mice had a significant decrease in survival compared with wild-type counterparts. Collectively these data characterize the immune responses associated with mild malaria and uncover a novel role for BTNL2 in the host response to malaria.

  6. Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence

    PubMed Central

    Alegana, Victor A.; Atkinson, Peter M.; Lourenço, Christopher; Ruktanonchai, Nick W.; Bosco, Claudio; Erbach-Schoenberg, Elisabeth zu; Didier, Bradley; Pindolia, Deepa; Le Menach, Arnaud; Katokele, Stark; Uusiku, Petrina; Tatem, Andrew J.

    2016-01-01

    The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings. Here, we show how malaria incidence can be modelled at a fine spatial and temporal resolution from health facility data to help focus surveillance and control to population not attending health facilities. Using Namibia as a case study, we predicted the incidence of malaria, via a Bayesian spatio-temporal model, at a fine spatial resolution from parasitologically confirmed malaria cases and incorporated metrics on healthcare use as well as measures of uncertainty associated with incidence predictions. We then combined the incidence estimates with population maps to estimate clinical burdens and show the benefits of such mapping to identifying areas and seasons that can be targeted for improved surveillance and interventions. Fine spatial resolution maps produced using this approach were then used to target resources to specific local populations, and to specific months of the season. This remote targeting can be especially effective where the population distribution is sparse and further surveillance can be limited to specific local areas. PMID:27405532

  7. The Distribution of Circumsporozoite Protein (CS) in Anopheles Stephensi Mosquitoes Infected with Plasmodium Falciparum Malaria

    DTIC Science & Technology

    1990-01-01

    389 in differentiating oocysts, on remnant membranes left on the midgut Roitt IM, BrostoffJ, Male DK (1985): Immunology. St Louis, CV Mosby wall after...Plasmodium falciparum; Anopheles stephensi; Cir- on the mosquito midgut. As oocysts differentiated to ma- cumsporozoite protein; Fuchsin/naphthol AS-BI...and sporogony in the mosquito. During a blood meal, microscopy and an indirect fluorescent antibody test (IFAT). These the mosquito ingests the male

  8. Plasmodium falciparum GFP-E-NTPDase expression at the intraerythrocytic stages and its inhibition blocks the development of the human malaria parasite.

    PubMed

    Borges-Pereira, Lucas; Meissner, Kamila Anna; Wrenger, Carsten; Garcia, Célia R S

    2017-03-11

    Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.

  9. Identification and molecular characterization of an Alba-family protein from human malaria parasite Plasmodium falciparum

    PubMed Central

    Goyal, Manish; Alam, Athar; Iqbal, Mohd Shameel; Dey, Sumanta; Bindu, Samik; Pal, Chinmay; Banerjee, Anindyajit; Chakrabarti, Saikat; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the DNA-binding nature as well as the function of a putative Alba (Acetylation lowers binding affinity) family protein (PfAlba3) from Plasmodium falciparum. PfAlba3 possesses DNA-binding property like Alba family proteins. PfAlba3 binds to DNA sequence non-specifically at the minor groove and acetylation lowers its DNA-binding affinity. The protein is ubiquitously expressed in all the erythrocytic stages of P. falciparum and it exists predominantly in the acetylated form. PfAlba3 inhibits transcription in vitro by binding to DNA. Plasmodium falciparum Sir2 (PfSir2A), a nuclear localized deacetylase interacts with PfAlba3 and deacetylates the lysine residue of N-terminal peptide of PfAlba3 specific for DNA binding. PfAlba3 is localized with PfSir2A in the periphery of the nucleus. Fluorescence in situ hybridization studies revealed the presence of PfAlba3 in the telomeric and subtelomeric regions. ChIP and ChIP ReChIP analyses further confirmed that PfAlba3 binds to the telomeric and subtelomeric regions as well as to var gene promoter. PMID:22006844

  10. Molecular targets of 5-fluoroorotate in the human malaria parasite, Plasmodium falciparum.

    PubMed Central

    Rathod, P K; Leffers, N P; Young, R D

    1992-01-01

    5-Fluoroorotate is known to have potent antimalarial activity against chloroquine-susceptible as well as chloroquine-resistant clones of Plasmodium falciparum. It was hypothesized that this activity was mediated through synthesis of 5-fluoro-2'-deoxyuridylate, an inactivator of thymidylate synthase, or through incorporation of 5-fluoropyrimidine residues into nucleic acids. Treatment of P. falciparum in culture with 100 nM 5-fluoroorotate resulted in rapid inactivation of malarial thymidylate synthase activity. A 50% loss of thymidylate synthase activity as well as a 50% decrease in parasite proliferation were seen with 5 nM 5-fluoroorotate. Dihydrofolate reductase activity, which resides on the same bifunctional protein as thymidylate synthase, was not affected by 5-fluoroorotate treatment. Incubation of malarial parasites with 3 to 10 microM radioactive 5-fluoroorotic acid for 48 h resulted in significant incorporation of radioactivity into the RNA fraction of P. falciparum; approximately 9% of the uridine residues were substituted with 5-fluorouridine. However, compared with the 50% inhibitory concentrations of 5-fluoroorotate, a 1,000-fold higher concentration of the pyrimidine analog was required to see significant modification of RNA molecules. Results of these studies are consistent with the hypothesis that thymidylate synthase is the primary target of 5-fluoroorotate in malarial parasites. PMID:1503432

  11. Studies on the humoral immune response to a synthetic vaccine against Plasmodium falciparum malaria.

    PubMed Central

    Salcedo, M; Barreto, L; Rojas, M; Moya, R; Cote, J; Patarroyo, M E

    1991-01-01

    A synthetic vaccine against the asexual blood stages of P. falciparum, the SPf 66 synthetic hybrid polymer, composed of peptides derived from three merozoite membrane proteins as well as one peptide from the sporozoite CS protein, has been developed by our group and tested in different protection assays in Aotus monkeys as well as in human volunteers. This study evaluates the humoral immune response induced by the SPf 66 protein vaccination in adult human volunteers from the Colombian Pacific coast as follows: determination of specific IgG antibody levels against SPf 66 by FAST-ELISA after each immunization; analysis of antibody reactivity with P. falciparum schizont lysates by immunoblots; and determination of the in vitro parasite growth inhibition. A clear boosting effect, dependent on time and dose, was observed in the antibody production kinetics. These antibodies also specifically recognize three proteins of the P. falciparum schizont lysate corresponding to the molecular weights of the proteins from which the amino acid sequence was derived. These sera were also capable of markedly inhibiting in vitro parasite growth. PMID:2015702

  12. Low autochtonous urban malaria in Antananarivo (Madagascar)

    PubMed Central

    Rabarijaona, Léon Paul; Ariey, Frédéric; Matra, Robert; Cot, Sylvie; Raharimalala, Andrianavalona Lucie; Ranaivo, Louise Henriette; Le Bras, Jacques; Robert, Vincent; Randrianarivelojosia, Milijaona

    2006-01-01

    Background The study of urban malaria is an area undergoing rapid expansion, after many years of neglect. The problem of over-diagnosis of malaria, especially in low transmission settings including urban areas, is also receiving deserved attention. The primary objective of the present study was to assess the frequency of malaria among febrile outpatients seen in private and public primary care facilities of Antananarivo. The second aim was to determine, among the diagnosed malaria cases, the contribution of autochthonous urban malaria. Methods Two cross-sectional surveys in 43 health centres in Antananarivo in February 2003 (rainy season) and in July 2003 (dry season) were conducted. Consenting clinically suspected malaria patients with fever or history of fever in the past 48 hours were included. Malaria rapid diagnostic tests and microscopy were used to diagnose malaria. Basic information was collected from patients to try to identify the origin of the infection: autochthonous or introduced. Results In February, among 771 patients, 15 (1.9%) positive cases were detected. Three malaria parasites were implicated: Plasmodium. falciparum (n = 12), Plasmodium vivax (n = 2) and Plasmodium. ovale (n = 1). Only two cases, both P. falciparum, were likely to have been autochthonous (0.26%). In July, among 739 blood smears examined, 11 (1.5%) were positive: P. falciparum (n = 9) and P. vivax (n = 2). Three cases of P. falciparum malaria were considered to be of local origin (0.4%). Conclusion This study demonstrates that malaria cases among febrile episodes are low in Antananarivo and autochthonous malaria cases exist but are rare. PMID:16573843

  13. A survey of malaria and some arboviral infections among suspected febrile patients visiting a health centre in Simawa, Ogun State, Nigeria.

    PubMed

    Ayorinde, Adenola F; Oyeyiga, Ayorinde M; Nosegbe, Nwakaego O; Folarin, Onikepe A

    2016-01-01

    Most febrile patients are often misdiagnosed with malaria due to similar symptoms, such as fever shared by malaria and certain arboviral infections. This study surveyed the incidence of malaria, chikungunya and dengue infections among a number of suspected febrile patients visiting Simawa Health Centre, Ogun State, Nigeria. Venous blood samples were obtained from 60 febrile patients (age 3-70 years) visiting the centre between April and May 2014. The rapid diagnostic test (RDT) was used to detect the presence of chikungunya (CHK) antibodies (IgM), dengue (DEN) virus and antibodies (NS1, IgM and IgG) and malaria parasites (Plasmodium falciparum and Plasmodium vivax). Malarial confirmatory tests were by microscopy and nested polymerase chain reaction (PCR) using the polymorphic region of Glutamate-Rich Protein (GLURP) gene. The complexity of P. falciparum infection in the community also determined by the use of nested PCR. These three mosquito-borne infections were observed in 63% (38) of the patients. The prevalence of CHK, DEN and malarial infections singularly were 11%, 0% and 63%, respectively, whereas malaria with either CHK or DEN infections were 24% (9) and 3% (1), respectively. No subjects were positive for CHK and DEN co-infection. Malarial microscopic confirmation was in 94% (32) of the malaria RDT-positive samples, 50% (17) were successfully analysed by nested PCR and the mean multiplicity of infection was 1.6 (1-3 clones). One patient sample harboured both P. falciparum and P. vivax. The study reports the presence of some arboviral infections having similar symptoms with malaria at Simawa, Ogun State. The proper diagnosis of infectious diseases is important for controlling them.

  14. Comparative performance of the ParaSight F test for detection of Plasmodium falciparum in malaria-immune and nonimmune populations in Irian Jaya, Indonesia.

    PubMed Central

    Fryauff, D. J.; Gomez-Saladin, E.; Purnomo; Sumawinata, I.; Sutamihardja, M. A.; Tuti, S.; Subianto, B.; Richie, T. L.

    1997-01-01

    A comparison was made of the performance of the ParaSight F test (F test) for detection of Plasmodium falciparum in blood from malaria-immune (410 native Irianese) and nonimmune (369 new transmigrants) populations in Irian Jaya, Indonesia, where malaria is hyperendemic and all four species of human malaria occur. There were highly significant differences between populations in the sensitivity (Irianese, 60% versus transmigrants, 84%; P < 0.001) and specificity (Irianese, 97% versus transmigrants, 84%; P < 0.001) of the F test. The test had comparably high levels of sensitivity for Irianese children aged < or = 10 years, both age groups of transmigrants (76-85%), but low sensitivity for Irianese aged > 10 years (40%), among whom only 7% of parasitaemias < 120 per microliter and 69% of those > 120 per microliter were detected. Specificity was comparably high for transmigrant children aged < or = 10 years and both age groups of Irianese (93-98%). The low specificity for transmigrants aged > 10 years (79%) was due to a preponderance of false positives, frequently identified by microscopy as P. vivax. The results suggest that comparison based on microscopy underestimated the performance of the ParaSight F test and that malaria immune status, irrespective of P. falciparum density, may influence the test's sensitivity. PMID:9509627

  15. Chloroquine Clinical Failures in P. falciparum Malaria Are Associated with Mutant Pfmdr-1, Not Pfcrt in Madagascar

    PubMed Central

    Andriantsoanirina, Valérie; Ratsimbasoa, Arsène; Bouchier, Christiane; Tichit, Magali; Jahevitra, Martial; Rabearimanana, Stéphane; Raherinjafy, Rogelin; Mercereau-Puijalon, Odile; Durand, Rémy; Ménard, Didier

    2010-01-01

    Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1) act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44%) appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites <5%) or Pfcrt mutant isolates (<1%), strongly contrasting with sub-Saharan African countries. Previous studies showed a high frequency of Pfmdr-1 mutant parasites (>60% of isolates), but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6). The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days) was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days). In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important

  16. Homology blocks of Plasmodium falciparum var genes and clinically distinct forms of severe malaria in a local population

    PubMed Central

    2013-01-01

    Background The primary target of the human immune response to the malaria parasite Plasmodium falciparum, P. falciparum erythrocyte membrane protein 1 (PfEMP1), is encoded by the members of the hyper-diverse var gene family. The parasite exhibits antigenic variation via mutually exclusive expression (switching) of the ~60 var genes within its genome. It is thought that different variants exhibit different host endothelial binding preferences that in turn result in different manifestations of disease. Results Var sequences comprise ancient sequence fragments, termed homology blocks (HBs), that recombine at exceedingly high rates. We use HBs to define distinct var types within a local population. We then reanalyze a dataset that contains clinical and var expression data to investigate whether the HBs allow for a description of sequence diversity corresponding to biological function, such that it improves our ability to predict disease phenotype from parasite genetics. We find that even a generic set of HBs, which are defined for a small number of non-local parasites: capture the majority of local sequence diversity; improve our ability to predict disease severity from parasite genetics; and reveal a previously hypothesized yet previously unobserved parasite genetic basis for two forms of severe disease. We find that the expression rates of some HBs correlate more strongly with severe disease phenotypes than the expression rates of classic var DBLα tag types, and principal components of HB expression rate profiles further improve genotype-phenotype models. More specifically, within the large Kenyan dataset that is the focus of this study, we observe that HB expression differs significantly for severe versus mild disease, and for rosetting versus impaired consciousness associated severe disease. The analysis of a second much smaller dataset from Mali suggests that these HB-phenotype associations are consistent across geographically distant populations, since we find

  17. Artesunate Plus Amodiaquine (AS+AQ) Versus Artemether -Lumefantrine (AL) for the Treatment of Uncomplicated Plasmodium Falciparum Malaria in Sub-Saharan Africa-A Meta-Analysis.

    PubMed

    Bello, Shaibu O; Chika, Aminu; Abdulgafar, Jimoh O

    2010-01-01

    The purpose of this study is to summarize the available data on the efficacy of Artesunate plus Amodiaquine (AS+AQ) versus Artemether -Lumefantrine (AL) for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa using uncorrected parasitaemia as a clinically relevant endpoint. Studies and conference abstracts identified through Pubmed, Medline, Embase, Ansinet, AJOL, Bioline, Cochrane Infectious Diseases Group trials register, The Cochrane Controlled Trials Register, Science Citation Index, Lilacs, African Index Medicus, Clusty, Google, Yahoo and Microsoft search engines. Randomized controlled clinical trials comparing Artesunate-Amodiaquine versus Artemether-Lumefantrine, in Sub-Saharan Africa from January 2004 to June 2009, and which had at least 30 patients per study arm. The authors independently applied the inclusion criteria, assessed methodological quality and extracted data into a predesigned form. The outcome of interest was uncorrected day 28 parasitological failure. Data were then checked for agreement and double entered into RevMan version 5 for further analyses. Fifteen trials (4265 participants) met the inclusion criteria. Day 28 parasitological failure was lower for AL (286 of 2201 participants or 13.0 % failures) when compared with AS+AQ (446 of 2424 participants or 18.4% failures). The relative risk of parasitological failure with AS+AQ was higher when compared with AL (RR 1.65, 95% CI, 1.18-2.32). There were significant heterogeneity and inconsistencies in the studies. AL appears more effective at avoiding parasitological failure at days 28 than AS+AQ.

  18. Plasmodium falciparum picks (on) EPCR

    PubMed Central

    Mosnier, Laurent O.; Fairhurst, Rick M.

    2014-01-01

    Of all the outcomes of Plasmodium falciparum infection, the coma of cerebral malaria (CM) is particularly deadly. Malariologists have long wondered how some patients develop this organ-specific syndrome. Data from two recent publications support a novel mechanism of CM pathogenesis in which infected erythrocytes (IEs) express specific virulence proteins that mediate IE binding to the endothelial protein C receptor (EPCR). Malaria-associated depletion of EPCR, with subsequent impairment of the protein C system promotes a proinflammatory, procoagulant state in brain microvessels. PMID:24246501

  19. Imported malaria cases in Okinawa Prefecture, Japan.

    PubMed

    Higa, Futoshi; Tateyama, Masao; Tasato, Daisuke; Karimata, Yosuke; Nakamura, Hideta; Miyagi, Kazuya; Haranaga, Shusaku; Hirata, Tetsuo; Hokama, Akira; Cash, Haley L; Toma, Hiromu; Fujita, Jiro

    2013-01-01

    With the increase in global transportation, imported malaria has become a significant public health concern in Japan. In the present study, we retrospectively analyzed all imported malaria cases in Okinawa Prefecture from 1988 to 2012. In that period, 23 patients with imported malaria were admitted to the University of the Ryukyus Hospital. Malaria types observed included Plasmodium falciparum (14 cases), P. vivax (7 cases), combined P. falciparum and P. ovale (1 case), and combined P. vivax and P. malariae (1 case). All cases were resolved by anti-malarial treatment. The clinical data from these patients highlights the importance of collecting patient travel history and ensuring an adequate supply of both diagnostic test and drug treatments in Okinawa.

  20. Antibody responses to the merozoite surface protein-1 complex in cerebral malaria patients in India

    PubMed Central

    Lucchi, Naomi W; Tongren, Jon Eric; Jain, Vidhan; Nagpal, Avinash C; Kauth, Christian W; Woehlbier, Ute; Bujard, Hermann; Dash, Aditya P; Singh, Neeru; Stiles, Jonathan K; Udhayakumar, Venkatachalam

    2008-01-01

    Background Plasmodium falciparum infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-183, MSP-130, MSP-138 and MSP-142), MSP-636 and MSP-722 and CM was investigated. Methods Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-636 and MSP-722 were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method. Results The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1f38, IgG1 levels to MSP-1d83, MSP-119 and MSP-636 and IgG3 levels to MSP-1f42 and MSP-722 were observed in CM patients as compared to MM patients. Conclusion These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis. PMID:18601721

  1. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  2. Artemether-Lumefantrine Pharmacokinetics and Clinical Response Are Minimally Altered in Pregnant Ugandan Women Treated for Uncomplicated Falciparum Malaria.

    PubMed

    Nyunt, Myaing M; Nguyen, Vy K; Kajubi, Richard; Huang, Liusheng; Ssebuliba, Joshua; Kiconco, Sylvia; Mwima, Moses W; Achan, Jane; Aweeka, Francesca; Parikh, Sunil; Mwebaza, Norah

    2015-12-14

    Artemether-lumefantrine is a first-line regimen for the treatment of uncomplicated malaria during the second and third trimesters of pregnancy. Previous studies have reported changes in the pharmacokinetics and clinical outcomes following treatment with artemether-lumefantrine in pregnant women compared to nonpregnant adults; however, the results are inconclusive. We conducted a study in rural Uganda to compare the pharmacokinetics of artemether-lumefantrine and the treatment responses between 30 pregnant women and 30 nonpregnant adults with uncomplicated Plasmodium falciparum malaria. All participants were uninfected with HIV, treated with a six-dose regimen of artemether-lumefantrine, and monitored clinically for 42 days. The pharmacokinetics of artemether, its metabolite dihydroartemisinin, and lumefantrine were evaluated for 21 days following treatment. We found no significant differences in the overall pharmacokinetics of artemether, dihydroartemisinin, or lumefantrine in a direct comparison of pregnant women to nonpregnant adults, except for a statistically significant but small difference in the terminal elimination half-lives of both dihydroartemisinin and lumefantrine. There were seven PCR-confirmed reinfections (5 pregnant and 2 nonpregnant participants). The observation of a shorter terminal half-life for lumefantrine may have contributed to a higher frequency of reinfection or a shorter posttreatment prophylactic period in pregnant women than in nonpregnant adults. While the comparable overall pharmacokinetic exposure is reassuring, studies are needed to further optimize antimalarial efficacy in pregnant women, particularly in high-transmission settings and because of emerging drug resistance. (This study is registered at ClinicalTrials.gov under registration no. NCT01717885.).

  3. UK malaria treatment guidelines.

    PubMed

    Lalloo, David G; Shingadia, Delane; Pasvol, Geoffrey; Chiodini, Peter L; Whitty, Christopher J; Beeching, Nicholas J; Hill, David R; Warrell, David A; Bannister, Barbara A

    2007-02-01

    Malaria is the tropical disease most commonly imported into the UK, with 1500-2000 cases reported each year, and 10-20 deaths. Approximately three-quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other two species of Plasmodium: Plasmodium ovale or Plasmodium malariae. Mixed infections with more than 1 species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until 3 blood specimens have been examined by an experienced microscopist. There are no typical clinical features of malaria, even fever is not invariably present. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites; P. falciparum malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens or enzymes, although RDTs for other Plasmodium species are not as reliable. The treatment of choice for non-falciparum malaria is a 3-day course of oral chloroquine, to which only a limited proportion of P. vivax strains have gained resistance. Dormant parasites (hypnozoites) persist in the liver after treatment of P. vivax or P. ovale infection: the only currently effective drug for eradication of hypnozoites is primaquine. This must be avoided or given with caution under expert supervision in patients with glucose-6-phosphate dehydrogenase deficiency (G6PD), in whom it may cause severe haemolysis. Uncomplicated P. falciparum malaria can be treated orally with quinine, atovaquone plus proguanil (Malarone) or co-artemether (Riamet

  4. Absolute stability and Hopf bifurcation in a Plasmodium falciparum malaria model incorporating discrete immune response delay.

    PubMed

    Ncube, Israel

    2013-05-01

    We consider the absolute stability of the disease-free equilibrium of an intra-host Plasmodium falciparum malarial model allowing for antigenic variation within a single species. Antigenic variation can be viewed as an adaptation of the parasite to evade host defence [2]. The model was recently developed in [3-6]. The host's immune response is compartmentalised into reactions to major and minor epitopes. The immune response mounted by the human host is delayed, where, for simplicity, the delay is assumed to be discrete. We investigate the resulting characteristic equation, with a view to establishing absolute stability criteria and computing the Hopf bifurcation of the disease-free equilibrium.

  5. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA directed against malaria histone deacetylase

    SciTech Connect

    Sriwilaijaroen, N.; Boonma, S.; Attasart, P.; Pothikasikorn, J.; Panyim, S.; Noonpakdee, W.

    2009-04-03

    Acetylation and deacetylation of histones play important roles in transcription regulation, cell cycle progression and development events. The steady state status of histone acetylation is controlled by a dynamic equilibrium between competing histone acetylase and deacetylase (HDAC). We have used long PfHDAC-1 double-stranded (ds)RNA to interfere with its cognate mRNA expression and determined the effect on malaria parasite growth and development. Chloroquine- and pyrimethamine-resistant Plasmodium falciparum K1 strain was exposed to 1-25 {mu}g of dsRNA/ml of culture for 48 h and growth was determined by [{sup 3}H]-hypoxanthine incorporation and microscopic examination. Parasite culture treated with 10 {mu}g/ml pfHDAC-1 dsRNA exhibited 47% growth inhibition when compared with either untreated control or culture treated with an unrelated dsRNA. PfHDAC-1 dsRNA specifically blocked maturation of trophozoite to schizont stages and decreased PfHDAC-1 transcript 44% in treated trophozoites. These results indicate the potential of HDAC-1 as a target for development of novel antimalarials.

  6. Cloning and characterization of some rep20 DNA fragments from the genome of the human malaria pathogen Plasmodium falciparum.

    PubMed

    Ghoneim, Ahmad M

    2009-08-01

    Chromosomes of the human malaria parasite Plasmodiumfalciparum contain long subtelomeric repeat sequences and little is known about them. In this study, we have cloned 10 fragments of the non-coding rep20 sequence from the genome of Plasmodium falciparum 3D7 and HB3 strains. Analysis of these fragments showed that they represent 4 different 3D7 fragments and 2 different HB3 ones. Blasting the sequence of these fragments to the PlasmoDB revealed a varying degree of identity to the released rep20 sequence. One of these fragments was found to contain 27 degenerate repeats and show the highest consistency with the rep20 consensus sequence. This fragment was. inserted into a plasmid construct containing the green fluorescence gene and a stably transfected plasmodium cell line was established. Our data show that this rep20 fragment enhances the establishment of drug-resistant parasite populations after transfection; however it restricts the expression of the green fluorescence transgene. These results attract attention to an in-depth study of the role that some rep20 sequences may play between the telomeres and the differentially expressed virulence-related genes.

  7. Recombinant plasmepsin 1 from the human malaria parasite Plasmodium falciparum: Enzymatic characterization, active site inhibitor design, and structural analysis

    PubMed Central

    Liu, Peng; Marzahn, Melissa R.; Robbins, Arthur H.; Gutiérrez-de-Terán, Hugo; Rodríguez, David; McClung, Scott; Stevens, Stanley M.; Yowell, Charles A.; Dame, John B.; McKenna, Robert; Dunn, Ben M.

    2009-01-01

    A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in E. coli. The auto-maturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally-occurring form isolated from parasites. The S3-S3’ subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. Based on the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 Å structure of the PfPMP2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1–6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4. PMID:19271776

  8. Multiple Origins and Regional Dispersal of Resistant dhps in African Plasmodium falciparum Malaria

    PubMed Central

    Pearce, Richard J.; Pota, Hirva; Evehe, Marie-Solange B.; Bâ, El-Hadj; Mombo-Ngoma, Ghyslain; Malisa, Allen L.; Ord, Rosalynn; Inojosa, Walter; Matondo, Alexandre; Diallo, Diadier A.; Mbacham, Wilfred; van den Broek, Ingrid V.; Swarthout, Todd D.; Getachew, Asefaw; Dejene, Seyoum; Grobusch, Martin P.; Njie, Fanta; Kweku, Margaret; Owusu-Agyei, Seth; Chandramohan, Daniel; Bonnet, Maryline; Guthmann, Jean-Paul; Clarke, Sian; Barnes, Karen I.; Streat, Elizabeth; Katokele, Stark T.; Uusiku, Petrina; Agboghoroma, Chris O.; Elegba, Olufunmilayo Y.; Cissé, Badara; A-Elbasit, Ishraga E.; Giha, Hayder A.; Kachur, S. Patrick; Lynch, Caroline; Rwakimari, John B.; Chanda, Pascalina; Hawela, Moonga; Naidoo, Inbarani; Roper, Cally

    2009-01-01

    Background Although the molecular basis of resistance to a number of common antimalarial drugs is well known, a geographic description of the emergence and dispersal of resistance mutations across Africa has not been attempted. To that end we have characterised the evolutionary origins of antifolate resistance mutations in the dihydropteroate synthase (dhps) gene and mapped their contemporary distribution. Methods and Findings We used microsatellite polymorphism flanking the dhps gene to determine which resistance alleles shared common ancestry and found five major lineages each of which had a unique geographical distribution. The extent to which allelic lineages were shared among 20 African Plasmodium falciparum populations revealed five major geographical groupings. Resistance lineages were common to all sites within these regions. The most marked differentiation was between east and west African P. falciparum, in which resistance alleles were not only of different ancestry but also carried different resistance mutations. Conclusions Resistant dhps has emerged independently in multiple sites in Africa during the past 10–20 years. Our data show the molecular basis of resistance differs between east and west Africa, which is likely to translate into differing antifolate sensitivity. We have also demonstrated that the dispersal patterns of resistance lineages give unique insights into recent parasite migration patterns. PMID:19365539

  9. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

    2011-12-31

    The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  10. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum.

    PubMed

    Bhartiya, Deeksha; Chawla, Vandna; Ghosh, Sourav; Shankar, Ravi; Kumar, Niti

    2016-12-01

    The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.

  11. Malaria in patients with sickle cell anemia: burden, risk factors, and outcome at the outpatient clinic and during hospitalization

    PubMed Central

    Makani, Julie; Komba, Albert N.; Cox, Sharon E.; Oruo, Julie; Mwamtemi, Khadija; Kitundu, Jesse; Magesa, Pius; Rwezaula, Stella; Meda, Elineema; Mgaya, Josephine; Pallangyo, Kisali; Okiro, Emelda; Muturi, David; Newton, Charles R.; Fegan, Gregory; Marsh, Kevin; Williams, Thomas N.

    2010-01-01

    Approximately 280 000 children are born with sickle cell anemia (SCA) in Africa annually, yet few survive beyond childhood. Falciparum malaria is considered a significant cause of this mortality. We conducted a 5-year prospective surveillance study for malaria parasitemia, clinical malaria, and severe malarial anemia (SMA) in Dar-es-Salaam, Tanzania, between 2004 and 2009. We recorded 10 491 visits to the outpatient clinic among 1808 patients with SCA and 773 visits among 679 patients without SCA. Similarly, we recorded 691 hospital admissions among 497 patients with SCA and 2017 in patients without SCA. Overall, the prevalence of parasitemia was lower in patients with SCA than in patients without SCA both at clinic (0.7% vs 1.6%; OR, 0.53; 95% CI, 0.32-0.86; P = .008) and during hospitalization (3.0% vs 5.6%; OR, 0.46; 95% CI, 0.25-0.94; P = .01). Furthermore, patients with SCA had higher rates of malaria during hospitalization than at clinic, the ORs being 4.29 (95% CI, 2.63-7.01; P < .001) for parasitemia, 17.66 (95% CI, 5.92-52.71; P < .001) for clinical malaria, and 21.11 (95% CI, 8.46-52.67; P < .001) for SMA. Although malaria was rare among patients with SCA, parasitemia during hospitalization was associated with both severe anemia and death. Effective treatment for malaria during severe illness episodes and further studies to determine the role chemoprophylaxis are required. PMID:19901265

  12. Pulmonary pathology in pediatric cerebral malaria.

    PubMed

    Milner, Danny; Factor, Rachel; Whitten, Rich; Carr, Richard A; Kamiza, Steve; Pinkus, Geraldine; Molyneux, Malcolm; Taylor, Terrie

    2013-12-01

    Respiratory signs are common in African children where malaria is highly endemic, and thus, parsing the role of pulmonary pathology in illness is challenging. We examined the lungs of 100 children from an autopsy series in Blantyre, Malawi, many of whom death was attributed to Plasmodium falciparum malaria. Our aim was to describe the pathologic manifestations of fatal malaria; to understand the role of parasites, pigment, and macrophages; and to catalog comorbidities. From available patients, which included 55 patients with cerebral malaria and 45 controls, we obtained 4 cores of lung tissue for immunohistochemistry and morphological evaluation. We found that, in patients with cerebral malaria, large numbers of malaria parasites were present in pulmonary alveolar capillaries, together with extensive deposits of malaria pigment (hemozoin). The number of pulmonary macrophages in this vascular bed did not differ between patients with cerebral malaria, noncerebral malaria, and nonmalarial diagnoses. Comorbidities found in some cerebral malaria patients included pneumonia, pulmonary edema, hemorrhage, and systemic activation of coagulation. We conclude that the respiratory distress seen in patients with cerebral malaria does not appear to be anatomic in origin but that increasing malaria pigment is strongly associated with cerebral malaria at autopsy.

  13. Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum.

    PubMed Central

    Berriman, M; Fairlamb, A H

    1998-01-01

    Cyclosporin (Cs) A has pronounced antimalarial activity in vitro and in vivo. In other organisms, the drug is thought to exert its effects either by inhibiting the peptidylprolyl cis/trans isomerase activity of cyclophilin (CyP) or by forming a CyP-CsA complex that inhibits the phosphatase activity of calcineurin. We have cloned and overexpressed in Escherichia coli a gene encoding a CyP from Plasmodium falciparum (PfCyP19) that is located on chromosome 3. The sequence of PfCyP19 shows remarkable sequence identity with human CyPA and, unlike the two previously identified CyPs from P. falciparum, PfCyP19 has no signal peptide or N-terminal sequence extension, suggesting a cytosolic localization. All the residues implicated in the recognition of the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide are conserved, resulting in characteristically high Michaelis-Menten and specificity constants (Km>>120 microM, kcat/Km=1.2x10(7) M-1.s-1 respectively). As the first line in the functional characterization of this enzyme, we have assessed its binding affinity for CsA. In accordance with its tryptophan-containing CsA-binding domain, PfCyP19 binds CsA with high affinity (Kd=13 nM, Ki=6.9 nM). Twelve CsA analogues were also found to possess Ki values similar to CsA, with the notable exceptions of Val2-Cs (Ki=218 nM) and Thr2-Cs (Ki=690 nM). The immunosuppressants rapamycin and FK506 were inactive as inhibitors, consistent with other members of the CyP family of rotamases. The CsA analogues were also assessed as inhibitors of P. falciparum growth in vitro. Although their antimalarial activity did not correlate with inhibition of enzyme activity, residues 3 and 4 of CsA appeared to be important for inhibition of parasite growth and residues 1 and 2 for PfCyP19 inhibition. We propose that a malarial CyP-CsA complex presents residues 3 and 4 as part of an 'effector surface' for recognition by a downstream target, similar to the proposed mechanism for T

  14. Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    PubMed Central

    Cavanagh, David R.; Kocken, Clemens H. M.; White, John H.; Cowan, Graeme J. M.; Samuel, Kay; Dubbeld, Martin A.; der Wel, Annemarie Voorberg-van; Thomas, Alan W.; McBride, Jana S.; Arnot, David E.

    2014-01-01

    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals. PMID:24421900

  15. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum

    PubMed Central

    Alves, Eduardo; Maluf, Fernando V.; Bueno, Vânia B.; Guido, Rafael V. C.; Oliva, Glaucius; Singh, Maneesh; Scarpelli, Pedro; Costa, Fahyme; Sartorello, Robson; Catalani, Luiz H.; Brady, Declan; Tewari, Rita; Garcia, Celia R. S.

    2016-01-01

    In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action. PMID:26915471

  16. HLA-A*0201 restricted CD8+ T-lymphocyte responses to malaria: identification of new Plasmodium falciparum epitopes by IFN-gamma ELISPOT.

    PubMed

    González, J M; Peter, K; Esposito, F; Nebié, I; Tiercy, J M; Bonelo, A; Arévalo-Herrera, M; Valmori, D; Romero, P; Herrera, S; Corradin, G; López, J A

    2000-10-01

    The role of antigen specific CD8+ T-lymphocytes in mediating protection against sporozoite-induced malaria has been well established in murine models. In humans, indirect evidence has accumulated suggesting a similar protective role for antigen-specific CD8+ T-lymphocytes. Nevertheless, the low frequency of circulating specific cells together with the lack of sensitive methods to quantify them has hampered the direct assessment of their function. Using a combination of short-term cell culture and IFN-gamma ELISPOT, we studied CD8+ T-lymphocyte responses to a panel of HLA-A*0201 binding peptides. In addition to confirming the response to already described epitopes, we also identified five new CD8+ T-lymphocyte epitopes. These epitopes are presented in pre-erythrocytic stages gene products of Plasmodium falciparum 7G8 strain and correspond to the following protein segments: circumsporozoite (CS) 64-72, 104-113, 299-308 and 403-411; liver stage antigen (LSA-1) repeat region; sporozoite surface protein 2 or thrombospondin related anonymous protein (SSP2/TRAP) 78-88 and 504-513. Four of these peptides are conserved amongst all published sequences of P. falciparum strains. We conclude that the modified IFN-gamma ELISPOT assay is a sensitive technique to monitor antigen-specific CD8+ T-lymphocyte responses in human malaria which may help in the improvement and assessment of the efficacy of malaria subunit vaccines.

  17. Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells.

    PubMed

    Ginsburg, H; Atamna, H; Shalmiev, G; Kanaani, J; Krugliak, M

    1996-07-01

    The balanced polymorphism of glucose-6-phosphate dehydrogenase deficiency (G6PD-) is believed to have evolved through the selective pressure of malarial combined with consumption of fava beans. The implicated fava bean constituents are the hydroxypyrimidine glucosides vicine and convicine, which upon hydrolysis of their beta-O-glucosidic bond, became protein pro-oxidants. In this work we show that the glucosides inhibit the growth of Plasmodium falciparum, increase the hexose-monophosphate shunt activity and the phagocytosis of malaria-infected erythrocytes. These activities are exacerbated in the presence of beta-glucosidase, implicating their pro-oxidant aglycones in the toxic effect, and are more pronounced in infected G6PD- erythrocytes. These results suggest that G6PD- infected erythrocytes are more susceptible to phagocytic cells, and that fava bean pro-oxidants are more efficiently suppressing parasite propagation in G6PD- erythrocytes, either by directly affecting parasite growth, or by means of enhanced phagocytic elimination of infected cells. The present findings could account for the relative resistance of G6PD- bearers to falciparum malaria, and establish a link between dietary habits and malaria in the selection of the G6PD- genotype.

  18. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region

    PubMed Central

    2013-01-01

    Background Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies. Results A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD). Most infections (81%) contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs), with 32% of MLGs recovered from multiple (2 – 28) independent subjects. We observed extremely low genotypic richness (R = 0.42) and long persistence of MLGs through time (median = 537 days, range = 1 – 2,997 days). There was a high probability (>5%) of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279) were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD) decayed more rapidly (r2 = 0.17 for markers <10 kb apart) than observed previously in South American samples. Conclusions We conclude that Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies. PMID:23294725

  19. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Azevedo, Mauro F; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R S

    2014-12-03

    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  20. Is Fc gamma receptor IIA (FcγRIIA) polymorphism associated with clinical malaria and Plasmodium falciparum specific antibody levels in children from Burkina Faso?

    PubMed

    Cherif, Mariama K; Sanou, Guillaume S; Bougouma, Edith C; Diarra, Amidou; Ouédraogo, Alphonse; Dolo, Amagana; Troye-Blomberg, Marita; Cavanagh, David R; Theisen, Michael; Modiano, David; Sirima, Sodiomon B; Nebié, Issa

    2015-02-01

    In the present study, the influences of FcγRIIA polymorphism on susceptibility to malaria and antibody responses to Plasmodium falciparum antigens were analyzed in children. We recruited 96 healthy children between 3 and 10 years at the beginning of the high transmission season and we followed up for 5 months through the high transmission season to assess the parasitological, immunological and genetic endpoints in relation to clinical malaria status. There was a similar distribution of homozygous and heterozygous individuals carrying the FcγRIIA-131R/R and FcγRIIA-131R/H allele, whereas the number of FcγRIIA-131H/H homozygous individuals was lower. P. falciparum infection frequency was not associated with the FcγRIIa-131R/H polymorphism. Only IgG antibody responses to GLURP R0 showed a significant association between antibody levels and FcγRIIA polymorphism (p=0.02). IgG levels to MSP2a were significantly higher in children who did not experience any clinical malaria episode compared to those who experienced at least one malaria episode (p=0.019). Cytophilic and non-cytophylic IgG subclass levels were higher in children without malaria than those who experienced at least one malaria episode. This difference was statistically significant for IgG1 to MSP3 (p=0.003) and to MSP2a (p=0.006); IgG3 to MSP2a (p=0.007) and to GLURP R0 (p=0.044); IgG2 to MSP2b (p=0.007) and IgG4 to MSP3 (p=0.051) and to MSP2a (p=0.049). In this study, homozygous carriers of the FcγRIIA-131R/R allele had higher malaria-specific antibody levels compare to the heterozygous carriers FcγRIIA-131R/H alleles and to homozygous carriers of FcγRIIA-131H/H alleles. The pre-existing antibodies responses were related to a reduced subsequent risk of clinical malaria.

  1. Imported malaria in Kuwait.

    PubMed

    Hira, P R; Behbehani, K; Al-Kandari, S

    1985-01-01

    The number of imported malaria cases in Kuwait rose from 87 in 1980 to 504 in 1983, an increase of 579%. The continued resurgence of malaria in endemic zones, improved diagnostic techniques and a heightened awareness of imported malaria have contributed to the increase in the number of microscopically proved cases. Thick blood films fixed in acetone and stained in Giemsa proved a rapid method of diagnosis; species identification on the basis of a thin film on the same slide was performed with ease. Malaria was acquired in 38 countries. Most patients were young male adults. Most of the cases were due to Plasmodium vivax originating from India, although an increasing number of P. falciparum cases are also now being diagnosed from there. P. falciparum infections were evenly distributed throughout the year and most cases presented within 14 days of their arrival in the country. The highest number of P. vivax cases were diagnosed between May and October, when heat stress might have been a factor in precipitating a clinical attack of an infection previously acquired in the endemic zone. Attention is drawn to the importance of delayed attacks of P. vivax and, in semi-immunes, of P. falciparum. The time interval involved in establishing a history of "recent" travel in clinically suspected cases of malaria needs to be more clearly defined in each geographical area. Cases of induced malaria due to transfusion, accidental and congenital infections were identified. The fatality rate due to P. falciparum infections was low. In terms of the risk of renewed transmission, Kuwait may be considered a vulnerable area.

  2. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests

    PubMed Central

    2010-01-01

    Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation. PMID:20470441

  3. Hyponatraemia in severe falciparum malaria: a clinical study of nineteen comatose African children.

    PubMed

    Sowunmi, A

    1996-03-01

    In a prospective study, hyponatraemia was observed in 52.6% of 19 children with cerebral malaria on admission, the plasma sodium ranging from 117 to 129 mumol/l. In addition, a further 10% developed hyponatraemia between 48 and 96 hrs after admission; in half of these, there was continuing urinary sodium loss. The clinical presentation of hypo- and normonatraemic children was similar except for vomiting and hypoglycaemia which were commoner in the normonatraemic and irritability and signs of lower respiratory tract infection which were commoner in the hyponatraemic groups. In hyponatraemic and normonatraemic children, there was a negative correlation between hyponatraemia and parasite density (r = -0.503, P < 0.05) and (r = -0.14, P < 0.05 respectively) and between parasite density and urinary sodium concentration during the first 24 hours of admission (r = -0.034; P < 0.05 and r = -0.045, P > 0.05 respectively). Irrespective of group, a relative increase in plasma sodium in the first 24 hours of admission (positive delta Na 24 h) was associated with a reduction in seizure frequency during this period as compared to the reported 24 hour of pre-admission seizure frequency, and, vice-versa. It is concluded that hyponatraemia is not uncommon in childhood cerebral malaria; urinary sodium loss may be contributory to the hyponatraemia seen in this condition.

  4. Clinical Aspects of Uncomplicated and Severe Malaria

    PubMed Central

    Bartoloni, Alessandro; Zammarchi, Lorenzo

    2012-01-01

    The first symptoms of malaria, common to all the different malaria species, are nonspecific and mimic a flu-like syndrome. Although fever represents the cardinal feature, clinical findings in malaria are extremely diverse and may range in severity from mild headache to serious complications leading to death, particularly in falciparum malaria. As the progression to these complications can be rapid, any malaria patient must be assessed and treated rapidly, and frequent observations are needed to look for early signs of systemic complications. In fact, severe malaria is a life threatening but treatable disease. The protean and nonspecific clinical findings occurring in malaria (fever, malaise, headache, myalgias, jaundice and sometimes gastrointestinal symptoms of nausea, vomiting and diarrhoea) may lead physicians who see malaria infrequently to a wrong diagnosis, such as influenza (particularly during the seasonal epidemic flu), dengue, gastroenteritis, typhoid fever, viral hepatitis, encephalitis. Physicians should be aware that malaria is not a clinical diagnosis but must be diagnosed, or excluded, by performing microscopic examination of blood films. Prompt diagnosis and appropriate treatment are then crucial to prevent morbidity and fatal outcomes. Although Plasmodium falciparum malaria is the major cause of severe malaria and death, increasing evidence has recently emerged that Plasmodium vivax and Plasmodium knowlesi can also be severe and even fatal. PMID:22708041

  5. Adolescent pregnancy and the risk of Plasmodium falciparum malaria and anaemia-a pilot study from Sekondi-Takoradi metropolis, Ghana.

    PubMed

    Orish, Verner N; Onyeabor, Onyekachi S; Boampong, Johnson N; Aforakwah, Richmond; Nwaefuna, Ekene; Iriemenam, Nnaemeka C

    2012-09-01

    The problem of malaria in adolescence has been surpassed by the immense burden of malaria in children, most especially less than 5. A substantial amount of work done on malaria in pregnancy in endemic regions has not properly considered the adolescence. The present study therefore aimed at evaluating the prevalence of Plasmodium falciparum and anaemia infection in adolescent pregnant girls in the Sekondi-Takoradi metropolis, Ghana. The study was carried out at four hospitals in the Sekondi-Takoradi metropolis of the western region of Ghana from January 2010 to October 2010. Structured questionnaires were administered to the consenting pregnant women during their antenatal care visits. Information on education, age, gravidae, occupation and socio-demographic characteristics were recorded. Venous bloods were screened for malaria using RAPID response antibody kit and Geimsa staining while haemoglobin estimations were done by cyanmethemoglobin method. The results revealed that adolescent pregnant girls were more likely to have malaria infection than the adult pregnant women (34.6% verses 21.3%, adjusted OR 1.65, 95% CI, 1.03-2.65, P=0.039). In addition, adolescent pregnant girls had higher odds of anaemia than their adult pregnant women equivalent (43.9% versus 33.2%; adjusted OR 1.63, 95% CI, 1.01-2.62, P=0.046). Taken together, these data suggest that adolescent pregnant girls were more likely to have malaria and anaemia compared to their adult pregnant counterpart. Results from this study shows that proactive adolescent friendly policies and control programmes for malaria and anaemia are needed in this region in order to protect this vulnerable group of pregnant women.

  6. Malaria, Typhoid Fever, and Their Coinfection among Febrile Patients at a Rural Health Center in Northwest Ethiopia: A Cross-Sectional Study.

    PubMed

    Birhanie, Meseret; Tessema, Belay; Ferede, Getachew; Endris, Mengistu; Enawgaw, Bamlaku

    2014-01-01

    Background. Malaria and typhoid fever are major public health problems in tropical and subtropical countries. People in endemic areas are at risk of contracting both infections concurrently. Objectives. The study was aimed at determining the prevalence and associated risk factors of malaria, typhoid, and their coinfection among febrile patients. Methods. A cross-sectional study was conducted on 200 febrile patients suspected for malaria and/or typhoid fever from April to May, 2013, at Ayinba Health Center, Northwest Ethiopia. Blood samples were collected for blood culture, Widal test, and blood film preparation. Data were analyzed using SPSS version 20 statistical software. Results. The prevalence of malaria was 36.5% (n = 73). Among these 32 (43.8%), 30 (41.1%) and 11 (15.1%) were positive for P. falciparum, P. vivax, and mixed infections, respectively. The seroprevalence of typhoid fever was 38 (19%), but 1 (0.5%) with blood culture. Malaria typhoid fever coinfection was 13 (6.5%). 2-5-year-old children and poor hand washing habit were significantly associated with malaria and typhoid infection, respectively (P < 0.05). Conclusions. The prevalence of malaria and typhoid fever was found high. Further studies should be done on the other determinants of malaria and typhoid fever coinfection in different seasons and different study areas.

  7. Evaluation of parasite subpopulations and genetic diversity of the msp1, msp2 and glurp genes during and following artesunate monotherapy treatment of Plasmodium falciparum malaria in Western Cambodia

    PubMed Central

    2013-01-01

    Background Despite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed. Methods Blood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections. Results Considerable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases. Conclusions The parasites responsible for artemisinin-resistant malaria in a

  8. Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum.

    PubMed

    Scholzen, Anja; Sauerwein, Robert W

    2016-02-01

    Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.

  9. Qualification of Standard Membrane-Feeding Assay with Plasmodium falciparum Malaria and Potential Improvements for Future Assays

    PubMed Central

    Miura, Kazutoyo; Deng, Bingbing; Tullo, Gregory; Diouf, Ababacar; Moretz, Samuel E.; Locke, Emily; Morin, Merribeth; Fay, Michael P.; Long, Carole A.

    2013-01-01

    Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA). The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline Q2(R1) details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds) to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability). We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in preclinical and

  10. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays.

    PubMed

    Miura, Kazutoyo; Deng, Bingbing; Tullo, Gregory; Diouf, Ababacar; Moretz, Samuel E; Locke, Emily; Morin, Merribeth; Fay, Michael P; Long, Carole A

    2013-01-01

    Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA). The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline Q2(R1) details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds) to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability). We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in preclinical and

  11. Genome Wide Linkage Study, Using a 250K SNP Map, of Plasmodium falciparum Infection and Mild Malaria Attack in a Senegalese Population

    PubMed Central

    Milet, Jacqueline; Nuel, Gregory; Watier, Laurence; Courtin, David; Slaoui, Yousri; Senghor, Paul; Migot-Nabias, Florence; Gaye, Oumar; Garcia, André

    2010-01-01

    Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5×10−5 and 9×10−5 respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5×10−4). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31–q33 region (p-value = 3.7×10−5). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to

  12. Eliminating Plasmodium falciparum in Hainan, China: a study on the use of behavioural change communication intervention to promote malaria prevention in mountain worker populations

    PubMed Central

    2014-01-01

    Background In the island of Hainan, the great majority of malaria cases occur in mountain worker populations. Using the behavioral change communication (BCC) strategy, an interventional study was conducted to promote mountain worker malaria prevention at a test site. This study found the methods and measures that are suitable for malaria prevention among mountain worker populations. Methods During the Plasmodium falciparum elimination stage in Hainan, a representative sampling method was used to establish testing and control sites in areas of Hainan that were both affected by malaria and had a relatively high density of mountain workers. Two different methods were used: a BCC strategy and a conventional strategy as a control. Before and after the intervention, house visits, core group discussions, and structural surveys were utilized to collect qualitative and quantitative data regarding mountain worker populations (including knowledge, attitudes, and practices [KAPs]; infection status; and serological data), and these data from the testing and control areas were compared to evaluate the effectiveness of BCC strategies in the prevention of malaria. Results In the BCC malaria prevention strategy testing areas, the accuracy rates of malaria-related KAP were significantly improved among mountain worker populations. The accuracy rates in the 3 aspects of malaria-related KAP increased from 37.73%, 37.00%, and 43.04% to 89.01%, 91.53%, and 92.25%, respectively. The changes in all 3 aspects of KAP were statistically significant (p < 0.01). In the control sites, the changes in the indices were not as marked as in the testing areas, and the change was not statistically significant (p > 0.05). Furthermore, in the testing areas, both the percentage testing positive in the serum malaria indirect fluorescent antibody test (IFAT) and the number of people inflicted decreased more significantly than in the control sites (p < 0.01). Conclusion The use of the BCC

  13. Hospital-based study of severe malaria and associated deaths in Myanmar.

    PubMed Central

    Ejov, M. N.; Tun, T.; Aung, S.; Lwin, S.; Sein, K.

    1999-01-01

    The present study identifies factors that contribute to malaria deaths in township hospitals reporting large numbers of such deaths in Myanmar. Between July and December 1995, we identified a total of 101 patients with severe and complicated malaria by screening the cases admitted to hospital with a primary diagnosis of falciparum malaria. Unrousable coma and less marked impairment of consciousness with or without other severe malaria complications, in contrast to severe malaria anaemia, were associated with all malaria deaths. Adult patients with severe malaria were 2.8 times more likely to die than child patients, with the higher risk of death among adults probably being associated with previous exposure to malaria, delay in seeking treatment and severity of the illness before admission. In view of this, we consider that malaria mortality could be reduced by improving peripheral facilities for the management of severe malaria and providing appropriate education to communities, without stepping up vector control activities. PMID:10327709

  14. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Escalante, A A; Lal, A A; Ayala, F J

    1998-01-01

    We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25. PMID:9584096

  15. Open-Label Comparative Clinical Study of Chlorproguanil−Dapsone Fixed Dose Combination (Lapdap™) Alone or with Three Different Doses of Artesunate for Uncomplicated Plasmodium falciparum Malaria

    PubMed Central

    Wootton, Daniel G.; Opara, Hyginus; Biagini, Giancarlo A.; Kanjala, Maxwell K.; Duparc, Stephan; Kirby, Paula L.; Woessner, Mary; Neate, Colin; Nyirenda, Maggie; Blencowe, Hannah; Dube-Mbeye, Queen; Kanyok, Thomas; Ward, Stephen; Molyneux, Malcolm; Dunyo, Sam; Winstanley, Peter A.

    2008-01-01

    The objective of this study was to determine the appropriate dose of artesunate for use in a fixed dose combination therapy with chlorproguanil−dapsone (CPG−DDS) for the treatment of uncomplicated falciparum malaria. Methods Open-label clinical trial comparing CPG−DDS alone or with artesunate 4, 2, or 1 mg/kg at medical centers in Blantyre, Malawi and Farafenni, The Gambia. The trial was conducted between June 2002 and February 2005, including 116 adults (median age 27 years) and 107 children (median age 38 months) with acute uncomplicated Plasmodium falciparum malaria. Subjects were randomized into 4 groups to receive CPG–DDS alone or plus 4, 2 or 1 mg/kg of artesunate once daily for 3 days. Assessments took place on Days 0−3 in hospital and follow-up on Days 7 and 14 as out-patients. Efficacy was evaluated in the Day 3 per-protocol (PP) population using mean time to reduce baseline parasitemia by 90% (PC90). A number of secondary outcomes were also included. Appropriate artesunate dose was determined using a pre-defined decision matrix based on primary and secondary outcomes. Treatment emergent adverse events were recorded from clinical assessments and blood parameters. Safety was evaluated in the intent to treat (ITT) population. Results In the Day 3 PP population for the adult group (N = 85), mean time to PC90 was 19.1 h in the CPG−DDS group, significantly longer than for the +artesunate 1 mg/kg (12.5 h; treatment difference −6.6 h [95%CI −11.8, −1.5]), 2 mg/kg (10.7 h; −8.4 h [95%CI −13.6, −3.2]) and 4 mg/kg (10.3 h; −8.7 h [95%CI −14.1, −3.2]) groups. For children in the Day 3 PP population (N = 92), mean time to PC90 was 21.1 h in the CPG−DDS group, similar to the +artesunate 1 mg/kg group (17.7 h; −3.3 h [95%CI −8.6, 2.0]), though the +artesunate 2 mg/kg and 4 mg/kg groups had significantly shorter mean times to PC90 versus CPG−DDS; 14.4 h (treatment difference −6.4 h [95%CI −11.7, −1.0]) and 12.8 h (−7

  16. Indigenous malaria in a suburb of Ghent, Belgium.

    PubMed

    Peleman, R; Benoit, D; Goossens, L; Bouttens, F; Puydt, H D; Vogelaers, D; Colardyn, F; Van de Woude, K

    2000-01-01

    We report here details of a patient with Plasmodium falciparum malaria which was acquired in the vicinity of Ghent (Evergem) in July 1997. Indigenous malaria disappeared from Belgium in 1938. Due to an increase in international travel, the influx of migrant labor and the changing environmental conditions, there has been an upsurge of imported malaria. Airport- and port-malaria is acquired through the bite of a tropical anophelline mosquito by people whose geographical history excludes exposure to this vector in its natural habitat. As far as we know, only two cases of port-malaria have been reported: in Marseille. We describe here another possible case of port-malaria due to infection with P. falciparum in a 42-year-old woman with an underlying non-Hodgkin lymphoma.

  17. Malaria

    MedlinePlus

    ... common?Malaria is a health problem in many tropical and subtropical countries, including portions of Central and ... these countries. If you are traveling to a tropical area or to a country where malaria is ...

  18. Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand.

    PubMed

    Swan, Heather; Sloan, Lynne; Muyombwe, Anthony; Chavalitshewinkoon-Petmitr, Porntip; Krudsood, Srivicha; Leowattana, Wattana; Wilairatana, Polrat; Looareesuwan, Sornchai; Rosenblatt, Jon

    2005-11-01

    We compared the diagnosis of malaria in 297 patients from Thailand by a real-time polymerase chain reaction (PCR) assay using the LightCycler with conventional microscopy using Giemsa-stained thick and thin blood films. The PCR assay can be completed in one hour and has the potential to detect and identify four species of Plasmodium in a single reaction by use of melting temperature curve analysis (however, we did not detect Plasmodium ovale in this study). Blood was collected, stored, and transported on IsoCode STIX, which provide a stable matrix for the archiving and rapid simple extraction of DNA. A genus-specific primer set corresponding to the 18S ribosomal RNA was used to amplify the target sequence. Fluorescence resonance energy technology hybridization probes were designed for P. falciparum over a region containing basepair mismatches, which allowed differentiation of the other Plasmodium species. The PCR results correlated with the microscopic results in 282 (95%) of 297 patient specimens. Most of these were single-species infections caused by P. vivax (150) and P. falciparum (120), along with 5 P. malariae, 2 mixed infections (P. falciparum and P. vivax), and 5 negative specimens. No negative microscopy specimens were positive by PCR (100% specificity for detection of any Plasmodium). The 15 discrepant results could not be resolved, but given the subjective nature of microscopy and the analytical objectivity of the PCR, the PCR results may be correct. The ability of the PCR method to detect mixed infections or to detect P. ovale could not be determined in this study. Within the limitations of initial equipment costs, this real-time PCR assay is a rapid, accurate, and efficient method for the specific diagnosis of malaria. It may have application in clinical laboratories, as well as in epidemiologic studies and antimalarial efficacy trials.

  19. Severe malaria--analysis of prognostic symptoms and signs in 169 patients treated in Gdynia in 1991-2005.

    PubMed

    Goljan, Jolanta; Nahorski, Wacław Leszek; Wroczyńska, Agnieszka; Felczak-Korzybska, Iwona; Pietkiewicz, Halina

    2006-01-01

    In the period 1991-2005, 169 patients with the diagnosis of malaria were hospitalized in the Department of Tropical and Parasitic Diseases, Institute of Maritime and Tropical Medicine in Gdynia (from 2003--the Academic Centre of Maritime and Tropical Medicine, Medical University of Gdańsk). All the cases were analysed for severity, occurrence of complications and permanent sequelae of the disease. According to the criteria set by the WHO (5), malaria was classified as severe in 36 cases. All of them were Plasmodium falciparum infections or mixed infections: P. f. and another species of the parasite. Patients in this group developed a number of complications, inter alia shock, acute respiratory distress syndrome (ARDS), acute renal failure, blackwater fever, severe anemia, disseminated intravascular coagulation, myocarditis, consciousness disorders of varied degree, acute transient psychoses, and exacerbation of ischemic heart disease. In one case of a pregnant woman, necrosis of the fetus occurred in the course of disease in the 4th month of pregnancy. Moreover, meningoencephalitis was diagnosed in two patients--in one of them concurrently with symptoms and signs of malaria, while in the other one-3 weeks after the symptoms subsided. In 6 patients, permanent sequelae of the disease developed and in 4 patients the disease was fatal. The cause of death was multi-organ failure, with the first sign of poor prognosis being rapidly progressing renal failure resistant to treatment in three men; in one case death resulted from cerebral malaria. In cases of suspected malaria, relapsing malaria or in mixed infections, molecular testing was a valuable complementary tool of diagnosis, which helped in beginning the appropriate treatment.

  20. Experience of malaria in children of a flood affected area: a field hospital study.

    PubMed

    Afzal, M F; Sultan, M A

    2013-07-01

    ABSTRACT To determine the frequency of malaria among children presenting with fever in a flood affected area, and the frequency of Plasmodium vivax and P. falciparum among cases, this cross-sectional study was conducted from 1 September 2010 to 15 January 2011 in the Australian Field Camp and Ehsas Field Hospital, Kot Addu, Muzaffargarh District, Southern Punjab, Pakistan. Each febrile child aged < or = 15 years fulfilling the clinical case definition of suspected uncomplicated malaria was investigated by rapid diagnostic test. Of 20 288 children examined, 3198 (16%) febrile patients fulfilled the clinical case definition and 2406 (75%) cases were positive for malaria. P. vivax, P. falciparum, and co-infection were present in 1562 (65%), 759 (31%) and 85(4%) cases respectively. P. vivax was the most prevalent species followed by P. falciparum. Twenty seven (4%) cases of P. falciparum fulfilled the case definition of cerebral malaria. The age group most affected was 5-9 years (41%)

  1. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  2. An Analysis of the Binding Characteristics of a Panel of Recently Selected ICAM-1 Binding Plasmodium falciparum Patient Isolates

    PubMed Central

    Madkhali, Aymen M.; Alkurbi, Mohammed O.; Szestak, Tadge; Bengtsson, Anja; Patil, Pradeep R.; Wu, Yang; Alharthi, Saeed; Jensen, Anja T. R.; Pleass, Richard; Craig, Alister G.

    2014-01-01

    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants. PMID:25360558

  3. Differential T-cell responses of semi-immune and susceptible malaria subjects to in silico predicted and synthetic peptides of Plasmodium falciparum.

    PubMed

    Dinga, Jerome Nyhalah; Kimbung Mbandi, Stanley; Cho-Ngwa, Fidelis; Fon, Nde Peter; Moliki, Johnson; Efeti, Rose Mary; Nyasa, Babila Raymond; Anong, Damian Nota; Jojic, Nebojsa; Heckerman, David; Wang, Ruobing; Titanji, Vincent P K

    2014-07-01

    Malaria remains a public health hazard in tropical countries as a consequence of the rise and spread of drug and insecticide resistances; hence the need for a vaccine with widespread application. Protective immunity to malaria is known to be mediated by both antibody and cellular immune responses, though characterization of the latter has been less extensive. The aim of the present investigation was to identify novel T-cell epitopes that may contribute to naturally acquired immune responses against malaria. Using the Microsoft software, Epitome™ T-cell peptide epitopes on 19 Plasmodium falciparum proteins in the Plasmodium Database (www.plasmodb.org.PlasmoDB 9.0) were predicted in-silico. The peptides were synthesized and used to stimulate peripheral blood mononuclear cells (PBMCs) in 14 semi-immune and 21 malaria susceptible subjects for interferon-gamma (IFN-γ) production ex-vivo. The level of IFN-γ production, a marker of T-cell responses, was measured by ELISPOT assay in semi-immune subjects (SIS) and frequently sick subjects (FSS) from an endemic zone with perennial malaria transmission. Of the 19 proteins studied, 17 yielded 27 pools (189 peptides), which were reactive with the subjects' PBMCs when tested for IFN-γ production, taking a stimulation index (SI) of ≥2 as a cutoff point for a positive response. There were 10 reactive peptide pools (constituting eight protein loci) with an SI of 10 or greater. Of the 19 proteins studied, two were known vaccine candidates (MSP-8 and SSP2/TRAP), which reacted both with SIS and FSS. Similarly the hypothetical proteins (PFF1030w, PFE0795c, PFD0880w, PFC0065c and PF10_0052) also reacted strongly with both SIS and FSS making them attractive for further characterization as mediators of protective immunity and/or pathogenesis.

  4. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda.

    PubMed

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Steven; Hakizimana, Emmanuel; Mutesa, Leon; Mens, Petra F; Grobusch, Martin P; van Vugt, Michèle; Kumar, Nirbhay

    2016-12-01

    Faced with intense levels of chloroquine (CQ) resistance in Plasmodium falciparum malaria, Rwanda replaced CQ with amodiaquine (AQ)+sulfadoxine-pyrimethamine (SP) in 2001, and subsequently with artemether-lumefantrine (AL) in 2006, as first-line treatments for uncomplicated malaria. Following years of discontinuation of CQ use, re-emergence of CQ-susceptible parasites has been reported in countries including Malawi, Kenya and Tanzania. In contrast, high levels of SP resistant mutant parasites continue to be reported even in countries of presumed reduced SP drug selection pressure. The prevalence and distributions of genetic polymorphisms linked with CQ and SP resistance at two sites of different malaria transmission intensities are described here to better understand drug-related genomic adaptations over time and exposure to varying drug pressures in Rwanda. Using filter paper blood isolates collected from P. falciparum infected patients, DNA was extracted and a nested PCR performed to identify resistance-mediating polymorphisms in the pfcrt, pfmdr1, pfdhps and pfdhfr genes. Amplicons from a total of 399 genotyped samples were analysed by ligase detection reaction fluorescent microsphere assay. CQ susceptible pfcrt 76K and pfmdr1 86N wild-type parasites were found in about 50% and 81% of isolates, respectively. Concurrently, SP susceptible pfdhps double (437G-540E), pfdhfr triple (108N-51I-59R), quintuple pfdhps 437G-540E/pfdhfr 51I-59R-108N and sextuple haplotypes were found in about 84%, 85%, 74% and 18% of isolates, respectively. High-level SP resistance associated pfdhfr 164L and pfdhps 581G mutant prevalences were noted to decline. Mutations pfcrt 76T, pfdhfr 59R and pfdhfr 164L were found differentially distributed between the two study sites with the pfdhfr 164L mutants found only at Ruhuha site, eastern Rwanda. Overall, sustained intense levels of SP resistance mutations and a recovery of CQ susceptible parasites were found in this study following 7 years

  5. Humoral and cell-mediated immunity to the Plasmodium falciparum ring-infected erythrocyte surface antigen in an adult population exposed to highly endemic malaria.

    PubMed Central

    Beck, H P; Felger, I; Genton, B; Alexander, N; al-Yaman, F; Anders, R F; Alpers, M

    1995-01-01

    A parasitological and immunological survey was carried out in an area in Papua New Guinea highly endemic for malaria. Two hundred fourteen adult individuals were selected for studies to assess their immune responses against the malaria vaccine candidate ring-infected erythrocyte surface antigen (RESA). Total immunoglobulin G (IgG) antibodies directed against RESA as well as specific IgG1, IgG2, and IgG3 antibodies were determined. Humoral responses directed against RESA were frequent in all IgG subclasses. Only IgG3 responses were found to be age dependent. Total anti-RESA IgG antibodies were not correlated with protection against malaria as measured by parasite prevalence, parasite density, or health center attendance. In contrast, cytophilic antibodies (IgG1 and IgG3) were associated with reduced Plasmodium falciparum prevalence and reduced health center attendance. T-cell proliferation in general was low and very infrequent. No correlation between humoral and cellular immune responses could be found. Parasite density, parasite prevalence, and health center visits tended to be reduced in individuals with good humoral and cell-mediated immune responses. PMID:7822028

  6. Hemoglobin E Prevalence among Ethnic Groups Residing in Malaria-Endemic Areas of Northern Thailand and Its Lack of Association with Plasmodium falciparum Invasion In Vitro

    PubMed Central

    Inti, Pitsinee; Chawansuntati, Kriangkrai; Svasti, Saovaros; Fucharoen, Suthat; Kangwanpong, Daoroong; Kampuansai, Jatupol

    2016-01-01

    Hemoglobin E (HbE) is one of the most common hemoglobin variants caused by a mutation in the β-globin gene, and found at high frequencies in various Southeast Asian groups. We surveyed HbE prevalence among 8 ethnic groups residing in 5 villages selected for their high period malaria endemicity, and 5 for low endemicity in northern Thailand, in order to uncover factors which may affect genetic persistence of HbE in these groups. We found the overall HbE prevalence 6.7%, with differing frequencies from 0% in the Pwo Karen, the Lawa, and the Skaw Karen to 24% in the Mon. All HbE genes were heterozygous (AE). Differences in HbE prevalence among the studied ethnic groups indirectly documents that ancestries and evolutionary forces, such as drift and admixture, are the important factors in the persistence of HbE distribution in northern Thailand. Furthermore, the presence of HbE in groups of northern Thailand had no effect on the in vitro infectivity and proliferation of Plasmodium falciparum, nor the production of hemozoin, a heme crystal produced by malaria parasites, when compared to normal red-blood-cell controls. Our data may contribute to a better understanding on the persistence of HbE among ethnic groups and its association with malaria. PMID:26808200

  7. Hemoglobin E Prevalence among Ethnic Groups Residing in Malaria-Endemic Areas of Northern Thailand and Its Lack of Association with Plasmodium falciparum Invasion In Vitro.

    PubMed

    Lithanatudom, Pathrapol; Wipasa, Jiraprapa; Inti, Pitsinee; Chawansuntati, Kriangkrai; Svasti, Saovaros; Fucharoen, Suthat; Kangwanpong, Daoroong; Kampuansai, Jatupol

    2016-01-01

    Hemoglobin E (HbE) is one of the most common hemoglobin variants caused by a mutation in the β-globin gene, and found at high frequencies in various Southeast Asian groups. We surveyed HbE prevalence among 8 ethnic groups residing in 5 villages selected for their high period malaria endemicity, and 5 for low endemicity in northern Thailand, in order to uncover factors which may affect genetic persistence of HbE in these groups. We found the overall HbE prevalence 6.7%, with differing frequencies from 0% in the Pwo Karen, the Lawa, and the Skaw Karen to 24% in the Mon. All HbE genes were heterozygous (AE). Differences in HbE prevalence among the studied ethnic groups indirectly documents that ancestries and evolutionary forces, such as drift and admixture, are the important factors in the persistence of HbE distribution in northern Thailand. Furthermore, the presence of HbE in groups of northern Thailand had no effect on the in vitro infectivity and proliferation of Plasmodium falciparum, nor the production of hemozoin, a heme crystal produced by malaria parasites, when compared to normal red-blood-cell controls. Our data may contribute to a better understanding on the persistence of HbE among ethnic groups and its association with malaria.

  8. The Malaria TaqMan Array Card: 87 assays for Plasmodium falciparum drug resistance, speciation, and genotyping in a single reaction.

    PubMed

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Jacob, Shevin; Banura, Patrick; Moore, Christopher; Huang, Fang; Laufer, Miriam; Houpt, Eric; Guler, Jennifer

    2017-03-06

    Antimalarial drug resistance exacerbates the global disease burden and complicates eradication efforts. To facilitate the surveillance of resistance markers in malaria-endemic countries, we developed a suite of TaqMan assays for known resistance markers and compartmentalized them into a single array card (TAC). We included 87 assays for species identification, the detection of Plasmodium falciparum mutations associated with chloroquine, atovaquone, pyrimethamine, sulfadoxine, and artemisinin resistance, and neutral single nucleotide polymorphism (SNP) genotyping. Assay performance was first optimized using DNA from common laboratory parasite lines and plasmid controls. The limit of detection was 0.1-10 pg of DNA and yielded 100% accuracy when compared to sequencing. The tool was then evaluated on 87 clinical blood samples from around the world and the malaria-TAC once again achieved 100% accuracy when compared to sequencing, plus detected the presence of mixed infections in clinical samples. With its streamlined protocol and high accuracy, this malaria-TAC should be a useful tool for large-scale antimalarial resistance surveillance.

  9. Development of Potent and Selective Plasmodium falciparum Calcium-Dependent Protein Kinase 4 (PfCDPK4) Inhibitors that Block the Transmission of Malaria to Mosquitoes

    PubMed Central

    Vidadala, Rama Subba Rao; Ojo, Kayode K.; Johnson, Steven M.; Zhang, Zhongsheng; Leonard, Stephen E.; Mitra, Arinjay; Choi, Ryan; Reid, Molly C.; Keyloun, Katelyn R.; Fox, Anna M.W.; Kennedy, Mark; Silver-Brace, Tiffany; Hume, Jen C. C.; Kappe, Stefan; Verlinde, Christophe L.M.J.; Fan, Erkang; Merritt, Ethan A.; Van Voorhis, Wesley C.; Maly, Dustin J.

    2014-01-01

    Malaria remains a major health concern for a large percentage of the world’s population. While great strides have been made in reducing mortality due to malaria, new strategies and therapies are still needed. Therapies that are capable of blocking the transmission of Plasmodium parasites are particularly attractive, but only primaquine accomplishes this, and toxicity issues hamper its widespread use. In this study, we describe a series of pyrazolopyrimidine- and imidazopyrazine-based compounds that are potent inhibitors of PfCDPK4, which is a calcium-activated Plasmodium protein kinase that is essential for exflagellation of male gametocytes. Thus, PfCDPK4 is essential for the sexual development of Plasmodium parasites and their ability to infect mosquitos. We demonstrate that two structural features in the ATP-binding site of PfCDPK4 can be exploited in order to obtain potent and selective inhibitors of this enzyme. Furthermore, we demonstrate that pyrazolopyrimidine-based inhibitors that are potent inhibitors of the in vitro activity of PfCDPK4 are also able to block P. falciparum exflagellation with no observable toxicity to human cells. This medicinal chemistry effort serves as a valuable starting point in the development of safe, transmission-blocking agents for the control of malaria. PMID:24531197

  10. Prophylaxis of Malaria

    PubMed Central

    Schwartz, Eli

    2012-01-01

    Malaria prevention in travelers to endemic areas remains dependent principally on chemoprophylaxis. Although malaria chemoprophylaxis refers to all malaria species, a distinction should be drawn between falciparum malaria prophylaxis and the prophylaxis of the relapsing malaria species (vivax & ovale). While the emergence of drug resistant strains, as well as the costs and adverse reactions to medications, complicate falciparum prophylaxis use, there are virtually no drugs available for vivax prophylaxis, beside of primaquine. Based on traveler’s malaria data, a revised recommendation for using chemoprophylaxis in low risk areas should be considered. PMID:22811794

  11. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype.

    PubMed

    Brown, Tyler S; Jacob, Christopher G; Silva, Joana C; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V; Cummings, Michael P

    2015-03-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives.

  12. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali

    PubMed Central

    Adomako-Ankomah, Yaw; Chenoweth, Matthew S.; Durfee, Katelyn; Doumbia, Saibou; Konate, Drissa; Doumbouya, Mory; Keita, Abdoul S.; Nikolaeva, Daria; Tullo, Gregory S.; Anderson, Jennifer M.; Fairhurst, Rick M.; Daniels, Rachel; Volkman, Sarah K.; Diakite, Mahamadou; Long, Carole A.

    2017-01-01

    The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1–65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk. PMID:28158202

  13. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali.

    PubMed

    Adomako-Ankomah, Yaw; Chenoweth, Matthew S; Durfee, Katelyn; Doumbia, Saibou; Konate, Drissa; Doumbouya, Mory; Keita, Abdoul S; Nikolaeva, Daria; Tullo, Gregory S; Anderson, Jennifer M; Fairhurst, Rick M; Daniels, Rachel; Volkman, Sarah K; Diakite, Mahamadou; Miura, Kazutoyo; Long, Carole A

    2017-01-01

    The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.

  14. Diagnosis and Treatment of Plasmodium vivax Malaria

    PubMed Central

    Baird, J. Kevin; Valecha, Neena; Duparc, Stephan; White, Nicholas J.; Price, Ric N.

    2016-01-01

    The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P. vivax malaria. PMID:27708191

  15. Cerebral malaria: insight into pathogenesis, complications and molecular biomarkers

    PubMed Central

    Yusuf, Farah Hafiz; Hafiz, Muhammad Yusuf; Shoaib, Maria; Ahmed, Syed Ahsanuddin

    2017-01-01

    Cerebral malaria is a medical emergency. All patients with Plasmodium falciparum malaria with neurologic manifestations of any degree should be urgently treated as cases of cerebral malaria. Pathogenesis of cerebral malaria is due to damaged vascular endothelium by parasite sequestration, inflammatory cytokine production and vascular leakage, which result in brain hypoxia, as indicated by increased lactate and alanine concentrations. The levels of the biomarkers’ histidine-rich protein II, angiopoietin-Tie-2 system and plasma osteoprotegrin serve as diagnostic and prognostic markers. Brain imaging may show neuropathology around the caudate and putamen. Mortality is high and patients who survive sustain brain injury which manifests as long-term neurocognitive impairments. PMID:28203097

  16. Plasmodium falciparum Infection Does Not Affect Human Immunodeficiency Virus Viral Load in Coinfected Rwandan Adults

    PubMed Central

    Subramaniam, Krishanthi; Plank, Rebeca M.; Lin, Nina; Goldman-Yassen, Adam; Ivan, Emil; Becerril, Carlos; Kemal, Kimdar; Heo, Moonseong; Keller, Marla J.; Mutimura, Eugene; Anastos, Kathryn; Daily, Johanna P.

    2014-01-01

    Background  Plasmodium falciparum infection has been reported to increase human immunodeficiency virus (HIV) viral load (VL), which can facilitate HIV transmission. We prospectively studied the impact of mild P falciparum coinfection on HIV VL in Rwanda. Methods  We measured plasma HIV VL at presentation with malaria infection and weekly for 4 weeks after artemether-lumefantrine treatment in Rwandan adults infected with HIV with P falciparum malaria. Regression analyses were used to examine associations between malaria infection and HIV VL changes. Samples with detectable virus underwent genotypic drug-resistance testing. Results  We enrolled 28 HIV-malaria coinfected patients and observed 27 of them for 5 weeks. Three patients (11%) were newly diagnosed with HIV. Acute P falciparum infection had no significant effect on HIV VL slope over 28 days of follow-up. Ten patients with VL <40 copies/mL at enrollment maintained viral suppression throughout. Seventeen patients had a detectable VL at enrollment including 9 (53%) who reported 100% adherence to ARVs; 3 of these had detectable genotypic drug resistance. Conclusions  Unlike studies from highly malaria-endemic areas, we did not identify an effect of P falciparum infection on HIV VL; therefore, malaria is not likely to increase HIV-transmission risk in our setting. However, routine HIV testing should be offered to adults presenting with acute malaria in Rwanda. Most importantly, we identified a large percentage of patients with detectable HIV VL despite antiretroviral (ARV) therapy. Some of these patients had HIV genotypic drug resistance. Larger studies are needed to define the prevalence and factors associated with detectable HIV VL in patients prescribed ARVs in Rwanda. PMID:25734136

  17. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross–Boosting of Immune Responses

    PubMed Central

    Cao, Yi; Bansal, Geetha P.; Merino, Kristen; Kumar, Nirbhay

    2016-01-01

    In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites. PMID:27438603

  18. Clearance of young parasite forms following treatment of falciparum malaria in humans: comparison of three simple mathematical models.

    PubMed Central

    Davis, T. M.; Martin, R. B.

    1997-01-01

    To characterize post-treatment clearance of young forms of Plasmodium falciparum from the blood, three differential equation models, a linear decline, a linear then logarithmic decline, and the Michaelis-Menten (MM) kinetic equation, were fitted to log-transformed serial parasite counts from 30 semi-immune patients with synchronous parasitaemias allocated one of six antimalarial drug regimens. The first two equations were solved analytically. The MM equation was solved numerically using a fifth-order Runge-Kutta method. For each equation, parasite clearance was assumed stochastic and log-transformed parasite counts were assumed to be normally distributed at each time-point. Comparisons between models were by Minimum Akaike Information Criterion Estimate. A constrained MM equation fitted the data at least as well as the other two models in 5 of 6 drug groups and also when pooled data were analysed, providing a single index which could be used in drug efficacy studies in similar situations or as part of more complex models that encompass asynchronous, complicated infections. PMID:9287945

  19. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  20. Rapid diagnostic tests for malaria ---Haiti, 2010.

    PubMed

    2010-10-29

    Plasmodium falciparum malaria is endemic to Haiti and remains a major concern for residents, including displaced persons, and emergency responders in the aftermath of the January 12, 2010 earthquake. Microscopy has been the only test approved in the national policy for the diagnosis and management of malaria in Haiti; however, the use of microscopy often has been limited by lack of equipment or trained personnel. In contrast, malaria rapid diagnostic tests (RDTs) require less equipment or training to use. To assist in the timely diagnosis and treatment of malaria in Haiti, the Ministry of Public Health and Population (MSPP), in collaboration with CDC, conducted a field assessment that guided the decision to approve the use of RDTs. This data-driven policy change greatly expands the opportunities for accurate malaria diagnosis across the country, allows for improved clinical management of febrile patients, and will improve the quality of malaria surveillance in Haiti.

  1. Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in Northern Senegal

    PubMed Central

    2013-01-01

    Background The Northern part of Senegal is characterized by a low and seasonal transmission of malaria. However, some Plasmodium falciparum infections and malaria clinical cases are reported during the dry season. This study aims to assess the relationship between IgG antibody (Ab) responses to gSG6-P1 mosquito salivary peptide and the prevalence of P. falciparum infection in children during the dry season in the Senegal River Valley. The positive association of the Ab response to gSG6-P1, as biomarker of human exposure to Anopheles vector bite, and P. falciparum infectious status (uninfected, infected-asymptomatic or infected-symptomatic) will allow considering this biomarker as a potential indicator of P. falciparum infection risk during the dry season. Methods Microscopic examination of thick blood smears was performed in 371 and 310 children at the start (January) and at the end (June) of the dry season, respectively, in order to assess the prevalence of P. falciparum infection. Collected sera were used to evaluate IgG response to gSG6-P1 by ELISA. Association between parasitological and clinical data (infected-asymptomatic or infected-symptomatic) and the anti-gSG6-P1 IgG levels were evaluated during this period. Results The prevalence of P. falciparum infection was very low to moderate according to the studied period and was higher in January (23.5%) compared to June (3.5%). Specific IgG response was also different between uninfected children and asymptomatic carriers of the parasite. Children with P. falciparum infection in the dry season showed higher IgG Ab levels to gSG6-P1 than uninfected children. Conclusions The results strengthen the hypothesis that malaria transmission is maintained during the dry season in an area of low and seasonal transmission. The measurement of IgG responses to gSG6-P1 salivary peptide could be a pertinent indicator of human malaria reservoir or infection risk in this particular epidemiological context. This promising

  2. ATPase activity of Plasmodium falciparum MLH is inhibited by DNA-interacting ligands and dsRNAs of MLH along with UvrD curtail malaria parasite growth.

    PubMed

    Tarique, Mohammed; Chauhan, Manish; Tuteja, Renu

    2016-09-14

    Malaria caused by Plasmodium falciparum is the major disease burden all over the world. Recently, the situation has deteriorated because the malarial parasites are becoming progressively more resistant to numerous commonly used antimalarial drugs. Thus, there is a critical requirement to find other means to restrict and eliminate malaria. The mismatch repair (MMR) machinery of parasite is quite unique in several ways, and it can be exploited for finding new drug targets. MutL homolog (MLH) is one of the major components of MMR machinery, and along with UvrD, it helps in unwinding the DNA. We have screened several DNA-interacting ligands for their effect on intrinsic ATPase activity of PfMLH protein. This screening suggested that several ligands such as daunorubicin, etoposide, ethidium bromide, netropsin, and nogalamycin are inhibitors of the ATPase activity of PfMLH, and their apparent IC50 values range from 2.1 to 9.35 μM. In the presence of nogalamycin and netropsin, the effect was significant because in their presence, the V max value dropped from 1.024 μM of hydrolyzed ATP/min to 0.596 and 0.643 μM of hydrolyzed ATP/min, respectively. The effect of double-stranded RNAs of PfMLH and PfUvrD on growth of P. falciparum 3D7 strain was studied. The parasite growth was significantly inhibited suggesting that these components belonging to MMR pathway are crucial for the survival of the parasite.

  3. Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests

    PubMed Central

    Rogier, Eric; Plucinski, Mateusz; Lucchi, Naomi; Mace, Kimberly; Chang, Michelle; Lemoine, Jean Frantz; Candrinho, Baltazar; Colborn, James; Dimbu, Rafael; Fortes, Filomeno; Udhayakumar, Venkatachalam; Barnwell, John

    2017-01-01

    Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The