Science.gov

Sample records for falciparum msp1 block2

  1. Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions

    PubMed Central

    Zervos, Thomas M.; Hernandez, Jean N.; Sutton, Patrick L.; Branch, Oralee H.

    2013-01-01

    SUMMARY The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections. PMID:22339946

  2. A malaria vaccine based on the polymorphic block 2 region of MSP-1 that elicits a broad serotype-spanning immune response.

    PubMed

    Cowan, Graeme J M; Creasey, Alison M; Dhanasarnsombut, Kelwalin; Thomas, Alan W; Remarque, Edmond J; Cavanagh, David R

    2011-01-01

    Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.

  3. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes

    PubMed Central

    2011-01-01

    Background Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia. Methods Seventy-five P. falciparum isolates were genotyped by using nested-PCR of MSP-1 (block 2) and MSP-2 (block 3). Results MSP-1 and MSP-2 allelic families were identified in 65 blood samples. RO33 was the predominant MSP-1 allelic family identified in 80.0% (52/65) of the samples while K1 family had the least frequency. Of the MSP-2 allelic families, 3D7 showed higher frequency (76.0%) compared to FC27 (20.0%). The multiplicity of P. falciparum infection (MOI) was 1.37 and 1.20 for MSP-1 and MSP-2, respectively. A total of seven alleles were detected; of which three MSP-1 allelic families (RO33, MAD20 and K1) were monomorphic in terms of size while MSP-2 alleles were polymorphic (two 3D7 and two FC27). Heterozygosity (HE) was 0.57 and 0.55 for MSP-1 and MSP-2, respectively. Conclusions The study showed that the MOI of P. falciparum is low, reflected the low intensity of malaria transmission in Pahang, Malaysia; RO33 and 3D7 were the most predominant circulating allelic families. The findings showed that P. falciparum has low allelic diversity with a high frequency of alleles. As a result, antimalarial drug efficacy trials based on MSP genotyping should be carefully interpreted. PMID:22166488

  4. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes.

    PubMed

    Atroosh, Wahib M; Al-Mekhlafi, Hesham M; Mahdy, Mohammed Ak; Saif-Ali, Riyadh; Al-Mekhlafi, Abdulsalam M; Surin, Johari

    2011-12-13

    Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia. Seventy-five P. falciparum isolates were genotyped by using nested-PCR of MSP-1 (block 2) and MSP-2 (block 3). MSP-1 and MSP-2 allelic families were identified in 65 blood samples. RO33 was the predominant MSP-1 allelic family identified in 80.0% (52/65) of the samples while K1 family had the least frequency. Of the MSP-2 allelic families, 3D7 showed higher frequency (76.0%) compared to FC27 (20.0%). The multiplicity of P. falciparum infection (MOI) was 1.37 and 1.20 for MSP-1 and MSP-2, respectively. A total of seven alleles were detected; of which three MSP-1 allelic families (RO33, MAD20 and K1) were monomorphic in terms of size while MSP-2 alleles were polymorphic (two 3D7 and two FC27). Heterozygosity (HE) was 0.57 and 0.55 for MSP-1 and MSP-2, respectively. The study showed that the MOI of P. falciparum is low, reflected the low intensity of malaria transmission in Pahang, Malaysia; RO33 and 3D7 were the most predominant circulating allelic families. The findings showed that P. falciparum has low allelic diversity with a high frequency of alleles. As a result, antimalarial drug efficacy trials based on MSP genotyping should be carefully interpreted.

  5. MAD 20 alleles of merozoite surface protein-1 (msp-1) are associated with severe Plasmodium falciparum malaria in Pakistan.

    PubMed

    Ghanchi, Najia Karim; Hasan, Zahra; Islam, Muniba; Beg, Mohammad Asim

    2015-04-01

    Various factors determine the outcome of Plasmodium falciparum infection such as parasite load, sequestration, adhesion molecules, and immune mediators. P. falciparum merozoite surface protein-1 (msp-1) and msp-2 genotypes were also found associated with severe disease. We investigated the association between msp-1 and msp-2 genotypes in patients with uncomplicated malaria (UM) and severe malaria (SM). Twenty-two malaria patients with microscopy-confirmed P. falciparum infection and eight healthy endemic controls were selected for analysis. Nested polymerase chain reaction (PCR) was used to identify P. falciparum genotypes. The plasma concentration of cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)] and chemokines [chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL10] were evaluated using enzyme-linked immunosorbent assay (ELISA). TNF-α levels were significantly higher in both UM (389 pg/mL, p = 0.020) and SM (771 pg/mL, p = 0.004) compared with healthy controls, while they were greater in SM (p = 0.012) as compared to UM. CXCL9 levels were significantly raised in SM as compared to UM and negative controls (NCs). CXCL10 levels were raised in UM (550 pg/mL, p = 0.001) and SM (1480 pg/mL, p = 0.01) as compared with NCs. Increased levels of IL-6 were found in patients carrying the FC27 allelic type of msp-2. A higher prevalence of MAD 20 and K1 msp-1 alleles was observed in the SM group compared to UM. Overall, a greater prevalence of MAD 20 alleles and increased serum TNF-α and CXCL9 levels were associated with severe outcome in malaria. Understanding the diversity of malaria genotypes is important for predicting disease-related outcomes of P. falciparum infection in endemic areas. Copyright © 2014. Published by Elsevier B.V.

  6. Variation in the relationship between anti-MSP-1(19) antibody response and age in children infected with Plasmodium falciparum during the dry and rainy seasons.

    PubMed

    Omosun, Y O; Anumudu, C I; Adoro, S; Odaibo, A B; Sodeinde, O; Holder, A A; Nwagwu, M; Nwuba, R I

    2005-09-01

    Malaria remains a major parasitic disease in Africa, with 300-500 million new infections each year. There is therefore an urgent need for the development of new effective measures, including vaccines. Plasmodium falciparum merozoite surface protein-1(19) (MSP-1(19)) is a prime candidate for a blood-stage malaria vaccine. Blood samples were collected from children aged 10 days to 15 years in the months of January-March (N = 351) and October-November (N = 369) corresponding to the dry and rainy seasons, respectively. P. falciparum infection was determined by microscopy and enzyme linked immunosorbent assay (ELISA) was used to determine the total IgG and IgG subclasses. There was a significant increase in the mean anti-MSP-1(19) antibody titre in the dry season (p < 0.05), compared to the rainy season. A significantly positive correlation between the anti-MSP-1(19) antibody titre and parasite density (p < 0.01, r = 0.138) was observed. In the rainy season, unlike in the dry season, P. falciparum positive children had higher anti-MSP-1(19) antibody titres than P. falciparum negative children and this difference was significant (p < 0.05). When all individuals were grouped together, the anti-MSP-1(19) antibody titre increased with age in both seasons (r = 0.186 and 0.002), this increase was more apparent in the dry season. However, when the study population was divided into P. falciparum positive and negative groups, it was observed that in the rainy season, there was a negative correlation between anti-MSP-1(19) titre and age in P. falciparum positive individuals, while those who were P. falciparum negative had a positive correlation between anti-MSP-1(19) titre and age. Analysis of anti-MSP-1(19) IgG subclass showed that IgG1 and IgG3 mean titres were highest in both the dry and rainy seasons with an increase in the mean antibody titres for IgG1, IgG2 and IgG3 in the rainy season. In the dry season there was a positive correlation between IgG1, IgG2, and IgG3 titres

  7. Genetic Polymorphism of msp1 and msp2 in Plasmodium falciparum Isolates from Côte d'Ivoire versus Gabon.

    PubMed

    Yavo, William; Konaté, Abibatou; Mawili-Mboumba, Denise Patricia; Kassi, Fulgence Kondo; Tshibola Mbuyi, Marie L; Angora, Etienne Kpongbo; Menan, Eby I Hervé; Bouyou-Akotet, Marielle K

    2016-01-01

    Introduction. The characterization of genetic profile of Plasmodium isolates from different areas could help in better strategies for malaria elimination. This study aimed to compare P. falciparum diversity in two African countries. Methods. Isolates collected from 100 and 73 falciparum malaria infections in sites of Côte d'Ivoire (West Africa) and Gabon (Central Africa), respectively, were analyzed by a nested PCR amplification of msp1 and msp2 genes. Results. The K1 allelic family was widespread in Côte d'Ivoire (64.6%) and in Gabon (56.6%). For msp2, the 3D7 alleles were more prevalent (>70% in both countries) compared to FC27 alleles. In Côte d'Ivoire, the frequencies of multiple infections with msp1 (45.1%) and msp2 (40.3%) were higher than those found for isolates from Gabon, that is, 30.2% with msp1 and 31.4% with msp2. The overall complexity of infection was 1.66 (SD = 0.79) in Côte d'Ivoire and 1.58 (SD = 0.83) in Gabon. It decreased with age in Côte d'Ivoire in contrast to Gabon. Conclusion. Differences observed in some allelic families and in complexity profile may suggest an impact of epidemiological facies as well as immunological response on genetic variability of P. falciparum.

  8. Mapping the anatomy of a Plasmodium falciparum MSP-1 epitope using pseudopeptide-induced mono- and polyclonal antibodies and CD and NMR conformation analysis.

    PubMed

    Lozano, José Manuel; Espejo, Fabiola; Ocampo, Marisol; Salazar, Luz Mary; Tovar, Diana; Barrera, Nubia; Guzmán, Fanny; Patarroyo, Manuel Elkin

    2004-10-01

    Antigen structure modulation represents an approach towards designing subunit malaria vaccines. A specific epitope's alpha carbon stereochemistry, as well as its backbone topochemistry, was assessed for obtaining novel malarial immunogens. A variety of MSP-1(38-61) Plasmodium falciparum epitope pseudopeptides derived were synthesised, based on solid-phase pseudopeptide chemistry strategies; these included all-L, all-D, partially-D substituted, all-Psi-[NH-CO]-Retro, all-Psi-[NH-CO]-Retro-inverso, and Psi-[CH2NH] reduced amide surrogates. We demonstrate that specific recombinant MSP-1(34-469) fragment binding to red blood cells (RBCs) is specifically inhibited by non-modified MSP-1(42-61), as well as by its V52-L53, M51-V52 reduced amide surrogates and partial-D substitutions in K48 and E49. In vivo tests revealed that reduced amide pseudopeptide-immunised Aotus monkeys induced neutralising antibodies specifically recognising the MSP-1 N-terminus region. These findings support the role of molecular conformation in malaria vaccine development.

  9. [Humoral immune anti-Plasmodium falciparum AMA1 and MSP1 response in two ethnic groups living in sympatry in Mali].

    PubMed

    Dolo, A; Coulibaly, M; Maïga, B; Daou, M; Arama, C; Troye-Blomberg, M; Doumbo, O

    2012-12-01

    Fulani of Mali are known for their lower susceptibility to Plasmodium falciparum malaria than their neighbours, the Dogon, despite similar transmission conditions. However, the mechanisms underlying these differences are poorly understood, particularly those concerning antigenspecific immune responses. The Apical Membrane Antigen 1 (AMA1) and the Merozoite Surface Antigen 1 (MSP1) are two malaria vaccine candidates, which play a pivotal role during the invasion of parasites into erythrocytes, and in the case of AMA1, of hepatocytes. Therefore, we analyzed the level of anti-AMA1 and anti-MSP1 antibodies (FVO and 3D7 alleles), by using ELISA (Enzyme Linked Immuno Sorbent Assay) to investigate whether there are differences between the two ethnic groups. Our results show that the splenic rate, the level of anti-AMA1 and anti-MSP1 were significantly higher in Fulani compared to Dogon; while the parasite rate was lower in Fulani group compared to Dogon. Our results suggest that the lower susceptibility of Fulani to malaria could be due to the higher specific humoral responses against AMA1 and MSP 1 in Fulani's ethnic group compared to Dogon.

  10. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175.

    PubMed

    Chitnis, Chetan E; Mukherjee, Paushali; Mehta, Shantanu; Yazdani, Syed Shams; Dhawan, Shikha; Shakri, Ahmad Rushdi; Bhardwaj, Rukmini; Bharadwaj, Rukmini; Gupta, Puneet Kumar; Hans, Dhiraj; Mazumdar, Suman; Singh, Bijender; Kumar, Sanjeev; Pandey, Gaurav; Parulekar, Varsha; Imbault, Nathalie; Shivyogi, Preethi; Godbole, Girish; Mohan, Krishna; Leroy, Odile; Singh, Kavita; Chauhan, Virander S

    2015-01-01

    A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-1(19), the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Healthy malaria naïve Indian male subjects aged 18-45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10 μg, 25 μg and 50 μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-1(19). Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-1(19) construct needs to be optimised to improve its immunogenicity. Clinical Trial Registry, India CTRI/2010/091/000301.

  11. Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development.

    PubMed

    Moss, David K; Remarque, Edmond J; Faber, Bart W; Cavanagh, David R; Arnot, David E; Thomas, Alan W; Holder, Anthony A

    2012-03-01

    Merozoite surface protein 1 (MSP1) is a target for malaria vaccine development. Antibodies to the 19-kDa carboxy-terminal region referred to as MSP1(19) inhibit erythrocyte invasion and parasite growth, with some MSP1-specific antibodies shown to inhibit the proteolytic processing of MSP1 that occurs at invasion. We investigated a series of antibodies purified from rabbits immunized with MSP1(19) and AMA1 recombinant proteins for their ability to inhibit parasite growth, initially looking at MSP1 processing. Although significant inhibition of processing was mediated by several of the antibody samples, there was no clear relationship with overall growth inhibition by the same antibodies. However, no antibody samples inhibited processing but not invasion, suggesting that inhibition of MSP1 processing contributes to but is not the only mechanism of antibody-mediated inhibition of invasion and growth. Examining other mechanisms by which MSP1-specific antibodies inhibit parasite growth, we show that MSP1(19)-specific antibodies are taken up into invaded erythrocytes, where they persist for significant periods and result in delayed intracellular parasite development. This delay may result from antibody interference with coalescence of MSP1(19)-containing vesicles with the food vacuole. Antibodies raised against a modified recombinant MSP1(19) sequence were more efficient at delaying intracellular growth than those to the wild-type protein. We propose that antibodies specific for MSP1(19) can mediate inhibition of parasite growth by at least three mechanisms: inhibition of MSP1 processing, direct inhibition of invasion, and inhibition of parasite development following invasion. The balance between mechanisms may be modulated by modifying the immunogen used to induce the antibodies.

  12. Influence of Sickle Cell Gene on the Allelic Diversity at the msp-1 locus of Plasmodium falciparum in Adult Patients with Severe Malaria

    PubMed Central

    Patel, Dilip Kumar; Mashon, Ranjeet Singh; Purohit, Prasanta; Meher, Satyabrata; Dehury, Snehadhini; Marndi, Chhatray; Das, Kishalaya; Kullu, Bipin Kishore; Patel, Siris; Das, Padmalaya

    2015-01-01

    Although several studies have supported that sickle cell trait (HbAS) protects against falciparum malaria, the exact mechanism by which sickle gene confers protection is unclear. Further, there is no information on the influence of the sickle gene on the parasitic diversity of P. falciparum population in severe symptomatic malaria. This study was undertaken to assess the effect of the sickle gene on the parasite densities and diversities in hospitalized adult patients with severe falciparum malaria. The study was carried out in 166 adults hospitalized subjects with severe falciparum malaria at Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Odisha, India. They were divided into three groups on the basis of hemoglobin variants HbAA (n=104), HbAS (n=30) and HbSS (n=32). The msp-1 loci were genotyped using a PCR-based methodology. The parasite densities were significantly high in HbAA compared to HbAS and HbSS. The multiplicity of infection (MOI) and multi-clonality for msp-1 were significantly low in HbSS and HbAS compared to HbAA. The prevalence of K1 (p<0 .0001) and MAD20 (p=0.0003) alleles were significantly high in HbAA. The RO33 allele was detected at a higher frequency in HbSS and HbAS, compared to K1 and MAD20. Sickle gene was found to reduce both the parasite densities and diversity of P. falciparum in adults with severe malaria. PMID:26401239

  13. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3-MSP1 complex.

    PubMed

    Baldwin, Michael; Yamodo, Innocent; Ranjan, Ravi; Li, Xuerong; Mines, Gregory; Marinkovic, Marina; Hanada, Toshihiko; Oh, Steven S; Chishti, Athar H

    2014-12-01

    Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1.

  14. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1.

    PubMed

    Douglas, Alexander D; de Cassan, Simone C; Dicks, Matthew D J; Gilbert, Sarah C; Hill, Adrian V S; Draper, Simon J

    2010-10-18

    Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans. Copyright © 2010. Published by Elsevier Ltd.

  15. Phagocytic activity and pro-inflammatory cytokines production by the murine macrophage cell line J774A.1 stimulated by a recombinant BCG (rBCG) expressing the MSP1-C of Plasmodium falciparum.

    PubMed

    Rapeah, S; Dhaniah, M; Nurul, A A; Norazmi, M N

    2010-12-01

    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.

  16. Evaluation of parasite subpopulations and genetic diversity of the msp1, msp2 and glurp genes during and following artesunate monotherapy treatment of Plasmodium falciparum malaria in Western Cambodia.

    PubMed

    Gosi, Panita; Lanteri, Charlotte A; Tyner, Stuart D; Se, Youry; Lon, Chanthap; Spring, Michele; Char, Mengchuor; Sea, Darapiseth; Sriwichai, Sabaithip; Surasri, Sittidech; Wongarunkochakorn, Saowaluk; Pidtana, Kingkan; Walsh, Douglas S; Fukuda, Mark M; Manning, Jessica; Saunders, David L; Bethell, Delia

    2013-11-09

    Despite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed. Blood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections. Considerable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases. The parasites responsible for artemisinin-resistant malaria in a clinical trial in Western Cambodia comprise

  17. Evaluation of parasite subpopulations and genetic diversity of the msp1, msp2 and glurp genes during and following artesunate monotherapy treatment of Plasmodium falciparum malaria in Western Cambodia

    PubMed Central

    2013-01-01

    Background Despite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed. Methods Blood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections. Results Considerable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases. Conclusions The parasites responsible for artemisinin-resistant malaria in a

  18. Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya.

    PubMed

    Kariuki, Simon K; Njunge, James; Muia, Ann; Muluvi, Geofrey; Gatei, Wangeci; Ter Kuile, Feiko; Terlouw, Dianne J; Hawley, William A; Phillips-Howard, Penelope A; Nahlen, Bernard L; Lindblade, Kim A; Hamel, Mary J; Slutsker, Laurence; Shi, Ya Ping

    2013-08-27

    Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-1(19kDa)) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children <5 years old prior to the introduction of ITNs (1996) and after 5 years of high coverage ITN use (2001). A total of 12 MSP-1(19kDa) haplotypes were detected in 1996 and 2001. The Q-KSNG-L and E-KSNG-L haplotypes corresponding to the FVO and FUP strains of P. falciparum were the most prevalent (range 32-37%), with an overall haplotype diversity of > 0.7. No MSP-1(19kDa) 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide

  19. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar.

    PubMed

    Kang, Jung-Mi; Moon, Sung-Ung; Kim, Jung-Yeon; Cho, Shin-Hyeong; Lin, Khin; Sohn, Woon-Mok; Kim, Tong-Soo; Na, Byoung-Kuk

    2010-05-17

    Merozoite surface protein-1 (MSP-1) and MSP-2 of Plasmodium falciparum are potential vaccine candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in field isolates of P. falciparum represents a major obstacle for the development of an effective vaccine. In this study, genetic polymorphism of MSP-1 and MSP-2 among P. falciparum field isolates from Myanmar was analysed. A total of 63 P. falciparum infected blood samples, which were collected from patients attending a regional hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also conducted to identify allelic diversity in the parasite population. Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in P. falciparum isolates from Myanmar and most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type) were identified. For MSP-2 block 3, a total of 22 alleles (7 for FC27 type and 15 for 3D7 type) were identified. Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in P. falciparum field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of multiplicity of infection.

  20. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar

    PubMed Central

    2010-01-01

    Background Merozoite surface protein-1 (MSP-1) and MSP-2 of Plasmodium falciparum are potential vaccine candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in field isolates of P. falciparum represents a major obstacle for the development of an effective vaccine. In this study, genetic polymorphism of MSP-1 and MSP-2 among P. falciparum field isolates from Myanmar was analysed. Methods A total of 63 P. falciparum infected blood samples, which were collected from patients attending a regional hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also conducted to identify allelic diversity in the parasite population. Results Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in P. falciparum isolates from Myanmar and most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type) were identified. For MSP-2 block 3, a total of 22 alleles (7 for FC27 type and 15 for 3D7 type) were identified. Conclusion Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in P. falciparum field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of multiplicity of infection. PMID:20478015

  1. Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    PubMed Central

    Cavanagh, David R.; Kocken, Clemens H. M.; White, John H.; Cowan, Graeme J. M.; Samuel, Kay; Dubbeld, Martin A.; der Wel, Annemarie Voorberg-van; Thomas, Alan W.; McBride, Jana S.; Arnot, David E.

    2014-01-01

    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals. PMID:24421900

  2. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia.

    PubMed

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  3. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia

    PubMed Central

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  4. Genetic Polymorphism of Plasmodium vivax msp1p, a Paralog of Merozoite Surface Protein 1, from Worldwide Isolates

    PubMed Central

    Wang, Yue; Kaneko, Osamu; Sattabongkot, Jetsumon; Chen, Jun-Hu; Lu, Feng; Chai, Jong-Yil; Takeo, Satoru; Tsuboi, Takafumi; Ayala, Francisco J.; Chen, Yong; Lim, Chae Seung; Han, Eun-Taek

    2011-01-01

    Plasmodium vivax msp1p, a paralog of the candidate vaccine antigen P. vivax merozoite surface protein 1, possesses a signal peptide at its N-terminus and two epidermal growth factor–like domains at its C-terminus with a glycosylphosphatidylinositol attachment site. The msp1p gene locus may have originated by a duplication of the msp1 gene locus in a common ancestor of the analyzed Plasmodium species and lost from P. yoelii, P. berghei, and P. falciparum during their evolutionary history. Full-length sequences of the msp1p gene were generally highly conserved; they had a few amino acid substitutions, one highly polymorphic E/Q-rich region, and a single-to-triple hepta-peptide repeat motif. Twenty-one distinguishable allelic types (A1–A21) of the E/Q-rich region were identified from worldwide isolates. Among them, four types were detected in isolates from South Korea. The length polymorphism of the E/Q-rich region might be useful as a genetic marker for population structure studies in malaria-endemic areas. PMID:21292901

  5. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit.

    PubMed

    Valderrama-Aguirre, Augusto; Quintero, Gustavo; Gómez, Andrés; Castellanos, Alejandro; Pérez, Yobana; Méndez, Fabián; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2005-11-01

    The merozoite surface protein 1 (MSP-1) is expressed in all Plasmodium species and is considered a major malaria vaccine candidate. We found that MSP-1 from Plasmodium vivax (PvMSP-1) contains a region of significant sequence homology with the 190L subunit vaccine derived from the P. falciparum MSP-1. The fragment, termed Pv200L, was expressed as a recombinant protein in Escherichia coli (rPv200L) and used to asses its immunologic relevance as a vaccine target. A cross-sectional, seroepidemiologic study conducted in Buenaventura, Colombia showed that 52.2% (95% confidence interval [CI] = 39.8-64.3) of individuals previously exposed to P. vivax and 72.8% (95% CI = 61.8-82.1) of P. vivax-infected patients had IgG antibodies to rPv200L. Immunization of BALB/c mice and Aotus monkeys induced IgG antibodies (titer > 10(6)) that cross-reacted with P. vivax parasites. Immunized monkeys displayed partial protection against a challenge with P. vivax blood stages. Our results suggest that Pv200L is a new malaria vaccine subunit and deserves further testing.

  6. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  7. Identification and characterization of the merozoite surface protein 1 (msp1) gene in a host-generalist avian malaria parasite, Plasmodium relictum (lineages SGS1 and GRW4) with the use of blood transcriptome.

    PubMed

    Hellgren, Olof; Kutzer, Megan; Bensch, Staffan; Valkiūnas, Gediminas; Palinauskas, Vaidas

    2013-10-30

    The merozoite surface protein 1 (msp1) is one of the most studied vaccine candidate genes in mammalian Plasmodium spp. to have been used for investigations of epidemiology, population structures, and immunity to infections. However methodological difficulties have impeded the use of nuclear markers such as msp1 in Plasmodium parasites causing avian malaria. Data from an infection transcriptome of the host generalist avian malaria parasite Plasmodium relictum was used to identify and characterize the msp1 gene from two different isolates (mtDNA lineages SGS1 and GRW4). The aim was to investigate whether the msp1 gene in avian malaria species shares the properties of the msp1 gene in Plasmodium falciparum in terms of block variability, conserved anchor points and repeat motifs, and further to investigate the degree to which the gene might be informative in avian malaria parasites for population and epidemiological studies. Reads from 454 sequencing of birds infected with avian malaria was used to develop Sanger sequencing protocols for the msp1 gene of P. relictum. Genetic variability between variable and conserved blocks of the gene was compared within and between avian malaria parasite species, including P. falciparum. Genetic variability of the msp1 gene in P. relictum was compared with six other nuclear genes and the mtDNA gene cytochrome b. The msp1 gene of P. relictum shares the same general pattern of variable and conserved blocks as found in P. falciparum, although the variable blocks exhibited less variability than P. falciparum. The variation across the gene blocks in P. falciparum spanned from being as conserved as within species variation in P. relictum to being as variable as between the two avian malaria species (P. relictum and Plasmodium gallinaceum) in the variable blocks. In P. relictum the highly conserved p19 region of the peptide was identified, which included two epidermal growth factor-like domains and a fully conserved GPI anchor point. This

  8. Small Molecule Targeting Malaria Merozoite Surface Protein-1 (MSP-1) Prevents Host Invasion of Divergent Plasmodial Species

    PubMed Central

    Chandramohanadas, Rajesh; Basappa; Russell, Bruce; Liew, Kingsley; Yau, Yin Hoe; Chong, Alvin; Liu, Min; Gunalan, Karthigayan; Raman, Rahul; Renia, Laurent; Nosten, Francois; Shochat, Susana Geifman; Dao, Ming; Sasisekharan, Ram; Suresh, Subra; Preiser, Peter

    2014-01-01

    Malaria causes nearly 1 million deaths annually. Recent emergence of multidrug resistance highlights the need to develop novel therapeutic interventions against human malaria. Given the involvement of sugar binding plasmodial proteins in host invasion, we set out to identify such proteins as targets of small glycans. Combining multidisciplinary approaches, we report the discovery of a small molecule inhibitor, NIC, capable of inhibiting host invasion through interacting with a major invasion-related protein, merozoite surface protein-1 (MSP-1). This interaction was validated through computational, biochemical, and biophysical tools. Importantly, treatment with NIC prevented host invasion by Plasmodium falciparum and Plasmodium vivax—major causative organisms of human malaria. MSP-1, an indispensable antigen critical for invasion and suitably localized in abundance on the merozoite surface represents an ideal target for antimalarial development. The ability to target merozoite invasion proteins with specific small inhibitors opens up a new avenue to target this important pathogen. PMID:24864124

  9. Competition between Plasmodium falciparum strains in clinical infections during in vitro culture adaptation.

    PubMed

    Chen, Kexuan; Sun, Ling; Lin, Yingxue; Fan, Qi; Zhao, Zhenjun; Hao, Mingming; Feng, Guohua; Wu, Yanrui; Cui, Liwang; Yang, Zhaoqing

    2014-06-01

    We evaluated the dynamics of parasite populations during in vitro culture adaptation in 15 mixed Plasmodium falciparum infections, which were collected from a hypoendemic area near the China-Myanmar border. Allele types at the msp1 block 2 in the initial clinical samples and during subsequent culture were quantified weekly using a quantitative PCR method. All mixed infections carried two allele types based on the msp1 genotyping result. We also genotyped several polymorphic sites in the dhfr, dhps and mdr1 genes on day 0 and day 28, which showed that most of the common sites analyzed were monomorphic. Two of the three clinical samples mixed at dhps 581 remained stable while one changed to wild-type during the culture. During in vitro culture, we observed a gradual loss of parasite populations with 10 of the 15 mixed infections becoming monoclonal by day 28 based on the msp1 allele type. In most cases, the more abundant msp1 allele types in the clinical blood samples at the beginning of culture became the sole or predominant allele types on day 28. These results suggest that some parasites may have growth advantages and the loss of parasite populations during culture adaptation of mixed infections may lead to biased results when comparing the phenotypes such as drug sensitivity of the culture-adapted parasites.

  10. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice.

    PubMed

    Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Tsuda, Kenichi; Gupta, Ravi; Park, Sook-Young; Kim, Sun Tae; Kang, Kyu Young

    2016-04-01

    The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity.

  11. The Plasmodium falciparum merozoite surface protein-1 19 KD antibody response in the Peruvian Amazon predominantly targets the non-allele specific, shared sites of this antigen

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum re-emerged in Iquitos, Peru in 1994 and is now hypoendemic (< 0.5 infections/person/year). Purportedly non-immune individuals with discrete (non-overlapping) P. falciparum infections can be followed using this population dynamic. Previous work demonstrated a strong association between this population's antibody response to PfMSP1-19KD and protection against febrile illness and parasitaemia. Therefore, some selection for PfMSP1-19KD allelic diversity would be expected if the protection is to allele-specific sites of PfMSP1-19KD. Here, the potential for allele-specific polymorphisms in this population is investigated, and the allele-specificity of antibody responses to PfMSP1-19KD are determined. Methods The 42KD region in PfMSP1 was genotyped from 160 individual infections collected between 2003 and 2007. Additionally, the polymorphic block 2 region of Pfmsp1 (Pfmsp1-B2) was genotyped in 781 infection-months to provide a baseline for population-level diversity. To test whether PfMSP1-19KD genetic diversity had any impact on antibody responses, ELISAs testing IgG antibody response were performed on individuals using all four allele-types of PfMSP1-19KD. An antibody depletion ELISA was used to test the ability of antibodies to cross-react between allele-types. Results Despite increased diversity in Pfmsp1-B2, limited diversity within Pfmsp1-42KD was observed. All 160 infections genotyped were Mad20-like at the Pfmsp1-33KD locus. In the Pfmsp1-19KD locus, 159 (99.4%) were the Q-KSNG-F haplotype and 1 (0.6%) was the E-KSNG-L haplotype. Antibody responses in 105 individuals showed that Q-KNG and Q-TSR alleles generated the strongest immune responses, while Q-KNG and E-KNG responses were more concordant with each other than with those from Q-TSR and E-TSR, and vice versa. The immuno-depletion ELISAs showed all samples responded to the antigenic sites shared amongst all allelic forms of PfMSP1-19KD. Conclusions A non-allele specific

  12. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    PubMed

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identification of msp1 Gene Variants in Populations of Meloidogyne incognita Using PCR-DGGE

    PubMed Central

    Adam, Mohamed; Hallmann, Johannes; Heuer, Holger

    2014-01-01

    Effectors of root-knot nematodes are essential for parasitism and prone to recognition by adapted variants of the host plants. This selective pressure initiates hypervariability of effector genes. Diversity of the gene variants within nematode populations might correlate with host preferences. In this study we developed a method to compare the distribution of variants of the effector gene msp1 among populations of Meloidogyne incognita. Primers were designed to amplify a 234-bp fragment of msp1. Sequencing of cloned PCR products revealed five msp1 variants from seven populations that were distinguishable in their reproduction on five host plants. A protocol for denaturing gradient gel electrophoresis (DGGE) was developed to separate these msp1 variants. DGGE for replicated pools of juveniles from the seven populations revealed ten variants of msp1. A correlation between the presence of a particular gene variant and the reproductive potential on particular hosts was not evident. Especially race 3 showed substantial variation within the population. DGGE fingerprints of msp1 tended to cluster the populations according to their reproduction rate on pepper. The developed method could be useful for analyzing population heterogeneity and epidemiology of M. incognita. PMID:25276001

  14. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  15. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins.

    PubMed

    Okreglak, Voytek; Walter, Peter

    2014-06-03

    The accuracy of tail-anchored (TA) protein targeting to the endoplasmic reticulum (ER) depends on the Guided Entry of Tail-Anchored (Get) protein targeting machinery. The fate of TA proteins that become inappropriately inserted into other organelles, such as mitochondria, is unknown. Here, we identify Msp1, a conserved, membrane-anchored AAA-ATPase (ATPase associated with a variety of cellular activities) that localizes to mitochondria and peroxisomes, as a critical factor in a quality control pathway that senses and degrades TA proteins mistargeted to the outer mitochondrial membrane (OMM). Pex15 is normally targeted by the Get pathway to the ER, from where it travels to peroxisomes. Loss of Msp1 or loss of the Get pathway results in the redistribution of Pex15 to mitochondria. Cells lacking both a functional Get pathway and Msp1 accumulate increased amounts of Pex15 on the OMM and display severely dysfunctional mitochondrial morphology. In addition, Msp1 binds and promotes the turnover of a Pex15 mutant that is misdirected to the OMM. Our data suggest that Msp1 functions in local organelle surveillance by extracting mistargeted proteins, ensuring the fidelity of organelle specific-localization of TA proteins.

  16. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane.

    PubMed

    Weir, Nicholas R; Kamber, Roarke A; Martenson, James S; Denic, Vladimir

    2017-09-14

    Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence.

  17. Low prevalence of the molecular markers of Plasmodium falciparum resistance to chloroquine and sulphadoxine/pyrimethamine in asymptomatic children in Northern Benin

    PubMed Central

    2013-01-01

    Background In Benin, very few studies have been done on the genetics of Plasmodium falciparum and the resistance markers of anti-malarial drugs, while malaria treatment policy changed in 2004. Chloroquine (CQ) and sulphadoxine pyrimethamine (SP) have been removed and replaced by artemisinin-combination therapy (ACT). The objective of this study was to determine the genetic diversity of P. falciparum and the prevalence of P. falciparum molecular markers that are associated with resistance to CQ and SP in northern Benin seven years after the new policy was instituted. Methods The study was conducted in northern Benin, a region characterized by a seasonal malaria transmission. Blood samples were collected in 2012 from children presenting with asymptomatic P. falciparum infections. Samples collected in filter paper were genotyped by primary and nested PCR in block 2 of msp-1 and block 3 of msp-2 to analyse the diversity of P. falciparum. The prevalence of critical point mutations in the genes of Pfcrt (codon 76), Pfmdr1 (codon 86), Pfdhfr (codons, 51, 59 and 108) and Pfdhps (codons 437, 540) was examined in parasite isolates by mutation-specific restriction enzyme digestion. Results Genotyping of 195 isolates from asymptomatic children showed 34 msp-1 and 38 msp-2 genotypes. The multiplicity of infection was 4.51 ± 0.35 for msp-1 and 4.84 ± 0.30 for msp-2. Only the codon 51 of Pfdhfr and codon 437 of Pfdhps showed a high mutation rate: I51: 64.4% (57.3; 71.2); G437: 47.4% (40.2; 54.7), respectively. The prevalence of Pfdhfr triple mutant IRN (I51, R59 and N108) was 1.5% (0.3; 3.9), and Pfdhfr/Pfdhps quadruple mutant IRNG (PfdhfrI51, R59, N108, and PfdhpsG437): 0. 5% (0; 2.5). No mutation was found with codon 540 of Pfdhps. Analysis of mutation according to age (younger or older than ten years) showed similar frequencies in each category without significant difference between the two groups. Conclusions This study showed a high diversity of P. falciparum in

  18. Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection

    PubMed Central

    Elias, Sean C; Choudhary, Prateek; de Cassan, Simone C; Biswas, Sumi; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Hodgson, Susanne H; Duncan, Christopher J A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    Acquisition of non-sterilizing natural immunity to Plasmodium falciparum malaria has been shown in low transmission areas following multiple exposures. However, conflicting data from endemic areas suggest that the parasite may interfere with the induction of effective B-cell responses. To date, the impact of blood-stage parasite exposure on antigen-specific B cells has not been reported following controlled human malaria infection (CHMI). Here we analysed human B-cell responses in a series of Phase I/IIa clinical trials, which include CHMI, using candidate virus-vectored vaccines encoding two blood-stage antigens: merozoite surface protein 1 (MSP1) and apical membrane antigen 1 (AMA1). Previously vaccinated volunteers show boosting of pre-existing antigen-specific memory B-cell (mBC) responses following CHMI. In contrast, unvaccinated malaria-naive control volunteers developed an mBC response against MSP1 but not AMA1. Serum IgG correlated with the mBC response after booster vaccination but this relationship was less well maintained following CHMI. A significant reduction in peripheral MSP1-specific mBC was observed at the point of diagnosis of blood-stage infection. This was coincident with a reduction in peripheral blood B-cell subsets expressing CXCR3 and elevated serum levels of interferon-γ and CXCL9, suggesting migration away from the periphery. These CHMI data confirm that mBC and antibody responses can be induced and boosted by blood-stage parasite exposure, in support of epidemiological studies on low-level parasite exposure. PMID:24303947

  19. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    USGS Publications Warehouse

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  20. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys.

    PubMed Central

    Kumar, S.; Yadava, A.; Keister, D. B.; Tian, J. H.; Ohl, M.; Perdue-Greenfield, K. A.; Miller, L. H.; Kaslow, D. C.

    1995-01-01

    BACKGROUND: The carboxy-terminus of the merozoite surface protein-1 (MSP1) of Plasmodium falciparum has been implicated as a target of protective immunity. MATERIALS AND METHODS: Two recombinant proteins from the carboxy-terminus of MSP1, the 42 kD fused to GST (bMSP1(42)) and the 19 kD (yMSP1(19)), were expressed in Escherichia coli and secreted from Saccharomyces cerevisiae, respectively. To determine if vaccination with these recombinant proteins induces protective immunity, we conducted a randomized, blinded vaccine trial in two species of Aotus monkeys, A. nancymai and A. vociferans. After three injections using Freund's adjuvant, the monkeys were challenged with the virulent Vietnam Oak Knoll (FVO) strain of P. falciparum. RESULTS: All three control monkeys required treatment by Day 19. Two of three monkeys vaccinated with bMSP1(42) required treatment by Day 17, whereas the third monkey controlled parasitemia for 28 days before requiring treatment. In contrast, both of the A. nancymai vaccinated with yMSP1(19) self-resolved an otherwise lethal infection. One of the two yMSP1(19)-vaccinated A. vociferans had a prolonged prepatent period of > 28 days before requiring treatment. No evidence of mutations were evident in the parasites recovered after the prolonged prepatent period. Sera from the two A. nancymai that self-cured had no detectable effect on in vitro invasion. CONCLUSIONS: Vaccination of A. nancymai with yMSP1(19) induced protective immune responses. The course of recrudescing parasitemias in protected monkeys suggested that immunity is not mediated by antibodies that block invasion. Our data indicate that vaccine trials with the highly adapted FVO strain of P. falciparum can be tested in A. nancymai and that MSP1(19) is a promising anti-blood-stage vaccine for human trials. PMID:8529111

  1. A comparative study of natural immune responses against Plasmodium vivax C-terminal merozoite surface protein-1 (PvMSP-1) and apical membrane antigen-1 (PvAMA-1) in two endemic settings

    PubMed Central

    Xia, Hui; Fang, Qiang; Jangpatarapongsa, Kulachart; Zhiyong, Tao; Cui, Liwang; Li, Baiqing; Udomsangpetch, Rachanee

    2015-01-01

    The mechanisms of cellular and humoral immune responses against P. vivax parasite remain poorly understood. Several malaria immunological studies have been conducted in endemic regions where both P. falciparum and P. vivax parasites co-exist. In this study, a comparative analysis of immunity to Plasmodium vivax antigens in different geography and incidence of Plasmodium spp. infection was performed. We characterised antibodies against two P. vivax antigens, PvMSP-1 and PvAMA-1, and the cross-reactivity between these antigens using plasma from acute malaria infected patients living in the central region of China and in the western border of Thailand. P. vivax endemicity is found in central China whereas both P. vivax and P. falciparum are endemic in Thailand. There was an increased level of anti-PvMSP-1/anti-PvAMA-1 in both populations. An elevated level of antibodies to total P. vivax proteins and low level of antibodies to total P. falciparum proteins was found in acute P. vivax infected Chinese, suggesting antibody cross-reactivity between the two species. P. vivax infected Thai patients had both anti-P. vivax and anti-P. falciparum antibodies as expected since both species are present in Thailand. More information on humoral and cell mediated immunity during acute P. vivax-infection in the area where only single P. vivax species existed is of great interest in the relation of building up anti-disease severity caused by P. falciparum. This knowledge will support vaccine development in the future. PMID:26713085

  2. Immunization with the Entamoeba histolytica Surface Metalloprotease EhMSP-1 Protects Hamsters from Amebic Liver Abscess

    PubMed Central

    Roncolato, Eduardo C.; Teixeira, José E.; Barbosa, José E.; Zambelli Ramalho, Leandra N.

    2014-01-01

    Diarrhea and amebic liver abscesses due to invasive Entamoeba histolytica infections are an important cause of morbidity and mortality in the developing world. Entamoeba histolytica adherence and cell migration, two phenotypes linked to virulence, are both aberrant in trophozoites deficient in the metallosurface protease EhMSP-1, which is a homologue of the Leishmania vaccine candidate leishmanolysin (GP63). We examined the potential of EhMSP-1 for use as a vaccine antigen to protect against amebic liver abscesses. First, existing serum samples from South Africans naturally infected with E. histolytica were examined by enzyme-linked immunosorbent assay (ELISA) for the presence of EhMSP-1-specific IgG. Nine of 12 (75%) people with anti-E. histolytica IgG also had EhMSP-1-specific IgG antibodies. We next used a hamster model of amebic liver abscess to determine the effect of immunization with a mixture of four recombinant EhMSP-1 protein fragments. EhMSP-1 immunization stimulated a robust IgG antibody response. Furthermore, EhMSP-1 immunization of hamsters reduced development of severe amebic liver abscesses following intrahepatic injection of E. histolytica by a combined rate of 68% in two independent animal experiments. Purified IgG from immunized compared to control animals bound to the surface of E. histolytica trophozoites and accelerated amebic lysis via activation of the classical complement cascade. We concluded that EhMSP-1 is a promising antigen that warrants further study to determine its full potential as a target for therapy and/or prevention of invasive amebiasis. PMID:25452550

  3. Immunization with the Entamoeba histolytica surface metalloprotease EhMSP-1 protects hamsters from amebic liver abscess.

    PubMed

    Roncolato, Eduardo C; Teixeira, José E; Barbosa, José E; Zambelli Ramalho, Leandra N; Huston, Christopher D

    2015-02-01

    Diarrhea and amebic liver abscesses due to invasive Entamoeba histolytica infections are an important cause of morbidity and mortality in the developing world. Entamoeba histolytica adherence and cell migration, two phenotypes linked to virulence, are both aberrant in trophozoites deficient in the metallosurface protease EhMSP-1, which is a homologue of the Leishmania vaccine candidate leishmanolysin (GP63). We examined the potential of EhMSP-1 for use as a vaccine antigen to protect against amebic liver abscesses. First, existing serum samples from South Africans naturally infected with E. histolytica were examined by enzyme-linked immunosorbent assay (ELISA) for the presence of EhMSP-1-specific IgG. Nine of 12 (75%) people with anti-E. histolytica IgG also had EhMSP-1-specific IgG antibodies. We next used a hamster model of amebic liver abscess to determine the effect of immunization with a mixture of four recombinant EhMSP-1 protein fragments. EhMSP-1 immunization stimulated a robust IgG antibody response. Furthermore, EhMSP-1 immunization of hamsters reduced development of severe amebic liver abscesses following intrahepatic injection of E. histolytica by a combined rate of 68% in two independent animal experiments. Purified IgG from immunized compared to control animals bound to the surface of E. histolytica trophozoites and accelerated amebic lysis via activation of the classical complement cascade. We concluded that EhMSP-1 is a promising antigen that warrants further study to determine its full potential as a target for therapy and/or prevention of invasive amebiasis.

  4. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins

    PubMed Central

    Chen, Yu-Chan; Umanah, George K E; Dephoure, Noah; Andrabi, Shaida A; Gygi, Steven P; Dawson, Ted M; Dawson, Valina L; Rutter, Jared

    2014-01-01

    The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1−/− mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity. PMID:24843043

  5. Multiple genotypes of the merozoite surface proteins 1 and 2 in Plasmodium falciparum infections in a hypoendemic area in Iran.

    PubMed

    Zakeri, Sedigheh; Bereczky, Sándor; Naimi, Parin; Pedro Gil, J; Djadid, Navid Dinparast; Färnert, Anna; Snounou, Georges; Björkman, Anders

    2005-10-01

    In Iran, malaria transmission mainly occurs in south-eastern regions through both Plasmodium falciparum and P. vivax. The genetic diversity of P. falciparum isolates was analysed in 108 patients attending the regional hospital in Chabahar District, using the molecular markers msp1 and msp2. Multiple genotypes were detected in 87% of patients and the mean numbers of msp1 and msp2 genotypes were 2.51 (95% CI: 2.29-2.73) and 2.61 (95% CI: 2.39-2.83) respectively. Various allelic types of msp1 and msp2 were found, with msp2 3D7/IC type detected in 94% of infections. Plasmodium falciparum infections in south-east Iran appear to have a higher genetic diversity than expected for an area of low transmission. A situation of higher transmission in this area may be emerging, possibly because of reduced efficacy of first-line treatments.

  6. A Locally Acquired Falciparum Malaria via Nosocomial Transmission in Korea

    PubMed Central

    Kim, Jung-Yeon; Kim, Jeong-Su; Park, Mi-Hyun; Kang, Young-A; Kwon, Jun-Wook; Cho, Shin-Hyeong; Lee, Byeong-Chul; Kim, Tong-Soo

    2009-01-01

    A 57-year old man who was admitted to an emergency room of a tertiary hospital with hemoptysis developed malarial fever 19 days later and then died from severe falciparum malaria 2 days later. He had not traveled outside of Korea for over 30 years. Through intensive interviews and epidemiological surveys, we found that a foreign patient with a recent history of travel to Africa was transferred to the same hospital with severe falciparum malaria. We confirmed through molecular genotyping of the MSP-1 gene that Plasmodium falciparum genotypes of the 2 patients were identical. It is suggested that a breach of standard infection control precautions resulted in this P. falciparum transmission between 2 patients in a hospital environment. This is the first report of a nosocomial transmission of falciparum malaria in Korea. PMID:19724701

  7. Genetic diversity and multiplicity of infection of Plasmodium falciparum isolates from Kolkata, West Bengal, India.

    PubMed

    Saha, Pabitra; Ganguly, Swagata; Maji, Ardhendu K

    2016-09-01

    The study of genetic diversity of Plasmodium falciparum is necessary to understand the distribution and dynamics of parasite populations. The genetic diversity of P. falciparum merozoite surface protein-1 and 2 has been extensively studied from different parts of world. However, limited data are available from India. This study was aimed to determine the genetic diversity and multiplicity of infection (MOI) of P. falciparum population in Kolkata, West Bengal, India. A total of 80day-zero blood samples from Kolkata were collected during a therapeutic efficacy study in 2008-2009. DNA was extracted; allelic frequency and diversity were investigated by PCR-genotyping method for msp1 and msp2 gene and fragment sizing was done by Bio-Rad Gel-Doc system using Image Lab (version 4.1) software. P. falciparum msp1 and msp2 markers were highly polymorphic with low allele frequencies. In Kolkata, 27 msp1 different genotypes (including 11of K1, 6 of MAD20 and 10 of Ro33 allelic families) and 30 different msp2 genotypes (of which 17 and 13 belonged to the FC27 and 3D7 allelic families, respectively) were recorded. The majority of these genotypes occurred at a frequency below 10%. The mean MOI for msp1 and msp2 gene were 2.05 and 3.72, respectively. The P. falciparum population of Kolkata was genetically diverse. As the frequencies of most of the msp1 and msp2 alleles were low, the probability of new infection with genotype identical to that in pretreatment infection was very rare. This information will serve as baseline data for evaluation of malaria control interventions as well as for monitoring the parasite population structure.

  8. Characterization of Anaplasma marginale subsp. centrale Strains by Use of msp1aS Genotyping Reveals a Wildlife Reservoir

    PubMed Central

    Khumalo, Zamantungwa T. H.; Catanese, Helen N.; Liesching, Nicole; Hove, Paidashe; Collins, Nicola E.; Chaisi, Mamohale E.; Gebremedhin, Assefaw H.; Oosthuizen, Marinda C.

    2016-01-01

    Bovine anaplasmosis caused by the intraerythrocytic rickettsial pathogen Anaplasma marginale is endemic in South Africa. Anaplasma marginale subspecies centrale also infects cattle; however, it causes a milder form of anaplasmosis and is used as a live vaccine against A. marginale. There has been less interest in the epidemiology of A. marginale subsp. centrale, and, as a result, there are few reports detecting natural infections of this organism. When detected in cattle, it is often assumed that it is due to vaccination, and in most cases, it is reported as coinfection with A. marginale without characterization of the strain. A total of 380 blood samples from wild ruminant species and cattle collected from biobanks, national parks, and other regions of South Africa were used in duplex real-time PCR assays to simultaneously detect A. marginale and A. marginale subsp. centrale. PCR results indicated high occurrence of A. marginale subsp. centrale infections, ranging from 25 to 100% in national parks. Samples positive for A. marginale subsp. centrale were further characterized using the msp1aS gene, a homolog of msp1α of A. marginale, which contains repeats at the 5′ ends that are useful for genotyping strains. A total of 47 Msp1aS repeats were identified, which corresponded to 32 A. marginale subsp. centrale genotypes detected in cattle, buffalo, and wildebeest. RepeatAnalyzer was used to examine strain diversity. Our results demonstrate a diversity of A. marginale subsp. centrale strains from cattle and wildlife hosts from South Africa and indicate the utility of msp1aS as a genotypic marker for A. marginale subsp. centrale strain diversity. PMID:27440819

  9. Humoral immune responses against Plasmodium vivax MSP1 in humans living in a malaria endemic area in Flores, Indonesia.

    PubMed

    Ak, M; Jones, T R; Charoenvit, Y; Kumar, S; Kaslow, D C; Maris, D; Marwoto, H; Masbar, S; Hoffman, S L

    1998-12-01

    The aim of this study was to evaluate the relationship among age, parasitemia status, spleen size, hematocrit, and antibody levels to Plasmodium vivax merozoite surface protein 1 (MSP1) in individuals chronically exposed to P. vivax. Subjects were recruited from the population of three adjacent villages on the Island of Flores in Indonesia where malaria transmission is hyperendemic and tropical splenomegaly syndrome is highly prevalent. Subjects were evaluated for spleen size, hematocrit, presence of parasitemia, and presence of antibodies to a recombinant peptide consisting of 90 amino acids from the carboxy terminus of MSP1. Fifty-seven percent of 2-4 year olds, 45% of 5-9 years old, and 7% of > or = 15 years old were parasitemic; 99% of the > or = 15 years old had splenomegaly, and 31% of them had Hackett 4 or 5 spleens. The frequency of antibody positivity to MSP1 antigen in ELISA increased with age reaching a maximum of 89% in > or = 20 years old. The frequency of antibody positivity to MSPI also increased with spleen size, and with a decline in the prevalence of parasitemia.

  10. Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers.

    PubMed

    Huaman, Maria Cecilia; Martin, Laura B; Malkin, Elissa; Narum, David L; Miller, Louis H; Mahanty, Siddhartha; Long, Carole A

    2008-02-01

    A number of blood-stage malaria Ags are under development as vaccine candidates, but knowledge of the cellular responses to these vaccines in humans is limited. We evaluated the nature and specificity of cellular responses in healthy American volunteers vaccinated with a portion of the major merozoite surface protein-1 (MSP1) of Plasmodium falciparum, MSP1(42), formulated on Alhydrogel. Volunteers were vaccinated three times with 80 microg of either MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel. Cells collected 2 wk after the third vaccination produced Th1 cytokines, including IFN-gamma and IL-2 following Ag stimulation, and greater levels of the Th2 cytokines IL-5 and IL-13; the anti-inflammatory cytokine IL-10 and the molecule CD25 (IL-2Ralpha) were also detected. The volunteers were evaluated for the MSP1(42)-FVO or MSP1(42)-3D7 specificity of their T cell responses. Comparison of their responses to homologous and heterologous Ags showed ex vivo IFN-gamma and IL-5 levels that were significantly higher to homologous rather than to heterologous Ags. The epitopes involved in this stimulation were shown to be present in the dimorphic MSP1(33) portion of the larger MSP1(42)-3D7 polypeptide, and indirect experiment suggests the same for the MSP1(42)-FVO polypeptide. This contrasts with B cell responses, which were primarily directed to the conserved MSP1(19) portion. Furthermore, we explored the maturation of memory T cells and found that 46% of vaccinees showed specific memory T cells defined as CD4(+)CD45RO(+)CD40L(+) after long-term in vitro culture. The identification of human-specific CD4(+) memory T cells provides the foundation for future studies of these cells both after vaccination and in field studies.

  11. Levels of plasma immunoglobulin G with specificity against the cysteine-rich interdomain regions of a semiconserved Plasmodium falciparum erythrocyte membrane protein 1, VAR4, predict protection against malarial anemia and febrile episodes.

    PubMed

    Lusingu, John P A; Jensen, Anja T R; Vestergaard, Lasse S; Minja, Daniel T; Dalgaard, Michael B; Gesase, Samwel; Mmbando, Bruno P; Kitua, Andrew Y; Lemnge, Martha M; Cavanagh, David; Hviid, Lars; Theander, Thor G

    2006-05-01

    Antibodies to variant surface antigen have been implicated as mediators of malaria immunity in studies measuring immunoglobulin G (IgG) binding to infected erythrocytes. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important target for these antibodies, but no study has directly linked the presence of PfEMP1 antibodies in children to protection. We measured plasma IgG levels to the cysteine-rich interdomain region 1alpha (CIDR1alpha) of VAR4 (VAR4-CIDR1alpha), a member of a semiconserved PfEMP1 subfamily, by enzyme-linked immunosorbent assay in 561 Tanzanian individuals, who were monitored clinically for 7 months. The participants resided in Mkokola (a high-transmission village where malaria is holoendemic) or Kwamasimba (a moderate-transmission village). For comparison, plasma IgG levels to two merozoite surface protein 1 (MSP1) constructs, MSP1-19 and MSP1 block 2, and a control CIDR1 domain were measured. VAR4-CIDR1alpha antibodies were acquired at an earlier age in Mkokola than in Kwamasimba, but after the age of 10 years the levels were comparable in the two villages. After controlling for age and other covariates, the risk of having anemia at enrollment was reduced in VAR4-CIDR1alpha responders for Mkokola (adjusted odds ratio [AOR], 0.49; 95% confidence interval [CI], 0.29 to 0.88; P = 0.016) and Kwamasimba (AOR, 0.33; 95% CI, 0.16 to 0.68; P = 0.003) villages. The risk of developing malaria fever was reduced among individuals with a measurable VAR4-CIDR1alpha response from Mkokola village (AOR, 0.51; 95% CI, 0.29 to 0.89; P = 0.018) but not in Kwamasimba. Antibody levels to the MSP1 constructs and the control CIDR1alpha domain were not associated with morbidity protection. These data strengthen the concept of developing vaccines based on PfEMP1.

  12. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Sastu, Umi Rubiah; Norahmad, Nor Azrina; Abdul-Karim, Abass; Muhammad, Amirrudin; Muniandy, Prem Kumar; Jelip, Jenarun; Rundi, Christina; Imwong, Mallika; Mudin, Rose Nani; Abdullah, Noor Rain

    2016-01-01

    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751–800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651–700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  13. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia.

    PubMed

    Mohd Abd Razak, Mohd Ridzuan; Sastu, Umi Rubiah; Norahmad, Nor Azrina; Abdul-Karim, Abass; Muhammad, Amirrudin; Muniandy, Prem Kumar; Jelip, Jenarun; Rundi, Christina; Imwong, Mallika; Mudin, Rose Nani; Abdullah, Noor Rain

    2016-01-01

    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  14. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Yanagi, Tetsuo; Tsuboi, Takafumi; Sasaki, Hitoshi; Hirayama, Kenji

    2011-11-08

    An important aspect in optimizing DNA vaccination is antigen delivery to the site of action. In this way, any alternative delivery system having higher transfection efficiency and eventual superior antibody production needs to be further explored. The novel nanoparticle, pDNA/PEI/γ-PGA complex, is one of a promising delivery system, which is taken up by cells and is shown to have high transfection efficiency. The immunostimulatory effect of this novel nanoparticle (NP) coated plasmid encoding Plasmodium yoelii MSP1-C-terminus was examined. Groups of C57BL/6 mice were immunized either with NP-coated MSP-1 plasmid, naked plasmid or NP-coated blank plasmid, by three different routes of administration; intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c). Mice were primed and boosted twice at 3-week intervals, then challenged 2 weeks after; and 100%, 100% and 50% mean of survival was observed in immunized mice with coated DNA vaccine by i.p., i.v. and s.c., respectively. Coated DNA vaccine showed significant immunogenicity and elicited protective levels of antigen specific IgG and its subclass antibody, an increased proportion of CD4(+) and CD8(+) T cells and INF-γ and IL-12 levels in the serum and cultured splenocyte supernatant, as well as INF-γ producing cells in the spleen. We demonstrate that, NP-coated MSP-1 DNA-based vaccine confers protection against lethal P. yoelii challenge in murine model across the various route of administration and may therefore, be considered a promising delivery system for vaccination.

  15. Lactobacillus rhamnosus GR-1 Attenuates Induction of Hypertrophy in Cardiomyocytes but Not through Secreted Protein MSP-1 (p75)

    PubMed Central

    Ettinger, Grace; Burton, Jeremy P.; Gloor, Gregory B.; Reid, Gregor

    2017-01-01

    Previous animal studies have shown that the administration of probiotic Lactobacillus rhamnosus can provide a protective effect against ischemia/reperfusion and necrotic injury to the intestine, liver, and heart, as well as a therapeutic effect to the outcome of ischemic injury to the heart, including cardiac hypertrophy and heart failure. We hypothesized that L. rhamnosus GR-1 major secreted protein 1 (MSP-1), also known as p75, plays a major role in this phenomenon. Experiments using neonatal rat ventricular cardiomyocytes showed that live and dead GR-1 bacteria, probiotic-conditioned media, and other probiotic species and strains inhibited the α1-adrenergic receptor agonist phenylephrine-induced hypertrophy as assessed by markers atrial natriuretic peptide and α-skeletal actin. However, using a mutant strain, we showed that this MSP-1 was not required for the inhibition. The ability of factors produced by lactobacilli to improve cardiac function warrants further study for the management of cardiac hypertrophy and heart failure. PMID:28085895

  16. The Suitability of P. falciparum Merozoite Surface Proteins 1 and 2 as Genetic Markers for In Vivo Drug Trials in Yemen

    PubMed Central

    Al-abd, Nazeh M.; Mahdy, Mohammed A. K.; Al-Mekhlafi, Abdulsalam M. Q.; Snounou, Georges; Abdul-Majid, Nazia B.; Al-Mekhlafi, Hesham M.; Fong, Mun Y.

    2013-01-01

    Background The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers’ allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen. Methods Blood samples were collected from 511 patients with fever and screened for malaria parasites using Giemsa-stained blood films. A total 74 samples were infected with P. falciparum, and the genetic diversity was assessed by nested PCR targeting Pfmsp1 (Block2) and Pfmsp2 (block 3). Results Overall, 58%, 28% and 54% of the isolates harboured parasites of the Pfmsp1 K1, MAD20 and RO33 allelic families, and 55% and 89% harboured those of the Pfmsp2 FC27 and 3D7 allelic families, respectively. For both genetic makers, the multiplicity of the infection (MOI) was significantly higher in the isolates from the foothills/coastland areas as compared to those from the highland (P<0.05). Pfmsp2 had higher number of distinct allelic variants than Pfmsp1 (20 vs 11). The expected heterozygosity (HE) for Pfmsp1 and Pfmsp2 were 0.82 and 0.94, respectively. Nonetheless, a bias in the frequency distribution of the Pfmsp1 allelic variants was noted from all areas, and of those of Pfmsp2 in the samples collected from the highland areas. Conclusions Significant differences in the complexity and allelic diversity of Pfmsp1 and Pfmsp2 genes between areas probably reflect differences in the intensity of malaria transmission. The biased distribution of allelic variants suggests that in Yemen Pfmsp1 should not be used for PCR correction of in vivo clinical trials outcomes, and that caution should be exercised when employing Pfmsp2. PMID:23861823

  17. Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory.

    PubMed

    Clark, Eva H; Silva, Claudia J; Weiss, Greta E; Li, Shanping; Padilla, Carlos; Crompton, Peter D; Hernandez, Jean N; Branch, OraLee H

    2012-04-01

    The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.

  18. Differential Requirement for Cathepsin D for Processing of the Full Length and C-Terminal Fragment of the Malaria Antigen MSP1

    PubMed Central

    Raiber, Eun-Ang; Tabor, Alethea B.; Langhorne, Jean; Chain, Benny M.

    2011-01-01

    Merozoite Surface Protein 1 is expressed on the surface of malaria merozoites and is important for invasion of the malaria parasite into erythrocytes. MSP1-specific CD4 T cell responses and antibody can confer protective immunity in experimental models of malaria. In this study we explore the contributions of cathepsins D and E, two aspartic proteinases previously implicated in antigen processing, to generating MSP1 CD4 T-cell epitopes for presentation. The absence of cathepsin D, a late endosome/lysosomal enzyme, is associated with a reduced presentation of MSP1 both following in vitro processing of the epitope MSP1 from infected erythrocytes by bone marrow-derived dendritic cells, and following in vivo processing by splenic CD11c+ dendritic cells. By contrast, processing and presentation of the soluble recombinant protein fragment of MSP1 is unaffected by the absence of cathepsin D, but is inhibited when both cathepsin D and E are absent. The role of different proteinases in generating the CD4 T cell repertoire, therefore, depends on the context in which an antigen is introduced to the immune system. PMID:22053177

  19. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes.

    PubMed

    Delerue, Thomas; Khosrobakhsh, Farnoosh; Daloyau, Marlène; Emorine, Laurent Jean; Dedieu, Adrien; Herbert, Christopher J; Bonnefoy, Nathalie; Arnauné-Pelloquin, Laetitia; Belenguer, Pascale

    2016-10-01

    Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.

  20. Construction of Transgenic Plasmodium berghei as a Model for Evaluation of Blood-Stage Vaccine Candidate of Plasmodium falciparum Chimeric Protein 2.9

    PubMed Central

    Cao, Yi; Zhang, Dongmei; Pan, Weiqing

    2009-01-01

    Background The function of the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1-19) expressed by Plasmodium has been demonstrated to be conserved across distantly related Plasmodium species. The green fluorescent protein (GFP) is a reporter protein that has been widely used because it can be easily detected in living organisms by fluorescence microscopy and flow cytometry. Methodology and Results In this study, we used gene targeting to generate transgenic P. berghei (Pb) parasites (designated as PfMSP1-19Pb) that express the MSP1-19 of P. falciparum (Pf) and the GFP reporter protein simultaneously. The replacement of the PbMSP1-19 locus by PfMSP1-19 was verified by PCR and Southern analysis. The expression of the chimeric PbfMSP-1 and the GFP was verified by Western blot and fluorescence microscopy, respectively. Moreover, GFP-expressing transgenic parasites in blood stages can be readily differentiated from other blood cells using flow cytometry. A comparion of growth rates between wild-type and the PfMSP1-19Pb transgenic parasite indicated that the replacement of the MSP1-19 region and the expression of the GFP protein were not deleterious to the transgenic parasites. We used this transgenic mouse parasite as a murine model to evaluate the protective efficacy in vivo of specific IgG elicited by a PfCP-2.9 malaria vaccine that contains the PfMSP1-19. The BALB/c mice passively transferred with purified rabbit IgG to the PfCP-2.9 survived a lethal challenge of the PfMSP1-19Pb transgenic murine parasites, but not the wild-type P. berghei whereas the control mice passively transferred with purified IgG obtained from adjuvant only-immunized rabbits were vulnerable to both transgenic and wild-type infections. Conclusions We generated a transgenic P. berghei line that expresses PfMSP1-19 and the GFP reporter gene simultaneously. The availability of this parasite line provides a murine model to evaluate the protective efficacy in vivo of anti-MSP1

  1. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance

    PubMed Central

    Estrada-Peña, Agustín; Naranjo, Victoria; Acevedo-Whitehouse, Karina; Mangold, Atilio J; Kocan, Katherine M; de la Fuente, José

    2009-01-01

    Background The tick-borne pathogen Anaplasma marginale, which is endemic worldwide, is the type species of the genus Anaplasma (Rickettsiales: Anaplasmataceae). Rhipicephalus (Boophilus) microplus is the most important tick vector of A. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity in A. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution of A. marginale and other Anaplasma species. For A. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a of A. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence of A. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains. Results In this study we showed that the phylogeography of A. marginale MSP1a sequences is associated with world ecological regions (ecoregions) resulting in different evolutionary pressures and thence MSP1a sequences. The results demonstrated that the MSP1a first (R1) and last (RL) repeats and microsatellite sequences were associated with world ecoregion clusters with specific and different environmental envelopes. The evolution of R1 repeat sequences was found to be under positive selection. It is hypothesized that the driving environmental factors regulating tick populations could act on the selection of different A. marginale MSP1a sequence lineages, associated to each ecoregion. Conclusion The results reported herein provided the first evidence that the evolution of A. marginale was linked to ecological traits affecting tick vector performance. These

  2. The Complexity of Plasmodium Falciparum Infections in Children in Western Kenya

    DTIC Science & Technology

    2006-01-01

    fuse and form short-lived diploid zygotes. These undergo meiotic division, creating haploid cells that after further development and asexual...the common feature of being single copy in the haploid blood stages of the parasite life cycle and having highly variable regions with insertion...and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. Gene 304: 65-75. 44. Ferreira MU, Liu

  3. Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium.

    PubMed

    Bargieri, Daniel Y; Leite, Juliana A; Lopes, Stefanie C P; Sbrogio-Almeida, Maria Elisabete; Braga, Catarina J M; Ferreira, Luis C S; Soares, Irene S; Costa, Fabio T M; Rodrigues, Mauricio M

    2010-04-01

    In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity.

  4. α-Thalassaemia trait is associated with antibody prevalence against malaria antigens AMA-1 and MSP-1.

    PubMed

    Daou, Modibo; Kituma, Elimsaada; Kavishe, Reginald; Chilongola, Jaffu; Mosha, Frank; van der Ven, André; Kouriba, Bourema; Bousema, Teun; Sauerwein, Robert; Doumbo, Ogobaro

    2015-04-01

    A longitudinal study was conducted in a low endemic area in northern Tanzania to examine the influence of the α-thalassaemia trait on malaria incidence and antibody responses to malaria apical membrane antigen-1 (AMA-1) and merozoite surface protein1-19 (MSP-119). Out of 394 children genotyped for α-thalassaemia trait, 4.1% (16 of 394) and 30.7% (121 of 394) were homozygous and heterozygous, respectively. During the 1 year follow-up, four incidents of malaria cases were detected without an evident association with α-thalassaemia. Being heterozygous or homozygous for α-thalassaemia was associated with an increased prevalence of antibodies to AMA-1 [odds ratio (OR): 1.83, 95% confidence interval (CI): 1.07-3.12, p = 0.027] and MSP-1 (OR: 2.04, 95% CI: 1.16-3.60, p = 0.013) after adjustment for age and reported bednet use. The observed association between α-thalassaemia and malaria antibody responses may reflect longer-term differences in antigen exposure or differences in antibody acquisition upon exposure in this low endemic setting. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    PubMed

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  6. Asymptomatic infection in individuals from the municipality of Barcelos (Brazilian Amazon) is not associated with the anti-Plasmodium falciparum glycosylphosphatidylinositol antibody response

    PubMed Central

    Gomes, Larissa Rodrigues; Totino, Paulo Renato Rivas; Sanchez, Maria Carmen Arroyo; Daniel, Elsa Paula da Silva Kaingona; de Macedo, Cristiana Santos; Fortes, Filomeno; Coura, José Rodrigues; Santi, Silvia Maria Di; Werneck, Guilherme Loureiro; Suárez-Mutis, Martha Cecilia; Ferreira-da-Cruz, Maria de Fátima; Daniel-Ribeiro, Cláudio Tadeu

    2013-01-01

    Anti-glycosylphosphatidylinositol (GPI) antibodies (Abs) may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP)3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19) in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown) in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax. PMID:24037204

  7. Factors Associated with Immunoglobulin G Subclass Polarization in Naturally Acquired Antibodies to Plasmodium falciparum Merozoite Surface Proteins: a Cross-Sectional Survey in Brazilian Amazonia

    PubMed Central

    Scopel, Kézia K. G.; Fontes, Cor J. F.; Ferreira, Marcelo U.; Braga, Érika M.

    2006-01-01

    We investigated immunoglobulin G (IgG) subclass antibody responses to Plasmodium falciparum merozoite surface protein 1 (MSP-1) and MSP-2 in 112 malaria-exposed subjects in Brazil. IgG3 polarization was primarily epitope driven, being little affected by cumulative or current exposure to malaria and not affected by a subject's age and Fcγ receptor IIA genotype. PMID:16829621

  8. Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1–42 maturase

    PubMed Central

    Barale, Jean-Christophe; Blisnick, Thierry; Fujioka, Hisashi; Alzari, Pedro M.; Aikawa, Masamishi; Braun-Breton, Catherine; Langsley, Gordon

    1999-01-01

    The process of human erythrocyte invasion by Plasmodium falciparum parasites involves a calcium-dependent serine protease with properties consistent with a subtilisin-like activity. This enzyme achieves the last crucial maturation step of merozoite surface protein 1 (MSP1) necessary for parasite entry into the host erythrocyte. In eukaryotic cells, such processing steps are performed by subtilisin-like maturases, known as proprotein convertases. In an attempt to characterize the MSP1 maturase, we have identified a gene that encodes a P. falciparum subtilisin-like protease (PfSUB2) whose deduced active site sequence resembles more bacterial subtilisins. Therefore, we propose that PfSUB2 belongs to a subclass of eukaryotic subtilisins different from proprotein convertases. Pfsub2 is expressed during merozoite differentiation and encodes an integral membrane protein localized in the merozoite dense granules, a secretory organelle whose contents are believed to participate in a late step of the erythrocyte invasion. PfSUB2’s subcellular localization, together with its predicted enzymatic properties, leads us to propose that PfSUB2 could be responsible for the late MSP1 maturation step and thus is an attractive target for the development of new antimalarial drugs. PMID:10339607

  9. Antibodies to Plasmodium falciparum antigens predict a higher risk of malaria but protection from symptoms once parasitemic.

    PubMed

    Greenhouse, Bryan; Ho, Benjamin; Hubbard, Alan; Njama-Meya, Denise; Narum, David L; Lanar, David E; Dutta, Sheetij; Rosenthal, Philip J; Dorsey, Grant; John, Chandy C

    2011-07-01

    Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses.

  10. Antibodies to Plasmodium falciparum Antigens Predict a Higher Risk of Malaria But Protection From Symptoms Once Parasitemic

    PubMed Central

    Hubbard, Alan; Njama-Meya, Denise; Narum, David L.; Lanar, David E.; Dutta, Sheetij; Rosenthal, Philip J.; Dorsey, Grant; John, Chandy C.

    2011-01-01

    (See the article by Bejon et al, on pages 9–18, and Bousema et al, on pages 1–3.) Background. Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. Methods. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Results. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Conclusions. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses. PMID:21628654

  11. Interferometry theory for the block 2 processor

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1987-01-01

    Presented is the interferometry theory for the Block 2 processor, including a high-level functional description and a discussion of data structure. The analysis covers the major processing steps: cross-correlation, fringe counter-rotation, transformation to the frequency domain, phase calibration, bandwidth synthesis, and extraction of the observables of amplitude, phase, phase rate, and delay. Also included are analyses for fractional bitshift correction, station clock error, ionosphere correction, and effective frequencies for the observables.

  12. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    PubMed

    Santos, Paula S; Sena, Angela A S; Nascimento, Rafael; Araújo, Thaise G; Mendes, Mirian M; Martins, João R S; Mineo, Tiago W P; Mineo, José R; Goulart, Luiz R

    2013-01-01

    Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  13. Nosocomial Plasmodium falciparum infections confirmed by molecular typing in Medellín, Colombia

    PubMed Central

    González, Lina; Ochoa, Jesus; Franco, Liliana; Arroyave, Marta; Restrepo, Eliana; Blair, Silvia; Maestre, Amanda

    2005-01-01

    Three cases of nosocomial malaria are reported from patients of the Internal Medicine Ward of a tertiary University teaching hospital in Medellin, Colombia. Epidemiological research, based on entomological captures, medical records review and interviews of nursery staff about patient care practices potentially involving contact with blood, were carried out. Molecular characterization of Plasmodium falciparum was based on the amplification of MSP1, MSP2 and GLURP genes. This method enabled confirmation of the same P. falciparum genotype in all three patients as well as in a fourth one (index case). The presence of nosocomial malaria was confirmed and it was concluded that the most likely source of transmission was through multi-dose preparations of heparin applied to heparin locks. PMID:15703072

  14. Longevity of Genotype-Specific Immune Responses to Plasmodium falciparum Merozoite Surface Protein 1 in Kenyan Children from Regions of Different Malaria Transmission Intensity

    PubMed Central

    Bowman, Natalie M.; Juliano, Jonathan J.; Snider, Cynthia J.; Kharabora, Oksana; Meshnick, Steven R.; Vulule, John; John, Chandy C.; Moormann, Ann M.

    2016-01-01

    Naturally acquired immunity to Plasmodium falciparum presents a changing landscape as malaria control programs and vaccine initiatives are implemented. Determining which immunologic indicators remain surrogates of past infection, as opposed to mediators of protection, led us to compare stability of immune responses across regions with divergent malaria transmission intensities. A repeat cross-sectional study of Kenyan children from a malaria-holoendemic area and an epidemic-prone area was used to examine longitudinal antibody and interferon-gamma (IFN-γ) responses to the 3D7 and FVO variants of merozoite surface protein 1 (MSP1). Antibodies to MSP1 were common in both study populations and did not significantly wane over a 21-month time period. IFN-γ responses were less frequent and rapidly disappeared in children after a prolonged period of no malaria transmission. Antibody and IFN-γ responses rarely correlated with each other; however, MSP1-specific IFN-γ response correlated with lack of concurrent P. falciparum parasitemia of the same genotype, though only statistically significantly in the malaria-holoendemic region (odds ratio = 0.31, 95% confidence interval = 0.12–0.84). This study affirms that antimalarial antibodies are informative for evaluation of history of malaria exposure within individuals, whereas cell-mediated immunity, though short lived under natural exposure conditions, might provide an assessment of recent infection and protection from parasitemia. PMID:27481054

  15. Longevity of Genotype-Specific Immune Responses to Plasmodium falciparum Merozoite Surface Protein 1 in Kenyan Children from Regions of Different Malaria Transmission Intensity.

    PubMed

    Bowman, Natalie M; Juliano, Jonathan J; Snider, Cynthia J; Kharabora, Oksana; Meshnick, Steven R; Vulule, John; John, Chandy C; Moormann, Ann M

    2016-09-07

    Naturally acquired immunity to Plasmodium falciparum presents a changing landscape as malaria control programs and vaccine initiatives are implemented. Determining which immunologic indicators remain surrogates of past infection, as opposed to mediators of protection, led us to compare stability of immune responses across regions with divergent malaria transmission intensities. A repeat cross-sectional study of Kenyan children from a malaria-holoendemic area and an epidemic-prone area was used to examine longitudinal antibody and interferon-gamma (IFN-γ) responses to the 3D7 and FVO variants of merozoite surface protein 1 (MSP1). Antibodies to MSP1 were common in both study populations and did not significantly wane over a 21-month time period. IFN-γ responses were less frequent and rapidly disappeared in children after a prolonged period of no malaria transmission. Antibody and IFN-γ responses rarely correlated with each other; however, MSP1-specific IFN-γ response correlated with lack of concurrent P. falciparum parasitemia of the same genotype, though only statistically significantly in the malaria-holoendemic region (odds ratio = 0.31, 95% confidence interval = 0.12-0.84). This study affirms that antimalarial antibodies are informative for evaluation of history of malaria exposure within individuals, whereas cell-mediated immunity, though short lived under natural exposure conditions, might provide an assessment of recent infection and protection from parasitemia. © The American Society of Tropical Medicine and Hygiene.

  16. A DNA vaccine encoding the 42 kDa C-terminus of merozoite surface protein 1 of Plasmodium falciparum induces antibody, interferon-gamma and cytotoxic T cell responses in rhesus monkeys: immuno-stimulatory effects of granulocyte macrophage-colony stimulating factor.

    PubMed

    Kumar, Sanjai; Villinger, Francois; Oakley, Miranda; Aguiar, Joao C; Jones, Trevor R; Hedstrom, Richard C; Gowda, Kalpana; Chute, John; Stowers, Anthony; Kaslow, David C; Thomas, Elaine K; Tine, John; Klinman, Dennis; Hoffman, Stephen L; Weiss, Walter W

    2002-04-01

    We have constructed a DNA plasmid vaccine encoding the C-terminal 42-kDa region of the merozoite surface protein 1 (pMSP1(42)) from the 3D7 strain of Plasmodium falciparum (Pf3D7). This plasmid expressed recombinant MSP1(42) after in vitro transfection in mouse VM92 cells. Rhesus monkeys immunized with pMSP1(42) produced antibodies reactive with Pf3D7 infected erythrocytes by IFAT, and by ELISA against yeast produced MSP1(19) (yMSP1(19)). Immunization also induced antigen specific T cell responses as measured by interferon-gamma production, and by classical CTL chromium release assays. In addition, immunization with pMSP1(42) primed animals for an enhanced antibody response to a subsequent boost with the recombinant yMSP1(19). We also evaluated Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) as an adjuvant for pMSP1(42.) We tested both rhesus GM-CSF expressed from a DNA plasmid, and E. coli produced recombinant human GM-CSF. Plasmids encoding rhesus GM-CSF (prhGM-CSF) and human GM-CSF (phuGM-CSF) were constructed; these plasmids expressed bio-active recombinant GMCSF. Co-immunization with a mixture of prhGM-CSF and pMSP1(42) induced higher specific antibody responses after the first dose of plasmid, but after three doses of DNA monkeys immunized with or without prhGM-CSF had the same final antibody titers and T cell responses. In comparison, rhuGM-CSF protein did not lead to accelerated antibody production after the first DNA dose. However, antibody titers were maintained at a slightly higher level in monkeys receiving GM-CSF protein, and they had a higher response to boosting with recombinant MSP1(19). The GM-CSF plasmid or protein appears to be less potent as an adjuvant in rhesus monkeys than each is in mice, and more work is needed to determine if GM-CSF can be a useful adjuvant in DNA vaccination of primates.

  17. Evolution of genetic polymorphisms of Plasmodium falciparum merozoite surface protein (PfMSP) in Thailand.

    PubMed

    Kuesap, Jiraporn; Chaijaroenkul, Wanna; Ketprathum, Kanchanok; Tattiyapong, Puntanat; Na-Bangchang, Kesara

    2014-02-01

    Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.

  18. Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum

    PubMed Central

    Azevedo, Mauro F; del Portillo, Hernando A

    2007-01-01

    Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements. PMID:17313673

  19. Polymorphism and epitope sharing between the alleles of merozoite surface protein-1 of Plasmodium falciparum among Indian isolates

    PubMed Central

    Mamillapalli, Anitha; Sunil, Sujatha; Diwan, Suraksha S; Sharma, Surya K; Tyagi, Prajesh K; Adak, Tridibes; Joshi, Hema; Malhotra, Pawan

    2007-01-01

    Background The C-terminal region of merozoite surface protein-1 (MSP-1) is one of the leading candidates for vaccination against the erythrocytic stages of malaria. However, a major concern in the development of MSP-1 based malaria vaccine is the polymorphism observed in different geographical Plasmodium falciparum isolates. To explore whether the sequence heterogeneity of PfMSP-1 leads to variation in naturally acquired anti-MSP-119 antibodies, the present study was undertaken to study PfMSP-119 sequence polymorphism in malaria-endemic villages in eastern India and also carried out a competition enzyme-linked immunosorbent assay using three PfMSP-119 variant forms. Methods The sequence variations in the C-terminal region of PfMSP-119 were determined in a malaria endemic region. Three PfMSP-119 variants were produced in Escherichia coli (PfMSP119QKNG-L, PfMSP119EKNG-L and PfMSP119ETSR-F) and an immunodepletion assay was carried out using the corresponding patients' sera. Results Results revealed predominance of PfMAD20 allele among Indian field isolates. Seven PfMSP-119 variant forms were isolated in a singe geographical location. Three of PfMSP-119 variant forms when expressed in E. coli showed presence of cross-reaction as well as variant specific antibodies in malaria infected patient sera. Conclusion The present study demonstrates the existence of allele specific antibodies in P. falciparum-infected patient sera, however their role in protection requires further investigation. These results thereby, suggest the importance of a multi-allelic PfMSP-119 based vaccine for an effective malaria control. PMID:17659072

  20. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Escalante, A A; Lal, A A; Ayala, F J

    1998-01-01

    We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25. PMID:9584096

  1. Block 2. Photograph depicts close up of stair wall, which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Block 2. Photograph depicts close up of stair wall, which is located opposite of the fountain on block 2. Photograph reveals the porous quality of the concrete used within the park - Skyline Park, 1500-1800 Arapaho Street, Denver, Denver County, CO

  2. Seasonal changes in the antibody responses against Plasmodium falciparum merozoite surface antigens in areas of differing malaria endemicity in Indonesia.

    PubMed

    Supargiyono, Supargiyono; Bretscher, Michael T; Wijayanti, Mahardika A; Sutanto, Inge; Nugraheni, Dian; Rozqie, Royhan; Kosasih, Ayleen A; Sulistyawati, Sulistyawati; Hawley, William A; Lobo, Neil F; Cook, Jackie; Drakeley, Chris J

    2013-12-09

    The transmission of malaria in Indonesia is highly heterogeneous spatially and seasonally. Anti-malaria antibody responses can help characterize this variation. In the present study antibody responses to Plasmodium falciparum MSP-1 and AMA-1 were measured to assess the transmission intensity in a hypo-endemic area of Purworejo and a meso-endemic area of Lampung during low and high transmission seasons. Filter-paper blood spot samples collected from Purworejo and Lampung by cross-sectional survey during high and low transmission season were stored at -20°C. Indirect ELISA assays were carried out using PfMSP1-19 and PfAMA1 antigens. A positivity threshold was determined by samples from local unexposed individuals, and the differences in seroprevalence, antibody level and correlation between antibody level and age in each site were statistically analysed. Prevalence of antibodies to either PfMSP1-19 or PfAMA1 was higher in Lampung than in Purworejo in both the low (51.3 vs 25.0%) and high transmission season (53.9 vs 37.5%). The magnitude of antibody responses was associated with increasing age in both sites and was higher in Lampung. Age-adjusted seroconversion rates showed an approximately ten-fold difference between Lampung and Purowejo. Two different seroconversion rates were estimated for Lampung suggesting behaviour-related differences in exposure. In both settings antibody responses to PfMSP1-19 were significantly lower in the low season compared to the high season. Seasonal changes may be detectable by changes in antibody responses. This is particularly apparent in lower transmission settings and with less immunogenic antigens (in this case PfMSP1-19). Examination of antibody levels rather than seroprevalence is likely to be a more sensitive indicator of changes in transmission. These data suggest that sero-epidemiological analysis may have a role in assessing short-term changes in exposure especially in low or seasonal transmission settings.

  3. Seasonal changes in the antibody responses against Plasmodium falciparum merozoite surface antigens in areas of differing malaria endemicity in Indonesia

    PubMed Central

    2013-01-01

    Background The transmission of malaria in Indonesia is highly heterogeneous spatially and seasonally. Anti-malaria antibody responses can help characterize this variation. In the present study antibody responses to Plasmodium falciparum MSP-1 and AMA-1 were measured to assess the transmission intensity in a hypo-endemic area of Purworejo and a meso-endemic area of Lampung during low and high transmission seasons. Methods Filter-paper blood spot samples collected from Purworejo and Lampung by cross-sectional survey during high and low transmission season were stored at −20°C. Indirect ELISA assays were carried out using PfMSP1-19 and PfAMA1 antigens. A positivity threshold was determined by samples from local unexposed individuals, and the differences in seroprevalence, antibody level and correlation between antibody level and age in each site were statistically analysed. Results Prevalence of antibodies to either PfMSP1-19 or PfAMA1 was higher in Lampung than in Purworejo in both the low (51.3 vs 25.0%) and high transmission season (53.9 vs 37.5%). The magnitude of antibody responses was associated with increasing age in both sites and was higher in Lampung. Age-adjusted seroconversion rates showed an approximately ten-fold difference between Lampung and Purowejo. Two different seroconversion rates were estimated for Lampung suggesting behaviour-related differences in exposure. In both settings antibody responses to PfMSP1-19 were significantly lower in the low season compared to the high season. Conclusion Seasonal changes may be detectable by changes in antibody responses. This is particularly apparent in lower transmission settings and with less immunogenic antigens (in this case PfMSP1-19). Examination of antibody levels rather than seroprevalence is likely to be a more sensitive indicator of changes in transmission. These data suggest that sero-epidemiological analysis may have a role in assessing short-term changes in exposure especially in low or seasonal

  4. Environmental testing of block 2 solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  5. Plasmodium falciparum Field Isolates Commonly Use Erythrocyte Invasion Pathways That Are Independent of Sialic Acid Residues of Glycophorin A

    PubMed Central

    Okoyeh, Jude Nnaemeka; Pillai, C. R.; Chitnis, Chetan E.

    1999-01-01

    Erythrocyte invasion by malaria parasites is mediated by specific molecular interactions. Sialic acid residues of glycophorin A are used as invasion receptors by Plasmodium falciparum. In vitro invasion studies have demonstrated that some cloned P. falciparum lines can use alternate receptors independent of sialic acid residues of glycophorin A. It is not known if invasion by alternate pathways occurs commonly in the field. In this study, we used in vitro growth assays and erythrocyte invasion assays to determine the invasion phenotypes of 15 P. falciparum field isolates. Of the 15 field isolates tested, 5 multiply in both neuraminidase and trypsin-treated erythrocytes, 3 multiply in neuraminidase-treated but not trypsin-treated erythrocytes, and 4 multiply in trypsin-treated but not neuraminidase-treated erythrocytes; 12 of the 15 field isolates tested use alternate invasion pathways that are not dependent on sialic acid residues of glycophorin A. Alternate invasion pathways are thus commonly used by P. falciparum field isolates. Typing based on two polymorphic markers, MSP-1 and MSP-2, and two microsatellite markers suggests that only 1 of the 15 field isolates tested contains multiple parasite genotypes. Individual P. falciparum lines can thus use multiple invasion pathways in the field. These observations have important implications for malaria vaccine development efforts based on EBA-175, the P. falciparum protein that binds sialic acid residues of glycophorin A during invasion. It may be necessary to target parasite ligands responsible for the alternate invasion pathways in addition to EBA-175 to effectively block erythrocyte invasion by P. falciparum. PMID:10531229

  6. Genetic diversity of Plasmodium falciparum isolates from Baka Pygmies and their Bantu neighbours in the north of Gabon.

    PubMed

    Mvé-Ondo, Bertrand; Nkoghe, Dieudonné; Arnathau, Céline; Rougeron, Virginie; Bisvigou, Ulrich; Mouele, Lauriane Yacka; Boundenga, Larson; Durand, Patrick; Elguero, Eric; Lemmers, Simone; Délicat-Loembet, Lucrèce M; Diamella-Moukodoum, Nancy; Paupy, Christophe; Renaud, François; Prugnolle, Franck; Ollomo, Benjamin

    2015-10-09

    There have been many reports on the population genetic structure of Plasmodium falciparum from different endemic regions especially sub-Saharan Africa. However, few studies have been performed on neglected populations, such as the Pygmy populations. In this study, the population genetic structure of P. falciparum was investigated in the Baka Pygmies of Gabon and compared to that observed in neighboring villages composed mostly of Bantu farmers. A total of 342 blood samples were collected from 170 Baka Pygmies and 172 Bantus in the north of Gabon (Woleu Ntem Province). Plasmodium infections were characterized by sequencing a portion of the parasite cytochrome b gene. Population genetic structure of P. falciparum in the different villages was analysed using microsatellite markers and genes coding for antigenic proteins (MSP1, MSP2, GLURP, and EBA-175). Overall, prevalence of P. falciparum was around 57 % and no significant difference of prevalence was observed between Pygmies and Bantus. No significant differences of population genetic structure of P. falciparum was found between Pygmy and Bantu people except for one antigen-coding gene, glurp, for which genetic data suggested the existence of a potentially disruptive selection acting on this gene in the two types of populations. The genetic structure of P. falciparum followed a pattern of isolation by distance at the scale of the study. The prevalence and genetic diversity of P. falciparum observed in Baka demonstrates a significant transmission of the parasite in this population, and some exchanges of parasites with Bantu neighbours. Despite that, some antigen-coding genes seem to have had a particular evolutionary trajectory in certain Pygmy populations due to specific local human and/or mosquito characteristics.

  7. Merozoite Antigens of Plasmodium falciparum Elicit Strain-Transcending Opsonizing Immunity

    PubMed Central

    Wilson, Danny W.; Sampaio, Natalia G.; Eriksson, Emily M.; Ryg-Cornejo, Victoria; Harrison, G. L. Abby; Uboldi, Alessandro D.; Robinson, Leanne J.; Beeson, James G.; Siba, Peter; Cowman, Alan F.; Hansen, Diana S.; Mueller, Ivo; Schofield, Louis

    2016-01-01

    It is unclear whether naturally acquired immunity to Plasmodium falciparum results from the acquisition of antibodies to multiple, diverse antigens or to fewer, highly conserved antigens. Moreover, the specific antibody functions required for malaria immunity are unknown, and hence informative immunological assays are urgently needed to address these knowledge gaps and guide vaccine development. In this study, we investigated whether merozoite-opsonizing antibodies are associated with protection from malaria in a strain-specific or strain-transcending manner by using a novel field isolate and an immune plasma-matched cohort from Papua New Guinea with our validated assay of merozoite phagocytosis. Highly correlated opsonization responses were observed across the 15 parasite strains tested, as were strong associations with protection (composite phagocytosis score across all strains in children uninfected at baseline: hazard ratio of 0.15, 95% confidence interval of 0.04 to 0.63). Opsonizing antibodies had a strong strain-transcending component, and the opsonization of transgenic parasites deficient for MSP3, MSP6, MSPDBL1, or P. falciparum MSP1-19 (PfMSP1-19) was similar to that of wild-type parasites. We have provided the first evidence that merozoite opsonization is predominantly strain transcending, and the highly consistent associations with protection against diverse parasite strains strongly supports the use of merozoite opsonization as a correlate of immunity for field studies and vaccine trials. These results demonstrate that conserved domains within merozoite antigens targeted by opsonization generate strain-transcending immune responses and represent promising vaccine candidates. PMID:27185785

  8. Distinct Th1- and Th2-Type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands.

    PubMed

    Malhotra, Indu; Mungai, Peter; Muchiri, Eric; Ouma, John; Sharma, Shobhona; Kazura, James W; King, Christopher L

    2005-06-01

    Prenatal immunity to Plasmodium falciparum merozoite proteins involved in erythrocyte invasion may contribute to the partial protection against malaria that is acquired during infancy in areas of stable malaria transmission. We examined newborn and maternal cytokine and antibody responses to merozoite surface protein-1 (MSP-1), ribosomal phosphoprotein P0 (PfP0), and region II of erythrocyte binding antigen-175 (EBA-175) in infant-mother pairs in Kenya. Overall, 82 of 167 (50%), 106 of 176 (60%), and 38 of 84 (45%) cord blood lymphocytes (CBL) from newborns produced one or more cytokines in response to MSP-1, PfP0, and EBA-175, respectively. Newborns of primigravid and/or malaria-infected women were more likely to have antigen-responsive CBL than were newborns of multigravid and/or uninfected women at delivery. Newborn cytokine responses did not match those of their mothers and fell into three distinct categories, Th1 (21 of 55 CBL donors produced only gamma interferon and/or interleukin 2 [IL-2]), Th2 (21 of 55 produced only IL-5 and/or IL-13), and mixed Th1/Th2 (13 of 55). Newborns produced more IL-10 than adults. High and low levels of cord blood IL-12 p70 production induced by anti-CD40 activation were associated with malaria-specific Th1 and Th2 responses, respectively. Antigen-responsive CBL in some newborns were detected only after depletion of IL-10-secreting CD8 cells with enrichment for CD4 cells. These data indicate that prenatal sensitization to blood-stage Plasmodium falciparum occurs frequently in areas where malaria is holoendemic. Modulation of this immunity, possibly by maternal parity and malaria, may affect the acquisition of protective immunity against malaria during infancy.

  9. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies.

    PubMed

    Chan, Chim W; Sakihama, Naoko; Tachibana, Shin-Ichiro; Idris, Zulkarnain Md; Lum, J Koji; Tanabe, Kazuyuki; Kaneko, Akira

    2015-01-01

    Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81-31.23%) than in P. vivax (-0.53-3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.

  10. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum

    PubMed Central

    Das, Sudipta; Bhatanagar, Suyash; Morrisey, Joanne M.; Daly, Thomas M.; Burns, James M.; Coppens, Isabelle; Vaidya, Akhil B.

    2016-01-01

    Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble “rhoptries” and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise. PMID:27227970

  11. Safety and Reactogenicity of an MSP-1 Malaria Vaccine Candidate: A Randomized Phase Ib Dose-Escalation Trial in Kenyan Children

    PubMed Central

    Withers, Mark R; McKinney, Denise; Ogutu, Bernhards R; Waitumbi, John N; Milman, Jessica B; Apollo, Odika J; Allen, Otieno G; Tucker, Kathryn; Soisson, Lorraine A; Diggs, Carter; Leach, Amanda; Wittes, Janet; Dubovsky, Filip; Stewart, V. Ann; Remich, Shon A; Cohen, Joe; Ballou, W. Ripley; Holland, Carolyn A; Lyon, Jeffrey A; Angov, Evelina; Stoute, José A; Martin, Samuel K; Heppner, D. Gray

    2006-01-01

    Objective: Our aim was to evaluate the safety, reactogenicity, and immunogenicity of an investigational malaria vaccine. Design: This was an age-stratified phase Ib, double-blind, randomized, controlled, dose-escalation trial. Children were recruited into one of three cohorts (dosage groups) and randomized in 2:1 fashion to receive either the test product or a comparator. Setting: The study was conducted in a rural population in Kombewa Division, western Kenya. Participants: Subjects were 135 children, aged 12–47 mo. Interventions: Subjects received 10, 25, or 50 μg of falciparum malaria protein 1 (FMP1) formulated in 100, 250, and 500 μL, respectively, of AS02A, or they received a comparator (Imovax® rabies vaccine). Outcome Measures: We performed safety and reactogenicity parameters and assessment of adverse events during solicited (7 d) and unsolicited (30 d) periods after each vaccination. Serious adverse events were monitored for 6 mo after the last vaccination. Results: Both vaccines were safe and well tolerated. FMP1/AS02A recipients experienced significantly more pain and injection-site swelling with a dose-effect relationship. Systemic reactogenicity was low at all dose levels. Hemoglobin levels remained stable and similar across arms. Baseline geometric mean titers were comparable in all groups. Anti-FMP1 antibody titers increased in a dose-dependent manner in subjects receiving FMP1/AS02A; no increase in anti-FMP1 titers occurred in subjects who received the comparator. By study end, subjects who received either 25 or 50 μg of FMP1 had similar antibody levels, which remained significantly higher than that of those who received the comparator or 10 μg of FMP1. A longitudinal mixed effects model showed a statistically significant effect of dosage level on immune response (F3,1047 = 10.78, or F3, 995 = 11.22, p < 0.001); however, the comparison of 25 μg and 50 μg recipients indicated no significant difference (F1,1047 = 0.05; p = 0.82). Conclusions

  12. Plasmodium falciparum malaria.

    PubMed

    Shetty, A K; Steele, R W

    1999-01-01

    A 13-year-old adolescent daughter of a missionary presented with fever and jaundice 1 week after returning from Africa. Examination of peripheral blood film revealed the diagnosis of Plasmodium falciparum infection. Therapy with oral quinine and doxycycline was curative. Diagnosis requires a travel history and a high index of suspicion. Because of the frequency of international travel, United States physicians need to be familiar with the presentation and management of imported P falciparum. Preparation for such travel must include careful counseling and optimal use of chemoprophylaxis.

  13. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites.

    PubMed

    Samad, Hanif; Coll, Francesc; Preston, Mark D; Ocholla, Harold; Fairhurst, Rick M; Clark, Taane G

    2015-04-01

    Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86 k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima's D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and

  14. Quantitation of Anaplasma marginale major surface protein (MSP)1a and MSP2 epitope-specific CD4+ T lymphocytes using bovine DRB3*1101 and DRB3*1201 tetramers.

    PubMed

    Norimine, Junzo; Han, Sushan; Brown, Wendy C

    2006-09-01

    Antigen-specific CD4+ T cells play a critical role in protective immunity to many infectious pathogens. Although the antigen-specific CD4+ T cells can be measured by functional assays such as proliferation or cytokine enzyme-linked immunospot, such assays are limited to a specific function and cannot quantify anergic or suppressed T cells. In contrast, major histocompatiblity complex (MHC) class II tetramers can enumerate epitope-specific CD4+ T cells independent of function. In this paper, we report the construction of bovine leukocyte antigen MHC class II tetramers using a novel mammalian cell system to express soluble class II DRA/DRB3 molecules and defined immunodominant peptide epitopes of Anaplasma marginale major surface proteins (MSPs). Phycoerythrin-labeled tetramers were either loaded with exogenous peptide or constructed with the peptide epitope linked to the N terminus of the DRB3 chain. A DRB3*1101 tetramer loaded with MSP1a peptide F2-5B (ARSVLETLAGHVDALG) and DRB3*1201 tetramers loaded with MSP1a peptide F2-1-1b (GEGYATYLAQAFA) or MSP2 peptide P16-7 (NFAYFGGELGVRFAF) specifically stained antigen-specific CD4+ T cell lines and clones. Tetramers constructed with the T-cell epitope linked to the DRB3 chain were slightly better at labeling CD4+ T cells. In one cell line, the number of tetramer-positive T cells increased to approximately 94% of the CD4+ T cells after culture for 21 weeks with specific antigen. This novel technology should be useful to track the fate of antigen-specific CD4+ T-cell responses in cattle after immunization or infection with persistent pathogens, such as A. marginale, that modulate the host immune response.

  15. Plasmodium falciparum Malaria in the Peruvian Amazon, a Region of Low Transmission, Is Associated with Immunologic Memory

    PubMed Central

    Clark, Eva H.; Silva, Claudia J.; Weiss, Greta E.; Li, Shanping; Padilla, Carlos; Crompton, Peter D.; Hernandez, Jean N.

    2012-01-01

    The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP119). After observing a more robust antibody response to MSP119, we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP119 IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19+ CD27+ CD38high) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions. PMID:22252876

  16. Natural antibody response to Plasmodium falciparum merozoite antigens MSP5, MSP9 and EBA175 is associated to clinical protection in the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. Methods Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients’ plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. Results 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2DF=1 = 9.26/p = 0.0047) and MSP5 (X2DF=1 = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2DF=1 = 6.41/p = 0.0206, Fisher’s exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney’s U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95

  17. Analysis of Fcgamma receptor IIa (cd32) gene polymorphism and anti-malarial IgG subclass antibodies to asexual blood-stage antigen of Plasmodium falciparum in an unstable malaria endemic area of Iran.

    PubMed

    Zakeri, Sedigheh; Mashhadi, Rahil; Mehrizi, Akram Abouie; Djadid, Navid Dinparast

    2013-05-01

    One of the main host genetic factors involved in inflammation, immune responses and pathogenesis of malaria is FcγRIIa (cd32) gene. A single point mutation at position 131 replace an arginine (R) with a histidine (H) that can affect the affinity of the receptor for human IgG subclasses. This investigation was designed to explore the polymorphisms at FcγRIIa gene in association with both anti-malarial total IgG antibody and IgG subclass profiles to C-terminal region of Plasmodium falciparum merozoite surface protein 1 (PfMSP-1(19)). In this study, 166 infected patients with P. falciparum who are living in a malaria endemic area of Iran were studied using PCR-RFLP and ELISA methods. The results showed that the frequency of FcγRIIa-R/R131, -R/H131 and -H/H131 genotypes was 9.6%, 42.8% and 47.6%, respectively. Level of total IgG to recombinant PfMSP-1(19) antigen showed that there was no difference among the FcγRIIa-R/R131, -R/H131 and -H/H131 groups. With regards to the IgG subclasses, the anti-malarial IgG1 antibodies predominated. Also, there was a significant difference between the frequency of positive responders for anti-PfMSP-1(19) IgG and IgG1 antibodies in P. falciparum-infected individuals with FcγRIIa-R/R131, -R/H131 or -H/H131 genotypes (P<0.05, X(2) test). Regarding to IgG2-PfMSP-1(19) antibody, 27.27% (FcγRIIa-R/R131), 25.71% (FcγRIIa-R/H131) and 22.2% (FcγRIIa-H/H131) of IgG responders showed positive antibody response. Taken together, this study is the first report that exhibits the high frequency of both FcγRIIa-H131H genotypes and H131 allele in the Baluchi ethnic group, which was similar to the Fulani ethnic group. The present results provide additional data to understand the role of FcγRIIa-131 genotypes in the pathogenesis of malaria.

  18. Asymptomatic Plasmodium falciparum infection in children is associated with increased auto-antibody production, high IL-10 plasma levels and antibodies to merozoite surface protein 3.

    PubMed

    Guiyedi, Vincent; Bécavin, Christophe; Herbert, Fabien; Gray, Julian; Cazenave, Pierre-André; Kombila, Maryvonne; Crisanti, Andrea; Fesel, Constantin; Pied, Sylviane

    2015-04-16

    Mechanisms of acquired protection to malaria in asymptomatic Plasmodium falciparum carriers are only partially understood. Among them, the role plays by the self-reactive antibodies has not been clarified yet. In this study, the relationship between repertoires of circulating self-reactive and parasite-specific immunoglobulin G (IgG), their correlation with cytokine levels, and their association with protection against malaria was investigated in asymptomatic Plasmodium falciparum-infected Gabonese children. The diversity of P. falciparum-specific antibody repertoire was analysed using a protein micro-array immunoassay, the total auto-antibody repertoire by quantitative immunoblotting and circulating cytokine levels were measured by ELISA in endemic controls (EC) and P. falciparum-infected children from Gabon with asymptomatic (AM) or mild malaria (MM). The association of self- and parasite-specific antibody repertoires with circulating cytokines was evaluated using single linkage hierarchical clustering, Kruskal-Wallis tests and Spearman's rank correlation. Children with AM exhibited an IgG response to merozoite surface protein 3 (MSP3) but not to MSP1-19, although their levels of total P. falciparum-specific IgG were similar to those in the MM group. Moreover, the asymptomatic children had increased levels of autoantibodies recognising brain antigens. In addition, a correlation between IL-10 levels and parasite load was found in AM and MM children. These two groups also exhibited significant correlations between plasma levels of IL-10 and IFN-γ with age and with total plasma IgG levels. IL-10 and IFN-γ levels were also associated with auto-antibody responses in AM. Altogether, these results indicate that a self-reactive polyclonal response associated with increased IgG to MSP3 and high plasma levels of IL-10 and IFN-γ may contribute to protective immune mechanisms triggered in asymptomatic P. falciparum infection in Gabonese children.

  19. Influence of HLA-DRB1 and HLA-DQB1 Alleles on IgG Antibody Response to the P. vivax MSP-1, MSP-3α and MSP-9 in Individuals from Brazilian Endemic Area

    PubMed Central

    Lima-Junior, Josué C.; Rodrigues-da-Silva, Rodrigo N.; Banic, Dalma M.; Jiang, Jianlin; Singh, Balwan; Fabrício-Silva, Gustavo M.; Porto, Luís C. S.; Meyer, Esmeralda V. S.; Moreno, Alberto; Rodrigues, Maurício M.; Barnwell, John W.; Galinski, Mary R.; de Oliveira-Ferreira, Joseli

    2012-01-01

    Background The antibody response generated during malaria infections is of particular interest, since the production of specific IgG antibodies is required for acquisition of clinical immunity. However, variations in antibody responses could result from genetic polymorphism of the HLA class II genes. Given the increasing focus on the development of subunit vaccines, studies of the influence of class II alleles on the immune response in ethnically diverse populations is important, prior to the implementation of vaccine trials. Methods and Findings In this study, we evaluated the influence of HLA-DRB1* and -DQB1* allelic groups on the naturally acquired humoral response from Brazilian Amazon individuals (n = 276) against P. vivax Merozoite Surface Protein-1 (MSP-1), MSP-3α and MSP-9 recombinant proteins. Our results provide information concerning these three P. vivax antigens, relevant for their role as immunogenic surface proteins and vaccine candidates. Firstly, the studied population was heterogeneous presenting 13 HLA-DRB1* and 5 DQB1* allelic groups with a higher frequency of HLA-DRB1*04 and HLA-DQB1*03. The proteins studied were broadly immunogenic in a naturally exposed population with high frequency of IgG antibodies against PvMSP1-19 (86.7%), PvMSP-3 (77%) and PvMSP-9 (76%). Moreover, HLA-DRB1*04 and HLA-DQB1*03 alleles were associated with a higher frequency of IgG immune responses against five out of nine antigens tested, while HLA-DRB1*01 was associated with a high frequency of non-responders to repetitive regions of PvMSP-9, and the DRB1*16 allelic group with the low frequency of responders to PvMSP3 full length recombinant protein. Conclusions HLA-DRB1*04 alleles were associated with high frequency of antibody responses to five out of nine recombinant proteins tested in Rondonia State, Brazil. These features could increase the success rate of future clinical trials based on these vaccine candidates. PMID:22649493

  20. Isoprenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Guggisberg, Ann M.; Amthor, Rachel E.

    2014-01-01

    Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research. PMID:25217461

  1. Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren

    PubMed Central

    2013-01-01

    Background As malaria transmission intensity approaches zero, measuring it becomes progressively more difficult and inefficient because parasite-positive individuals are hard to detect. This situation may arise shortly before achieving local elimination, or during surveillance post-elimination to prevent reintroduction. Antibody responses against the parasite last longer than the infections themselves. This “footprint” of infection may thus be used for assessing transmission intensity. A statistical approach is presented for measuring the seroconversion rate (SCR), a correlate of the force of infection, from individual-level longitudinal data on antibody titres in an area of low Plasmodium falciparum transmission. Methods Blood samples were collected from 160 Indonesian schoolchildren every month for six months. Titres of antibodies against AMA-1 and MSP-119 antigens of P. falciparum were measured using ELISA. The distribution of antibody titres among seronegative and -positive individuals, respectively, was estimated by comparing the titres from the study data (a mixture of both seropositive and -negative individuals) with titres from a (unexposed) negative control group of Indonesian individuals. Two Markov-Chain models for the transition of individuals between serological states were fitted to individual anti-PfAMA-1 or anti-PfMSP-1 titre time series using Bayesian Markov-Chain-Monte-Carlo (MCMC). This yielded estimates of SCR as well as of the duration of seropositivity. Results A posterior median SCR of 0.02 (Pf AMA-1) and 0.09 (PfMSP-1) person-1 year-1 was estimated, with credible intervals ranging from 1E-4 to 0.2 person-1 year-1. This level of transmission intensity is at the lower range of what can reliably be measured with the present study size. A Bayesian test for seroconversion of an individual between two observations is presented and used to identify the subjects who have most likely experienced an infection. Furthermore, the theoretical limits

  2. Immunoglobulin G Subclass-Specific Responses against Plasmodium falciparum Merozoite Antigens Are Associated with Control of Parasitemia and Protection from Symptomatic Illness▿ †

    PubMed Central

    Stanisic, Danielle I.; Richards, Jack S.; McCallum, Fiona J.; Michon, Pascal; King, Christopher L.; Schoepflin, Sonja; Gilson, Paul R.; Murphy, Vincent J.; Anders, Robin F.; Mueller, Ivo; Beeson, James G.

    2009-01-01

    Substantial evidence indicates that antibodies to Plasmodium falciparum merozoite antigens play a role in protection from malaria, although the precise targets and mechanisms mediating immunity remain unclear. Different malaria antigens induce distinct immunoglobulin G (IgG) subclass responses, but the importance of different responses in protective immunity from malaria is not known and the factors determining subclass responses in vivo are poorly understood. We examined IgG and IgG subclass responses to the merozoite antigens MSP1-19 (the 19-kDa C-terminal region of merozoite surface protein 1), MSP2 (merozoite surface protein 2), and AMA-1 (apical membrane antigen 1), including different polymorphic variants of these antigens, in a longitudinal cohort of children in Papua New Guinea. IgG1 and IgG3 were the predominant subclasses of antibodies to each antigen, and all antibody responses increased in association with age and exposure without evidence of increasing polarization toward one subclass. The profiles of IgG subclasses differed somewhat for different alleles of MSP2 but not for different variants of AMA-1. Individuals did not appear to have a propensity to make a specific subclass response irrespective of the antigen. Instead, data suggest that subclass responses to each antigen are generated independently among individuals and that antigen properties, rather than host factors, are the major determinants of IgG subclass responses. High levels of AMA-1-specific IgG3 and MSP1-19-specific IgG1 were strongly predictive of a reduced risk of symptomatic malaria and high-density P. falciparum infections. However, no antibody response was significantly associated with protection from parasitization per se. Our findings have major implications for understanding human immunity and for malaria vaccine development and evaluation. PMID:19139189

  3. Relationship between Malaria Incidence and IgG Levels to Plasmodium falciparum Merozoite Antigens in Malian Children: Impact of Hemoglobins S and C

    PubMed Central

    Miura, Kazutoyo; Diakite, Mahamadou; Diouf, Ababacar; Doumbia, Saibou; Konate, Drissa; Keita, Abdoul S.; Moretz, Samuel E.; Tullo, Gregory; Zhou, Hong; Lopera-Mesa, Tatiana M.; Anderson, Jennifer M.; Fairhurst, Rick M.; Long, Carole A.

    2013-01-01

    Heterozygous hemoglobin (Hb) AS (sickle-cell trait) and HbAC are hypothesized to protect against Plasmodium falciparum malaria in part by enhancing naturally-acquired immunity to this disease. To investigate this hypothesis, we compared antibody levels to four merozoite antigens from the P. falciparum 3D7 clone (apical membrane antigen 1, AMA1-3D7; merozoite surface protein 1, MSP1-3D7; 175 kDa erythrocyte-binding antigen, EBA175-3D7; and merozoite surface protein 2, MSP2-3D7) in a cohort of 103 HbAA, 73 HbAS and 30 HbAC children aged 3 to 11 years in a malaria-endemic area of Mali. In the 2009 transmission season we found that HbAS, but not HbAC, significantly reduced the risk of malaria compared to HbAA. IgG levels to MSP1 and MSP2 at the start of this transmission season inversely correlated with malaria incidence after adjusting for age and Hb type. However, HbAS children had significantly lower IgG levels to EBA175 and MSP2 compared to HbAA children. On the other hand, HbAC children had similar IgG levels to all four antigens. The parasite growth-inhibitory activity of purified IgG samples did not differ significantly by Hb type. Changes in antigen-specific IgG levels during the 2009 transmission and 2010 dry seasons also did not differ by Hb type, and none of these IgG levels dropped significantly during the dry season. These data suggest that sickle-cell trait does not reduce the risk of malaria by enhancing the acquisition of IgG responses to merozoite antigens. PMID:23555917

  4. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response

    PubMed Central

    Aka, Peter; Vila, Maria Candida; Jariwala, Amar; Nkrumah, Francis; Emmanuel, Benjamin; Yagi, Masanori; Palacpac, Nirianne Marie Q.; Periago, Maria V.; Neequaye, Janet; Kiruthu, Christine; Tougan, Takahiro; Levine, Paul H.; Biggar, Robert J.; Pfeiffer, Ruth M.; Bhatia, Kishor; Horii, Toshihiro; Bethony, Jeffrey M.

    2013-01-01

    Endemic Burkitt lymphoma (eBL) is linked to Plasmodium falciparum (Pf) infection geographically, but evidence from individual-level studies is limited. We investigated this issue among 354 childhood eBL cases and 384 age-, sex-, and location-matched controls enrolled in Ghana from 1965 to 1994. Immunoglobulin G1 (IgG1) and immunoglobulin G3 (IgG3) antibodies to antigens diagnostic of recent infection Pf histidine-rich protein-II (HRP-II) and 6NANP, Pf-vaccine candidates SE36 and 42-kDa region of the 3D7 Pf merozoite surface protein-1 (MSP-1), and tetanus toxoid were measured by indirect enzyme-linked immunoassay. Odds ratios (ORs) and 95% confidence intervals (CIs) for association with eBL were estimated using unconditional logistic regression. After adjustments, eBL was positively associated with HRP-IIIgG3 seropositivity (adjusted OR: 1.60; 95% CI 1.08-2.36) and inversely associated with SE36IgG1 seropositivity (adjusted OR: 0.37; 95% CI 0.21-0.64) and with tetanus toxoidIgG3 levels equal or higher than the mean (adjusted OR: 0.46; 95% CI 0.32-0.66). Anti–MSP-1IgG3 and anti-6NANPIgG3 were indeterminate. eBL risk was potentially 21 times higher (95% CI 5.8-74) in HRP-IIIgG3–seropositive and SE36IgG1-seronegative responders compared with HRP-IIIgG3–seronegative and SE36IgG1-seropositive responders. Our results suggest that recent malaria may be associated with risk of eBL but long-term infection may be protective. PMID:23645841

  5. VALIDATION OF MICROSATELLITE MARKERS FOR USE IN GENOTYPING POLYCLONAL PLASMODIUM FALCIPARUM INFECTIONS

    PubMed Central

    GREENHOUSE, BRYAN; MYRICK, ALISSA; DOKOMAJILAR, CHRISTIAN; WOO, JONATHAN M.; CARLSON, ELAINE J.; ROSENTHAL, PHILIP J.; DORSEY, GRANT

    2006-01-01

    Genotyping methods for Plasmodium falciparum drug efficacy trials have not been standardized and may fail to accurately distinguish recrudescence from new infection, especially in high transmission areas where polyclonal infections are common. We developed a simple method for genotyping using previously identified microsatellites and capillary electrophoresis, validated this method using mixtures of laboratory clones, and applied the method to field samples. Two microsatellite markers produced accurate results for single-clone but not polyclonal samples. Four other microsatellite markers were as sensitive as, and more specific than, commonly used genotyping techniques based on merozoite surface proteins 1 and 2. When applied to samples from 15 patients in Burkina Faso with recurrent parasitemia after treatment with sulphadoxine-pyrimethamine, the addition of these four microsatellite markers to msp1 and msp2 genotyping resulted in a reclassification of outcomes that strengthened the association between dhfr 59R, an anti-folate resistance mutation, and recrudescence (P = 0.31 versus P = 0.03). Four microsatellite markers performed well on polyclonal samples and may provide a valuable addition to genotyping for clinical drug efficacy studies in high transmission areas. PMID:17123974

  6. Persistence of Plasmodium falciparum parasites in infected pregnant Mozambican women after delivery.

    PubMed

    Serra-Casas, Elisa; Menéndez, Clara; Dobaño, Carlota; Bardají, Azucena; Quintó, Llorenç; Quintó, Llorençc; Ordi, Jaume; Sigauque, Betuel; Cisteró, Pau; Mandomando, Inacio; Alonso, Pedro L; Mayor, Alfredo

    2011-01-01

    Pregnant women are susceptible to Plasmodium falciparum parasites that sequester in the placenta. The massive accumulation of infected erythrocytes in the placenta has been suggested to trigger the deleterious effects of malaria in pregnant women and their offspring. The risk of malaria is also high during the postpartum period, although mechanisms underlying this susceptibility are not known. Here, we aimed to identify host factors contributing to the risk of postpartum infections and to determine the origin of postpartum parasites by comparing their genotypes with those present at the time of delivery. To address this, blood samples were collected at delivery (n = 402) and postpartum (n = 354) from Mozambican women enrolled in a trial of intermittent preventive treatment in pregnancy (IPTp). P. falciparum was detected by real-time quantitative PCR (qPCR), and the parasite merozoite surface protein 1 (msp-1) and msp-2 genes were genotyped. Fifty-seven out of 354 (16%) women were infected postpartum as assessed by qPCR, whereas prevalence by optical microscopy was only 4%. Risk of postpartum infection was lower in older women (odds ratio [OR] = 0.34, 95% confidence interval [CI] = 0.15 to 0.81) and higher in women with a placental infection at delivery (OR = 4.20, 95% CI = 2.19 to 8.08). Among 24 women with matched infections, 12 (50%) were infected postpartum with at least one parasite strain that was also present in their placentas. These results suggest that parasites infecting pregnant women persist after delivery and increase the risk of malaria during the postpartum period. Interventions that reduce malaria during pregnancy may translate into a lower risk of postpartum infection.

  7. Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Barry, Alyssa E.; Schultz, Lee; Buckee, Caroline O.; Reeder, John C.

    2009-01-01

    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next

  8. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands.

    PubMed

    Waltmann, Andreea; Darcy, Andrew W; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G Dennis; Barry, Alyssa E; Whittaker, Maxine; Kazura, James W; Mueller, Ivo

    2015-05-01

    Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0-38.5%, p<0.001) and across age groups (5.3-25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands

  9. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  10. The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis

    PubMed Central

    Fowkes, Freya J. I.; Richards, Jack S.; Simpson, Julie A.; Beeson, James G.

    2010-01-01

    Background One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting. Methods and Findings We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-142 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-119 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-23D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological

  11. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia.

    PubMed

    Kerkhof, Karen; Sluydts, Vincent; Heng, Somony; Kim, Saorin; Pareyn, Myrthe; Willen, Laura; Canier, Lydie; Sovannaroth, Siv; Ménard, Didier; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2016-10-19

    Malaria transmission is highly heterogeneous, especially in low endemic countries, such as Cambodia. This results in geographical clusters of residual transmission in the dry, low transmission season, which can fuel the transmission to wider areas or populations during the wet season. A better understanding of spatial clustering of malaria can lead to a more efficient, targeted strategy to reduce malaria transmission. This study aims to evaluate the potential of the use of serological markers to define spatial patterns in malaria exposure. Blood samples collected in a community-based randomized trial performed in 98 high endemic communities in Ratanakiri province, north-eastern Cambodia, were screened with a multiplex serological assay for five serological markers (three Plasmodium falciparum and two Plasmodium vivax). The antibody half-lives range from approximately six months until more than two years. Geographical heterogeneity in malaria transmission was examined using a spatial scan statistic on serology, PCR prevalence and malaria incidence rate data. Furthermore, to identify behavioural patterns or intrinsic factors associated with malaria exposure (antibody levels), risk factor analyses were performed by using multivariable random effect logistic regression models. The serological outcomes were then compared to PCR prevalence and malaria incidence data. A total of 6502 samples from two surveys were screened in an area where the average parasite prevalence estimated by PCR among the selected villages is 3.4 %. High-risk malaria pockets were observed adjacent to the 'Tonle San River' and neighbouring Vietnam for all three sets of data (serology, PCR prevalence and malaria incidence rates). The main risk factors for all P. falciparum antigens and P. vivax MSP1.19 are age, ethnicity and staying overnight at the plot hut. It is possible to identify similar malaria pockets of higher malaria transmission together with the potential risk factors by using serology

  12. Plasmodium falciparum Rab5B Is an N-Terminally Myristoylated Rab GTPase That Is Targeted to the Parasite's Plasma and Food Vacuole Membranes

    PubMed Central

    Ezougou, Carinne Ndjembo; Ben-Rached, Fathia; Moss, David K.; Lin, Jing-wen; Black, Sally; Knuepfer, Ellen; Green, Judith L.; Khan, Shahid M.; Mukhopadhyay, Amitabha; Janse, Chris J.; Coppens, Isabelle; Yera, Hélène; Holder, Anthony A.; Langsley, Gordon

    2014-01-01

    Plasmodium falciparum (Pf) has a family of 11 Rab GTPases to regulate its vesicular transport. However, PfRab5B is unique in lacking a C-terminal geranyl-geranylation motif, while having N-terminal palmitoylation and myristoylation motifs. We show that the N-terminal glycine is required for PfRab5B myristoylation in vitro and when an N-terminal PfRab5B fragment possessing both acylation motifs is fused to GFP and expressed in transgenic P. falciparum parasites, the chimeric PfRab5B protein localizes to the plasma membrane. Upon substitution of the modified glycine by alanine the staining becomes diffuse and GFP is found in soluble subcellular fractions. Immuno-electron microscopy shows endogenous PfRab5B decorating the parasite's plasma and food vacuole membranes. Using reverse genetics rab5b couldn't be deleted from the haploid genome of asexual blood stage P. berghei parasites. The failure of PbRab5A or PbRab5C to complement for loss of PbRab5B function indicates non-overlapping roles for the three Plasmodium Rab5s, with PfRab5B involved in trafficking MSP1 to the food vacuole membrane and CK1 to the plasma membrane. We discuss similarities between Plasmodium Rab5B and Arabidopsis thaliana ARA6, a similarly unusual Rab5-like GTPase of plants. PMID:24498355

  13. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes.

    PubMed

    Lin, Clara S; Uboldi, Alessandro D; Epp, Christian; Bujard, Hermann; Tsuboi, Takafumi; Czabotar, Peter E; Cowman, Alan F

    2016-04-01

    Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.

  14. Epitope mapping of PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background Apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP1) of Plasmodium falciparum are two leading blood-stage malaria vaccine candidates. A P. falciparum chimeric protein 2.9 (PfCP-2.9) has been constructed as a vaccine candidate, by fusing AMA-1 domain III (AMA-1 (III)) with a C-terminal 19 kDa fragment of MSP1 (MSP1-19) via a 28-mer peptide hinge. PfCP-2.9 was highly immunogenic in animal studies, and antibodies elicited by the PfCP-2.9 highly inhibited parasite growth in vitro. This study focused on locating the distribution of epitopes on PfCP-2.9. Methods A panel of anti-PfCP-2.9 monoclonal antibodies (mAbs) were produced and their properties were examined by Western blot as well as in vitro growth inhibition assay (GIA). In addition, a series of PfCP-2.9 mutants containing single amino acid substitution were produced in Pichia pastoris. Interaction of the mAbs with the PfCP-2.9 mutants was measured by both Western blot and enzyme-linked immunosorbent assay (ELISA). Results Twelve mAbs recognizing PfCP-2.9 chimeric protein were produced. Of them, eight mAbs recognized conformational epitopes and six mAbs showed various levels of inhibitory activities on parasite growth in vitro. In addition, seventeen PfCP-2.9 mutants with single amino acid substitution were produced in Pichia pastoris for interaction with mAbs. Reduced binding of an inhibitory mAb (mAb7G), was observed in three mutants including M62 (Phe491→Ala), M82 (Glu511→Gln) and M84 (Arg513→Lys), suggesting that these amino acid substitutions are critical to the epitope corresponding to mAb7G. The binding of two non-inhibitory mAbs (mAbG11.12 and mAbW9.10) was also reduced in the mutants of either M62 or M82. The substitution of Leu31 to Arg resulted in completely abolishing the binding of mAb1E1 (a blocking antibody) to M176 mutant, suggesting that the Leu residue at this position plays a crucial role in the formation of the epitope. In addition, the Asn15 residue may

  15. Therapeutic efficacy of artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria from three highly malarious states in India.

    PubMed

    Bharti, Praveen K; Shukla, Man M; Ringwald, Pascal; Krishna, Sri; Singh, Pushpendra P; Yadav, Ajay; Mishra, Sweta; Gahlot, Usha; Malaiya, Jai P; Kumar, Amit; Prasad, Shambhu; Baghel, Pradeep; Singh, Mohan; Vadadi, Jaiprakash; Singh, Mrigendra P; Bustos, Maria Dorina G; Ortega, Leonard I; Christophel, Eva-Maria; Kashyotia, Sher S; Sonal, Gagan S; Singh, Neeru

    2016-10-13

    Anti-malarial drug resistance continues to be a leading threat to malaria control efforts and calls for continued monitoring of waning efficacy of artemisinin-based combination therapy (ACT). Artesunate + sulfadoxine/pyrimethamine (AS + SP) is used for the treatment of uncomplicated Plasmodium falciparum malaria in India. However, resistance against AS + SP is emerged in northeastern states. Therefore, artemether-lumefantrine (AL) is the recommended first line treatment for falciparum malaria in north eastern states. This study investigates the therapeutic efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in three malaria-endemic states in India. The data generated through this study will benefit the immediate implementation of second-line ACT as and when required. This was a one-arm prospective evaluation of clinical and parasitological responses for uncomplicated falciparum malaria using WHO protocol. Patients diagnosed with uncomplicated mono P. falciparum infection were administered six-dose regimen of AL over 3 days and subsequent follow-up was carried out up to 28 days. Molecular markers msp-1 and msp-2 were used to differentiate recrudescence and re-infection and K13 propeller gene was amplified and sequenced covering the codon 450-680. A total of 402 eligible patients were enrolled in the study from all four sites. Overall, adequate clinical and parasitological response (ACPR) was 98 % without PCR correction and 99 % with PCR correction. At three study sites, ACPR rates were 100 %, while at Bastar, cure rate was 92.5 % on day 28. No early treatment failure was found. The PCR-corrected endpoint finding confirmed that one late clinical failure (LCF) and two late parasitological failures (LPF) were recrudescences. The PCR corrected cure rate was 96.5 %. The mean fever clearance time was 27.2 h ± 8.2 (24-48 h) and the mean parasite clearance time was 30.1 h ± 11.0 (24-72 h). Additionally, no adverse event was

  16. Antigenicity of a Bacterially Expressed Triple Chimeric Antigen of Plasmodium falciparum AARP, MSP-311 and MSP-119: PfAMSP-Fu35

    PubMed Central

    Pandey, Alok Kumar; Chauhan, Virander S.

    2016-01-01

    Development of fusion chimeras as potential vaccine candidates is considered as an attractive strategy to generate effective immune responses to more than one antigen using a single construct. Here, we described the design, production, purification and antigenicity of a fusion chimera (PfAMSP-Fu35), comprised of immunologically relevant regions of three vaccine target malaria antigens, PfAARP, PfMSP-3 and PfMSP-1. The recombinant PfAMSP-Fu35 is expressed as a soluble protein and purified to homogeneity with ease at a yield of ~ 7 mg L-1. Conformational integrity of the C-terminal fragment of PfMSP-1, PfMSP-119 was retained in the fusion chimera as shown by ELISA with conformation sensitive monoclonal antibodies. High titre antibodies were raised to the fusion protein and to all the three individual components in mice and rabbits upon immunization with fusion chimera in two different adjuvant formulations. The sera against PfAMSP-Fu35 recognized native parasite proteins corresponding to the three components of the fusion chimera. As shown by invasion inhibition assay and antibody mediated cellular inhibition assay, antibodies purified from the PfAMSP-Fu35 immunized serum successfully and efficiently inhibited parasite invasion in P. falciparum 3D7 in vitro both directly and in monocyte dependent manner. However, the invasion inhibitory activity of anti-AMSP-Fu35 antibody is not significantly enhanced as expected as compared to a previously described two component fusion chimera, MSP-Fu24. Therefore, it may not be of much merit to consider AMSP-Fu35 as a vaccine candidate for preclinical development. PMID:27798691

  17. Chemical genetics of Plasmodium falciparum

    PubMed Central

    Guiguemde, W. Armand; Shelat, Anang A.; Bouck, David; Duffy, Sandra; Crowther, Gregory J.; Davis, Paul H.; Smithson, David C.; Connelly, Michele; Clark, Julie; Zhu, Fangyi; Jiménez-Díaz, María B; Martinez, María S; Wilson, Emily B.; Tripathi, Abhai K.; Gut, Jiri; Sharlow, Elizabeth R.; Bathurst, Ian; El Mazouni, Farah; Fowble, Joseph W; Forquer, Isaac; McGinley, Paula L; Castro, Steve; Angulo-Barturen, Iñigo; Ferrer, Santiago; Rosenthal, Philip J.; DeRisi, Joseph L; Sullivan, David J.; Lazo, John S.; Roos, David S.; Riscoe, Michael K.; Phillips, Margaret A.; Rathod, Pradipsinh K.; Van Voorhis, Wesley C.; Avery, Vicky M; Guy, R. Kiplin

    2010-01-01

    Malaria caused by Plasmodium falciparum is a catastrophic disease worldwide (880,000 deaths yearly). Vaccine development has proved difficult and resistance has emerged for most antimalarials. In order to discover new antimalarial chemotypes, we have employed a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library, many of which exhibited potent in vitro activity against drug resistant strains, and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in multiple organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Overall, our findings provide the scientific community with new starting points for malaria drug discovery. PMID:20485428

  18. Tetany with Plasmodium falciparum infection.

    PubMed

    Singh, P S; Singh, Neha

    2012-07-01

    Plasmodium falciparum is a malarial infection with high morbidity and wide spectrum of atypical presentation. Here we report an unusual presentation of malaria as tetany with alteration in calcium,phosphate and magnesium metabolism Hypocalcaemia in malaria can cause prolonged Q-Tc interval which could be arisk factor for quinine cardiotoxicity and sudden death Hence monitoring of serum calcium in severe malarial infection and cautious use of quinine in such patients is very important in management

  19. Plasmodium falciparum picks (on) EPCR

    PubMed Central

    Mosnier, Laurent O.; Fairhurst, Rick M.

    2014-01-01

    Of all the outcomes of Plasmodium falciparum infection, the coma of cerebral malaria (CM) is particularly deadly. Malariologists have long wondered how some patients develop this organ-specific syndrome. Data from two recent publications support a novel mechanism of CM pathogenesis in which infected erythrocytes (IEs) express specific virulence proteins that mediate IE binding to the endothelial protein C receptor (EPCR). Malaria-associated depletion of EPCR, with subsequent impairment of the protein C system promotes a proinflammatory, procoagulant state in brain microvessels. PMID:24246501

  20. A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila

    PubMed Central

    Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.

    2014-01-01

    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871

  1. Block 2. Photograph represents general view taken from the north/west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Block 2. Photograph represents general view taken from the north/west region of the May D & F Tower. Photograph shows the main public gathering space for Skyline Park and depicts a light feature and an “Information” sign - Skyline Park, 1500-1800 Arapaho Street, Denver, Denver County, CO

  2. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria.

    PubMed

    Chiu, Chris Y H; Hodder, Anthony N; Lin, Clara S; Hill, Danika L; Li Wai Suen, Connie S N; Schofield, Louis; Siba, Peter M; Mueller, Ivo; Cowman, Alan F; Hansen, Diana S

    2015-08-01

    Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.

  3. Parasite Lactate Dehydrogenase for Diagnosis of Plasmodium Falciparum. Phase II.

    DTIC Science & Technology

    1997-04-01

    Diagnosis of Plasmodium Falciparum PRINCIPAL INVESTIGATOR: Robert C. Piper, Ph.D. CONTRACTING ORGANIZATION: Flow, Incorporated Portland, Oregon 97201...Phase 11 (24 Mar 95 - 23 Mar 97) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Parasite Lactate Dehydrogenase for Diagnosis of Plasmodium Falciparum DAMD...that infected patients become ill. Four species of Plasmodium infect humans. P. falciparum accounts for -85 % of the world’s malaria. P. falciparum is

  4. Does infection with Human Immunodeficiency Virus affect the antibody responses to Plasmodium falciparum antigenic determinants in asymptomatic pregnant women?

    PubMed

    Ayisi, J G; Branch, OraLee H; Rafi-Janajreh, A; van Eijk, A M; ter Kuile, F O; Rosen, D H; Kager, P A; Lanar, D E; Barbosa, A; Kaslow, D; Nahlen, B L; Lal, A A

    2003-04-01

    HIV-seropositive pregnant women are more susceptible to malaria than HIV-seronegative women. We assessed whether HIV infection alters maternal and cord plasma malarial antibody responses and the mother-to-infant transfer of malaria antibodies. We determined plasma levels of maternal and cord antibodies [Immunoglobulin (IgG)] to recombinant malarial proteins [merozoite surface protein 1 (MSP-1(19kD)), the erythrocyte binding antigen (EBA-175)], the synthetic peptides [MSP-2, MSP-3, rhoptry associated protein 1 (RAP-1), and the pre-erythrocytic stage, circumsporozoite protein (NANP)(5)] antigenic determinants of Plasmodium falciparum; and tetanus toxoid (TT) by ELISA among samples of 99 HIV-seropositive mothers, 69 of their infants, 102 HIV-seronegative mothers and 62 of their infants. The prevalence of maternal antibodies to the malarial antigenic determinants ranged from 18% on MSP3 to 91% on EBA-175; in cord plasma it ranged from 13% to 91%, respectively. More than 97% of maternal and cord samples had antibodies to TT. In multivariate analysis, HIV infection was only associated with reduced antibodies to (NANP)(5) in maternal (P=0.001) and cord plasma (P=0.001); and reduced mother-to-infant antibody transfer to (NANP)(5) (P=0.012). This effect of HIV was independent of maternal age, gravidity and placental malaria. No consistent HIV-associated differences were observed for other antigenic determinants. An effect of HIV infection was only observed on one malarial antigenic determinant, suggesting that the increased susceptibility to malaria among HIV-infected pregnant women may not be explained on the basis of their reduced antibody response to malaria antigens.

  5. Gametocytogenesis : the puberty of Plasmodium falciparum

    PubMed Central

    Talman, Arthur M; Domarle, Olivier; McKenzie, F Ellis; Ariey, Frédéric; Robert, Vincent

    2004-01-01

    The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum. PMID:15253774

  6. Congenital Plasmodium falciparum Malaria in Washington, DC.

    PubMed

    Del Castillo, Melissa; Szymanski, Ann Marie; Slovin, Ariella; Wong, Edward C C; DeBiasi, Roberta L

    2017-01-11

    Congenital malaria is rare in the United States, but is an important diagnosis to consider when evaluating febrile infants. Herein, we describe a case of congenital Plasmodium falciparum malaria in a 2-week-old infant born in the United States to a mother who had emigrated from Nigeria 3 months before delivery. © The American Society of Tropical Medicine and Hygiene.

  7. Plasmodium falciparum Malaria, Southern Algeria, 2007

    PubMed Central

    Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria. PMID:20113565

  8. Effect of Transmission Intensity and Age on Subclass Antibody Responses to Plasmodium falciparum Pre-Erythrocytic and Blood-Stage Antigens

    PubMed Central

    Noland, Gregory S.; Jansen, Paul; Vulule, John M.; Park, Gregory S.; Ondigo, Bartholomew N.; Kazura, James W.; Moormann, Ann M.; John, Chandy C.

    2014-01-01

    Cytophilic immunoglobulin (IgG) subclass responses (IgG1 and IgG3) to Plasmodium falciparum antigens have been associated with protection from malaria, yet the relative importance of transmission intensity and age in generation of subclass responses to pre-erythrocytic and blood-stage antigens have not been clearly defined. We analyzed IgG subclass responses to the pre-erythrocytic antigens CSP, LSA-1, and TRAP and the blood-stage antigens AMA-1, EBA-175, and MSP-1 in asymptomatic residents age 2 years or older in stable (n=116) and unstable (n=96) transmission areas in Western Kenya. In the area of stable malaria transmission, a high prevalence of cytophilic (IgG1 and IgG3) antibodies to each antigen was seen in all age groups. Prevalence and levels of cytophilic antibodies to pre-erythrocytic and blood-stage P. falciparum antigens increased with age in the unstable transmission area, yet IgG1 and IgG3 responses to most antigens for all ages in the unstable transmission area were less prevalent and lower in magnitude than even the youngest age group from the stable transmission area. The dominance of cytophilic responses over non-cytophilic (IgG2 and IgG4) was more pronounced in the stable transmission area, and the ratio of IgG3 over IgG1 generally increased with age. In the unstable transmission area, the ratio of cytophilic to non-cytophilic antibodies did not increase with age, and tended to be IgG3-biased for pre-erythrocytic antigens yet IgG1-biased for blood-stage antigens. The differences between areas could not be attributed to active parasitemia status, as there were minimal differences in antibody responses between those positive and negative for Plasmodium infection by microscopy in the stable transmission area. Individuals in areas of unstable transmission have low cytophilic to non-cytophilic IgG subclass ratios and low IgG3:IgG1 ratios to P. falciparum antigens. These imbalances could contribute to the persistent risk of clinical malaria in these

  9. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    NASA Technical Reports Server (NTRS)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  10. Block 2 SRM conceptual design studies. Volume 1, Book 2: Preliminary development and verification plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities that will be conducted in support of the development and verification of the Block 2 Solid Rocket Motor (SRM) are described. Development includes design, fabrication, processing, and testing activities in which the results are fed back into the project. Verification includes analytical and test activities which demonstrate SRM component/subassembly/assembly capability to perform its intended function. The management organization responsible for formulating and implementing the verification program is introduced. It also identifies the controls which will monitor and track the verification program. Integral with the design and certification of the SRM are other pieces of equipment used in transportation, handling, and testing which influence the reliability and maintainability of the SRM configuration. The certification of this equipment is also discussed.

  11. Observations on the Reliability of Rubidium Frequency Standards on Block 2/2A GPS Satellites

    NASA Technical Reports Server (NTRS)

    Dieter, Gary L.

    1996-01-01

    Currently, the block 2/2A Global Positioning System (GPS) satellites are equipped with two rubidium frequency standards. These frequency standards were originally intended to serve as the back-ups to two cesium frequency standards. As the constellation ages, the master Control Station is forced to initialize and increasing number or rubidium frequency standards. Unfortunately the operational use of these frequency standards has not lived up to initial expectations. Although the performance of these rubidium frequency standards has met and even exceeded GPS requirements, their reliability has not. The number of unscheduled outage times and the short operational lifetimes of the rubidium frequency standards compare poorly to the track record of the cesium frequency standards. Only a small number of rubidium frequency standards have actually been made operational. Of these, a large percentage have exhibited poor reliability. If this trend continues, it is unlikely that the rubidium frequency standards will help contribute to the navigation payload meeting program specification.

  12. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    PubMed

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  13. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys.

    PubMed

    Pollack, S; Rossan, R N; Davidson, D E; Escajadillo, A

    1987-02-01

    Clinical observation has suggested that iron deficiency may be protective in malaria, and we have found that desferrioxamine (DF), an iron-specific chelating agent, inhibited Plasmodium falciparum growth in vitro. It was difficult to be confident that DF would be effective in an intact animal, however, because continuous exposure to DF was required in vitro and, in vivo, DF is rapidly excreted. Also, the in vitro effect of DF was overcome by addition of iron to the culture and in vivo there are potentially high local iron concentrations when iron is absorbed from the diet or released from reticuloendothelial cells. We now show that DF given by constant subcutaneous infusion does suppress parasitemia in P. falciparum-infected Aotus monkeys.

  14. Characterization of Plasmodium falciparum Choline Transporters

    DTIC Science & Technology

    2005-04-01

    interfere specifically with parasite membrane biogenesis inhibit the growth of the parasite in vitro, are non-toxic to human cell lines, impair the...phosphocholine. Collectively, our data supported by the USAMRMC provide a much better understanding of membrane biogenesis in P. falciparum and provide strong...characterize the role of the PJSCT1 (now renamed PfGAT) and PfCTL1 genes of the human malaria pathogen Plasmodiumfalciparum in membrane biogenesis

  15. Maurer's clefts, the enigma of Plasmodium falciparum

    PubMed Central

    Mundwiler-Pachlatko, Esther; Beck, Hans-Peter

    2013-01-01

    Plasmodium falciparum, the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor PfEMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum, might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite. PMID:24284172

  16. Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1.

    PubMed

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Siripoon, Napaporn; Seugorn, Aree; Kaewthamasorn, Morakot; Butcher, Robert D J; Harnyuttanakorn, Pongchai

    2014-02-12

    The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown. Sixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of PfMSP-119 haplotypes in individual populations. The PfMSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite. Five conserved polymorphic positions, which accounted for five distinct haplotypes, of PfMSP-119 were identified. Differences in the prevalence of PfMSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual PfMSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow

  17. Efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria: revisiting molecular markers in an area of emerging AQ and SP resistance in Mali

    PubMed Central

    Tekete, Mamadou; Djimde, Abdoulaye A; Beavogui, Abdoul H; Maiga, Hamma; Sagara, Issaka; Fofana, Bakary; Ouologuem, Dinkorma; Dama, Souleymane; Kone, Aminatou; Dembele, Demba; Wele, Mamadou; Dicko, Alassane; Doumbo, Ogobara K

    2009-01-01

    Background To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria. Methods During the malaria transmission seasons of 2002 and 2003, 455 children – between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols. Genotyping of msp1, msp2 and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction). Results Day 28 adequate clinical and parasitological responses (ACPR) were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR) were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of dhfr triple mutant and dhfr/dhps quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with dhps 540E was found. Conclusion In this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy. PMID:19245687

  18. New Strategies for Drug Discovery and Development for Plasmodium Falciparum

    DTIC Science & Technology

    2000-01-01

    research working in concert with one another. The goal of this work is to use a molecular genetic approach both in the identification of new drug targets...analysis of critical genes in the Plasmodium falciparum for their role in drug resistance and as potential new drug targets using both the homologous P. falciparum system and the heterologous yeast system.

  19. Conserved regions from Plasmodium falciparum MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells.

    PubMed

    Obando-Martinez, Ana Zuleima; Curtidor, Hernando; Vanegas, Magnolia; Arévalo-Pinzón, Gabriela; Patarroyo, Manuel Alfonso; Patarroyo, Manuel Elkin

    2010-07-01

    Despite significant global efforts, a completely effective vaccine against Plasmodium falciparum, the species responsible for the most serious form of malaria, has not been yet obtained. One of the most promising approaches consists in combining chemically synthesized minimal subunits of parasite proteins involved in host cell invasion, which has led to the identification of peptides with high binding activity (named HABPs) to hepatocyte and red blood cell (RBC) surface receptors in a large number of sporozoite and merozoite proteins, respectively. Among these proteins is the merozoite surface protein 11 (MSP11), which shares important structural and immunological features with the antimalarial vaccine candidates MSP1, MSP3, and MSP6. In this study, 20-mer-long synthetic peptides spanning the complete sequence of MSP11 were assessed for their ability to bind specifically to RBCs. Two HABPs with high ability to inhibit invasion of RBCs in vitro were identified (namely HABPs 33595 and 33606). HABP-RBC bindings were characterized by means of saturation assays and Hill analysis, finding cooperative interactions of high affinity for both HABPs (n(H) of 1.5 and 1.2, K(d) of 800 and 600 nM for HABPs 33595 and 33606, respectively). The nature of the possible RBC receptors for MSP11 HABPs was studied in binding assays to enzyme-treated RBCs and cross-linking assays, finding that both HABPs use mainly a sialic acid-dependent receptor. An analysis of the immunological, structural and polymorphic characteristics of MSP11 HABPs supports including these peptides in further studies with the aim of designing a fully effective protection-inducing vaccine against malaria. J. Cell. Biochem. 110: 882-892, 2010. (c) 2010 Wiley-Liss, Inc.

  20. Plasmodium falciparum: Differential Selection of Drug Resistance Alleles in Contiguous Urban and Peri-Urban Areas of Brazzaville, Republic of Congo

    PubMed Central

    Tsumori, Yoko; Ndounga, Mathieu; Sunahara, Toshihiko; Hayashida, Nozomi; Inoue, Megumi; Nakazawa, Shusuke; Casimiro, Prisca; Isozumi, Rie; Uemura, Haruki; Tanabe, Kazuyuki; Kaneko, Osamu; Culleton, Richard

    2011-01-01

    The African continent is currently experiencing rapid population growth, with rising urbanization increasing the percentage of the population living in large towns and cities. We studied the impact of the degree of urbanization on the population genetics of Plasmodium falciparum in urban and peri-urban areas in and around the city of Brazzaville, Republic of Congo. This field setting, which incorporates local health centers situated in areas of varying urbanization, is of interest as it allows the characterization of malaria parasites from areas where the human, parasite, and mosquito populations are shared, but where differences in the degree of urbanization (leading to dramatic differences in transmission intensity) cause the pattern of malaria transmission to differ greatly. We have investigated how these differences in transmission intensity affect parasite genetic diversity, including the amount of genetic polymorphism in each area, the degree of linkage disequilibrium within the populations, and the prevalence and frequency of drug resistance markers. To determine parasite population structure, heterozygosity and linkage disequilibrium, we typed eight microsatellite markers and performed haplotype analysis of the msp1 gene by PCR. Mutations known to be associated with resistance to the antimalarial drugs chloroquine and pyrimethamine were determined by sequencing the relevant portions of the crt and dhfr genes, respectively. We found that parasite genetic diversity was comparable between the two sites, with high levels of polymorphism being maintained in both areas despite dramatic differences in transmission intensity. Crucially, we found that the frequencies of genetic markers of drug resistance against pyrimethamine and chloroquine differed significantly between the sites, indicative of differing selection pressures in the two areas. PMID:21858115

  1. On linear structure and phase rotation invariant properties of block 2(sup l)-PSK modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1990-01-01

    Two important structural properties of block 2(l)-ary PSK (phase shift keying) modulation codes, linear structure and phase symmetry, are investigated. For an additive white Gaussian noise (AWGN) channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier phase ambiguity and ensuring rapid carrier phase resynchronization after temporary loss of synchronization. It is desirable for a code to have as many phase symmetries as possible. A 2(l)-ary modulation code is represented here as a code with symbols from the integer group. S sub 2(l) PSK = (0,1,2,...,2(l)-1), under the modulo-2(l) addition. The linear structure of block 2(l)-ary PSK modulation codes over S sub 2(l)-ary PSK with respect to the modulo-2(l) vector addition is defined, and conditions under which a block 2(l)-ary PSK modulation code is linear are derived. Once the linear structure is developed, phase symmetry of a block 2(l)-ary PSK modulation code is studied. It is a necessary and sufficient condition for a block 2(l)-PSK modulation code, which is linear as a binary code, to be invariant under 180 deg/2(l-h) phase rotation, for 1 is less than or equal to h is less than or equal to l. A list of short 8-PSK and 16-PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant.

  2. The Motor Complex of Plasmodium falciparum

    PubMed Central

    Green, Judith L.; Rees-Channer, Roxanne R.; Howell, Stephen A.; Martin, Stephen R.; Knuepfer, Ellen; Taylor, Helen M.; Grainger, Munira; Holder, Anthony A.

    2008-01-01

    Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development. PMID:18768477

  3. Artemisinins target the SERCA of Plasmodium falciparum.

    PubMed

    Eckstein-Ludwig, U; Webb, R J; Van Goethem, I D A; East, J M; Lee, A G; Kimura, M; O'Neill, P M; Bray, P G; Ward, S A; Krishna, S

    2003-08-21

    Artemisinins are extracted from sweet wormwood (Artemisia annua) and are the most potent antimalarials available, rapidly killing all asexual stages of Plasmodium falciparum. Artemisinins are sesquiterpene lactones widely used to treat multidrug-resistant malaria, a disease that annually claims 1 million lives. Despite extensive clinical and laboratory experience their molecular target is not yet identified. Activated artemisinins form adducts with a variety of biological macromolecules, including haem, translationally controlled tumour protein (TCTP) and other higher-molecular-weight proteins. Here we show that artemisinins, but not quinine or chloroquine, inhibit the SERCA orthologue (PfATP6) of Plasmodium falciparum in Xenopus oocytes with similar potency to thapsigargin (another sesquiterpene lactone and highly specific SERCA inhibitor). As predicted, thapsigargin also antagonizes the parasiticidal activity of artemisinin. Desoxyartemisinin lacks an endoperoxide bridge and is ineffective both as an inhibitor of PfATP6 and as an antimalarial. Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins and correspondingly attenuates inhibition of PfATP6. Imaging of parasites with BODIPY-thapsigargin labels the cytosolic compartment and is competed by artemisinin. Fluorescent artemisinin labels parasites similarly and irreversibly in an Fe2+-dependent manner. These data provide compelling evidence that artemisinins act by inhibiting PfATP6 outside the food vacuole after activation by iron.

  4. An integrated model of Plasmodium falciparum dynamics.

    PubMed

    McKenzie, F Ellis; Bossert, William H

    2005-02-07

    The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic diversity and recombination between genetically distinct parasites. Here, we embed a differential-equation model of parasite-immune system interactions within each of the individual humans represented in a discrete-event model of Plasmodium falciparum transmission, and examine the effects of human population turnover, parasite antigenic diversity, recombination, and gametocyte production on the dynamics of malaria. Our results indicate that the local persistence of P. falciparum increases with turnover in the human population and antigenic diversity in the parasite, particularly in combination, and that antigenic diversity arising from meiotic recombination in the parasite has complex differential effects on the persistence of founder and progeny genotypes. We also find that reductions in the duration of individual human infectivity to mosquitoes, even if universal, produce population-level effects only if near-absolute, and that, in competition, the persistence and prevalence of parasite genotypes with gametocyte production concordant with data exceed those of genotypes with higher gametocyte production. This new, integrated approach provides a framework for investigating relationships between pathogen dynamics within an individual host and pathogen dynamics within interacting host and vector populations.

  5. Activity of selected phytochemicals against Plasmodium falciparum.

    PubMed

    Astelbauer, Florian; Gruber, Maria; Brem, Brigitte; Greger, Harald; Obwaller, Andreas; Wernsdorfer, Gunther; Congpuong, Kanungnit; Wernsdorfer, Walther H; Walochnik, Julia

    2012-08-01

    According to the WHO, in 2008, there were 247 million reported cases of malaria and nearly one million deaths from the disease. Parasite resistance against first-line drugs, including artemisinin and mefloquine, is increasing. In this study the plant-derived compounds aglafolin, rocaglamid, kokusaginine, arborine, arborinine and tuberostemonine were investigated for their anti-plasmodial activity in vitro. Fresh Plasmodium falciparum isolates were taken from patients in the area of Mae Sot, north-western Thailand in 2008 and the inhibition of schizont maturation was determined for the respective compounds. With inhibitory concentrations effecting 50%, 90% and 99% inhibition (IC(50), IC(90) and IC(99)) of 60.95 nM, 854.41 nM and 7351.49 nM, respectively, rocaglamid was the most active of the substances, closely followed by aglafoline with 53.49 nM, 864.55 nM and 8354.20 nM. The activity was significantly below that of artemisinin, but moderately higher than that of quinine. Arborine, arborinine, tuberostemonine and kokusaginine showed only marginal activity against P. falciparum characterized by IC(50) and IC(99) values higher than 350 nM and 180 μM, respectively, and regressions with relatively shallow slopes S>14.38. Analogues of rocaglamid and aglafoline merit further exploration of their anti-plasmodial activity.

  6. Induction of gene amplification in Plasmodium falciparum

    SciTech Connect

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  7. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria.

    PubMed

    Barman, Bhupen; Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive treatment. To the best of our knowledge there are very few reports of acute pancreatitis due to malaria. Falciparum malaria therefore should be added to the list of infectious agents causing acute pancreatitis especially in areas where malaria is endemic.

  8. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria

    PubMed Central

    Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive treatment. To the best of our knowledge there are very few reports of acute pancreatitis due to malaria. Falciparum malaria therefore should be added to the list of infectious agents causing acute pancreatitis especially in areas where malaria is endemic. PMID:26894117

  9. Immune activation during cerebellar dysfunction following Plasmodium falciparum malaria.

    PubMed

    de Silva, H J; Hoang, P; Dalton, H; de Silva, N R; Jewell, D P; Peiris, J B

    1992-01-01

    Evidence for immune activation was investigated in 12 patients with a rare syndrome of self-limiting, delayed onset cerebellar dysfunction following an attack of falciparum malaria which occurred 18-26 d previously. Concentrations of tumour necrosis factor, interleukin 6 and interleukin 2 were all significantly higher in serum samples of patients during cerebellar ataxia than in recovery sera and in the sera of 8 patients who did not develop delayed cerebellar dysfunction following an attack of falciparum malaria. Cytokine concentrations in the cerebrospinal fluid were also significantly higher in ataxic patients than in controls. These findings suggest that immunological mechanisms may play a role in delayed cerebellar dysfunction following falciparum malaria.

  10. Immunoglobulin A nephropathy associated with Plasmodium falciparum malaria.

    PubMed

    Yoo, Dong Eun; Kim, Jeong Ho; Kie, Jeong Hae; Park, Yoonseon; Chang, Tae Ik; Oh, Hyung Jung; Kim, Seung Jun; Yoo, Tae-Hyun; Choi, Kyu Hun; Kang, Shin-Wook; Han, Seung Hyeok

    2012-04-01

    Glomerulonephritis occurs as a rare form of renal manifestation in Plasmodium falciparum malaria. Herein, we report a case of falciparum malaria-associated IgA nephropathy for the first time. A 49-yr old male who had been to East Africa was diagnosed with Plasmodium falciparum malaria. Microhematuria and proteinuria along with acute kidney injury developed during the course of the disease. Kidney biopsy showed mesangial proliferation and IgA deposits with tubulointerstitial inflammation. Laboratory tests after recovery from malaria showed disappearance of urinary abnormalities and normalization of kidney function. Our findings suggest that malaria infection might be associated with IgA nephropathy.

  11. Minireview: Invasive fungal infection complicating acute Plasmodium falciparum malaria.

    PubMed

    Däbritz, Jan; Schneider, Markward; Just-Nuebling, Gudrun; Groll, Andreas H

    2011-07-01

    Malaria is the most important parasitic infection in people, affecting 5-10% of the world's population with more than two million deaths a year. Whereas invasive bacterial infections are not uncommon during severe Plasmodium falciparum malaria, only a few cases of opportunistic fungal infections have been reported. Here, we present a fatal case of disseminated hyalohyphomycosis associated with acute P. falciparum malaria in a non-immune traveller, review the cases reported in the literature and discuss the theoretical foundations for the increased susceptibility of non-immune individuals with severe P. falciparum malaria to opportunistic fungal infections. Apart from the availability of free iron as sequelae of massive haemolysis, tissue damage, acidosis and measures of advanced life support, patients with complicated P. falciparum malaria also are profoundly immunosuppressed by the organism's interaction with innate and adaptive host immune mechanisms.

  12. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    PubMed Central

    Engelbrecht, Dewaldt; Durand, Pierre Marcel; Coetzer, Thérèsa Louise

    2012-01-01

    Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction. PMID:22287973

  13. Spatial and temporal distribution of falciparum malaria in China

    PubMed Central

    Lin, Hualiang; Lu, Liang; Tian, Linwei; Zhou, Shuisen; Wu, Haixia; Bi, Yan; Ho, Suzanne C; Liu, Qiyong

    2009-01-01

    Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance

  14. Drug Evaluation in the Plasmodium Falciparum - Aotus Model.

    DTIC Science & Technology

    1992-03-23

    AOTUS MODEL PRINCIPAL INVESTIGATOR: Richard N. Rossan, Ph.D. CONTRACTING ORGANIZATION: PROMED TRADING, S.A. P.O. Box 025426, PTY-051 Miami, Florida...91 - 2/28/92) 4. TITLE AND SUBTITLE S. FUNDING NUMBERS DRUG EVALUATION IN THE PLASMODIUM FALCIPARUM - Contract No. AOTUS MODEL DAMD17-91-C-1072 6C...words) Tne Panamanian Autus - PLasmodium falciparum model was used to evaluate potential antimalaria drugs. Neither protriptylene nor tetrandrine, each

  15. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    PubMed

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  16. Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

    PubMed Central

    Taylor, Steve M.; Cerami, Carla; Fairhurst, Rick M.

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite

  17. Renal pathology in owl monkeys in Plasmodium falciparum vaccine trials.

    PubMed

    Iseki, M; Broderson, J R; Pirl, K G; Igarashi, I; Collins, W E; Aikawa, M

    1990-08-01

    Renal specimens of 16 owl monkeys (Aotus vociferans) were studied by light microscopy and immunohistochemistry during a vaccine trial with recombinant proteins of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum. Deposition of IgG, C3, and P. falciparum antigens in the mesangium was demonstrated by the peroxidase anti-peroxidase (PAP) method. A relationship between the severity of parasitemia at the time of death and the presence of nephropathy was not apparent.

  18. Plasmodium falciparum Histones Induce Endothelial Proinflammatory Response and Barrier Dysfunction

    PubMed Central

    Gillrie, Mark R.; Lee, Kristine; Gowda, D. Channe; Davis, Shevaun P.; Monestier, Marc; Cui, Liwang; Hien, Tran Tinh; Day, Nicholas P.J.; Ho, May

    2012-01-01

    Plasmodium falciparum is a protozoan parasite of human erythrocytes that causes the most severe form of malaria. Severe P. falciparum infection is associated with endothelial activation and permeability, which are important determinants of the outcome of the infection. How endothelial cells become activated is not fully understood, particularly with regard to the effects of parasite subcomponents. We demonstrated that P. falciparum histones extracted from merozoites (HeH) directly stimulated the production of IL-8 and other inflammatory mediators by primary human dermal microvascular endothelial cells through a signaling pathway that involves Src family kinases and p38 MAPK. The stimulatory effect of HeH and recombinant P. falciparum H3 (PfH3) was abrogated by histone-specific antibodies. The release of nuclear contents on rupture of infected erythrocytes was captured by live cell imaging and confirmed by detecting nucleosomes in the supernatants of parasite cultures. HeH and recombinant parasite histones also induced endothelial permeability through a charge-dependent mechanism that resulted in disruption of junctional protein expression and cell death. Recombinant human activated protein C cleaved HeH and PfH3 and abrogated their proinflammatory effects. Circulating nucleosomes of both human and parasite origin were detected in the plasma of patients with falciparum malaria and correlated positively with disease severity. These results support a pathogenic role for both host- and pathogen-derived histones in P. falciparum-caused malaria. PMID:22260922

  19. Plasmodium falciparum Malaria: reduction of endothelial cell apoptosis in vitro.

    PubMed

    Hemmer, Christoph Josef; Lehr, Hans Anton; Westphal, Kathi; Unverricht, Marcus; Kratzius, Manja; Reisinger, Emil Christian

    2005-03-01

    Organ failure in Plasmodium falciparum malaria is associated with neutrophil activation and endothelial damage. This study investigates whether neutrophil-induced endothelial damage involves apoptosis and whether it can be prevented by neutralization of neutrophil secretory products. Endothelial cells from human umbilical veins were coincubated with neutrophils from healthy donors and with sera from eight patients with P. falciparum malaria, three patients with P. vivax malaria, and three healthy controls. Endothelial apoptosis was demonstrated by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and annexin V staining. The rate of apoptosis of cells was markedly increased after incubation with patient serum compared to that with control serum. Apoptosis was most pronounced after incubation with sera from two patients with fatal cases of P. falciparum malaria, followed by sera of survivors with severe P. falciparum malaria and, finally, by sera of patients with mild P. falciparum and P. vivax malaria. Ascorbic acid, tocopherol, and ulinastatin reduced the apoptosis rate, but gabexate mesilate and pentoxifylline did not. Furthermore, in fatal P. falciparum malaria, apoptotic endothelial cells were identified in renal and pulmonary tissue by TUNEL staining. These findings show that apoptosis caused by neutrophil secretory products plays a major role in endothelial cell damage in malaria. The antioxidants ascorbic acid and tocopherol and the protease inhibitor ulinastatin can reduce malaria-associated endothelial apoptosis in vitro.

  20. Combating multidrug-resistant Plasmodium falciparum malaria.

    PubMed

    Thu, Aung Myint; Phyo, Aung Pyae; Landier, Jordi; Parker, Daniel M; Nosten, François H

    2017-08-01

    Over the past 50 years, Plasmodium falciparum has developed resistance against all antimalarial drugs used against it: chloroquine, sulphadoxine-pyrimethamine, quinine, piperaquine and mefloquine. More recently, resistance to the artemisinin derivatives and the resulting failure of artemisinin-based combination therapy (ACT) are threatening all major gains made in malaria control. Each time resistance has developed progressively, with delayed clearance of parasites first emerging only in a few regions, increasing in prevalence and geographic range, and then ultimately resulting in the complete failure of that antimalarial. Drawing from this repeated historical chain of events, this article presents context-specific approaches for combating drug-resistant P. falciparum malaria. The approaches begin with a context of drug-sensitive parasites and focus on the prevention of the emergence of drug resistance. Next, the approaches address a scenario in which resistance has emerged and is increasing in prevalence and geographic extent, with interventions focused on disrupting transmission through vector control, early diagnosis and treatment, and the use of new combination therapies. Elimination is also presented as an approach for addressing the imminent failure of all available antimalarials. The final drug resistance context presented is one in which all available antimalarials have failed; leaving only personal protection and the use of new antimalarials (or new combinations of antimalarials) as a viable strategy for dealing with complete resistance. All effective strategies and contexts require a multipronged, holistic approach. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. [Treatment of fulminant falciparum malaria with erythrapheresis].

    PubMed

    Rouvier, B; Maudan, P; Debue, J F; Joussemet, M; Roué, R

    1988-01-01

    Ten days after his return from Cameroon, a twenty-six year old Frenchman, serving on voluntary service overseas, presented with fulminant falciparum malaria: shock, altered consciousness, haemolytic anaemia, threatening disseminated coagulation (platelets less than 150 X 10(-6).l-1; prothrombin time and Stuart factor less than 50%; fibrinogen less than 1.5 g.l-1). In spite of quinine therapy, parasitaemia increased from 4 to 35% within 24 h. Using an Haemonetics V50, the exchange of one and a half red blood cell masses was carried out with 17 red blood cell packs. Calcium gluconate was used to prevent the hypocalcaemia induced by the anticoagulant solution. The patient's platelets and plasma were completely reinjected. The result was very satisfactory. This kind of exchange, well tolerated clinically and biologically, would seem better than the classical exchange transfusion. When 10% of the red blood cells are infected by Plasmodium falciparum, it is necessary to exchange from one and a half to two blood masses. Lesser exchanges are always associated with important relapses and quinine therapy must be carried on during and after the exchange. Restricting this exchange only to red blood cells enabled the patient to benefit from his own coagulation factors, antibodies and platelets, and consequently to reduce the number of blood donors involved. However, metabolites (especially bilirubin and circulating immune complexes) were not eliminated. Partial plasmapheresis may be associated with erythropheresis using human albumin as plasma substitute. This technique needs to be assessed, in order to optimize immediate efficiency and post-transfusion infectious risk.

  2. Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

    PubMed Central

    2014-01-01

    Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  4. Primaquine for reducing Plasmodium falciparum transmission.

    PubMed

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2012-09-12

    Mosquitoes become infected with malaria when they ingest gametocyte stages of the parasite from the blood of a human host. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ). The World Health Organization (WHO) recommends giving a single dose or short course of PQ alongside primary treatment for people ill with P. falciparum infection to reduce malaria transmission. Gametocytes themselves cause no symptoms, so this intervention does not directly benefit individuals. PQ causes haemolysis in some people with glucose-6-phosphate dehydrogenase (G6PD) deficiency so may not be safe.   To assess whether a single dose or short course of PQ added to treatments for malaria caused by P. falciparum infection reduces malaria transmission and is safe. We searched the following databases up to 10 April 2012 for studies: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT) and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and we contacted likely researchers and organizations for relevant trials. Trials of mass treatment of whole populations (or actively detected fever or malaria cases within such populations) with antimalarial drugs, compared to treatment with the same drug plus PQ; or patients with clinical malaria being treated for malaria at health facilities randomized to short course/single dose PQ versus no PQ. Two authors (PMG and HG) independently screened all abstracts, applied inclusion criteria, and abstracted data. We sought data on the effect of PQ on malaria transmission intensity, participant infectiousness, the number of participants with gametocytes, and gametocyte density over time. We stratified results by primary treatment drug as

  5. Understanding and Resolution of the Block 2 SSME, STS-104 Engine Shutdown Pressure Surge In-flight Anomaly

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Kynard, Michael H.; Tiller, Bruce K. (Technical Monitor)

    2002-01-01

    STS-104, launched July 2001, marked the first flight of a single Block 2 Space Shuttle Main Engine (SSME). This new configuration of the SSME is the culmination of well over a decade of gradual engine system upgrades. The launch and mission were a success. However, in the process of post-launch data analysis a Main Propulsion System (MPS) anomaly was noted and tied directly to the shutdown of the Block 2 SSME. An investigation into this anomaly was organized across NASA facilities and across the various hardware component contractors. This paper is a very brief summary of the eventual understanding of the root causes of the anomaly and the process whereby an appropriate mitigation action was proposed. An analytical model of the High Pressure Fuel Pump (HPFP) and the low pressure fuel system of the SSME is presented to facilitate the presentation of this summary. The proposed mitigation action is discussed and, with the launch of STS-108 in November 2001, successfully demonstrated under flight conditions.

  6. Plasmodium falciparum accompanied the human expansion out of Africa.

    PubMed

    Tanabe, Kazuyuki; Mita, Toshihiro; Jombart, Thibaut; Eriksson, Anders; Horibe, Shun; Palacpac, Nirianne; Ranford-Cartwright, Lisa; Sawai, Hiromi; Sakihama, Naoko; Ohmae, Hiroshi; Nakamura, Masatoshi; Ferreira, Marcelo U; Escalante, Ananias A; Prugnolle, Franck; Björkman, Anders; Färnert, Anna; Kaneko, Akira; Horii, Toshihiro; Manica, Andrea; Kishino, Hirohisa; Balloux, Francois

    2010-07-27

    Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world. 2010 Elsevier Ltd. All rights reserved.

  7. A systematic map of genetic variation in Plasmodium falciparum.

    PubMed

    Kidgell, Claire; Volkman, Sarah K; Daily, Johanna; Borevitz, Justin O; Plouffe, David; Zhou, Yingyao; Johnson, Jeffrey R; Le Roch, Karine; Sarr, Ousmane; Ndir, Omar; Mboup, Soulyemane; Batalov, Serge; Wirth, Dyann F; Winzeler, Elizabeth A

    2006-06-01

    Discovering novel genes involved in immune evasion and drug resistance in the human malaria parasite, Plasmodium falciparum, is of critical importance to global health. Such knowledge may assist in the development of new effective vaccines and in the appropriate use of antimalarial drugs. By performing a full-genome scan of allelic variability in 14 field and laboratory strains of P. falciparum, we comprehensively identified approximately 500 genes evolving at higher than neutral rates. The majority of the most variable genes have paralogs within the P. falciparum genome and may be subject to a different evolutionary clock than those without. The group of 211 variable genes without paralogs contains most known immunogens and a few drug targets, consistent with the idea that the human immune system and drug use is driving parasite evolution. We also reveal gene-amplification events including one surrounding pfmdr1, the P. falciparum multidrug-resistance gene, and a previously uncharacterized amplification centered around the P. falciparum GTP cyclohydrolase gene, the first enzyme in the folate biosynthesis pathway. Although GTP cyclohydrolase is not the known target of any current drugs, downstream members of the pathway are targeted by several widely used antimalarials. We speculate that an amplification of the GTP cyclohydrolase enzyme in the folate biosynthesis pathway may increase flux through this pathway and facilitate parasite resistance to antifolate drugs.

  8. Exploring the folate pathway in Plasmodium falciparum.

    PubMed

    Hyde, John E

    2005-06-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.

  9. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization

    PubMed Central

    Jiang, George; Charoenvit, Yupin; Moreno, Alberto; Baraceros, Maria F; Banania, Glenna; Richie, Nancy; Abot, Steve; Ganeshan, Harini; Fallarme, Victoria; Patterson, Noelle B; Geall, Andrew; Weiss, Walter R; Strobert, Elizabeth; Caro-Aquilar, Ivette; Lanar, David E; Saul, Allan; Martin, Laura B; Gowda, Kalpana; Morrissette, Craig R; Kaslow, David C; Carucci, Daniel J; Galinski, Mary R; Doolan, Denise L

    2007-01-01

    The present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf) antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer CRL1005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of PfCSP, PfSSP2/TRAP, PfLSA1, PfAMA1 and PfMSP1-42 (CSLAM) DNA vaccines in PBS or formulated with CRL1005, and subsequently boosted with ALVAC-Pf7, a canarypox virus expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-γ ELIspot and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides. Antigen-specific and parasite-specific antibody responses were evaluated by ELISA and IFAT, respectively. Immune responses to all components of the multi-antigen mixture were demonstrated following immunization with either DNA/PBS or DNA/CRL1005, and no antigen interference was observed in animals receiving CSLAM as compared to PfCSP alone. These data support the down-selection of the CSLAM antigen combination. CRL1005 formulation had no apparent effect on vaccine-induced T cell or antibody responses, either before or after viral boost. In high responder monkeys, CD4+IL-2+ responses were more predominant than CD8+ T cell responses. Furthermore, CD8+ IFN-γ responses were detected only in the presence of detectable CD4+ T cell responses. Overall, this study demonstrates the potential for multivalent Pf vaccines based on rational antigen selection and combination, and suggests that further formulation development to increase the immunogenicity of DNA encoded antigens is warranted. PMID:17925026

  10. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    PubMed

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds.

  11. Multiple independent introductions of Plasmodium falciparum in South America

    PubMed Central

    Yalcindag, Erhan; Elguero, Eric; Arnathau, Céline; Durand, Patrick; Akiana, Jean; Anderson, Timothy J.; Aubouy, Agnes; Balloux, François; Besnard, Patrick; Bogreau, Hervé; Carnevale, Pierre; D'Alessandro, Umberto; Fontenille, Didier; Gamboa, Dionicia; Jombart, Thibaut; Le Mire, Jacques; Leroy, Eric; Maestre, Amanda; Mayxay, Mayfong; Ménard, Didier; Musset, Lise; Newton, Paul N.; Nkoghé, Dieudonné; Noya, Oscar; Ollomo, Benjamin; Rogier, Christophe; Veron, Vincent; Wide, Albina; Zakeri, Sedigheh; Carme, Bernard; Legrand, Eric; Chevillon, Christine; Ayala, Francisco J.; Renaud, François; Prugnolle, Franck

    2012-01-01

    The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade. PMID:22203975

  12. [P. falciparum malaria related with travel: four cases].

    PubMed

    Güven, Tümer; Eser, Fatma Civelek; Yılmaz, Gül R; Güner, Rahmet; Taşyaran, Mehmet A

    2013-01-01

    Malaria is still an important public health problem in the world. Although the number of malaria cases in Turkey has been declining in recent years, the febrile patients with a history of travel to the endemic regions should raise the suspicion of malaria. P. vivax is the most common cause of malaria in Turkey; and those caused by other Plasmodium spp. are imported cases. Since P. falciparum malaria may cause fatal complications, urgent therapy is necessary. We hereby report four falciparum malaria cases with a history of travel to Sudan and Uganda.

  13. Molecular Genetic Analysis of Parasite Survival in P. Falciparum Malaria

    DTIC Science & Technology

    1993-02-26

    falciparum. Nature 315, 347-350. 3. Van der Ploeg, L.H.T., Smits, M., Ponnudurai, T., Vermeulen, A., Meuwissen, LH.E.T., and Langsley , G . (1985...prepared by the Plasmodium cynomolgi complex Cell 48. 311-319 method of ",an der Ploeg et at (1984) Total genomic DNA was briefly Goman, M , Langsley , G ...an erythrocyte receptor Meuwissen, J H E T, and Langsley , G (1985). Chromosome-sized binding protein of P falciparum Cell 44, 689-696 DNA molecules

  14. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae

    PubMed Central

    2012-01-01

    Background When ingested in a blood meal, ivermectin has been shown to reduce the survivorship of Anopheles gambiae in the laboratory and field. Furthermore, ivermectin mass drug administrations in Senegal have been shown to reduce the proportion of Plasmodium falciparum-sporozoite-containing An. gambiae. This study addresses whether ivermectin inhibits sporogony of P. falciparum in An. gambiae. Methods Anophele gambiae s.s. G3 strain were fed two concentrations of ivermectin (LC25 and LC5) along with P. falciparum NF54 in human blood meals at staggered intervals. Mosquitoes ingested ivermectin concurrent with parasites (DPI 0), or at three (DPI 3), six (DPI 6), and nine (DPI 9) days post parasite ingestion, or three days prior (DPI −3) to parasite ingestion. Mosquitoes were dissected at seven, twelve or fourteen days post parasite ingestion and either oocyst or sporozoite prevalence was recorded. To determine if P. falciparum sporozoite-containing An. gambiae were more susceptible to ivermectin than uninfected controls, survivorship was recorded for mosquitoes which ingested P. falciparum or control blood meal on DPI 0 and then a second blood meal containing ivermectin (LC25) on DPI 14. Results Ivermectin (LC25) co-ingested (DPI 0) with parasites reduced the proportion of An. gambiae that developed oocysts (χ2 = 15.4842, P = 0.0002) and sporozoites (χ2 = 19.9643, P < 0.0001). Ivermectin (LC25) ingested DPI 6 (χ2 = 8.5103, P = 0.0044) and 9 (χ2 = 14.7998, P < 0.0001) reduced the proportion of An. gambiae that developed sporozoites but not when ingested DPI 3 (χ2 = 0.0113, P = 1). Ivermectin (LC5) co-ingested (DPI 0) with parasites did not reduce the proportion of An. gambiae that developed oocysts (χ2 = 4.2518, P = 0.0577) or sporozoites (χ2 = 2.3636, P = 0.1540), however, when ingested DPI −3 the proportion of An. gambiae that developed sporozoites was reduced (χ2 = 8.4806, P = 0.0047). Plasmodium falciparum infection significantly reduced the

  15. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  16. Artemisinin-Resistant Plasmodium falciparum Malaria.

    PubMed

    Fairhurst, Rick M; Dondorp, Arjen M

    2016-06-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.

  17. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    PubMed

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  18. Plasmodium falciparum glutaredoxin-like proteins.

    PubMed

    Deponte, Marcel; Becker, Katja; Rahlfs, Stefan

    2005-01-01

    Glutaredoxin-like proteins form a new subgroup of glutaredoxins with a serine replacing the second cysteine in the CxxC-motif of the active site. Yeast Grx5 is the only glutaredoxin-like protein studied biochemically so far. We identified and cloned three genes encoding glutaredoxin-like proteins from the malaria parasite Plasmodium falciparum (Pf Glp1, Pf Glp2, and Pf Glp3) containing a conserved cysteine in the CGFS-, CKFS-, and CKYS-motif, respectively. Here, we describe biochemical properties of Pf Glp1 and Pf Glp2. Cys 99, the only cysteine residue in Pf Glp1, has a pK(a) value as low as 5.5 and is able to mediate covalent homodimerization. Monomeric and dimeric Pf Glp1 react with GSSG and GSH, respectively. Pf Glp2 is monomeric and both of its cysteine residues can be glutathionylated. Molecular models reveal a thioredoxin fold for the putative C-terminal domain of Pf Glp1, Pf Glp2, and Pf Glp3, as well as conserved residues presumably required for glutathione binding. However, Pf Glp1 and Pf Glp2 neither possess activity in a classical glutaredoxin assay nor display activity as glutathione peroxidase or glutathione S-transferase. Mutation of Ser 102 in the CGFS-motif of Pf Glp1 to cysteine did not generate glutaredoxin activity either. We conclude that, despite their ability to react with glutathione, glutaredoxin-like proteins are a mechanistically and functionally heterogeneous group with only little similarities to canonical glutaredoxins.

  19. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naïve subjects at a new facility for sporozoite challenge.

    PubMed

    Talley, Angela K; Healy, Sara A; Finney, Olivia C; Murphy, Sean C; Kublin, James; Salas, Carola J; Lundebjerg, Susan; Gilbert, Peter; Van Voorhis, Wesley C; Whisler, John; Wang, Ruobing; Ockenhouse, Chris F; Heppner, D Gray; Kappe, Stefan H; Duffy, Patrick E

    2014-01-01

    Controlled human malaria infection (CHMI) studies which recapitulate mosquito-borne infection are a critical tool to identify protective vaccine and drug candidates for advancement to field trials. In partnership with the Walter Reed Army Institute of Research, the CHMI model was established at the Seattle Biomedical Research Institute's Malaria Clinical Trials Center (MCTC). Activities and reagents at both centers were aligned to ensure comparability and continued safety of the model. To demonstrate successful implementation, CHMI was performed in six healthy malaria-naïve volunteers. All volunteers received NF54 strain Plasmodium falciparum by the bite of five infected Anopheles stephensi mosquitoes under controlled conditions and were monitored for signs and symptoms of malaria and for parasitemia by peripheral blood smear. Subjects were treated upon diagnosis with chloroquine by directly observed therapy. Immunological (T cell and antibody) and molecular diagnostic (real-time quantitative reverse transcriptase polymerase chain reaction [qRT-PCR]) assessments were also performed. All six volunteers developed patent parasitemia and clinical malaria. No serious adverse events occurred during the study period or for six months post-infection. The mean prepatent period was 11.2 days (range 9-14 days), and geometric mean parasitemia upon diagnosis was 10.8 parasites/µL (range 2-69) by microscopy. qRT-PCR detected parasites an average of 3.7 days (range 2-4 days) earlier than blood smears. All volunteers developed antibodies to the blood-stage antigen merozoite surface protein 1 (MSP-1), which persisted up to six months. Humoral and cellular responses to pre-erythrocytic antigens circumsporozoite protein (CSP) and liver-stage antigen 1 (LSA-1) were limited. The CHMI model was safe, well tolerated and characterized by consistent prepatent periods, pre-symptomatic diagnosis in 3/6 subjects and adverse event profiles as reported at established centers. The MCTC can now

  20. Origin of the human malaria parasite Plasmodium falciparum in gorillas

    PubMed Central

    Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.

    2010-01-01

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995

  1. Identification and localization of a Novel Invasin of Plasmodium falciparum.

    PubMed

    Hans, Nidhi; Relan, Udbhav; Dubey, Nneha; Gaur, Deepak; Chauhan, V S

    2015-08-01

    Plasmodium falciparum is the causative organism for the most severe form of malaria among humans. The clinical symptoms are accredited to the asexual stage of parasite life cycle, involving merozoite invasion of erythrocyte, development and re-invasion into the new erythrocyte. Interaction of parasite proteins present on the surface or secreted from apical organelles with the host receptors is indispensable for the invasion process. Identification and elucidation of precise localization and function of these proteins will not only enhance our understanding of this process but will also aid in the progress of development of treatment strategies against malaria. Here we report the identification and localization of a novel protein, PfAEP (P. falciparum Apical Exonemal Protein) (PF3D7_1137200/ PF11_0383) which is conserved across Plasmodium species. Transcription and translation analysis have confirmed its expression in the schizont stage of P. falciparum. Super-resolution microscopy in schizonts and merozoites revealed its localization in the exonemes of P. falciparum.

  2. Carotenoid Biosynthesis in Intraerythrocytic Stages of Plasmodium falciparum*S⃞

    PubMed Central

    Tonhosolo, Renata; D'Alexandri, Fabio L.; de Rosso, Veridiana V.; Gazarini, Marcos L.; Matsumura, Miriam Y.; Peres, Valnice J.; Merino, Emilio F.; Carlton, Jane M.; Wunderlich, Gerhard; Mercadante, Adriana Z.; Kimura, Emília A.; Katzin, Alejandro M.

    2009-01-01

    Carotenoids are widespread lipophilic pigments synthesized by all photosynthetic organisms and some nonphotosynthetic fungi and bacteria. All carotenoids are derived from the C40 isoprenoid precursor geranylgeranyl pyrophosphate, and their chemical and physical properties are associated with light absorption, free radical scavenging, and antioxidant activity. Carotenoids are generally synthesized in well defined subcellular organelles, the plastids, which are also present in the phylum Apicomplexa, which comprises a number of important human parasites, such as Plasmodium and Toxoplasma. Recently, it was demonstrated that Toxoplasma gondii synthesizes abscisic acid. We therefore asked if Plasmodium falciparum is also capable of synthesizing carotenoids. Herein, biochemical findings demonstrated the presence of carotenoid biosynthesis in the intraerythrocytic stages of the apicomplexan parasite P. falciparum. Using metabolic labeling with radioisotopes, in vitro inhibition tests with norflurazon, a specific inhibitor of plant carotenoid biosynthesis, the results showed that intraerythrocytic stages of P. falciparum synthesize carotenoid compounds. A plasmodial enzyme that presented phytoene synthase activity was also identified and characterized. These findings not only contribute to the current understanding of P. falciparum evolution but shed light on a pathway that could serve as a chemotherapeutic target. PMID:19203994

  3. Drug Evaluation in the Plasmodium falciparum - Aotus Model

    DTIC Science & Technology

    1984-09-01

    R. N., Harper, J. S. Ill, Davidson D. E. Jr., Escajadillo , A. and Christensen H. A. Comparison of Plasmodium falciparum infec- tions in Panamanian...CONTRACTS R. N. Rossan, Ph. D. D. C. Baerg, Ph. D. J. C. Harper, VMD A. Escajadillo , DVM H. A. Christensen, Ph. D L. Martinez F. Durham G. Ci

  4. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum

    PubMed Central

    Patzewitz, Eva-Maria; Wong, Eleanor H; Müller, Sylke

    2012-01-01

    Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. PMID:22151036

  5. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3.

    PubMed Central

    Sijwali, P S; Shenai, B R; Gut, J; Singh, A; Rosenthal, P J

    2001-01-01

    In the malaria parasite Plasmodium falciparum, erythrocytic trophozoites hydrolyse haemoglobin to provide amino acids for parasite protein synthesis. Cysteine protease inhibitors block parasite haemoglobin hydrolysis and development, indicating that cysteine proteases are required for these processes. Three papain-family cysteine protease sequences have been identified in the P. falciparum genome, but the specific roles of their gene products and other plasmodial proteases in haemoglobin hydrolysis are uncertain. Falcipain-2 was recently identified as a principal trophozoite cysteine protease and potential drug target. The present study characterizes the related P. falciparum cysteine protease falcipain-3. As is the case with falcipain-2, falcipain-3 is expressed by trophozoites and appears to be located within the food vacuole, the site of haemoglobin hydrolysis. Both proteases require a reducing environment and acidic pH for optimal activity, and both prefer peptide substrates with leucine at the P(2) position. The proteases differ, however, in that falcipain-3 undergoes efficient processing to an active form only at acidic pH, is more active and stable at acidic pH, and has much lower specific activity against typical papain-family peptide substrates, but has greater activity against native haemoglobin. Thus falcipain-3 is a second P. falciparum haemoglobinase that is particularly suited for the hydrolysis of native haemoglobin in the acidic food vacuole. The redundancy of cysteine proteases may offer optimized hydrolysis of both native haemoglobin and globin peptides. Consideration of both proteases will be necessary to evaluate cysteine protease inhibitors as antimalarial drugs. PMID:11716777

  6. A genome-wide map of diversity in Plasmodium falciparum.

    PubMed

    Volkman, Sarah K; Sabeti, Pardis C; DeCaprio, David; Neafsey, Daniel E; Schaffner, Stephen F; Milner, Danny A; Daily, Johanna P; Sarr, Ousmane; Ndiaye, Daouda; Ndir, Omar; Mboup, Soulyemane; Duraisingh, Manoj T; Lukens, Amanda; Derr, Alan; Stange-Thomann, Nicole; Waggoner, Skye; Onofrio, Robert; Ziaugra, Liuda; Mauceli, Evan; Gnerre, Sante; Jaffe, David B; Zainoun, Joanne; Wiegand, Roger C; Birren, Bruce W; Hartl, Daniel L; Galagan, James E; Lander, Eric S; Wirth, Dyann F

    2007-01-01

    Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (pi = 1.16 x 10(-3)) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.

  7. Low-Complexity Regions in Plasmodium falciparum Proteins

    PubMed Central

    Pizzi, Elisabetta; Frontali, Clara

    2001-01-01

    Full-sequence data available for Plasmodium falciparum chromosomes 2 and 3 are exploited to perform a statistical analysis of the long tracts of biased amino acid composition that characterize the vast majority of P. falciparum proteins and to make a comparison with similarly defined tracts from other simple eukaryotes. When the relatively minor subset of prevalently hydrophobic segments is discarded from the set of low-complexity segments identified by current segmentation methods in P. falciparum proteins, a good correspondence is found between prevalently hydrophilic low-complexity segments and the species-specific, rapidly diverging insertions detected by multiple-alignment procedures when sequences of bona fide homologs are available. Amino acid preferences are fairly uniform in the set of hydrophilic low-complexity segments identified in the two P. falciparum chromosomes sequenced, as well as in sequenced genes from Plasmodium berghei, but differ from those observed in Saccharomyces cerevisiae and Dictyostelium discoideum. In the two plasmodial species, amino acid frequencies do not correlate with properties such as hydrophilicity, small volume, or flexibility, which might be expected to characterize residues involved in nonglobular domains but do correlate with A-richness in codons. An effect of phenotypic selection versus neutral drift, however, is suggested by the predominance of asparagine over lysine. PMID:11157785

  8. New Strategies for Drug Discovery and Development for Plasmodium falciparum

    DTIC Science & Technology

    2001-01-01

    research working in concert with one another. The goal of this work is to use a molecular genetic approach both in the identification of new drug targets and...Plasmodium falciparum for their role in drug resistance and as potential new drug targets, including the analysis of gene expression in response to

  9. Molecular Genetic Analysis Of Parasite Survival In P. Falciparum Malaria.

    DTIC Science & Technology

    1992-08-03

    DNA from (Van Der Ploeg et al., 1985: Wellems et aL, 1987). Strik- the P. falciparum strain FCR3 in yeast as artificial ing poiymorphisms have been...and exposed Burke.D F , Carle.G.F. and Olson, MV . 1 19871 .Siucnic. 23.% 806v-812, isernilitl at 70) C with an intensifying screen. ChomnczynskiP. and

  10. Molecular Surveillance for Multidrug-Resistant Plasmodium falciparum, Cambodia

    PubMed Central

    Shah, Naman K.; Alker, Alisa P.; Sem, Rithy; Susanti, Agustina Ika; Muth, Sinuon; Maguire, Jason D.; Duong, Socheat; Ariey, Frederic; Meshnick, Steven R.

    2008-01-01

    We conducted surveillance for multidrug-resistant Plasmodium falciparum in Cambodia during 2004–2006 by assessing molecular changes in pfmdr1. The high prevalence of isolates with multiple pfmdr1 copies found in western Cambodia near the Thai border, where artesunate–mefloquine therapy failures occur, contrasts with isolates from eastern Cambodia, where this combination therapy remains highly effective. PMID:18826834

  11. Plasmodium falciparum Malaria Endemicity in Indonesia in 2010

    PubMed Central

    Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Kusriastuti, Rita; Wismarini, Desak M.; Tarmizi, Siti N.; Baird, J. Kevin; Hay, Simon I.

    2011-01-01

    Background Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. Methods Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. Results We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. Conclusion While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of

  12. Plasmodium falciparum malaria endemicity in Indonesia in 2010.

    PubMed

    Elyazar, Iqbal R F; Gething, Peter W; Patil, Anand P; Rogayah, Hanifah; Kusriastuti, Rita; Wismarini, Desak M; Tarmizi, Siti N; Baird, J Kevin; Hay, Simon I

    2011-01-01

    Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006-2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985-2009). After quality control, 2,516 were included into a national database of age-standardized 2-10 year old PfPR data (PfPR(2-10)) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR(2-10) endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline

  13. Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins

    PubMed Central

    Vignali, Marissa; McKinlay, Anastasia; LaCount, Douglas J; Chettier, Rakesh; Bell, Russell; Sahasrabudhe, Sudhir; Hughes, Robert E; Fields, Stanley

    2008-01-01

    Background In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. Methods A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. Results An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. Conclusion A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets. PMID:18937849

  14. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  15. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase

    PubMed Central

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S.; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M. R. K.; Freund, Yvonne R.; DeRisi, Joseph; Cusack, Stephen

    2016-01-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  16. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    PubMed

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  17. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum.

    PubMed

    Bozdech, Zbynek; Llinás, Manuel; Pulliam, Brian Lee; Wong, Edith D; Zhu, Jingchun; DeRisi, Joseph L

    2003-10-01

    Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC) transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7) was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the intraerythrocytic

  18. The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum

    PubMed Central

    Pulliam, Brian Lee; Wong, Edith D; Zhu, Jingchun

    2003-01-01

    Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200–300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC) transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7) was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a “just-in-time” manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the

  19. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria.

    PubMed

    Imwong, Mallika; Woodrow, Charles J; Hendriksen, Ilse C E; Veenemans, Jacobien; Verhoef, Hans; Faiz, M Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D; Day, Nicholas P J; Dondorp, Arjen M; White, Nicholas J

    2015-04-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.

  20. Endemicity response timelines for Plasmodium falciparum elimination.

    PubMed

    Smith, David L; Hay, Simon I

    2009-04-30

    The scaling up of malaria control and renewed calls for malaria eradication have raised interest in defining timelines for changes in malaria endemicity. The epidemiological theory for the decline in the Plasmodium falciparum parasite rate (PfPR, the prevalence of infection) following intervention was critically reviewed and where necessary extended to consider superinfection, heterogeneous biting, and aging infections. Timelines for malaria control and elimination under different levels of intervention were then established using a wide range of candidate mathematical models. Analysis focused on the timelines from baseline to 1% and from 1% through the final stages of elimination. The Ross-Macdonald model, which ignores superinfection, was used for planning during the Global Malaria Eradication Programme (GMEP). In models that consider superinfection, PfPR takes two to three years longer to reach 1% starting from a hyperendemic baseline, consistent with one of the few large-scale malaria control trials conducted in an African population with hyperendemic malaria. The time to elimination depends fundamentally upon the extent to which malaria transmission is interrupted and the size of the human population modelled. When the PfPR drops below 1%, almost all models predict similar and proportional declines in PfPR in consecutive years from 1% through to elimination and that the waiting time to reduce PfPR from 10% to 1% and from 1% to 0.1% are approximately equal, but the decay rate can increase over time if infections senesce. The theory described herein provides simple "rules of thumb" and likely time horizons for the impact of interventions for control and elimination. Starting from a hyperendemic baseline, the GMEP planning timelines, which were based on the Ross-Macdonald model with completely interrupted transmission, were inappropriate for setting endemicity timelines and they represent the most optimistic scenario for places with lower endemicity. Basic

  1. Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity

    PubMed Central

    Tan, Benedict G.; Wellesley, Frederick C.; Savery, Nigel J.; Szczelkun, Mark D.

    2016-01-01

    The guanine (G)-tract of conserved sequence block 2 (CSB 2) in human mitochondrial DNA can result in transcription termination due to formation of a hybrid G-quadruplex between the nascent RNA and the nontemplate DNA strand. This structure can then influence genome replication, stability and localization. Here we surveyed the frequency of variation in sequence identity and length at CSB 2 amongst human mitochondrial genomes and used in vitro transcription to assess the effects of this length heterogeneity on the activity of the mitochondrial RNA polymerase, POLRMT. In general, increased G-tract length correlated with increased termination levels. However, variation in the population favoured CSB 2 sequences which produced efficient termination while particularly weak or strong signals were avoided. For all variants examined, the 3′ end of the transcripts mapped to the same downstream sequences and were prevented from terminating by addition of the transcription factor TEFM. We propose that CSB 2 length heterogeneity allows variation in the efficiency of transcription termination without affecting the position of the products or the capacity for regulation by TEFM. PMID:27436287

  2. Qualitative and semiquantitative polymerase chain reaction to predict Plasmodium falciparum treatment failure.

    PubMed

    Kain, K C; Kyle, D E; Wongsrichanalai, C; Brown, A E; Webster, H K; Vanijanonta, S; Looareesuwan, S

    1994-12-01

    Multidrug-resistant falciparum malaria is increasing in most malaria-endemic areas. Rapid methods for predicting treatment failure would aid management and control of drug-resistant infections. In this study, Plasmodium falciparum DNA clearance was examined by qualitative and semiquantitative polymerase chain reaction (PCR). Thai patients with acute falciparum malaria were prospectively followed by light microscopy and by PCR of P. falciparum DNA eluted from filter paper blood samples. A 206-bp P. falciparum sequence was amplified and detected radiometrically and by high-performance liquid chromatography. Clearance of P. falciparum DNA was significantly delayed in treatment failures compared with that in successfully treated patients (P = .02). Semiquantitative PCR levels did not drop to < 50% of pretreatment levels until day 3 or later in treatment failures compared with day 1 or earlier for successfully treated parasitemia-matched controls (P = .005). These results suggest that qualitative and semiquantitative PCR may be useful as a method for monitoring response to therapy.

  3. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    PubMed

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  4. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria

    PubMed Central

    White, Nicholas J.; Duong, Tran T.; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P.; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S.; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T.; Pertel, Peter; Leong, F. Joel

    2016-01-01

    Background KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. Methods We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Results Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. Conclusions KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P

  5. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia

    DTIC Science & Technology

    2013-01-02

    molecular markers Artemisinin-based combination therapies (ACTs) are the lead-ing treatment for Plasmodium falciparum malaria (1), and their use with... Plasmodium falciparum malaria . N Engl J Med 361(5):455–467. 8. Noedl H, et al.; Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium (2008...Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia Shannon Takala-Harrisona

  6. Drug and Vaccine Evaluation in the Human Aotus Plasmodium Falciparum Model

    DTIC Science & Technology

    2007-11-02

    AD Award Number: DAMDl7-01-C-0039 TITLE: Drug and Vaccine Evaluation in the Human Aotus Plasmodium Falciparum Model PRINCIPAL INVESTIGATOR: Nicanor... Human Aotus DAMDI7-01-C-0039 Plasmodium Falciparum Model 6. AUTHOR(S): Nicanor Obaldia, III, D.V.M. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...evaluation of drugs and vaccines in the human malarialAotus lemurinus lemurinus monkey model experimientally infected with Plasmodium falciparum or vivax

  7. [Large trophozoites in blood smear of falciparum malaria: one case report].

    PubMed

    Wang, Yong-bin; Kong, Xiang-li; Xu, Yan; Zhang, Ying; Li, Jin; Zhao, Chang-lei; Miao, Feng; Chen, Xi-xin

    2014-06-01

    This paper reports one case of atypical falciparum malaria imported from Africa, whose blood smear contains many large trophozoites, with punctiform or massive brown pigment granules, the body shape of the plasmodium is similar to that of Plasmodium vivax and Plasmodium ovale. After the gene detection by PCR, the case was diagnosed as falciparum malaria. As large trophozoites were rarely seen in the peripheral blood of non-severe falciparum malaria cases, much attention should be paid to the identification of Plasmodium falciparum and other plasmodia in microscopic examinations.

  8. Exploring Drug Targets in Isoprenoid Biosynthetic Pathway for Plasmodium falciparum.

    PubMed

    Qidwai, Tabish; Jamal, Farrukh; Khan, Mohd Y; Sharma, Bechan

    2014-01-01

    Emergence of rapid drug resistance to existing antimalarial drugs in Plasmodium falciparum has created the need for prediction of novel targets as well as leads derived from original molecules with improved activity against a validated drug target. The malaria parasite has a plant plastid-like apicoplast. To overcome the problem of falciparum malaria, the metabolic pathways in parasite apicoplast have been used as antimalarial drug targets. Among several pathways in apicoplast, isoprenoid biosynthesis is one of the important pathways for parasite as its multiplication in human erythrocytes requires isoprenoids. Therefore targeting this pathway and exploring leads with improved activity is a highly attractive approach. This report has explored progress towards the study of proteins and inhibitors of isoprenoid biosynthesis pathway. For more comprehensive analysis, antimalarial drug-protein interaction has been covered.

  9. Symmetrical peripheral gangrene due to Plasmodium falciparum malaria

    PubMed Central

    Abdali, Nasar; Malik, Azharuddin Mohammed; Kamal, Athar; Ahmad, Mehtab

    2014-01-01

    A 45-year-old man presented with a 4-day history of high-grade fever with rigours and a 2-day history of painful bluish black discolouration of extremities (acrocyanosis). He was haemodynamically stable and all peripheral pulses palpable, but the extremities were cold with gangrene involving bilateral fingers and toes. Mild splenomegaly was present on abdominal examination but rest of the physical examinations were normal. On investigating he was found to have anaemia, thrombocytopaenia with gametocytes of Plasmodium falciparum on peripheral blood smear. His blood was uncoagulable during performance of prothrombin time with a raised D-dimer. Oxygen saturation was normal and the arterial Doppler test showed reduced blood flow to the extremities. A diagnosis of complicated P. falciparum malaria with disseminated intravascular coagulation (DIC) leading to symmetrical peripheral gangrene was performed. Artemisinin combination therapy was started and heparin was given for DIC. A final line of demarcation of gangrene started forming by 12th day. PMID:24862424

  10. Antifolate Agents Against Wild and Mutant Strains of Plasmodium falciparum

    PubMed Central

    Shaikh, M. S.; Rana, J.; Gaikwad, D.; Leartsakulpanich, U.; Ambre, Premlata K.; Pissurlenkar, R. R. S.; Coutinho, E. C.

    2014-01-01

    Plasmodium falciparum dihydrofolate reductase is an important target for antimalarial chemotherapy. The emergence of resistance has significantly reduced the efficacy of the classic antifolate drugs cycloguanil and pyrimethamine. In this paper we report new dihydrofolate reductase inhibitors identified using molecular modelling principles with the goal of designing new antifolate agents active against both wild and tetramutant dihydrofolate reductase strains three series of trimethoprim analogues were designed, synthesised and tested for biological activity. Pyrimethamine and cycloguanil have been reported to loose efficacy because of steric repulsion in the active site pocket produced due to mutation in Plasmodium falciparum dihydrofolate reductase. The synthesised molecules have sufficient flexibility to withstand this steric repulsion to counteract the resistance. The molecules have been synthesised by conventional techniques and fully characterised by spectroscopic methods. The potency of these molecules was evaluated by in vitro enzyme specific assays. Some of the molecules were active in micromolar concentrations and can easily be optimised to improve binding and activity. PMID:24843184

  11. Automated erythrocytapheresis in the treatment of severe falciparum malaria.

    PubMed

    Macallan, D C; Pocock, M; Bishop, E; Bevan, D H; Parker-Williams, J; Harrison, T; Robinson, G T

    1999-11-01

    Removal of parasitized erythrocytes is generally considered to be of value as adjunctive therapy in severe falciparum malaria with high parasitaemia. This is commonly achieved by exchange transfusion. We describe three cases of severe falciparum malaria treated by automated erythrocytapheresis (red cell exchange) in addition to quinine and conventional supportive therapy. Erythrocytapheresis consists of removal of the red-cell fraction by apheresis. Plasma, leukocyte and platelet fractions are returned to the patient. In all cases, dramatic reduction in parasitaemia was achieved within 2 h with subsequent complete clinical recovery. Erythrocytapheresis has significant advantages over exchange transfusion in terms of speed, efficiency, haemodynamic stability and retention of plasma components such as clotting factors and may thus represent an improvement in adjunctive therapy for severe malaria.

  12. The mechanism of resistance to sulfa drugs in Plasmodium falciparum.

    PubMed

    Triglia, Tony; Cowman, Alan F.

    1999-02-01

    The sulfonamide and sulfone (sulfa) group of antimalarials has been used extensively throughout malaria endemic regions of the world to control this important infectious disease of humans. Sulfadoxine is the most extensively used drug of this group of drugs and is usually combined with pyrimethamine (Fansidar), particularly for the control of Plasmodium falciparum, the causative agent of the most lethal form of malaria. Resistance to the sulfadoxine/pyrimethamine combination is widespread. Analysis using molecular, genetic and biochemical approaches has shown that the mechanism of resistance to sulfadoxine involves mutation of dihydropteroate synthase, the enzyme target of this group of drugs. Understanding the mechanism of resistance of P. falciparum to sulfa drugs has allowed detailed analysis of the epidemiology of the spread of drug resistance alleles in the field(1)and, in the future, opens the way to the development of novel antimalarials to this target enzyme. Copyright 1999 Harcourt Publishers Ltd.

  13. A genetic system to study Plasmodium falciparum protein function.

    PubMed

    Birnbaum, Jakob; Flemming, Sven; Reichard, Nick; Soares, Alexandra Blancke; Mesén-Ramírez, Paolo; Jonscher, Ernst; Bergmann, Bärbel; Spielmann, Tobias

    2017-03-13

    Current systems to study essential genes in the human malaria parasite Plasmodium falciparum are often inefficient and time intensive, and they depend on the genetic modification of the target locus, a process hindered by the low frequency of integration of episomal DNA into the genome. Here, we introduce a method, termed selection-linked integration (SLI), to rapidly select for genomic integration. SLI allowed us to functionally analyze targets at the gene and protein levels, thus permitting mislocalization of native proteins, a strategy known as knock sideways, floxing to induce diCre-based excision of genes and knocking in altered gene copies. We demonstrated the power and robustness of this approach by validating it for more than 12 targets, including eight essential ones. We also localized and inducibly inactivated Kelch13, the protein associated with artemisinin resistance. We expect this system to be widely applicable for P. falciparum and other organisms with limited genetic tractability.

  14. Characterization of the 26S proteasome network in Plasmodium falciparum.

    PubMed

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R; Becker, Katja

    2015-12-07

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.

  15. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand.

    PubMed

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M

    2015-11-30

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak.

  16. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014

    PubMed Central

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar

    2016-01-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  17. The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum

    PubMed Central

    Feagin, Jean E.; Harrell, Maria Isabel; Lee, Jung C.; Coe, Kevin J.; Sands, Bryan H.; Cannone, Jamie J.; Tami, Germaine; Schnare, Murray N.; Gutell, Robin R.

    2012-01-01

    Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered. PMID:22761677

  18. PLASMODIUM FALCIPARUM Na+/H+ EXCHANGER ACTIVITY AND QUININE RESISTANCE +

    PubMed Central

    Bennett, Tyler N.; Patel, Jigar; Ferdig, Michael T.; Roepe, Paul D.

    2009-01-01

    Mutations in the Plasmodium falciparum pfcrt gene cause resistance to the 4 – amino quinoline chloroquine (CQ) and other antimalarial drugs. Mutations and/or overexpression of a P. falciparum multidrug resistance gene homologue (pfmdr1) may further modify or tailor the degree of quinoline drug resistance. Recently (M.T. Ferdig et al., Molecular Microbiology 52: 985–997 [2004]) QTL analysis further implicated a region of P. falciparum chromosome 13 as a partner (with pfcrt) in conferring resistance to the first quinoline – based antimalarial drug, quinine (QN). Since QN resistance (QNR) and CQR are often (but not always) observed together in parasite strains, since elevated cytosolic pH is frequently (but not always) found in CQR parasites, and since the chr 13 segment linked to QNR prominently harbors a gene encoding what appears to be a P. falciparum Na+/H+ exchanger (PfNHE), we have systematically measured cytosolic pH and PfNHE activity for an extended series of parasite strains used in the QTL analysis. Altered PfNHE activity does not correlate with CQR as previously proposed, but significantly elevated PfNHE activity is found for strains with high levels of QNR, regardless their CQR status. We propose that either an elevated pHcyt or a higher vacuolar pH – to – cytosolic pH gradient contributes to one common route to malarial QNR that is also characterized by recently defined chr 13 – chr 9 pairwise interactions. Based on sequence analysis we propose a model whereby observed polymorphisms in PfNHE may lead to altered Na+/H+ set point regulation in QNR parasites. PMID:17353059

  19. Drug Evaluation in the Plasmodium Falciparum - Aotus Model

    DTIC Science & Technology

    1994-03-15

    chloroquine, quinine, and pyrimethamine. Am J Trop Med Hyg 27:703-717. 3. Rossan, RN, Harper, JS III, Davidson, DE Jr., Escajadillo , A. and...primaquine. Presented at XII International Congress for Tropical Medicine and Malaria. Amsterdam. 6, Pollack, S, Rossan, RN, Davidson, DE, Escajadillo , A...1987. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys. Proc Soc Expt Biol Med. 184-162-164. 7. Panton, LJ, Rossan, RN, Escajadillo

  20. Drug Evaluation in the Plasmodium Falciparum - Aotus Model

    DTIC Science & Technology

    1993-03-23

    Rossan, RN, Harper, JS III, Davidson, DE Jr., Escajadillo , A. and Christensen, HA.1985. Comparison of Plasmodium falc1parum infections in Panamanian and...Malaria. Amsterdam. 6. Pollack, S, Rossan, RN, Davidson, DE, Escajadillo , A., 1987. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys. Proc...Soc Expt Biol Med. 184:162-164.- 7. Panton, LJ, Rossan, RN, Escajadillo , A, Matsumoto, Y, Lee, AT, Labroo, VM, Kirk, KL, Cohen, LA, Airkawa, M, Howard

  1. Molecular Genetic Analysis of Parasite Survival in P. falciparum Malaria

    DTIC Science & Technology

    1993-02-08

    AD-A279 410 GRANT NO: DAMN17-89-Z-9003 TITLE: MOLECULAR GENETIC ANALYSIS OF PARASITE SURVIVAL IN R. E&LEZjpAIM MALARIA PRINCIPAL INVESTIGATOR... Analysis of Parasite Survival Grant No. in P. Falciparum Malaria DAMDi 7-89- Z-9003 -6. AUTHOR(S) Jeffrey V. Ravetch, M.D., Ph.D. 7. PERFORMING...consequences of genetic variation for parasite survival. Genetic polymorphisms in PRfalciparum were initially detected by pulsed-field gel analysis of intact

  2. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  3. Fate of haem iron in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Egan, Timothy J; Combrinck, Jill M; Egan, Joanne; Hearne, Giovanni R; Marques, Helder M; Ntenteni, Skhumbuzo; Sewell, B Trevor; Smith, Peter J; Taylor, Dale; van Schalkwyk, Donelly A; Walden, Jason C

    2002-01-01

    Chemical analysis has shown that Plasmodium falciparum trophozoites contain 61+/-2% of the iron within parasitized erythrocytes, of which 92+/-6% is located within the food vacuole. Of this, 88+/-9% is in the form of haemozoin. (57)Fe-Mössbauer spectroscopy shows that haemozoin is the only detectable iron species in trophozoites. Electron spectroscopic imaging confirms this conclusion. PMID:12033986

  4. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    PubMed Central

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2010-01-01

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 Å resolution and is compared with the structures of mammalian ARF1s. PMID:21045287

  5. Sensitive and specific DNA probe for detection of Plasmodium falciparum.

    PubMed Central

    Enea, V

    1986-01-01

    The isolation and some characteristics of a very sensitive DNA probe for the detection of Plasmodium falciparum are described. The probe is species specific and represents a large, albeit variable, fraction of the genome in all the strains tested. In addition to its immediate practical uses for the detection and quantitation of parasites, the probe defines an interesting family of repeated sequences. Images PMID:3023833

  6. Plasmodium falciparum MLH is schizont stage specific endonuclease.

    PubMed

    Tarique, Mohammed; Satsangi, Akash Tripathi; Ahmad, Moaz; Singh, Shailja; Tuteja, Renu

    2012-02-01

    Malaria is one of the most important infectious diseases in many regions around the world including India. Plasmodium falciparum is the cause of most lethal form of malaria while Plasmodium vivax is the major cause outside Africa. Regardless of considerable efforts over the last many years there is still no commercial vaccine against malaria and the disease is mainly treated using a range of established drugs. With time, the malaria parasite is developing drug resistance to most of the commonly used drugs. This drug resistance might be due to defective mismatch repair in the parasite. Previously we have reported that the P. falciparum genome contains homologues to most of the components of mismatch repair (MMR) complex. In the present study we report the detailed biochemical characterization of one of the main component of MMR complex, MLH, from P. falciparum. Our results show that MLH is an ATPase and it can incise covalently closed circular DNA in the presence of Mn(2+) or Mg(2+) ions. Using the truncated derivatives we show that full length protein MLH is required for all the enzymatic activities. Using immunodepletion assays we further show that the ATPase and endomuclease activities are attributable to PfMLH protein. Using immunofluorescence assay we report that the peak expression of MLH in both 3D7 and Dd2 strains of P. falciparum is mainly in the schizont stages of the intraerythrocytic development, where DNA replication is active. MMR also contributes to the overall fidelity of DNA replication and the peak expression of MLH in the schizont stages suggests that MLH is most likely involved in correcting the mismatches occurring during replication. This study should make a significant contribution in our better understanding of DNA metabolic processes in the parasite.

  7. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives.

    PubMed Central

    Rockett, K A; Awburn, M M; Cowden, W B; Clark, I A

    1991-01-01

    We have investigated the in vitro susceptibility of the human malaria parasite Plasmodium falciparum to killing by nitric oxide and related molecules. A saturated solution of nitric oxide did not inhibit parasite growth, but two oxidation products of nitric oxide (nitrite and nitrate ions) were toxic to the parasite in millimolar concentrations. Nitrosothiol derivatives of cysteine and glutathione were found to be about a thousand times more active (50% growth inhibitory concentration, approximately 40 microM) than nitrite. PMID:1879941

  8. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  9. Drug Evaluation in the Plasmodium Falciparum-Aotus Model

    DTIC Science & Technology

    1996-03-01

    liver and erythrocytic stages of P. falciparum. If successful, it will establish for the first time that DNA vaccines can protect non- human primates, a...of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985). For the protection of human subjects...essential that new drugs be evaluated in the preclinical Aotus model for their potential usefulness against human infections. Initially, antimalarial

  10. Drug Evaluation in the Plasmodium Falciparum-Aotus Model

    DTIC Science & Technology

    1996-03-01

    with. drug resistant P. falciparum, chloroquine resist ance-l R) was reversed by chlorpromazine and prochlorperazine. Both water-insoluble and soluble...Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985) For the protection of human sub...new drugs be evaluated in the preclinical Aotus model for their potential usefulness against human infections. Initially, antimalarial drug studies

  11. Immunogenicity of Well-Characterized Synthetic Plasmodium Falciparum Multiple Antigen Peptide Conjugates

    DTIC Science & Technology

    2001-08-01

    Galey, A. Londono, J. Patarapotikul, R. L. Beaudoin, C. Dubeaux, A. Tartar, O. Mercereau-Puijalon, and G . Langsley . 1987. A liver-stage-specific...285)250727+($%29($’𔃿(66 ’$7(6&29(5(’ )URP7R E*5$17180%(5 F352*5$0(/(0(17180%(5 G 352-(&7180%(5 H7$6.180%(5 I...secretion of gamma interferon (IFN- g ) in patients with a history of malaria was also synthesized. The T1 or MSP-1 peptide se- quences are attached to the

  12. The crystal structure of superoxide dismutase from Plasmodium falciparum

    PubMed Central

    Boucher, Ian W; Brzozowski, Andrzej M; Brannigan, James A; Schnick, Claudia; Smith, Derek J; Kyes, Sue A; Wilkinson, Anthony J

    2006-01-01

    Background Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 Å resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors. PMID:17020617

  13. Gene copy number variation throughout the Plasmodium falciparum genome.

    PubMed

    Cheeseman, Ian H; Gomez-Escobar, Natalia; Carret, Celine K; Ivens, Alasdair; Stewart, Lindsay B; Tetteh, Kevin K A; Conway, David J

    2009-08-04

    Gene copy number variation (CNV) is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, approximately 40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  14. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design.

    PubMed

    VanBuskirk, Kelley M; O'Neill, Matthew T; De La Vega, Patricia; Maier, Alexander G; Krzych, Urszula; Williams, Jack; Dowler, Megan G; Sacci, John B; Kangwanrangsan, Niwat; Tsuboi, Takafumi; Kneteman, Norman M; Heppner, Donald G; Murdock, Brant A; Mikolajczak, Sebastian A; Aly, Ahmed S I; Cowman, Alan F; Kappe, Stefan H I

    2009-08-04

    Falciparum malaria is initiated when Anopheles mosquitoes transmit the Plasmodium sporozoite stage during a blood meal. Irradiated sporozoites confer sterile protection against subsequent malaria infection in animal models and humans. This level of protection is unmatched by current recombinant malaria vaccines. However, the live-attenuated vaccine approach faces formidable obstacles, including development of accurate, reproducible attenuation techniques. We tested whether Plasmodium falciparum could be attenuated at the early liver stage by genetic engineering. The P. falciparum genetically attenuated parasites (GAPs) harbor individual deletions or simultaneous deletions of the sporozoite-expressed genes P52 and P36. Gene deletions were done by double-cross-over recombination to avoid genetic reversion of the knockout parasites. The gene deletions did not affect parasite replication throughout the erythrocytic cycle, gametocyte production, mosquito infections, and sporozoite production rates. However, the deletions caused parasite developmental arrest during hepatocyte infection. The double-gene deletion line exhibited a more severe intrahepatocytic growth defect compared with the single-gene deletion lines, and it did not persist. This defect was assessed in an in vitro liver-stage growth assay and in a chimeric mouse model harboring human hepatocytes. The strong phenotype of the double knockout GAP justifies its human testing as a whole-organism vaccine candidate using the established sporozoite challenge model. GAPs might provide a safe and reproducible platform to develop an efficacious whole-cell malaria vaccine that prevents infection at the preerythrocytic stage.

  15. Plasmodium falciparum and helminth coinfection in a semi urban population of pregnant women in Uganda.

    PubMed

    Hillier, Stephen D; Booth, Mark; Muhangi, Lawrence; Nkurunziza, Peter; Khihembo, Macklyn; Kakande, Muhammad; Sewankambo, Moses; Kizindo, Robert; Kizza, Moses; Muwanga, Moses; Elliott, Alison M

    2008-09-15

    Helminth infections and malaria are widespread in the tropics. Recent studies suggest helminth infections may increase susceptibility to Plasmodium falciparum infection. If confirmed, this increased susceptibility could be particularly important during pregnancy-induced immunosuppression. To evaluate the geographical distribution of P. falciparum-helminth coinfection and the associations between P. falciparum infection and infection with various parasite species in pregnant women in Entebbe, Uganda. A cross-sectional study was conducted at baseline during a trial of antihelminthic drugs during pregnancy. Helminth and P. falciparum infections were quantified in 2,507 asymptomatic women. Subjects' socioeconomic and demographic characteristics and geographical details were recorded. Hookworm and Mansonella perstans infections were associated with P. falciparum infection, but the effect of hookworm infection was seen only in the absence of M. perstans infection. The odds ratio [OR] for P. falciparum infection, adjusted for age, tribe, socioeconomic status, HIV infection status, and location was as follows: for individuals infected with hookworm but not M. perstans, 1.53 (95% confidence interval [CI], 1.09-2.14); for individuals infected with M. perstans but not hookworm, 2.33 (95% CI, 1.47-3.69); for individuals infected with both hookworm and M. perstans, 1.85 (CI, 1.24-2.76). No association was observed between infection with Schistosoma mansoni, Trichuris, or Strongyloides species and P. falciparum infection. Hookworm-P. falciparum coinfection and M. perstans-P. falciparum coinfection among pregnant women in Entebbe is more common than would be expected by chance. Further studies are needed to elucidate the mechanism of this association. A helminth-induced increase in susceptibility to P. falciparum could have important consequences for pregnancy outcome and responses to P. falciparum infection in infancy.

  16. Sex-partitioning of the Plasmodium falciparum Stage V Gametocyte Proteome Provides Insight into falciparum-specific Cell Biology*

    PubMed Central

    Tao, Dingyin; Ubaida-Mohien, Ceereena; Mathias, Derrick K.; King, Jonas G.; Pastrana-Mena, Rebecca; Tripathi, Abhai; Goldowitz, Ilana; Graham, David R.; Moss, Eli; Marti, Matthias; Dinglasan, Rhoel R.

    2014-01-01

    One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates. PMID:25056935

  17. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    DTIC Science & Technology

    2014-10-01

    of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria . We conducted blinded ex vivo activity...Optimizing the HRP-2 in vitro malaria drug susceptibility assay using a reference clone to improve comparisons of Plasmodium falciparum field isolates... malaria SYBR green I fluorescence (MSF) drug sensitivity tests in Plasmodium falciparum refer- ence clones and fresh ex vivo field isolates from

  18. Prevalence of Plasmodium falciparum Infection in Rainy Season, Artibonite Valley, Haiti, 2006

    PubMed Central

    Keating, Joseph; Bennett, Adam; Londono, Berlin; Johnson, Dawn; Lafontant, Christina; Krogstad, Donald J.

    2007-01-01

    We conducted a population-based survey to estimate the prevalence of Plasmodium falciparum infection among persons older than 1 month in the Artibonite Valley of Haiti during the high malaria transmission season in 2006. Results from PCR for 714 persons showed a prevalence of 3.1% for P. falciparum infection. PMID:18257993

  19. A Cost-Effectiveness Analysis of Plasmodium falciparum Malaria Elimination in Hainan Province, 2002–2012

    PubMed Central

    Sun, Ding-Wei; Du, Jian-Wei; Wang, Guang-Ze; Li, Yu-Chun; He, Chang-Hua; Xue, Rui-De; Wang, Shan-Qing; Hu, Xi-Min

    2015-01-01

    In Hainan Province, China, great achievements in elimination of falciparum malaria have been made since 2010. There have been no locally acquired falciparum malaria cases since that time. The cost-effectiveness of elimination of falciparum malaria has been analyzed in Hainan Province. There were 4,422 falciparum malaria cases reported from 2002 to 2012, more cases occurred in males than in females. From 2002 to 2012, a total of 98.5 disability-adjusted life years (DALYs) were reported because of falciparum malaria. Populations in the age ranges of 15–25 and 30–44 years had higher incidences and DALYs than other age groups. From 2002 to 2012, malaria-related costs for salaries of staff, funds from the provincial government, national government, and the GFATM were US$3.02, US$2.24, US$1.44, and US$5.08 million, respectively. An estimated 9,504 falciparum malaria cases were averted during the period 2003–2012. The estimated cost per falciparum malaria case averted was US$116.5. The falciparum malaria elimination program in Hainan was highly effective and successful. However, funding for maintenance is still needed because of imported cases. PMID:26438030

  20. Lack of evidence for chloroquine-resistant Plasmodium falciparum malaria, Leogane, Haiti.

    PubMed

    Neuberger, Ami; Zhong, Kathleen; Kain, Kevin C; Schwartz, Eli

    2012-09-01

    Plasmodium falciparum malaria in Haiti is considered chloroquine susceptible, although resistance transporter alleles associated with chloroquine resistance were recently detected. Among 49 patients with falciparum malaria, we found neither parasites carrying haplotypes associated with chloroquine resistance nor instances of chloroquine treatment failure. Continued vigilance to detect emergence of chloroquine resistance is needed.

  1. A Cost-Effectiveness Analysis of Plasmodium falciparum Malaria Elimination in Hainan Province, 2002-2012.

    PubMed

    Sun, Ding-Wei; Du, Jian-Wei; Wang, Guang-Ze; Li, Yu-Chun; He, Chang-Hua; Xue, Rui-De; Wang, Shan-Qing; Hu, Xi-Min

    2015-12-01

    In Hainan Province, China, great achievements in elimination of falciparum malaria have been made since 2010. There have been no locally acquired falciparum malaria cases since that time. The cost-effectiveness of elimination of falciparum malaria has been analyzed in Hainan Province. There were 4,422 falciparum malaria cases reported from 2002 to 2012, more cases occurred in males than in females. From 2002 to 2012, a total of 98.5 disability-adjusted life years (DALYs) were reported because of falciparum malaria. Populations in the age ranges of 15-25 and 30-44 years had higher incidences and DALYs than other age groups. From 2002 to 2012, malaria-related costs for salaries of staff, funds from the provincial government, national government, and the GFATM were US$3.02, US$2.24, US$1.44, and US$5.08 million, respectively. An estimated 9,504 falciparum malaria cases were averted during the period 2003-2012. The estimated cost per falciparum malaria case averted was US$116.5. The falciparum malaria elimination program in Hainan was highly effective and successful. However, funding for maintenance is still needed because of imported cases. © The American Society of Tropical Medicine and Hygiene.

  2. Possible clinical failure of artemether-lumefantrine in an italian traveler with uncomplicated falciparum malaria.

    PubMed

    Repetto, Ernestina C; Traverso, Antonio; Giacomazzi, Claudio G

    2011-01-01

    Artemisinin-combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in endemic areas with multidrug resistant Plasmodium falciparum. We report a case of possible artemether-lumefantrine clinical failure in an Italian traveler with uncomplicated P. falciparum malaria imported from Democratic Republic of Congo.

  3. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  4. Lack of Evidence for Chloroquine-Resistant Plasmodium falciparum Malaria, Leogane, Haiti

    PubMed Central

    Neuberger, Ami; Zhong, Kathleen; Kain, Kevin C

    2012-01-01

    Plasmodium falciparum malaria in Haiti is considered chloroquine susceptible, although resistance transporter alleles associated with chloroquine resistance were recently detected. Among 49 patients with falciparum malaria, we found neither parasites carrying haplotypes associated with chloroquine resistance nor instances of chloroquine treatment failure. Continued vigilance to detect emergence of chloroquine resistance is needed. PMID:22932030

  5. Possible Clinical Failure of Artemether-Lumefantrine in an Italian Traveler with Uncomplicated Falciparum Malaria.

    PubMed Central

    Repetto, Ernestina C.; Traverso, Antonio; Giacomazzi, Claudio G.

    2011-01-01

    Artemisinin-combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in endemic areas with multidrug resistant Plasmodium falciparum. We report a case of possible artemether-lumefantrine clinical failure in an Italian traveler with uncomplicated P. falciparum malaria imported from Democratic Republic of Congo. PMID:22084655

  6. Prevalence of Plasmodium falciparum infection in rainy season, Artibonite Valley, Haiti, 2006.

    PubMed

    Eisele, Thomas P; Keating, Joseph; Bennett, Adam; Londono, Berlin; Johnson, Dawn; Lafontant, Christina; Krogstad, Donald J

    2007-10-01

    We conducted a population-based survey to estimate the prevalence of Plasmodium falciparum infection among persons older than 1 month in the Artibonite Valley of Haiti during the high malaria transmission season in 2006. Results from PCR for 714 persons showed a prevalence of 3.1% for P. falciparum infection.

  7. CAN TREATMENT OF P. VIVAX LEAD TO A UNEXPECTED APPEARANCE OF FALCIPARUM MALARIA?

    PubMed Central

    Mason, Daniel Philippe; Krudsood, Srivicha; Wilairatana, Polrat; Viriyavejakul, Parnpen; Silachamroon, Udomsak; Chokejindachai, Watcharee; Singhasivanon, Pratap; Supavej, Suvanee; McKenzie, F Ellis; Looareesuwan, Sornchai

    2008-01-01

    Of 994 patients admitted to the Bangkok Hospital for Tropical Diseases for P. vivax malaria, 104 (10.5%) experienced appearance of Plasmodium falciparum following drug treatment for P. vivax . In all patients, P. falciparum parasites were not found by microscopic examination upon admission. The mean time for P. falciparum appearance was 12.6 days after the commencement of chloroquine treatment. Patients experiencing appearance of P. falciparum. had significantly lower hematocrit, and greater initial P. vivax parasite counts. We use a mathematical model to explore the consequences of chloroquine treatment of such mixed infections. Both clinical results and features of the model suggest that such “hidden infections” may be quite common, and that the appearance of P. falciparum may be stimulated by treatment of P. vivax. PMID:11485096

  8. Refrigeration provides a simple means to synchronize in vitro cultures of Plasmodium falciparum.

    PubMed

    Yuan, Lili; Hao, Mingming; Wu, Lanou; Zhao, Zhen; Rosenthal, Benjamin M; Li, Xiaomei; He, Yongshu; Sun, Ling; Feng, Guohua; Xiang, Zheng; Cui, Liwang; Yang, Zhaoqing

    2014-05-01

    Plasmodium falciparum is usually asynchronous during in vitro culture. Highly synchronized cultures of P. falciparum are routinely used in malaria research. Here, we describe a simple synchronization procedure for P. falciparum asexual erythrocytic culture, which involves storage at 4°C for 8-24 h followed by routine culture. When cultures with 27-60% of ring stage were synchronized using this procedure, 70-93% ring stages were obtained after 48 h of culture and relative growth synchrony remained for at least two erythrocytic cycles. To test the suitability of this procedure for subsequent work, drug sensitivity assays were performed using four laboratory strains and four freshly adapted clinical P. falciparum isolates. Parasites synchronized by sorbitol treatment or refrigeration showed similar dose-response curves and comparable IC50 values to four antimalarial drugs. The refrigeration synchronization method is simple, inexpensive, time-saving, and should be especially useful when large numbers of P. falciparum culture are handled.

  9. Predictors of Plasmodium falciparum Malaria Incidence in Chano Mille, South Ethiopia: A Longitudinal Study

    PubMed Central

    Loha, Eskindir; Lindtjørn, Bernt

    2012-01-01

    We assessed potential effects of local meteorological and environmental conditions, indoor residual spraying with insecticides, insecticide-treated nets (ITNs) use at individual and community levels, and individual factors on Plasmodium falciparum malaria incidence in a village in south Ethiopia. A cohort of 8,121 people was followed for 101 weeks with active and passive surveillance. Among 317 microscopically confirmed P. falciparum malaria episodes, 29.3% occurred among temporary residents. The incidence density was 3.6/10,000 person-weeks of observation. We observed higher malaria incidence among males, children 5–14 years of age, ITNs non-users, the poor, and people who lived closer to vector breeding places. Rainfall increased and indoor residual spraying with Deltamethrin reduced falciparum incidence. Although ITNs prevented falciparum malaria for the users, we did not find that free mass ITNs distribution reduced falciparum malaria on a village level. PMID:22826493

  10. Predictors of Plasmodium falciparum malaria incidence in Chano Mille, South Ethiopia: a longitudinal study.

    PubMed

    Loha, Eskindir; Lindtjørn, Bernt

    2012-09-01

    We assessed potential effects of local meteorological and environmental conditions, indoor residual spraying with insecticides, insecticide-treated nets (ITNs) use at individual and community levels, and individual factors on Plasmodium falciparum malaria incidence in a village in south Ethiopia. A cohort of 8,121 people was followed for 101 weeks with active and passive surveillance. Among 317 microscopically confirmed P. falciparum malaria episodes, 29.3% occurred among temporary residents. The incidence density was 3.6/10,000 person-weeks of observation. We observed higher malaria incidence among males, children 5-14 years of age, ITNs non-users, the poor, and people who lived closer to vector breeding places. Rainfall increased and indoor residual spraying with Deltamethrin reduced falciparum incidence. Although ITNs prevented falciparum malaria for the users, we did not find that free mass ITNs distribution reduced falciparum malaria on a village level.

  11. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    PubMed

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  12. The efficiency of sporozoite transmission in the human malarias, Plasmodium falciparum and P. vivax*

    PubMed Central

    Burkot, T. R.; Graves, P. M.; Cattan, J. A.; Wirtz, R. A.; Gibson, F. D.

    1987-01-01

    Reported are malaria sporozoite and inoculation rates over a 1-year period in eight epidemiologically defined villages of different endemicity in Madang Province, Papua New Guinea. In the study, more than 41 000 wild-caught mosquitos were analysed for Plasmodium falciparum and P. vivax sporozoites by ELISA. In a given village the entomological inoculation rates correlated strongly with the prevalences of both these malarial parasites in children. However, the prevalence of P. falciparum infections in children was much higher than that of P. vivax, despite similar inoculation rates for the two species. These data suggest that in Papua New Guinea P. falciparum is more efficiently transmitted than P. vivax from mosquito to man. The increased efficiency of transmission of P. falciparum may be due to the heavier sporozoite densities in wild-caught mosquitos naturally infected with P. falciparum sporozoites that were tenfold greater than the sporozoite densities in mosquitos infected with P. vivax. PMID:3311441

  13. The Limits and Intensity of Plasmodium falciparum Transmission: Implications for Malaria Control and Elimination Worldwide

    PubMed Central

    Guerra, Carlos A; Gikandi, Priscilla W; Tatem, Andrew J; Noor, Abdisalan M; Smith, Dave L; Hay, Simon I; Snow, Robert W

    2008-01-01

    Background The efficient allocation of financial resources for malaria control using appropriate combinations of interventions requires accurate information on the geographic distribution of malaria risk. An evidence-based description of the global range of Plasmodium falciparum malaria and its endemicity has not been assembled in almost 40 y. This paper aims to define the global geographic distribution of P. falciparum malaria in 2007 and to provide a preliminary description of its transmission intensity within this range. Methods and Findings The global spatial distribution of P. falciparum malaria was generated using nationally reported case-incidence data, medical intelligence, and biological rules of transmission exclusion, using temperature and aridity limits informed by the bionomics of dominant Anopheles vector species. A total of 4,278 spatially unique cross-sectional survey estimates of P. falciparum parasite rates were assembled. Extractions from a population surface showed that 2.37 billion people lived in areas at any risk of P. falciparum transmission in 2007. Globally, almost 1 billion people lived under unstable, or extremely low, malaria risk. Almost all P. falciparum parasite rates above 50% were reported in Africa in a latitude band consistent with the distribution of Anopheles gambiae s.s. Conditions of low parasite prevalence were also common in Africa, however. Outside of Africa, P. falciparum malaria prevalence is largely hypoendemic (less than 10%), with the median below 5% in the areas surveyed. Conclusions This new map is a plausible representation of the current extent of P. falciparum risk and the most contemporary summary of the population at risk of P. falciparum malaria within these limits. For 1 billion people at risk of unstable malaria transmission, elimination is epidemiologically feasible, and large areas of Africa are more amenable to control than appreciated previously. The release of this information in the public domain will

  14. A world malaria map: Plasmodium falciparum endemicity in 2007.

    PubMed

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-03-24

    Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0

  15. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  16. Seasonality of Plasmodium falciparum transmission: a systematic review.

    PubMed

    Reiner, Robert C; Geary, Matthew; Atkinson, Peter M; Smith, David L; Gething, Peter W

    2015-09-15

    Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has "strongly seasonal" transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. The contradicting

  17. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  18. Identification of Novel Plasmodium falciparum Hexokinase Inhibitors with Antiparasitic Activity

    PubMed Central

    Davis, Mindy I.; Patrick, Stephen L.; Blanding, Walker M.; Dwivedi, Varun; Suryadi, Jimmy; Coussens, Nathan P.; Lee, Olivia W.; Shen, Min; Boxer, Matthew B.; Hall, Matthew D.; Sharlow, Elizabeth R.; Drew, Mark E.

    2016-01-01

    Plasmodium falciparum, the deadliest species of malaria parasites, is dependent on glycolysis for the generation of ATP during the pathogenic red blood cell stage. Hexokinase (HK) catalyzes the first step in glycolysis, transferring the γ-phosphoryl group of ATP to glucose to yield glucose-6-phosphate. Here, we describe the validation of a high-throughput assay for screening small-molecule collections to identify inhibitors of the P. falciparum HK (PfHK). The assay, which employed an ADP-Glo reporter system in a 1,536-well-plate format, was robust with a signal-to-background ratio of 3.4 ± 1.2, a coefficient of variation of 6.8% ± 2.9%, and a Z′-factor of 0.75 ± 0.08. Using this assay, we screened 57,654 molecules from multiple small-molecule collections. Confirmed hits were resolved into four clusters on the basis of structural relatedness. Multiple singleton hits were also identified. The most potent inhibitors had 50% inhibitory concentrations as low as ∼1 μM, and several were found to have low-micromolar 50% effective concentrations against asexual intraerythrocytic-stage P. falciparum parasites. These molecules additionally demonstrated limited toxicity against a panel of mammalian cells. The identification of PfHK inhibitors with antiparasitic activity using this validated screening assay is encouraging, as it justifies additional HTS campaigns with more structurally amenable libraries for the identification of potential leads for future therapeutic development. PMID:27458230

  19. Plasmodium falciparum Maf1 Confers Survival upon Amino Acid Starvation

    PubMed Central

    McLean, Kyle Jarrod

    2017-01-01

    ABSTRACT The target of rapamycin complex 1 (TORC1) pathway is a highly conserved signaling pathway across eukaryotes that integrates nutrient and stress signals to regulate the cellular growth rate and the transition into and maintenance of dormancy. The majority of the pathway’s components, including the central TOR kinase, have been lost in the apicomplexan lineage, and it is unknown how these organisms detect and respond to nutrient starvation in its absence. Plasmodium falciparum encodes a putative ortholog of the RNA polymerase (Pol) III repressor Maf1, which has been demonstrated to modulate Pol III transcription in a TOR-dependent manner in a number of organisms. Here, we investigate the role of P. falciparum Maf1 (PfMaf1) in regulating RNA Pol III expression under conditions of nutrient starvation and other stresses. Using a transposon insertion mutant with an altered Maf1 expression profile, we demonstrated that proper Maf1 expression is necessary for survival of the dormancy-like state induced by prolonged amino acid starvation and is needed for full recovery from other stresses that slow or stall the parasite cell cycle. This Maf1 mutant is defective in the downregulation of pre-tRNA synthesis under nutrient-limiting conditions, indicating that the function of Maf1 as a stress-responsive regulator of structural RNA transcription is conserved in P. falciparum. Recent work has demonstrated that parasites carrying artemisinin-resistant K13 alleles display an enhanced ability to recover from drug-induced growth retardation. We show that one such artemisinin-resistant line displays greater regulation of pre-tRNA expression and higher survival upon prolonged amino acid starvation, suggesting that overlapping, PfMaf1-associated pathways may regulate growth recovery from both artemisinin treatment and amino acid starvation. PMID:28351924

  20. Expression and characterisation of plasmepsin I from Plasmodium falciparum.

    PubMed

    Moon, R P; Tyas, L; Certa, U; Rupp, K; Bur, D; Jacquet, C; Matile, H; Loetscher, H; Grueninger-Leitch, F; Kay, J; Dunn, B M; Berry, C; Ridley, R G

    1997-03-01

    Two aspartic proteinases, plasmepsins I and II, are present in the digestive vacuole of the human malarial parasite Plasmodium falciparum and are believed to be essential for parasite degradation of haemoglobin. Here we report the expression and kinetic characterisation of functional recombinant plasmepsin I. In order to generate active plasmepsin I from its precursor, an autocatalytic cleavage site was introduced into the propart of the zymogen by mutation of Lys110P to Val (P indicates a propart residue). Appropriate refolding of the mutated zymogen then permitted pH-dependent autocatalytic processing of the zymogen to the active mature proteinase. A purification scheme was devised that removed aggregated and misfolded protein to yield pure, fully processable, proplasmepsin I. Kinetic constants for two synthetic peptide substrates and four inhibitors were determined for both recombinant plasmepsin I and recombinant plasmepsin II. Plasmepsin I had 5-10-fold lower k(cat)/Km values than plasmepsin II for the peptide substrates, while the aspartic proteinase inhibitors, selected for their ability to inhibit P. falciparum growth, were found to have up to 80-fold lower inhibition constants for plasmepsin I compared to plasmepsin II. The most active plasmepsin I inhibitors were antagonistic to the antimalarial action of chloroquine on cultured parasites. Northern blot analysis of RNA, isolated from specific stages of the erythrocytic cycle of P. falciparum, showed that the proplasmepsin I gene is expressed in the ring stages whereas the proplasmepsin II gene is not transcribed until the later trophozoite stage of parasite growth. The differences in kinetic properties and temporal expression of the two plasmepsins suggest they are not functionally redundant but play distinct roles in the parasite.

  1. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  2. Replication and maintenance of the Plasmodium falciparum apicoplast genome.

    PubMed

    Milton, Morgan E; Nelson, Scott W

    2016-08-01

    Members of the phylum Apicomplexa are responsible for many devastating diseases including malaria (Plasmodium spp.), toxoplasmosis (Toxoplasma gondii), babesiosis (Babesia bovis), and cyclosporiasis (Cyclospora cayetanensis). Most Apicomplexans contain a unique and essential organelle called the apicoplast. Derived from an ancient chloroplast, the apicoplast replicates and maintains a 35 kilobase (kb) circular genome. Due to its essential nature within the parasite, drugs targeted to proteins involved in DNA replication and repair of the apicoplast should be potent and specific. This review summarizes the current knowledge surrounding the replication and repair of the Plasmodium falciparum apicoplast genome and identifies several putative proteins involved in replication and repair pathways.

  3. Refractory pancytopenia and megaloblastic anemia due to falciparum malaria.

    PubMed

    Aggarwal, Varun; Maheshwari, Anu; Rath, Bimbadhar; Kumar, Praveen; Basu, Srikanta

    2011-08-01

    Anemia is a common complication in malarial infection. Direct destruction and ineffective erythropoesis does not adequately explain the cause of anemia in malaria. We present a case with refractory megaloblastic anemia with asymptomatic falciparum malaria. We hypothesize that promoter variants in the inducible nitric oxide synthase gene might be the cause of severe refractory megaloblastic anemia and pancytopenia in our patient. Malaria should always be kept in mind as a cause of anemia especially in endemic areas even if the child is asymptomatic or there is no demonstrable parasite on routine smear examination.

  4. Chloroquine accumulation by purified plasma membranes from Plasmodium falciparum.

    PubMed

    Elandaloussi, Laurence M; Smith, Peter J

    2006-01-01

    Resistance of Plasmodium falciparum to chloroquine (CQ) has been associated with a decrease in CQ accumulation by parasitized erythrocytes. This study aimed at investigating the role of parasite plasma membranes (PPM) in the mechanism of CQ accumulation. CQ accumulation capabilities of membranes were determined using tritiated CQ. PPM isolated from chloroquine-sensitive parasites were found to accumulate less CQ than those isolated from chloroquine-resistant parasites. However, CQ accumulation was found to be ATP-independent suggesting that this accumulation results from binding rather than transport.

  5. Proteomics of the human malaria parasite Plasmodium falciparum.

    PubMed

    Sims, Paul F G; Hyde, John E

    2006-02-01

    The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.

  6. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    PubMed Central

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Joergen AL; Addae, Michael M; Ollaga, Edwin; Tetteh, John KA; Dodoo, Daniel; Ofori, Michael F; Obeng-Adjei, George; Hirayama, Kenji; Awandare, Gordon A; Akanmori, Bartholomew D

    2007-01-01

    Background Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT) and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ) and the regulatory proteins [complement receptor 1 (CD35) and decay accelerating factor (CD55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. Results Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were positive for C3d alone while 16/131 (12.2%) were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p < 0.001). DCT correlated significantly with RD (β = -304, p = 0.006), but multiple regression analysis revealed that, Hb (β = -0.341, p = 0.012) and coma (β = -0.256, p = 0.034) were stronger predictors of RD than DCT (β = 0.228, p = 0.061). DCT was also not associated with IVH, p = 0.19, while spleen size was inversely correlated with Hb (r = -402, p = 0.001). Flow cytometry showed similar mean fluorescent intensity (MFI) values of CD35, CD55 and C3bαβ levels on the surfaces of RBC in patients and asymptomatic controls (AC). However, binding of C3bαβ correlated significantly with CD35 or CD55 (p < 0.001). Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In

  7. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.

    PubMed

    Nakornchai, Sunan; Konthiang, Phattanapong

    2006-09-01

    Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.

  8. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    PubMed

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  9. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    PubMed Central

    2011-01-01

    Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence

  10. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  11. Reduced erythrocyte deformability associated with hypoargininemia during Plasmodium falciparum malaria.

    PubMed

    Rey, Juliana; Buffet, Pierre A; Ciceron, Liliane; Milon, Geneviève; Mercereau-Puijalon, Odile; Safeukui, Innocent

    2014-01-20

    The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = -0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p < 0.0001). Moreover, addition of exogenous L-arginine to the cultures increased deformability of both Pf-free and trophozoite-harboring RBCs. NO synthase activity, evidenced in Pf-infected RBCs, induced L-arginine-dependent NO production. These data show that hypoargininemia during P. falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature.

  12. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Skeletal muscle involvement in falciparum malaria: biochemical and ultrastructural study.

    PubMed

    Davis, T M; Pongponratan, E; Supanaranond, W; Pukrittayakamee, S; Helliwell, T; Holloway, P; White, N J

    1999-10-01

    Biochemical evidence of skeletal muscle damage is common in malaria, but rhabdomyolysis appears to be rare. To investigate the relationship between serum creatine kinase and myoglobin levels, muscle histology, and renal function in Plasmodium falciparum infections, we studied 13 patients with uncomplicated malaria, 13 with severe noncerebral malaria, and 10 with cerebral malaria. A muscle biopsy specimen was obtained from each patient for light microscopy and electron microscopy. Mean serum creatine kinase concentrations +/- SD were raised but similar for the three groups (258 +/- 277, 149 +/- 158, and 203 +/- 197 U/L, respectively; P = .5). The mean serum myoglobin level +/- SD was highest in cerebral malaria (457 +/- 246 vs. 170 +/- 150 and 209 +/- 125 ng/mL in uncomplicated and severe malaria, respectively; P < .01) and correlated with the mean serum creatinine level (r = .39 for 36 patients; P = .02). The number of intravascular parasites, proportion of mature forms, and glycogen depletion were highest in biopsy specimens from patients with cerebral malaria. Myonecrosis was not observed. Muscle appears to be an important site for P. falciparum sequestration, which could contribute to metabolic and renal complications.

  14. Current status of the Plasmodium falciparum genome project.

    PubMed

    Dame, J B; Arnot, D E; Bourke, P F; Chakrabarti, D; Christodoulou, Z; Coppel, R L; Cowman, A F; Craig, A G; Fischer, K; Foster, J; Goodman, N; Hinterberg, K; Holder, A A; Holt, D C; Kemp, D J; Lanzer, M; Lim, A; Newbold, C I; Ravetch, J V; Reddy, G R; Rubio, J; Schuster, S M; Su, X Z; Thompson, J K; Werner, E B

    1996-07-01

    The Plasmodium falciparum Genome Project is a collaborative effort by many laboratories that will provide detailed molecular information about the parasite, which may be used for developing practical control measures. Initial goals are to prepare an electronically indexed clone bank containing partially sequenced clones representing up to 80% of the parasite's genes and to prepare an ordered set of overlapping clones spanning each of the parasite's 14 chromosomes. Currently, clones of genomic DNA, prepared as yeast artificial chromosomes, are arranged into contigs covering approximately 70% of the genome of parasite clone 3D7, gene sequence tags are available from more than contigs covering approximately 70% of the genome of parasite clone 3D7, gene sequence tags are available from more than 20% of the parasite's genes, and approximately 5% of the parasite's genes are tentatively identified from similarity searches of entries in the international sequence databases. A total of > 0.5 Mb of P. falciparum sequence tag data is available. The gene sequence tags are presently being used to complete YAC contig assembly and localize the cloned genes to positions on the physical map in preparation for sequencing the genome. Routes of access to project information and services are described.

  15. Sickle Cell Trait Protects Against Plasmodium falciparum Infection

    PubMed Central

    Billo, Mounkaila A.; Johnson, Eric S.; Doumbia, Seydou O.; Poudiougou, Belco; Sagara, Issaka; Diawara, Sory I.; Diakité, Mahamadou; Diallo, Mouctar; Doumbo, Ogobara K.; Tounkara, Anatole; Rice, Janet; James, Mark A.; Krogstad, Donald J.

    2012-01-01

    Although sickle cell trait protects against severe disease due to Plasmodium falciparum, it has not been clear whether sickle trait also protects against asymptomatic infection (parasitemia). To address this question, the authors identified 171 persistently smear-negative children and 450 asymptomatic persistently smear-positive children in Bancoumana, Mali (June 1996 to June 1998). They then followed both groups for 2 years using a cohort-based strategy. Among the 171 children with persistently negative smears, the median time for conversion to smear-positive was longer for children with sickle trait than for children without (274 vs. 108 days, P < 0.001; Cox hazard ratio = 0.56, 95% confidence interval: 0.33, 0.96; P = 0.036). Similar differences were found in the median times to reinfection after spontaneous clearance without treatment (365 days vs. 184 days; P = 0.01). Alternatively, among the 450 asymptomatic children with persistently positive smears, the median time for conversion to smear-negative (spontaneous clearance) was shorter for children with sickle trait than for children without (190 vs. 365 days; P = 0.02). These protective effects of sickle trait against asymptomatic P. falciparum infection under conditions of natural transmission were demonstrable using a cohort-based approach but not when the same data were examined using a cross-sectional approach. PMID:23035141

  16. Characterisation of exogenous folate transport in Plasmodium falciparum.

    PubMed

    Wang, Ping; Wang, Qi; Sims, Paul F G; Hyde, John E

    2007-07-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5-7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H(+) ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.

  17. MEIOTIC RECOMBINATION, CROSS-REACTIVITY, AND PERSISTENCE IN PLASMODIUM FALCIPARUM

    PubMed Central

    McKenzie, F. Ellis; Ferreira, Marcelo U.; Baird, J. Kevin; Snounou, Georges; Bossert, William H.

    2008-01-01

    We incorporate a representation of Plasmodium falciparum recombination within a discrete-event model of malaria transmission. We simulate the introduction of a new parasite genotype into a human population in which another genotype has reached equilibrium prevalence and compare the emergence and persistence of the novel recombinant forms under differing cross-reactivity relationships between the genotypes. Cross-reactivity between the parental (initial and introduced) genotypes reduces the frequency of appearance of recombinants within three years of introduction from 100% to 14%, and delays their appearance by more than a year, on average. Cross-reactivity between parental and recombinant genotypes reduces the frequency of appearance to 36% and increases the probability of recombinant extinction following appearance from 0% to 83%. When a recombinant is cross-reactive with its parental types, its probability of extinction is influenced by cross-reactivity between the parental types in the opposite manner; that is, its probability of extinction after appearance decreases. Frequencies of P. falciparum outcrossing are mediated by frequencies of mixed-genotype infections in the host population, which are in turn mediated by the structure of cross-reactivity between parasite genotypes. The three leading hypotheses about how meiosis relates to oocyst production lead to quantitative, but no qualitative, differences in these results. PMID:11525454

  18. Genome sequence of the human malaria parasite Plasmodium falciparum.

    PubMed

    Gardner, Malcolm J; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W; Carlton, Jane M; Pain, Arnab; Nelson, Karen E; Bowman, Sharen; Paulsen, Ian T; James, Keith; Eisen, Jonathan A; Rutherford, Kim; Salzberg, Steven L; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W; Vaidya, Akhil B; Martin, David M A; Fairlamb, Alan H; Fraunholz, Martin J; Roos, David S; Ralph, Stuart A; McFadden, Geoffrey I; Cummings, Leda M; Subramanian, G Mani; Mungall, Chris; Venter, J Craig; Carucci, Daniel J; Hoffman, Stephen L; Newbold, Chris; Davis, Ronald W; Fraser, Claire M; Barrell, Bart

    2002-10-03

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

  19. Dynamic alteration in splenic function during acute falciparum malaria

    SciTech Connect

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  20. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    PubMed Central

    Bouyou-Akotet, Marielle K; Ionete-Collard, Denisa E; Mabika-Manfoumbi, Modeste; Kendjo, Eric; Matsiegui, Pierre-Blaise; Mavoungou, Elie; Kombila, Maryvonne

    2003-01-01

    Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57%) had microscopic parasitaemia; 139 (64%)of them were primigravidae, 38 (40%) in their second pregnancy and 180 (64%) were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population. PMID:12919637

  1. In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand.

    PubMed Central

    Wongsrichanalai, C.; Wimonwattrawatee, T.; Sookto, P.; Laoboonchai, A.; Heppner, D. G.; Kyle, D. E.; Wernsdorfer, W. H.

    1999-01-01

    Reported are the in vitro susceptibilities of Plasmodium falciparum to artesunate, mefloquine, quinine and chloroquine of 86 isolates and to dihydroartemisinin of 45 isolates collected from areas of high resistance to mefloquine within Thailand near the borders with Myanmar and Cambodia, and from southern Thailand where P. falciparum is generally still sensitive to mefloquine. All the isolates were highly sensitive to artesunate, but the geometric mean IC50S were higher in isolates from the Thai-Myanmar and Thai-Cambodian borders than in those from southern Thailand. The IC50S for mefloquine and artesunate were strongly correlated (Pearson r = 0.605; n = 86; P < 0.00001). As expected, the in vitro sensitivities to dihydroartemisinin and artesunate were similar and strongly correlated (at IC50, Pearson r = 0.695; n = 45; P < 0.00002). The correlation between the activity of mefloquine and artesunate requires further investigation in order to determine the potential for development of cross-resistance in nature. Our results suggest that combination with mefloquine is not the ideal way of protecting the usefulness of artemisinin and its derivatives. A search for more suitable partner drugs to these compounds and careful regulation of their use are necessary in the interest of ensuring their long therapeutic life span. PMID:10361756

  2. Host age as a determinant of naturally acquired immunity to Plasmodium falciparum.

    PubMed

    Baird, J K

    1995-03-01

    The usual course of infection by Plasmodium falciparum among adults who lack a history of exposure to endemic malaria is fulminant. The infection in adults living with hyper- to holoendemic malaria is chronic and benign. Naturally acquired immunity to falciparum malaria is the basis of this difference. Confusion surrounds an essential question regarding this process: What is its rate of onset? Opinions vary because of disagreement over the relationships between exposure to infection, antigenic polymorphism and naturally acquired immunity. In this review, Kevin Baird discusses these relationships against a backdrop of host age as a determinant of naturally acquired immunity to falciparum malaria.

  3. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  4. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi

    PubMed Central

    1977-01-01

    Human erythrocytes lacking various blood group determinants were susceptible to invasion by Plasmodium falciparum including Duffy- negative erythrocytes that are refractory to invasion by Plasmodium knowlesi. Erythrocytes treated with trypsin or neuraminidase had reduced susceptibility of P. falciparum and normal susceptibility to P. knowlesi. Chymotrypsin treatment (0.1 mg/ml) blocked invasion only by P. knowlesi. The differential effect of enzymatic cleavage of determinats from the erythrocyte surface on invasion by these parasites suggests that P. falciparum and P. knowlesi interact with different determinants on the erythrocyte surface. PMID:327014

  5. Fatal Plasmodium falciparum, Clostridium perfringens, and Candida spp. Coinfections in a Traveler to Haiti

    PubMed Central

    Genrich, Gillian L.; Bhatnagar, Julu; Paddock, Christopher D.; Zaki, Sherif R.

    2009-01-01

    Malaria is one of the most common causes of febrile illness in travelers. Coinfections with bacterial, viral, and fungal pathogens may not be suspected unless a patient fails to respond to malaria treatment. Using novel immunohistochemical and molecular techniques, Plasmodium falciparum, Clostridium perfringens, and Candida spp. coinfections were confirmed in a German traveler to Haiti. Plasmodium falciparum-induced ischemia may have increased this patient's susceptibility to C. perfringens and disseminated candidiasis leading to his death. When a patient presents with P. falciparum and shock and is unresponsive to malaria treatment, secondary infections should be suspected to initiate appropriate treatment. PMID:20339463

  6. A Beach and Dune Community. 4-H Marine Science. Member's Guide. Activity I. MSp 1.

    ERIC Educational Resources Information Center

    Auburn Univ., AL. Cooperative Extension Service.

    The investigation in this booklet is designed to provide 4-H members with opportunities to identify common plants and animals found on beaches and sand dunes and to determine the role of the plants and animals in this community. Learners are provided with a picture of a hypothetical beach and sand dune and a list of organisms (included in the…

  7. Artemisinin-naphthoquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Isba, Rachel; Zani, Babalwa; Gathu, Michael; Sinclair, David

    2015-01-01

    Background The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) for treating people with Plasmodium falciparum malaria. Five combinations are currently recommended, all administered over three days. Artemisinin-naphthoquine is a new combination developed in China, which is being marketed as a one-day treatment. Although shorter treatment courses may improve adherence, the WHO recommends at least three days of the short-acting artemisinin component to eliminate 90% P. falciparum parasites in the bloodstream, before leaving the longer-acting partner drug to clear the remaining parasites. Objectives To evaluate the efficacy and safety of the artemisinin-naphthoquine combination for treating adults and children with uncomplicated P. falciparum malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; and LILACS up to January 2015. We also searched the metaRegister of Controlled Trials (mRCT) using 'malaria' and 'arte* OR dihydroarte*' as search terms. Selection criteria Randomized controlled trials comparing artemisinin-naphthoquine combinations with established WHO-recommended ACTs for the treatment of adults and children with uncomplicated malaria due to P. falciparum. Data collection and analysis Two review authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results Four trials, enrolling 740 adults and children, met the inclusion criteria. Artemisinin-naphthoquine was administered as a single dose (two

  8. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability.

    PubMed

    White, John; Mascarenhas, Anjali; Pereira, Ligia; Dash, Rashmi; Walke, Jayashri T; Gawas, Pooja; Sharma, Ambika; Manoharan, Suresh Kumar; Guler, Jennifer L; Maki, Jennifer N; Kumar, Ashwani; Mahanta, Jagadish; Valecha, Neena; Dubhashi, Nagesh; Vaz, Marina; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K

    2016-01-22

    Culture-adapted Plasmodium falciparum parasites can offer deeper understanding of geographic variations in drug resistance, pathogenesis and immune evasion. To help ground population-based calculations and inferences from culture-adapted parasites, the complete range of parasites from a study area must be well represented in any collection. To this end, standardized adaptation methods and determinants of successful in vitro adaption were sought. Venous blood was collected from 33 P. falciparum-infected individuals at Goa Medical College and Hospital (Bambolim, Goa, India). Culture variables such as whole blood versus washed blood, heat-inactivated plasma versus Albumax, and different starting haematocrit levels were tested on fresh blood samples from patients. In vitro adaptation was considered successful when two four-fold or greater increases in parasitaemia were observed within, at most, 33 days of attempted culture. Subsequently, parasites from the same patients, which were originally cryopreserved following blood draw, were retested for adaptability for 45 days using identical host red blood cells (RBCs) and culture media. At a new endemic area research site, ~65% of tested patient samples, with varied patient history and clinical presentation, were successfully culture-adapted immediately after blood collection. Cultures set up at 1% haematocrit and 0.5% Albumax adapted most rapidly, but no single test condition was uniformly fatal to culture adaptation. Success was not limited by low patient parasitaemia nor by patient age. Some parasites emerged even after significant delays in sample processing and even after initiation of treatment with anti-malarials. When 'day 0' cryopreserved samples were retested in parallel many months later using identical host RBCs and media, speed to adaptation appeared to be an intrinsic property of the parasites collected from individual patients. Culture adaptation of P. falciparum in a field setting is formally shown to be

  9. Protein-based signatures of functional evolution in Plasmodium falciparum.

    PubMed

    Gardner, Kate B; Sinha, Ipsita; Bustamante, Leyla Y; Day, Nicholas Pj; White, Nicholas J; Woodrow, Charles J

    2011-09-14

    It has been known for over a decade that Plasmodium falciparum proteins are enriched in non-globular domains of unknown function. The potential for these regions of protein sequence to undergo high levels of genetic drift provides a fundamental challenge to attempts to identify the molecular basis of adaptive change in malaria parasites. Evolutionary comparisons were undertaken using a set of forty P. falciparum metabolic enzyme genes, both within the hominid malaria clade (P. reichenowi) and across the genus (P. chabaudi). All genes contained coding elements highly conserved across the genus, but there were also a large number of regions of weakly or non-aligning coding sequence. These displayed remarkable levels of non-synonymous fixed differences within the hominid malaria clade indicating near complete release from purifying selection (dN/dS ratio at residues non-aligning across genus: 0.64, dN/dS ratio at residues identical across genus: 0.03). Regions of low conservation also possessed high levels of hydrophilicity, a marker of non-globularity. The propensity for such regions to act as potent sources of non-synonymous genetic drift within extant P. falciparum isolates was confirmed at chromosomal regions containing genes known to mediate drug resistance in field isolates, where 150 of 153 amino acid variants were located in poorly conserved regions. In contrast, all 22 amino acid variants associated with drug resistance were restricted to highly conserved regions. Additional mutations associated with laboratory-selected drug resistance, such as those in PfATPase4 selected by spiroindolone, were similarly restricted while mutations in another calcium ATPase (PfSERCA, a gene proposed to mediate artemisinin resistance) that reach significant frequencies in field isolates were located exclusively in poorly conserved regions consistent with genetic drift. Coding sequences of malaria parasites contain prospectively definable domains subject to neutral or nearly

  10. Impact of Plasmodium falciparum Coinfection on Longitudinal Epstein-Barr Virus Kinetics in Kenyan Children.

    PubMed

    Reynaldi, Arnold; Schlub, Timothy E; Chelimo, Kiprotich; Sumba, Peter Odada; Piriou, Erwan; Ogolla, Sidney; Moormann, Ann M; Rochford, Rosemary; Davenport, Miles P

    2016-03-15

    Endemic Burkitt lymphoma is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum coinfection, although how P. falciparum exposure affects the dynamics of EBV infection is unclear. We have used a modeling approach to study EBV infection kinetics in a longitudinal cohort of children living in regions of high and low malaria transmission in Kenya. Residence in an area of high malaria transmission was associated with a higher rate of EBV expansion during primary EBV infection in infants and during subsequent episodes of EBV DNA detection, as well as with longer episodes of EBV DNA detection and shorter intervals between subsequent episodes of EBV DNA detection. In addition, we found that concurrent P. falciparum parasitemia also increases the likelihood of the first and subsequent peaks of EBV in peripheral blood. This suggests that P. falciparum infection is associated with increased EBV growth and contributes to endemic Burkitt lymphoma pathogenesis.

  11. Ethics, economics, and the use of primaquine to reduce falciparum malaria transmission in asymptomatic populations.

    PubMed

    Lubell, Yoel; White, Lisa; Varadan, Sheila; Drake, Tom; Yeung, Shunmay; Cheah, Phaik Yeong; Maude, Richard J; Dondorp, Arjen; Day, Nicholas P J; White, Nicholas J; Parker, Michael

    2014-08-01

    Yoel Lubell and colleagues consider ethical and economic perspectives on mass drug administration of primaquine to limit transmission of P. falciparum malaria. Please see later in the article for the Editors' Summary.

  12. Pooled Amplicon Deep Sequencing of Candidate Plasmodium falciparum Transmission-Blocking Vaccine Antigens

    PubMed Central

    Juliano, Jonathan J.; Parobek, Christian M.; Brazeau, Nicholas F.; Ngasala, Billy; Randrianarivelojosia, Milijaona; Lon, Chanthap; Mwandagalirwa, Kashamuka; Tshefu, Antoinette; Dhar, Ravi; Das, Bidyut K.; Hoffman, Irving; Martinson, Francis; Mårtensson, Andreas; Saunders, David L.; Kumar, Nirbhay; Meshnick, Steven R.

    2016-01-01

    Polymorphisms within Plasmodium falciparum vaccine candidate antigens have the potential to compromise vaccine efficacy. Understanding the allele frequencies of polymorphisms in critical binding regions of antigens can help in the designing of strain-transcendent vaccines. Here, we adopt a pooled deep-sequencing approach, originally designed to study P. falciparum drug resistance mutations, to study the diversity of two leading transmission-blocking vaccine candidates, Pfs25 and Pfs48/45. We sequenced 329 P. falciparum field isolates from six different geographic regions. Pfs25 showed little diversity, with only one known polymorphism identified in the region associated with binding of transmission-blocking antibodies among our isolates. However, we identified four new mutations among eight non-synonymous mutations within the presumed antibody-binding region of Pfs48/45. Pooled deep sequencing provides a scalable and cost-effective approach for the targeted study of allele frequencies of P. falciparum candidate vaccine antigens. PMID:26503281

  13. Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors

    PubMed Central

    Ponder, Elizabeth L.; Albrow, Victoria E.; Leader, Brittany A.; Békés, Miklós; Mikolajczyk, Jowita; Fonović, Urša Pečar; Shen, Aimee; Drag, Marcin; Xiao, Junpeng; Deu, Edgar; Campbell, Amy J.; Powers, James C.; Salvesen, Guy S.; Bogyo, Matthew

    2011-01-01

    SUMMARY Small ubiquitin-related modifier (SUMO) is implicated in the regulation of numerous biological processes including transcription, protein localization, and cell cycle control. Protein modification by SUMO is found in Plasmodium falciparum; however, its role in the regulation of the parasite lifecycle is poorly understood. Here we describe functional studies of a SUMO-specific protease (SENP) of P. falciparum, PfSENP1 (PFL1635w). Expression of the catalytic domain of PfSENP1 and biochemical profiling using a positional scanning substrate library demonstrated that this protease has unique cleavage sequence preference relative to the human SENPs. In addition, we describe a novel class of small molecule inhibitors of this protease. The most potent lead compound inhibited both recombinant PfSENP1 activity and P. falciparum replication in infected human blood. These studies provide valuable new tools for the study of SUMOylation in P. falciparum. PMID:21700207

  14. Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors.

    PubMed

    Ponder, Elizabeth L; Albrow, Victoria E; Leader, Brittany A; Békés, Miklós; Mikolajczyk, Jowita; Fonović, Urša Pečar; Shen, Aimee; Drag, Marcin; Xiao, Junpeng; Deu, Edgar; Campbell, Amy J; Powers, James C; Salvesen, Guy S; Bogyo, Matthew

    2011-06-24

    Small ubiquitin-related modifier (SUMO) is implicated in the regulation of numerous biological processes including transcription, protein localization, and cell cycle control. Protein modification by SUMO is found in Plasmodium falciparum; however, its role in the regulation of the parasite life cycle is poorly understood. Here we describe functional studies of a SUMO-specific protease (SENP) of P. falciparum, PfSENP1 (PFL1635w). Expression of the catalytic domain of PfSENP1 and biochemical profiling using a positional scanning substrate library demonstrated that this protease has unique cleavage sequence preference relative to the human SENPs. In addition, we describe a class of small molecule inhibitors of this protease. The most potent lead compound inhibited both recombinant PfSENP1 activity and P. falciparum replication in infected human blood. These studies provide valuable new tools for the study of SUMOylation in P. falciparum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Plasmodium falciparum mdr1 mutations and in vivo chloroquine resistance in Indonesia.

    PubMed

    Gómez-Saladín, E; Fryauff, D J; Taylor, W R; Laksana, B S; Susanti, A I; Purnomo; Subianto, B; Richie, T L

    1999-08-01

    Mutations in the Pfmdr1 gene are reported to be associated with chloroquine resistance in some Plasmodium falciparum isolates. A polymerase chain reaction/restriction fragment length polymorphism method was used for the detection of Pfmdr1 mutations in chloroquine-resistant field isolates of P. falciparum collected in Irian Jaya. The frequency of Pfmdr1 mutations was significantly higher in chloroquine-resistant P. falciparum parasites than background frequencies observed in the same location. The 7G8 mutation was identified in some parasites although always in a mixed genotype status. Chloroquine-resistant P. falciparum specimens were characterized using the World Health Organization 28-day criteria, supplemented by demonstrating adequate chloroquine absorption and genetic analysis.

  16. BLOOD-STAGE DYNAMICS AND CLINICAL IMPLICATIONS OF MIXED PLASMODIUM VIVAX–PLASMODIUM FALCIPARUM INFECTIONS

    PubMed Central

    MASON, DANIEL P.; McKENZIE, F. ELLIS

    2008-01-01

    We present a mathematical model of the blood-stage dynamics of mixed Plasmodium vivax–Plasmodium falciparum malaria infections in humans. The model reproduces features of such infections found in nature and suggests several phenomena that may merit clinical attention, including the potential recrudescence of a long-standing, low-level P. falciparum infection following a P. vivax infection or relapse and the capacity of an existing P. vivax infection to reduce the peak parasitemia of a P. falciparum superinfection. We simulate the administration of anti-malarial drugs, and illustrate some potential complications in treating mixed-species malaria infections. Notably, our model indicates that when a mixed-species infection is misdiagnosed as a single-species P. vivax infection, treatment for P. vivax can lead to a surge in P. falciparum parasitemia. PMID:10497972

  17. Impact of Plasmodium falciparum Coinfection on Longitudinal Epstein-Barr Virus Kinetics in Kenyan Children

    PubMed Central

    Reynaldi, Arnold; Schlub, Timothy E.; Chelimo, Kiprotich; Sumba, Peter Odada; Piriou, Erwan; Ogolla, Sidney; Moormann, Ann M.; Rochford, Rosemary; Davenport, Miles P.

    2016-01-01

    Endemic Burkitt lymphoma is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum coinfection, although how P. falciparum exposure affects the dynamics of EBV infection is unclear. We have used a modeling approach to study EBV infection kinetics in a longitudinal cohort of children living in regions of high and low malaria transmission in Kenya. Residence in an area of high malaria transmission was associated with a higher rate of EBV expansion during primary EBV infection in infants and during subsequent episodes of EBV DNA detection, as well as with longer episodes of EBV DNA detection and shorter intervals between subsequent episodes of EBV DNA detection. In addition, we found that concurrent P. falciparum parasitemia also increases the likelihood of the first and subsequent peaks of EBV in peripheral blood. This suggests that P. falciparum infection is associated with increased EBV growth and contributes to endemic Burkitt lymphoma pathogenesis. PMID:26531246

  18. Stage specificity of pasak bumi root (Eurycoma longifolia Jack) isolate on Plasmodium falciparum cycles.

    PubMed

    Sholikhah, E N; Wijayanti, M A; Nurani, L H; Mustofa

    2008-07-01

    In previous study, in vitro antiplasmodial activity fractions isolated from methanol extract of E. longifolia, Jack. have been evaluated. Among 5 isolates evaluated from the study, isolate 4 showed high in vitro antiplasmodial activity. However, which stage specificity of the isolates on P. falciparum cycles has not been evaluated. This study was intended to evaluate the stage specificity of the isolate on P. falciparum cycles. The study was conducted by observing the percentage of each stages of P. falciparum microscopically after 8, 16, 24, 32, 40, 48, 56, 64, and 72 hours incubation periods with 3 various concentration of isolate 4 compared with control. The result showed that isolate 4 of E. longifolia root methanol soluble fractions most potent at trophozoites stages of P. falciparum.

  19. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    SciTech Connect

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K

    2004-05-19

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.

  20. Short report: polymorphisms in the chloroquine resistance transporter gene in Plasmodium falciparum isolates from Lombok, Indonesia.

    PubMed

    Huaman, Maria Cecilia; Yoshinaga, Kazumi; Suryanatha, Aan; Suarsana, Nyoman; Kanbara, Hiroji

    2004-07-01

    The polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) and P. falciparum chloroquine resistance transporter (pfcrt) genes, which are associated with chloroquine resistance, were examined in 48 P. falciparum isolates from uncomplicated malaria patients from the West Lombok District in Indonesia. The point mutation N86Y in pfmdr1 was present in 35.4% of the isolates and mutation K76T in pfcrt was found in all but one of the samples studied. Identified pfcrt haplotypes were mainly identical to the Papua New Guinea type S(agt)VMNT (42 of 48, 87.5%), and a few isolates had the Southeast Asia type CVIET (5 of 48, 10.4%). Moreover, one P. falciparum isolate harbored the K76N mutation, giving rise to the haplotype CVMNN, which was not previously reported in field isolates. Our findings suggest that chloroquine resistance in this area might have the same origin as in Papua New Guinea.

  1. Distribution of two species of malaria, Plasmodium falciparum and Plasmodium vivax, on Lombok Island, Indonesia.

    PubMed

    Nagao, Yoshiro; Dachlan, Yoes Prijatna; Soedarto; Hidajati, Sri; Yotopranoto, Subagyo; Kusmartisnawati; Subekti, Sri; Ideham, Bariah; Tsuda, Yoshio; Kawabata, Masato; Takagi, Masahiro; Looareesuwan, Somchai

    2003-09-01

    Medical and entomological surveys were conducted to determine the risk factors of Plasmodium falciparum and P. vivax infections on Lombok Island, Indonesia, to find the risk factors and the main mosquito vectors for each malaria. Multivariate longitudinal analysis demonstrated two significant risk factors for infection with P. falciparum: disappearance of P. vivax parasitemia (p<0.001) and a specific study site (p<0.001). In contrast, younger age (p=0.024) and the interpolated virtual density of An. subpictus (p=0.041) were significantly associated with increased risk of infection with P. vivax. Thus, it seems that the distribution of P. vivax was determined largely by the presence of An. subpictus, whilst that of P. falciparum was influenced by antagonism with P. vivax. This result shows the importance of following-up treated P. vivax patients to identify recrudescence of P. falciparum in this area.

  2. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum

  3. The Plasmodium falciparum Sexual Development Transcriptome: A Microarray Analysis using Ontology-Based Pattern Identification

    DTIC Science & Technology

    2005-06-17

    et al. Implication of a Plas- modium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Mol Biochem Parasitol 2005;140(2...falciparum [4,5]. The switch from an asexual to sexual mode of replication begins in the haploid intraery- throcytic stages, where a sub-population of... asexual parasites begin to develop into male and female gametocytes. This pro- cess of gametocyte development continues in the human host over a period of

  4. Severe Plasmodium falciparum and Plasmodium vivax malaria among adults at Kassala Hospital, eastern Sudan

    PubMed Central

    2013-01-01

    Background There have been few published reports on severe Plasmodium falciparum and Plasmodium vivax malaria among adults in Africa. Methods Clinical pattern/manifestations of severe P. falciparum and P. vivax (according to World Health Organization 2000 criteria) were described in adult patients admitted to Kassala Hospital, eastern Sudan. Results A total of 139 adult patients (80 males, 57.6%) with a mean (SD) age of 37.2 (1.5) years presented with severe P. falciparum (113, 81.3%) or P. vivax (26, 18.7%) malaria. Manifestations among the 139 patients included hypotension (38, 27.3%), cerebral malaria (23, 16.5%), repeated convulsions (18, 13.0%), hypoglycaemia (15, 10.8%), hyperparasitaemia (14, 10.1%), jaundice (14, 10.1%), severe anaemia (10, 7.2%), bleeding (six, 4.3%), renal impairment (one, 0.7%) and more than one criteria (27, 19.4%). While the geometric mean of the parasite count was significantly higher in patients with severe P. vivax than with severe P. falciparum malaria (5,934.2 vs 13,906.6 asexual stage parasitaemia per μL, p = 0.013), the different disease manifestations were not significantly different between patients with P. falciparum or P. vivax malaria. Three patients (2.2%) died due to severe P. falciparum malaria. One had cerebral malaria, the second had renal impairment, jaundice and hypoglycaemia, and the third had repeated convulsions and hypotension. Conclusions Severe malaria due to P. falciparum and P. vivax malaria is an existing entity among adults in eastern Sudan. Patients with severe P. falciparum and P. vivax develop similar disease manifestations. PMID:23634728

  5. Markers of sulfadoxine-pyrimethamine-resistant Plasmodium falciparum in placenta and circulation of pregnant women.

    PubMed

    Mockenhaupt, Frank P; Bedu-Addo, George; Junge, Claudia; Hommerich, Lena; Eggelte, Teunis A; Bienzle, Ulrich

    2007-01-01

    Placental sequestration of Plasmodium falciparum in pregnancy may impair the usefulness of molecular markers of sulfadoxine-pyrimethamine resistance. In 300 infected, delivering women, the concordance of PCR-restriction fragment length polymorphism-derived parasite resistance alleles in matched samples from placenta and circulation was 83 to 98%. Sulfadoxine-pyrimethamine resistance typing in peripheral blood is reasonably representative of P. falciparum infecting pregnant women.

  6. Symmetrical peripheral gangrene: A rare complication of plasmodium falciparum malaria

    PubMed Central

    Rana, Atul; Singh, DP; Kaur, Gurdeep; Verma, SK; Mahur, Hemant

    2015-01-01

    Malaria, the most important of the parasitic diseases of humans, is transmitted in 108 countries containing 3 billion people and causes nearly 1 million deaths each year. With the re-emergence of malaria various life-threatening complications of malaria have been observed. Unarousable coma/cerebral malaria, severe normochromic, normocytic anemia, renal failure, pulmonary edema/adult respiratory distress syndrome, hypoglycemia, hypotension/shock, bleeding/disseminated intravascular coagulation (DIC), hemoglobinuria and jaundice are few of the common complications of severe malaria. Symmetrical peripheral gangrene (SPG) has been reported as a rare complication of malaria. We report a rare and unique case of Plasmodium falciparum malaria complicated by DIC, severe normocytic normochromic anemia, and SPG. PMID:26629458

  7. Mitosis in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. PMID:21317311

  8. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  9. Artemisinin-naphthoquine for treating uncomplicated Plasmodium falciparum malaria.

    PubMed

    Isba, Rachel; Zani, Babalwa; Gathu, Michael; Sinclair, David

    2015-02-23

    The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) for treating people with Plasmodium falciparum malaria. Five combinations are currently recommended, all administered over three days. Artemisinin-naphthoquine is a new combination developed in China, which is being marketed as a one-day treatment. Although shorter treatment courses may improve adherence, the WHO recommends at least three days of the short-acting artemisinin component to eliminate 90% P. falciparum parasites in the bloodstream, before leaving the longer-acting partner drug to clear the remaining parasites. To evaluate the efficacy and safety of the artemisinin-naphthoquine combination for treating adults and children with uncomplicated P. falciparum malaria. We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; and LILACS up to January 2015. We also searched the metaRegister of Controlled Trials (mRCT) using 'malaria' and 'arte* OR dihydroarte*' as search terms. Randomized controlled trials comparing artemisinin-naphthoquine combinations with established WHO-recommended ACTs for the treatment of adults and children with uncomplicated malaria due to P. falciparum. Two review authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Four trials, enrolling 740 adults and children, met the inclusion criteria. Artemisinin-naphthoquine was administered as a single dose (two trials), as two doses given eight hours apart (one trial), and once daily for three days (one trial

  10. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P

    2013-01-01

    We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527

  11. Falciparum malaria: sticking up, standing out and out-standing.

    PubMed

    Cooke, B; Coppel, R; Wahlgren, M

    2000-10-01

    Cytoadherence is believed to be fundamental for the survival of Plasmodium falciparum in vivo and, uniquely, is a major determinant of the virulence of this parasite. Despite the widely professed importance of cytoadhesion in the development of severe disease, there are a number of aspects of this highly complex process that remain poorly understood. Recent progress in the understanding of cytoadhesive phenomena was discussed extensively at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000. Here, Brian Cooke, Mats Wahlgren and Ross Coppel consider just how far we have progressed during the past 30 years and highlight what is still missing in our understanding of the mechanisms and clinical relevance of this apparently vital process.

  12. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts

    PubMed Central

    Morse, David; Webster, Wesley; Kalanon, Ming; Langsley, Gordon; McFadden, Geoffrey I.

    2016-01-01

    Over-expression of a GFP-PfRab1A fusion protein in Plasmodium falciparum schizonts produces a punctate pattern of fluorescence typical of rhoptries, secretory organelles involved in host cell invasion. The GFP-positive bodies were purified by a combination of differential and density gradient centrifugation and their protein content determined by MS/MS sequencing. Consistent with the GFP rhoptry-like pattern of transgenic parasites, four of the 19 proteins identified have been previously described to be rhoptry-associated and another four are ER or ER-associated proteins. Confirmation that GFP-PfRab1A decorates rhoptries was obtained by its co-localization with Rap1 and Ron4 in late phase schizonts. We conclude that PfRab1A potentially regulates vesicular traffic from the endoplasmic reticulum to the rhoptries in Apicomplexa parasites. PMID:27348424

  14. Diagnosis and management of the neurological complications of falciparum malaria

    PubMed Central

    Mishra, Saroj K.; Newton, Charles R. J. C.

    2010-01-01

    Malaria is a major public health problem in the developing world owing to its high rates of morbidity and mortality. Of all the malarial parasites that infect humans, Plasmodium falciparum is most commonly associated with neurological complications, which manifest as agitation, psychosis, seizures, impaired consciousness and coma (cerebral malaria). Cerebral malaria is the most severe neurological complication; the condition is associated with mortality of 15–20%, and a substantial proportion of individuals with this condition develop neurocognitive sequelae. In this Review, we describe the various neurological complications encountered in malaria, discuss the underlying pathogenesis, and outline current management strategies for these complications. Furthermore, we discuss the role of adjunctive therapies in improving outcome. PMID:19347024

  15. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria.

    PubMed

    Wang, Sibao; Dos-Santos, André L A; Huang, Wei; Liu, Kun Connie; Oshaghi, Mohammad Ali; Wei, Ge; Agre, Peter; Jacobs-Lorena, Marcelo

    2017-09-29

    The huge burden of malaria in developing countries urgently demands the development of novel approaches to fight this deadly disease. Although engineered symbiotic bacteria have been shown to render mosquitoes resistant to the parasite, the challenge remains to effectively introduce such bacteria into mosquito populations. We describe a Serratia bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito midgut, female ovaries, and male accessory glands and spreads rapidly throughout mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium effector proteins, and the recombinant strains inhibit development of Plasmodium falciparum in mosquitoes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Oral clindamycin in the treatment of acute uncomplicated falciparum malaria.

    PubMed

    Salazar, N P; Saniel, M C; Estoque, M H; Talao, F A; Bustos, D G; Palogan, L P; Gabriel, A I

    1990-09-01

    Clinical trials on oral clindamycin as an antimalarial in hospitalized patients and residents of endemic communities were conducted in the Philippines between May 1984 and December 1985. Seven and 9 qualified subjects in hospital were treated with 300 mg (regimen A) and 600 mg (regimen B) respectively, twice daily for 5 days. Eighteen patients seen at a rural health unit were given the lower dosage. On the basis of the 28-day extended in vivo test of WHO, P. falciparum in all but one patient showed susceptibility to the drug as a blood schizontocide hence, the clinical cure of malaria. Side effects were few and self-limiting. Ten other patients on regimen A were cured within the 7- and/or 28-day extended test period. Clindamycin per se is currently one of the few alternatives in the treatment of clinically moderate drug-resistant malaria.

  17. Evaluation of a rapid and inexpensive dipstick assay for the diagnosis of Plasmodium falciparum malaria.

    PubMed Central

    Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.

    1999-01-01

    Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878

  18. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    PubMed Central

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K.; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  19. The Spiroindolone KAE609 Does Not Induce Dormant Ring Stages in Plasmodium falciparum Parasites

    PubMed Central

    Van Breda, Karin; Rowcliffe, Kerryn; Diagana, Thierry T.; Edstein, Michael D.

    2016-01-01

    In vitro drug treatment with artemisinin derivatives, such as dihydroartemisinin (DHA), results in a temporary growth arrest (i.e., dormancy) at an early ring stage in Plasmodium falciparum. This response has been proposed to play a role in the recrudescence of P. falciparum infections following monotherapy with artesunate and may contribute to the development of artemisinin resistance in P. falciparum malaria. We demonstrate here that artemether does induce dormant rings, a finding which further supports the class effect of artemisinin derivatives in inducing the temporary growth arrest of P. falciparum parasites. In contrast and similarly to lumefantrine, the novel and fast-acting spiroindolone compound KAE609 does not induce growth arrest at the early ring stage of P. falciparum and prevents the recrudescence of DHA-arrested rings at a low concentration (50 nM). Our findings, together with previous clinical data showing that KAE609 is active against artemisinin-resistant K13 mutant parasites, suggest that KAE609 could be an effective partner drug with a broad range of antimalarials, including artemisinin derivatives, in the treatment of multidrug-resistant P. falciparum malaria. PMID:27297484

  20. [Evaluation of effect of prevention and control system for imported falciparum malaria in Hanjiang District].

    PubMed

    She, Guo-lin; Ma, Yu-Cai; Wang, Fu-biao

    2013-08-01

    To analyze the current situation of the comprehensive prevention and control system for imported falciparum malaria in Hanjiang District and evaluate its effect. According to the Management Scheme on Control of Imported Falciparum Malaria in Yangzhou City, the comprehensive prevention and control system for imported falciparum malaria was implemented, and the relevant malaria data were collected and analyzed statistically. The data included plasmodium blood test ratio of fever patients among exported labors and those returned, the ratio of laboratory-confirmed cases among all reported cases of falciparum malaria, the ratio of falciparum malaria patients who received the standard treatment within 24 hours after onset, etc from 2010 to 2012. After the implementation of the comprehensive prevention and control system, the confirmation ratio of falciparum malaria cases within 24 hours following first visit has reached 60.47%, the average time from first visit to confirmation has shortened to 1.8 d, and the average time from onset to confirmation has shortened to 3.7 d. The health education coverage ratio was 100%, the health knowledge awareness ratio was 95.56%, the ratio of patients seeking treatment on own initiative was 100%, the laboratory-confirmed ratio was 100%, and the ratio of standard treatment after malaria diagnosis was 100%. The comprehensive prevention and control system carried out by Hanjiang District has made remarkable achievements.

  1. Origin and evolution of sulfadoxine resistant Plasmodium falciparum.

    PubMed

    Vinayak, Sumiti; Alam, Md Tauqeer; Mixson-Hayden, Tonya; McCollum, Andrea M; Sem, Rithy; Shah, Naman K; Lim, Pharath; Muth, Sinuon; Rogers, William O; Fandeur, Thierry; Barnwell, John W; Escalante, Ananias A; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R; Udhayakumar, Venkatachalam

    2010-03-26

    The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.

  2. Origin and Evolution of Sulfadoxine Resistant Plasmodium falciparum

    PubMed Central

    Mixson-Hayden, Tonya; McCollum, Andrea M.; Sem, Rithy; Shah, Naman K.; Lim, Pharath; Muth, Sinuon; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2010-01-01

    The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions

  3. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    PubMed Central

    2012-01-01

    Background In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often absent in peripheral blood samples. The appearance of schizonts in peripheral blood smears is thought to be a marker of high sequestered parasite burden and severe disease. In the present study, the value of schizontaemia as an early marker for severe disease in non-immune individuals with imported malaria was evaluated. Methods All patients in the Rotterdam Malaria Cohort diagnosed with P. falciparum malaria between 1 January 1999 and 1 January 2012 were included. Thick and thin blood films were examined for the presence of schizontaemia. The occurrence of WHO defined severe malaria was the primary endpoint. The diagnostic performance of schizontaemia was compared with previously evaluated biomarkers C-reactive protein and lactate. Results Schizonts were present on admission in 49 of 401 (12.2%) patients. Patients with schizontaemia were more likely to present with severe malaria, a more complicated course and had longer duration of admission in hospital. Schizontaemia had a specificity of 0.95, a sensitivity of 0.53, a negative predictive value of 0.92 and a positive predictive value of 0.67 for severe malaria. The presence of schizonts was an independent predictor for severe malaria. Conclusion Absence of schizonts was found to be a specific marker for exclusion of severe malaria. Presence of schizonts on admission was associated with a high positive predictive value for severe malaria. This may be of help to identify patients who are at risk of a more severe course than would be expected when considering peripheral parasitaemia alone. PMID:22929647

  4. Antimalarials increase vesicle pH in Plasmodium falciparum

    PubMed Central

    1985-01-01

    The asexual erythrocytic stage of the malarial parasite ingests and degrades the hemoglobin of its host red cell. To study this process, we labeled the cytoplasm of uninfected red cells with fluorescein-dextran, infected those cells with trophozoite- and schizont-rich cultures of Plasmodium falciparum, and harvested them 110-120 h later in the trophozoite stage. After lysis of the red cell cytoplasm with digitonin, the only fluorescence remaining was in small (0.5-0.9 micron) vesicles similar to the parasite's food vacuole. As measured by spectrofluorimetry, the pH of these vesicles was acid (initial pH 5.2- 5.4), and they responded to MgATP with acidification and to weak bases such as NH4Cl with alkalinization. These three properties are similar to those obtained with human fibroblasts and suggest that the endocytic vesicles of plasmodia are similar to those of mammalian cells. Each of the antimalarials tested (chloroquine, quinine, and mefloquine) as well as NH4Cl inhibited parasite growth at concentrations virtually identical to those that increased parasite vesicle pH. These results suggest two conclusions: (a) The increases in vesicle pH that we have observed in our digitonin-treated parasite preparation occur at similar concentrations of weak bases and antimalarials in cultures of parasitized erythrocytes, and (b) P. falciparum parasites are exquisitely dependent on vesicle pH during their asexual erythrocytic cycle, perhaps for processes analogous to endocytosis and proteolysis in mammalian cells, and that antimalarials and NH4Cl may act by interfering with these events. PMID:3905824

  5. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    PubMed

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  6. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.

    PubMed

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V; Rizk, Shahir S; Njimoh, Dieudonne L; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M; Wiest, Olaf; Haldar, Kasturi

    2015-04-30

    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.

  7. Fitness of artemisinin-resistant Plasmodium falciparum in vitro

    PubMed Central

    Hott, Amanda; Tucker, Matthew S.; Casandra, Debora; Sparks, Kansas; Kyle, Dennis E.

    2015-01-01

    Objectives Drug resistance confers a fitness advantage to parasites exposed to frequent drug pressure, yet these mutations also may incur a fitness cost. We assessed fitness advantages and costs of artemisinin resistance in Plasmodium falciparum in vitro to understand how drug resistance will spread and evolve in a competitive environment. Methods Genotyping of SNPs, drug susceptibility assays and copy number determination were used to assess the impact of artemisinin resistance on parasite fitness. An artemisinin-resistant clone (C9) selected in vitro from an isogenic parental clone (D6) was used to conduct competitive growth studies to assess fitness of artemisinin resistance. The resistant and susceptible clones were mixed or grown alone in the presence and absence of drug pressure (dihydroartemisinin or pyrimethamine) to quantify the rate at which artemisinin resistance was gained or lost. Results We experimentally demonstrate for the first time that artemisinin resistance provides a fitness advantage that is selected for with infrequent exposure to drug, but is lost in the absence of exposure to artemisinin drugs. The best correlations with artemisinin resistance were decreased in vitro drug susceptibility to artemisinin derivatives, increased copy number of Pf3D7_1030100 and an SNP in Pf3D7_0307600. An SNP conferring an E208K mutation in the kelch gene (Pf3D7_1343700) was not associated with resistance. Furthermore, we observed second-cycle ring-stage dormancy induced by pyrimethamine, suggesting that dormancy is a fitness trait that provides an advantage for survival from antimalarial drug stress. Conclusions Artemisinin-resistant P. falciparum have a fitness advantage to survive and predominate in the population even in the face of infrequent exposure to artemisinin drugs. PMID:26203183

  8. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

    PubMed

    Ménard, Didier; Khim, Nimol; Beghain, Johann; Adegnika, Ayola A; Shafiul-Alam, Mohammad; Amodu, Olukemi; Rahim-Awab, Ghulam; Barnadas, Céline; Berry, Antoine; Boum, Yap; Bustos, Maria D; Cao, Jun; Chen, Jun-Hu; Collet, Louis; Cui, Liwang; Thakur, Garib-Das; Dieye, Alioune; Djallé, Djibrine; Dorkenoo, Monique A; Eboumbou-Moukoko, Carole E; Espino, Fe-Esperanza-Caridad J; Fandeur, Thierry; Ferreira-da-Cruz, Maria-Fatima; Fola, Abebe A; Fuehrer, Hans-Peter; Hassan, Abdillahi M; Herrera, Socrates; Hongvanthong, Bouasy; Houzé, Sandrine; Ibrahim, Maman L; Jahirul-Karim, Mohammad; Jiang, Lubin; Kano, Shigeyuki; Ali-Khan, Wasif; Khanthavong, Maniphone; Kremsner, Peter G; Lacerda, Marcus; Leang, Rithea; Leelawong, Mindy; Li, Mei; Lin, Khin; Mazarati, Jean-Baptiste; Ménard, Sandie; Morlais, Isabelle; Muhindo-Mavoko, Hypolite; Musset, Lise; Na-Bangchang, Kesara; Nambozi, Michael; Niaré, Karamoko; Noedl, Harald; Ouédraogo, Jean-Bosco; Pillai, Dylan R; Pradines, Bruno; Quang-Phuc, Bui; Ramharter, Michael; Randrianarivelojosia, Milijaona; Sattabongkot, Jetsumon; Sheikh-Omar, Abdiqani; Silué, Kigbafori D; Sirima, Sodiomon B; Sutherland, Colin; Syafruddin, Din; Tahar, Rachida; Tang, Lin-Hua; Touré, Offianan A; Tshibangu-wa-Tshibangu, Patrick; Vigan-Womas, Inès; Warsame, Marian; Wini, Lyndes; Zakeri, Sedigheh; Kim, Saorin; Eam, Rotha; Berne, Laura; Khean, Chanra; Chy, Sophy; Ken, Malen; Loch, Kaknika; Canier, Lydie; Duru, Valentine; Legrand, Eric; Barale, Jean-Christophe; Stokes, Barbara; Straimer, Judith; Witkowski, Benoit; Fidock, David A; Rogier, Christophe; Ringwald, Pascal; Ariey, Frederic; Mercereau-Puijalon, Odile

    2016-06-23

    Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).

  9. Targeting the gyrase of Plasmodium falciparum with topoisomerase poisons.

    PubMed

    Tang Girdwood, Sonya C; Nenortas, Elizabeth; Shapiro, Theresa A

    2015-06-15

    Drug-resistant malaria poses a major public health problem throughout the world and the need for new antimalarial drugs is growing. The apicoplast, a chloroplast-like organelle essential for malaria parasite survival and with no counterpart in humans, offers an attractive target for selectively toxic new therapies. The apicoplast genome (plDNA) is a 35 kb circular DNA that is served by gyrase, a prokaryotic type II topoisomerase. Gyrase is poisoned by fluoroquinolone antibacterials that stabilize a catalytically inert ternary complex of enzyme, its plDNA substrate, and inhibitor. We used fluoroquinolones to study the gyrase and plDNA of Plasmodium falciparum. New methods for isolating and separating plDNA reveal four topologically different forms and permit a quantitative exam of perturbations that result from gyrase poisoning. In keeping with its role in DNA replication, gyrase is most abundant in late stages of the parasite lifecycle, but several lines of evidence indicate that even in these cells the enzyme is present in relatively low abundance: about 1 enzyme for every two plDNAs or a ratio of 1 gyrase: 70 kb DNA. For a spectrum of quinolones, correlation was generally good between antimalarial activity and gyrase poisoning, the putative molecular mechanism of drug action. However, in P. falciparum there is evidence for off-target toxicity, particularly for ciprofloxacin. These studies highlight the utility of the new methods and of fluoroquinolones as a tool for studying the in situ workings of gyrase and its plDNA substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Purification and characterization of Plasmodium falciparum succinate dehydrogenase.

    PubMed

    Suraveratum, N; Krungkrai, S R; Leangaramgul, P; Prapunwattana, P; Krungkrai, J

    2000-02-05

    Succinate dehydrogenase (SDH), a Krebs cycle enzyme and complex II of the mitochondrial electron transport system was purified to near homogeneity from the human malarial parasite Plasmodium falciparum cultivated in vitro by FPLC on Mono Q, Mono S and Superose 6 gel filtration columns. The malarial SDH activity was found to be extremely labile. Based on Superose 6 FPLC, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing-PAGE analyses, it was demonstrated that the malarial enzyme had an apparent native molecular mass of 90 +/- 8 kDa and contained two major subunits with molecular masses of 55 +/- 6 and 35 +/- 4 kDa (n = 8). The enzymatic reaction required both succinate and coenzyme Q (CoQ) for its maximal catalysis with Km values of 3 and 0.2 microM, and k(cat) values of 0.11 and 0.06 min(-1), respectively. Catalytic efficiency of the malarial SDH for both substrates were found to be relatively low (approximately 600-5000 M(-1) s(-1)). Fumarate, malonate and oxaloacetate were found to inhibit the malarial enzyme with Ki values of 81, 13 and 12 microM, respectively. The malarial enzyme activity was also inhibited by substrate analog of CoQ, 5-hydroxy-2-methyl-1,4-naphthoquinone, with a 50% inhibitory concentration of 5 microM. The quinone had antimalarial activity against the in vitro growth of P. falciparum with a 50% inhibitory concentration of 0.27 microM and was found to completely inhibit oxygen uptake of the parasite at a concentration of 0.88 microM. A known inhibitor of mammalian mitochondrial SDH, 2-thenoyltrifluoroacetone. had no inhibitory effect on both the malarial SDH activity and the oxygen uptake of the parasite at a concentration of 50 microM. Many properties observed in the malarial SDH were found to be different from the host mammalian enzyme.

  11. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms

    PubMed Central

    Ménard, D.; Khim, N.; Beghain, J.; Adegnika, A.A.; Shafiul-Alam, M.; Amodu, O.; Rahim-Awab, G.; Barnadas, C.; Berry, A.; Boum, Y.; Bustos, M.D.; Cao, J.; Chen, J.-H.; Collet, L.; Cui, L.; Thakur, G.-D.; Dieye, A.; Djallé, D.; Dorkenoo, M.A.; Eboumbou-Moukoko, C.E.; Espino, F.-E.-C.J.; Fandeur, T.; Ferreira-da-Cruz, M.-F.; Fola, A.A.; Fuehrer, H.-P.; Hassan, A.M.; Herrera, S.; Hongvanthong, B.; Houzé, S.; Ibrahim, M.L.; Jahirul-Karim, M.; Jiang, L.; Kano, S.; Ali-Khan, W.; Khanthavong, M.; Kremsner, P.G.; Lacerda, M.; Leang, R.; Leelawong, M.; Li, M.; Lin, K.; Mazarati, J.-B.; Ménard, S.; Morlais, I.; Muhindo-Mavoko, H.; Musset, L.; Na-Bangchang, K.; Nambozi, M.; Niaré, K.; Noedl, H.; Ouédraogo, J.-B.; Pillai, D.R.; Pradines, B.; Quang-Phuc, B.; Ramharter, M.; Randrianarivelojosia, M.; Sattabongkot, J.; Sheikh-Omar, A.; Silué, K.D.; Sirima, S.B.; Sutherland, C.; Syafruddin, D.; Tahar, R.; Tang, L.-H.; Touré, O.A.; Tshibangu-wa-Tshibangu, P.; Vigan-Womas, I.; Warsame, M.; Wini, L.; Zakeri, S.; Kim, S.; Eam, R.; Berne, L.; Khean, C.; Chy, S.; Ken, M.; Loch, K.; Canier, L.; Duru, V.; Legrand, E.; Barale, J.-C.; Stokes, B.; Straimer, J.; Witkowski, B.; Fidock, D.A.; Rogier, C.; Ringwald, P.; Ariey, F.; Mercereau-Puijalon, O.

    2016-01-01

    BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)–propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas — one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China — with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. PMID:27332904

  12. Spatial prediction of Plasmodium falciparum prevalence in Somalia

    PubMed Central

    Noor, Abdisalan M; Clements, Archie CA; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W

    2008-01-01

    Background Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Methods Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. Results For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with ≥ 5% prevalence were predominantly in the south. Conclusion The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia. PMID:18717998

  13. Characterisation of exogenous folate transport in Plasmodium falciparum

    PubMed Central

    Wang, Ping; Wang, Qi; Sims, Paul F.G.; Hyde, John E.

    2007-01-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters. PMID:17509698

  14. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    PubMed

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  15. Pharmacokinetics of quinine in African patients with acute falciparum malaria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Sowunmi, A; Walker, O

    1998-06-01

    The pharmacokinetics of quinine were studied in six Nigerian patients during acute uncomplicated falciparum malaria and convalescent periods. An oral dose of 10 mg/kg quinine dihydrochloride administered 8-hourly for 7 days gave parasite and fever clearance times of 36.0 +/- 16.6 h and 18.0 +/- 6.4 h, respectively. From the individual quinine plasma profiles the mean plasma concentration of quinine at the time of parasite clearance was estimated as 4.5 +/- 1.1 micrograms/ml. Plasma quinine levels during malaria rose rapidly reaching a peak around the second and third days and declining thereafter as patients improved clinically. In acute malaria plasma quinine levels were more than two-fold higher than in convalescence; the mean AUC(0-12) in malaria was 37.9 +/- 14.7 micrograms.h/ml compared to 17.9 +/- 8.5 micrograms.h/ml in convalescence. The apparent oral clearance (CL/F) and volume of distribution (Vd/F) during the acute phase of the malaria (1.9 +/- 0.7 ml/min/kg and 1.8 +/- 0.9 l/kg, respectively) were significantly lower than in convalescence (4.5 +/- 2.1 ml/min/kg and 4.2 +/- 3.2 l/kg). The present data suggest that malaria parasites in African patients are still very sensitive to quinine and that the current dosage of quinine is effective for the treatment of acute falciparum malaria in African patients without augmenting therapy with any other drug such as tetracycline or sulphadoxine-pyrimethamine. It also confirms that malaria significantly alters the pharmacokinetics of quinine in humans.

  16. Spatial prediction of Plasmodium falciparum prevalence in Somalia.

    PubMed

    Noor, Abdisalan M; Clements, Archie C A; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W

    2008-08-21

    Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with > or = 5% prevalence were predominantly in the south. The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.

  17. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria

    PubMed Central

    Plewes, Katherine; Maude, Richard J.; Hanson, Josh; Herdman, M. Trent; Leopold, Stije J.; Ngernseng, Thatsanun; Charunwatthana, Prakaykaew; Phu, Nguyen Hoan; Ghose, Aniruddha; Hasan, M. Mahtab Uddin; Fanello, Caterina I.; Faiz, Md Abul; Hien, Tran Tinh; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.

    2017-01-01

    Background Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. Methods Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African ‘AQUAMAT’ trial comparing artesunate and quinine (children), and the Vietnamese ‘AQ’ study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. Results Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the ‘AQUAMAT’ study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. Conclusions The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid

  18. Modeling Metabolism and Stage-Specific Growth of Plasmodium falciparum HB3 during the Intraerythrocytic Development Cycle

    DTIC Science & Technology

    2014-01-01

    Wallqvist The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly 48-hour-long intraerythrocytic...disease warrant basic research into the different mechanisms used by Plasmodium falciparum , the most virulent causative agent of malaria , to survive and...metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle† Xin Fang, Jaques Reifman* and Anders

  19. Two cases of Plasmodium falciparum malaria in the Netherlands without recent travel to a malaria-endemic country.

    PubMed

    Arends, Joop E; Oosterheert, Jan Jelrik; Kraaij-Dirkzwager, Marleen M; Kaan, Jan A; Fanoy, Ewout B; Haas, Pieter-Jan; Scholte, Ernst-Jan; Kortbeek, Laetitia M; Sankatsing, Sanjay U C

    2013-09-01

    Recently, two patients of African origin were given a diagnosis of Plasmodium falciparum malaria without recent travel to a malaria-endemic country. This observation highlights the importance for clinicians to consider tropical malaria in patients with fever. Possible transmission routes of P. falciparum to these patients will be discussed. From a public health perspective, international collaboration is crucial when potential cases of European autochthonous P. falciparum malaria in Europe re considered.

  20. Two Cases of Plasmodium falciparum Malaria in the Netherlands without Recent Travel to a Malaria-Endemic Country

    PubMed Central

    Arends, Joop E.; Oosterheert, Jan Jelrik; Kraaij-Dirkzwager, Marleen M.; Kaan, Jan A.; Fanoy, Ewout B.; Haas, Pieter-Jan; Scholte, Ernst-Jan; Kortbeek, Laetitia M.; Sankatsing, Sanjay U. C.

    2013-01-01

    Recently, two patients of African origin were given a diagnosis of Plasmodium falciparum malaria without recent travel to a malaria-endemic country. This observation highlights the importance for clinicians to consider tropical malaria in patients with fever. Possible transmission routes of P. falciparum to these patients will be discussed. From a public health perspective, international collaboration is crucial when potential cases of European autochthonous P. falciparum malaria in Europe re considered. PMID:23857021

  1. Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum.

    PubMed

    Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun

    2015-08-01

    The 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum. The PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated. A total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13-0.14 MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparum eba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparum eba-175. Plasmodium falciparum eba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.

  2. El Niño and variations in the prevalence of Plasmodium vivax and P. falciparum in Vanuatu.

    PubMed

    Gilbert, M; Brindle, R

    2009-12-01

    Malaria, both Plasmodium falciparum and P. vivax, is a major cause of morbidity in Vanuatu. As P. vivax is more prevalent in seasonal climates and P. falciparum in areas of more consistent rainfall, it is postulated that there will be a correlation between the ratio of vivax:falciparum and the El Niño Southern Oscillation (ENSO), which affects sea surface temperatures and rainfall. With changes in global climate, the frequency, duration and strength of the ENSO are expected to alter, influencing the pattern of malaria. The data showed no obvious correlation between ENSO and either cases of malaria or the vivax:falciparum ratio.

  3. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes

    PubMed Central

    Saiwaew, Somporn; Sritabal, Juntima; Piaraksa, Nattaporn; Keayarsa, Srisuda; Ruengweerayut, Ronnatrai; Utaisin, Chirapong; Sila, Patima; Niramis, Rangsan; Udomsangpetch, Rachanee; Charunwatthana, Prakaykaew; Pongponratn, Emsri; Pukrittayakamee, Sasithon; Leitgeb, Anna M.; Wahlgren, Mats; Lee, Sue J.; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.; Chotivanich, Kesinee

    2017-01-01

    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria. PMID:28249043

  4. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes.

    PubMed

    Saiwaew, Somporn; Sritabal, Juntima; Piaraksa, Nattaporn; Keayarsa, Srisuda; Ruengweerayut, Ronnatrai; Utaisin, Chirapong; Sila, Patima; Niramis, Rangsan; Udomsangpetch, Rachanee; Charunwatthana, Prakaykaew; Pongponratn, Emsri; Pukrittayakamee, Sasithon; Leitgeb, Anna M; Wahlgren, Mats; Lee, Sue J; Day, Nicholas P J; White, Nicholas J; Dondorp, Arjen M; Chotivanich, Kesinee

    2017-01-01

    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0-38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria.

  5. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  6. Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression

    PubMed Central

    2014-01-01

    Background Liver involvement in severe Plasmodium falciparum infection is commonly a significant cause of morbidity and mortality among humans. The clinical presentation of jaundice often reflects a certain degree of liver damage. This study investigated the liver pathology of severe P. falciparum malaria as well as the regulation and occurrence of apoptosis in cellular components of formalin-fixed, paraffin-embedded liver tissues. Methods The liver tissues used in the study came from patients who died from P. falciparum malaria with hyperbilirubinaemia (total bilirubin (TB) ≥ 51.3 μmol/L or 3 mg/dl) (12 cases), P. falciparum malaria without hyperbilirubinaemia (TB < 51.3 μmol/L) (10 cases); and patients who died due to accidents, whose liver histology was normal (the control group) (10 cases). The histopathology of the liver tissue was studied by routine histology method. Caspase-3 and nuclear factor kappa B (NF-κB) p65 expressions were determined using immunohistochemistry. Results The severity of liver histopathology, occurrence of apoptosis and NF-κB p65 activation in P. falciparum malaria were associated with higher TB level. Significant correlations were found between NF-κB p65 expression and apoptosis in Kupffer cells and lymphocytes in the portal tracts. Conclusions Hyperplastic Kupffer cells and portal tract inflammation are two main features found in the liver tissues of severe P. falciparum malaria cases. In addition, NF-κB is associated with Kupffer cells and lymphocyte apoptosis in severe P. falciparum malaria. PMID:24636003

  7. Erythrocyte Lysis and Xenopus laevis Oocyte Rupture by Recombinant Plasmodium falciparum Hemolysin III

    PubMed Central

    Moonah, Shannon; Sanders, Natalie G.; Persichetti, Jason K.

    2014-01-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  8. Plasmodium vivax Populations Are More Genetically Diverse and Less Structured than Sympatric Plasmodium falciparum Populations

    PubMed Central

    Jennison, Charlie; Arnott, Alicia; Tessier, Natacha; Tavul, Livingstone; Koepfli, Cristian; Felger, Ingrid; Siba, Peter M.; Reeder, John C.; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2015-01-01

    Introduction The human malaria parasite, Plasmodium vivax, is proving more difficult to control and eliminate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic structure of sympatric parasite populations may provide insight into the mechanisms underlying the resilience of P. vivax and can help guide malaria control programs. Methodology/Principle findings P. vivax isolates representing the parasite populations of four areas on the north coast of Papua New Guinea (PNG) were genotyped using microsatellite markers and compared with previously published microsatellite data from sympatric P. falciparum isolates. The genetic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–0.77) in all four populations. Moderate levels of genetic differentiation were found between P. falciparum populations, even over relatively short distances (less than 50 km), with 21–28% private alleles and clear geospatial genetic clustering. Conversely, very low population differentiation was found between P. vivax catchments, with less than 5% private alleles and no genetic clustering observed. In addition, the effective population size of P. vivax (30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986). Conclusions/Significance Despite comparably high prevalence, P. vivax had higher diversity and a panmictic population structure compared to sympatric P. falciparum populations, which were fragmented into subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a long-term large effective population size, consistent with more intense and stable transmission, and limited impact of past control and elimination efforts. This underlines suggestions that more intensive and sustained interventions will be needed to control and eventually eliminate P. vivax. This research clearly demonstrates how population genetic analyses can reveal deeper insight into transmission

  9. Evaluation of some haemostatic parameters in falciparum malaria and HIV co-infection.

    PubMed

    Chukwuanukwu, Rebecca C; Ukaejiofo, Ernest O; Ele, Prince U; Onyenekwe, Charles C; Chukwuanukwu, Titus O; Ifeanyichukwu, Martin O

    2016-10-01

    Studies from sub-Saharan Africa where malaria is endemic have observed high incidences of malaria and HIV co-infection. It has long been accepted that malaria causes alterations in haemostatic parameters and that HIV is associated with a wide range of haematological changes. We assessed the effect of the overlap of these infections on routine haemostatic parameters. The study involved 337 subjects grouped according to their HIV and malaria status: Group 1 'Asymptomatic HIV seropositive, Plasmodium falciparum positive' (n = 61); Group 2 'Asymptomatic HIV seropositive, P. falciparum negative' (n = 73); Group 3 'Symptomatic HIV seropositive, P. falciparum positive' (n = 49); Group 4 'Symptomatic HIV positive P. falciparum negative' (n = 56); Group 5 'Control HIV negative, P. falciparum positive' (n = 52) and Group 6 'Control HIV negative, P. falciparum negative' (n = 46). Blood samples were taken for HIV testing, diagnosis of falciparum malaria and malaria parasite density counts. Citrated samples were used within one hour of collection for prothrombin time (PT) and activated partial thromboplastin time (APTT). CD4(+) T cell counts, platelet count and haematocrit (Hct) were also performed. Our results demonstrate greater alterations in APTT, PT and platelet count with prolongation of APTT, PT and lower platelet counts in HIV and malaria co-infection. In spite of this, the co-infected subjects with mild to moderate parasitaemia did not show a bleeding tendency; however, the risk is higher in severe malaria. These results suggest that co-infected subjects with severe malaria have a higher risk of bleeding and would require greater monitoring.

  10. Evolution of Fseg/Cseg dimorphism in region III of the Plasmodium falciparum eba-175 gene.

    PubMed

    Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun

    2017-04-01

    The 175-kDa erythrocyte binding antigen (EBA-175) of the malaria parasite Plasmodium falciparum is important for its invasion into human erythrocytes. The primary structure of eba-175 is divided into seven regions, namely I to VII. Region III contains highly divergent dimorphic segments, termed Fseg and Cseg. The allele frequencies of segmental dimorphism within a P. falciparum population have been extensively examined; however, the molecular evolution of segmental dimorphism is not well understood. A comprehensive comparison of nucleotide sequences among 32 P. falciparum eba-175 alleles identified in our previous study, two Plasmodium reichenowi, and one P. gaboni orthologous alleles obtained from the GenBank database was conducted to uncover the origin and evolutionary processes of segmental dimorphism in P. falciparum eba-175. In the eba-175 nucleotide sequence derived from a P. reichenowi CDC strain, both Fseg and Cseg were found in region III, which implies that the original eba-175 gene had both segments, and deletions of F- and C-segments generated Cseg and Fseg alleles, respectively. We also confirmed the presence of allele with Fseg and Cseg in another P. reichenowi strain (SY57), by re-mapping short reads obtained from the GenBank database. On the other hand, the segmental sequence of eba-175 ortholog in P. gaboni was quite diverged from those of the other species, suggesting that the original eba-175 dimorphism of P. falciparum can be traced back to the stem linage of P. falciparum and P. reichenowi. Our findings suggest that Fseg and Cseg alleles are derived from a single eba-175 allele containing both segments in the ancestral population of P. falciparum and P. reichenowi, and that the allelic dimorphism of eba-175 was shaped by the independent emergence of similar dimorphic lineage in different species that has never been observed in any evolutionary mode of allelic dimorphism at other loci in malaria genomes.

  11. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Bukirwa, Hasifa; Unnikrishnan, B; Kramer, Christine V; Sinclair, David; Nair, Suma; Tharyan, Prathap

    2014-01-01

    Background The World Health Organization (WHO) recommends that people with uncomplicated Plasmodium falciparum malaria are treated using Artemisinin-based Combination Therapy (ACT). ACT combines three-days of a short-acting artemisinin derivative with a longer-acting antimalarial which has a different mode of action. Pyronaridine has been reported as an effective antimalarial over two decades of use in parts of Asia, and is currently being evaluated as a partner drug for artesunate. Objectives To evaluate the efficacy and safety of artesunate-pyronaridine compared to alternative ACTs for treating people with uncomplicated P. falciparum malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; ClinicalTrials.gov; the metaRegister of Controlled Trials (mRCT); and the WHO International Clinical Trials Search Portal up to 16 January 2014. We searched reference lists and conference abstracts, and contacted experts for information about ongoing and unpublished trials. Selection criteria Randomized controlled trials of artesunate-pyronaridine versus other ACTs in adults and children with uncomplicated P. falciparum malaria. For the safety analysis, we also included adverse events data from trials comparing any treatment regimen containing pyronaridine with regimens not containing pyronaridine. Data collection and analysis Two authors independently assessed trial eligibility and risk of bias, and extracted data. We combined dichotomous data using risk ratios (RR) and continuous data using mean differences (MD), and presented all results with a 95% confidence interval (CI). We used the GRADE approach to assess the quality of evidence. Main results We included six randomized controlled trials enrolling 3718 children and adults. Artesunate-pyronaridine versus artemether-lumefantrine In two multicentre trials, enrolling

  12. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum.

    PubMed Central

    Jakobsen, P H; Hviid, L; Theander, T G; Afare, E A; Ridley, R G; Heegaard, P M; Stuber, D; Dalsgaard, K; Nkrumah, F K

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living in an area with a high rate of transmission of malaria. Lymphocytes from a large proportion of the Ghanaian blood donors proliferated in response to the RAP-1 peptide, unlike those of Danish control blood donors, indicating that this sequence contains a malaria-specific T-cell epitope broadly recognized by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides. PMID:8418048

  13. Monitoring PfMDR1 transport in Plasmodium falciparum.

    PubMed

    Reiling, Sarah J; Rohrbach, Petra

    2015-07-15

    The Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite's cytosol into the digestive vacuole (DV). Transport of a substrate into another intracellular compartment influences drug availability at its site of action, therefore making the parasite more susceptible or resistant to a drug. Fluo-4 is a known fluorescent substrate that can be used as a molecular tool to investigate transport dynamics of PfMDR1 in many parasite strains. Six P. falciparum strains with varying PfMDR1 mutations were loaded with Fluo-4 AM. Accumulation of the fluorophore in the DV was measured using confocal microscopy. The role of a key amino acid mutation was verified using selected parasite clones with point mutations at PfMDR1 amino acid position 1042. Equal expression of PfMDR1 was confirmed by Western blot. Fluo-4 was transported by PfMDR1 into the DV of most drug-sensitive and -resistant parasites. Asparagine at PfMDR1 amino acid position 1042 was crucial for Fluo-4 transport, while the N1042D substitution abolished Fluo-4 transport. Competition studies of Fluo-4 with chloroquine, quinine and mefloquine were performed on parasites harbouring asparagine at position 1042. A distinct Fluo-4 transport inhibition pattern for each tested anti-malarial drug was observed in parasite strains of different genetic background. This study demonstrates that Fluo-4 can be used to investigate PfMDR1 transport dynamics in both drug-sensitive and -resistant parasites. Furthermore, direct evidence of altered Fluo-4 transport in PfMDR1 is linked to a single amino acid mutation in the substrate binding pocket. This system offers a great tool to investigate the role of substrate transport by PfMDR1 and the mutations necessary to support transport, which would lead to new insights for the development of novel anti-malarial drugs.

  14. Monoclonal antibody epitope mapping of Plasmodium falciparum rhoptry proteins.

    PubMed

    Sam-Yellowe, T Y; Ndengele, M M

    1993-02-01

    Plasmodium falciparum rhoptry proteins of the 140/130/110-kDa high molecular weight complex (HMWC) are secreted into the erythrocyte membrane during merozoite invasion. Epitopes of membrane-associated HMWC proteins can be detected using rhoptry-specific antibodies by immunofluorescence assays. Phospholipase treatment of ring-infected intact human erythrocytes, membrane ghosts, and inside-out vesicles results in the release of the HMWC as demonstrated by immunoblotting. We characterized the membrane-associating properties of the 110-kDa protein in more detail. PLA2 from three different sources; bee venom, Naja naja venom, and porcine pancreas, were examined and all were equally effective in releasing the 110-kDa protein. Furthermore, PLA2 activity was inhibited by o-phenanthroline, quinacrine, maleic anhydride, and partially by p-bromophenacyl bromide, indicating that the activity of PLA2 is specific. Using sequential protease and phospholipase digestion experiments to map the immunoreactive and functional epitopes of the 110-kDa protein, a 35-kDa protease-resistant protein associated with mouse and human erythrocyte membranes was identified. Limited proteolysis of the 110-kDa protein and analysis by immunoblotting demonstrated several immunoreactive cleavage products, including a highly protease-resistant peptide fragment of approximately 35-kDa which corresponds to the membrane-associated protein. Epitope mapping of the 130-kDa rhoptry protein resulted in a different pattern of cleavage products. Stage-specific metabolic labeling of P. falciparum with [3H] palmitate and [3H] myristate was performed to determine the lipophilic properties of the HMWC. Results showed the incorporation of label into proteins of approximate molecular weight 200 and 45-kDa, predominantly in the late schizont stage. Interestingly, proteins of 140 and 110/100-kDa, corresponding to [35S] methionine-labeled proteins were labeled with [3H]palmitate in ring-infected erythrocyte membranes

  15. Association of ABO blood group and Plasmodium falciparum malaria in Dore Bafeno Area, Southern Ethiopia.

    PubMed

    Zerihun, Tewodros; Degarege, Abraham; Erko, Berhanu

    2011-08-01

    To assess the distribution of ABO blood group and their relationship with Plasmodium falciparum (P. falciparum) malaria among febrile outpatients who sought medical attention at Dore Bafeno Health Center, Southern Ethiopia. A total of 269 febrile outpatients who visited Dore Bafeno Health Center, Southern Ethiopia, were examined for malaria and also tested for ABO blood groups in January 2010. The blood specimens were collected by finger pricking, stained with Geimsa, and examined microscopically. Positive cases of the parasitemia were counted. CareStart™ Malaria Pf/Pv Combo was also used to test the blood specimens for malaria. ABO blood groups were determined by agglutination test using ERYCLONE(®) antisera. Data on socio-demographic characteristics and treatment status of the participants were also collected. Chi-square and ANOVA tests were used to assess the difference between frequencies and means, respectively. Out of a total of 269 participants, 178 (66.2%) febrile patients were found to be infected with Plasmodium parasites, among which 146 (54.3%), 28 (10.4%), and 4 (1.5%) belonged to P. falciparum, P. vivax, and mixed infections, respectively. All febrile patients were also tested for ABO blood groups and 51.3%, 23.5%, 21.9% and 3.3% were found to be blood types of O, A, B and AB, respectively. Both total malaria infection and P. falciparum infection showed significant association with blood types (P<0.05). The proportion of A or B but not O phenotypes was higher (P<0.05) in individuals with P. falciparum as compared with non-infected individuals. The chance of having P. falciparum infection in patients with blood groups A, B and AB was 2.5, 2.5 and 3.3 times more than individuals showing blood O phenotypes, respectively. The mean P. falciparum malaria parasitaemia for blood groups A, B, AB, and O were 3 744/µL, 1 805/µL, 5 331/µL, and 1 515/µL, respectively (P<0.01). The present findings indicate that individuals of blood groups A, B and AB are

  16. Plasmodium falciparum and P. malariae epidemiology in a West African village.

    PubMed Central

    Boudin, C.; Robert, V.; Verhave, J. P.; Carnevale, P.; Ambroise-Thomas, P.

    1991-01-01

    Transmission of Plasmodium falciparum and P. malariae was studied in a village in Burkina Faso. Consecutive captures of mosquitos were organized twice a month over a year and the species of the mosquitos identified. Also, the prevalences and densities of Plasmodium spp. were determined every 2 months in a sample of children who lived in the village. Anopheles gambiae, A. funestus, and A. nili were the local vectors, but only the first two played a predominant role in both P. falciparum and P. malariae transmission. The parasitological sporozoite index (SI) was 4.48% for A. gambiae and 4.22% for A. funestus. The immunological SIs were higher: 5.82% of A. gambiae were infected with P. falciparum and only 0.16% with P. malariae; the corresponding proportions for A. funestus were 6.45% and 0.41%. Transmission of Plasmodium spp. by A. gambiae was important during the rainy season (July-October) and by A. funestus at the beginning of the dry season (September-November). Each child in the study village could receive about 396 P. falciparum-infected bites per year but only 22 of P. malariae. The P. falciparum parasite indices were maximum during the middle of the rainy season (August), while those for P. malariae reached a peak during the dry season (February). PMID:1677615

  17. Trend and manifestations of falciparum malaria in a tertiary care hospital of India.

    PubMed

    Saya, Rama Prakasha; Saya, Ganesh Kumar; Debabrata, Goswami

    2016-01-01

    The recent focus is on the increase in the burden of falciparum cases with a varied spectrum of presentation and outcome, especially in developing countries like India. This study was undertaken to analyze the trend and manifestations of falciparum malaria in a tertiary care hospital. This descriptive study was carried out at the Gauhati Government Medical College and Hospital from June 2006 to May 2007. The data were collected on demographic and time characteristics, clinical and laboratory findings, the outcome of disease and expressed in proportion or percentages. Out of the 100 cases, around 2(nd)/3(rd) (63%) of cases were in the age group of 15-30 years and the mean age was found to be 29.51 years. About 66% of them were males. Clinical presentations included pain abdomen (42, 42%), nausea and vomiting (35, 35%), jaundice (34, 34%), oliguria (24, 24%), altered sensorium (24, 24%), breathing difficulty (10, 10%), and seizures (5, 5%). Number of cases and mortality were more with a peak in the month of May and September. Manifestations of severe falciparum malaria included hepatopathy (38%), renal failure (28%), shock (9%), acute respiratory distress syndrome (7%), hypoglycemia (3%), and severe anemia (1%). Eighty-two cases (82%) recovered and 18 cases (18%) expired. Falciparum malaria is more among younger adult age group and males. Complications and mortality are also more due to falciparum malaria.

  18. Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum.

    PubMed

    Biggs, B A; Anders, R F; Dillon, H E; Davern, K M; Martin, M; Petersen, C; Brown, G V

    1992-09-15

    Erythrocytes (E) infected with asexual forms of malaria parasites exhibit surface antigenic variation. In Plasmodium falciparum infections, the variant Ag is the P. falciparum E membrane protein 1 (PfEMP1). This molecule may also mediate the adherence of infected E to host venular endothelium. We show here that parasite lines selected for increased adherence to endothelial cells have undergone antigenic variation. Three adherent lines selected from the same P. falciparum clone reacted with the same agglutinating antiserum that failed to agglutinate the parental clone. Immunoprecipitation experiments with the agglutinating anti-serum demonstrated that the selected lines expressed cross-reactive forms of PfEMP1 that were of higher m.w. and antigenically distinct from PfEMP1 of the parental clone. When one of the adherent lines was cloned in the absence of selection, a range of variant antigenic types emerged with differing cytoadherence phenotypes. These findings show that selection for cytoadherence in vitro favors the emergence of antigenic variants of P. falciparum and suggest that the requirement for cytoadherence in vivo may restrict the range of antigenic variants of P. falciparum in natural infections.

  19. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    PubMed Central

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  20. In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins.

    PubMed

    Daily, Johanna P; Le Roch, Karine G; Sarr, Ousmane; Ndiaye, Daouda; Lukens, Amanda; Zhou, Yingyao; Ndir, Omar; Mboup, Soulyemane; Sultan, Ali; Winzeler, Elizabeth A; Wirth, Dyann F

    2005-04-01

    Infections with the human parasite Plasmodium falciparum continue to present a great challenge to global health. Fundamental questions regarding the molecular basis of virulence and immune evasion in P. falciparum have been only partially answered. Because of the parasite's intracellular location and complex life cycle, standard genetic approaches to the study of the pathogenesis of malaria have been limited. The present study presents a novel approach to the identification of the biological processes involved in host-pathogen interactions, one that is based on the analysis of in vivo P. falciparum transcripts. We demonstrate that a sufficient quantity of P. falciparum RNA transcripts can be derived from a small blood sample from infected patients for whole-genome microarray analysis. Overall, excellent correlation was observed between the transcriptomes derived from in vivo samples and in vitro samples with ring-stage P. falciparum 3D7 reference strain. However, gene families that encode surface proteins are overexpressed in vivo. Moreover, this analysis has identified a new family of hypothetical genes that may encode surface variant antigens. Comparative studies of the transcriptomes derived from in vivo samples and in vitro 3D7 samples may identify important strategies used by the pathogen for survival in the human host and highlight, for vaccine development, new candidate antigens that were not previously identified through the use of in vitro cultures.

  1. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  2. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies

    PubMed Central

    Persson, Kristina E.M.; McCallum, Fiona J.; Reiling, Linda; Lister, Nicole A.; Stubbs, Janine; Cowman, Alan F.; Marsh, Kevin; Beeson, James G.

    2007-01-01

    Antibodies that inhibit Plasmodium falciparum invasion of erythrocytes are believed to be an important component of immunity against malaria. During blood-stage infection, P. falciparum can use different pathways for erythrocyte invasion by varying the expression and/or utilization of members of 2 invasion ligand families: the erythrocyte-binding antigens (EBAs) and reticulocyte-binding homologs (PfRhs). Invasion pathways can be broadly classified into 2 groups based on the use of sialic acid (SA) on the erythrocyte surface by parasite ligands. We found that inhibitory antibodies are acquired by malaria-exposed Kenyan children and adults against ligands of SA-dependent and SA-independent invasion pathways, and the ability of antibodies to inhibit erythrocyte invasion depended on the pathway used by P. falciparum isolates. Differential inhibition of P. falciparum lines that varied in their use of specific EBA and PfRh proteins pointed to these ligand families as major targets of inhibitory antibodies. Antibodies against recombinant EBA and PfRh proteins were acquired in an age-associated manner, and inhibitory antibodies against EBA175 appeared prominent among some individuals. These findings suggest that variation in invasion phenotype might have evolved as a mechanism that facilitates immune evasion by P. falciparum and that a broad inhibitory response against multiple ligands may be required for effective immunity. PMID:18064303

  3. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum.

    PubMed

    Boechat, Núbia; Ferreira, Maria de Lourdes G; Pinheiro, Luiz C S; Jesus, Antônio M L; Leite, Milene M M; Júnior, Carlos C S; Aguiar, Anna C C; de Andrade, Isabel M; Krettli, Antoniana U

    2014-09-01

    Malaria is one of the most prevalent parasitic diseases in the world. The global importance of this disease, current vector control limitations, and the absence of an effective vaccine make the use of therapeutic antimalarial drugs the main strategy to control malaria. Chloroquine is a cost-effective antimalarial drug with a relatively robust safety profile, or therapeutic index. However, chloroquine is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of chloroquine-resistant strains, which have also been reported for Plasmodium vivax. However, the activity of 1,2,3-triazole derivatives against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum has been reported in the literature. To enhance the anti-P. falciparum activity of quinoline derivatives, we synthesized 11 new quinoline-1H-1,2,3-triazole hybrids with different substituents in the 4-positions of the 1H-1,2,3-triazole ring, which were assayed against the W2-chloroquine-resistant P. falciparum clone. Six compounds exhibited activity against the P. falciparum W2 clone, chloroquine-resistant, with IC50 values ranging from 1.4 to 46 μm. None of these compounds was toxic to a normal monkey kidney cell line, thus exhibiting good selectivity indexes, as high 351 for one compound (11).

  4. Clinico-pathological studies of Plasmodium falciparum and Plasmodium vivax - malaria in India and Saudi Arabia.

    PubMed

    Khan, Wajihullah; Zakai, Haytham A; Umm-E-Asma

    2014-06-01

    Malaria is one of the most devastating diseases of tropical countries with clinical manifestations such as anaemia, splenomegaly, thrombocytopenia, hepatomegaly and acute renal failures. In this study, cases of thrombocytopenia and haemoglobinemia were more prominent in subjects infected with Plasmodium falciparum (Welch, 1897) than those with Plasmodium vivax (Grassi et Feletti, 1890). However, anaemia, jaundice, convulsions and acute renal failure were significantly high (3-4 times) in subjects infected with P. falciparum than those infected with P. vivax. The incidence of splenomegaly and neurological sequelae were 2 and 6 times higher in P. falciparum infections compared to the infections of P. vivax. Both in P. vivax and P. falciparum malaria, the cases of splenomegaly, jaundice and neurological sequelae were almost double in children (<10 years) compared to older patients. The liver enzymes were generally in normal range in cases of low and mild infections. However, the AST, ALT, ALP activities and serum bilirubin, creatinine, and the urea content were increased in P. falciparum and P. vivax malaria patients having high parasitaemia, confirming liver dysfunction and renal failures in few cases of severe malaria both in India and Saudi Arabia.

  5. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1

    PubMed Central

    Hermand, Patricia; Cicéron, Liliane; Pionneau, Cédric; Vaquero, Catherine; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches. PMID:27653778

  6. Heritability of P. falciparum and P. vivax malaria in a Karen population in Thailand.

    PubMed

    Phimpraphi, Waraphon; Paul, Richard; Witoonpanich, Bhee; Turbpaiboon, Chairat; Peerapittayamongkol, Chayanon; Louicharoen, Chalisa; Casademont, Isabelle; Tungpradabkul, Sumalee; Krudsood, Srivicha; Kaewkunwal, Jaranit; Sura, Thanyachai; Looareesuwan, Sornchai; Singhasivanon, Pratap; Sakuntabhai, Anavaj

    2008-01-01

    The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax. We conducted a longitudinal cohort study in a Karen population of 3,484 individuals in a region of mesoendemic malaria, Thailand from 1998 to 2005. The number of P. falciparum and P. vivax clinical cases and the parasite density per person were determined. Statistical analyses were performed to account for the influence of environmental factors and the genetic heritability of the phenotypes was calculated using the pedigree-based variance components model. The genetic contribution to the number of clinical episodes resulting from P. falciparum and P. vivax were 10% and 19% respectively. There was also moderate genetic contribution to the maximum and overall parasite trophozoite density phenotypes for both P. falciparum (16%&16%) and P. vivax (15%&13%). These values, for P. falciparum, were similar to those previously observed in a region of much higher transmission intensity in Senegal, West Africa. Although environmental factors play an important role in acquiring an infection, genetics plays a determinant role in the outcome of an infection with either malaria parasite species prior to the development of immunity.

  7. Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum.

    PubMed

    Zhang, Xiaohong; Tolzmann, Caitlin A; Melcher, Martin; Haas, Brian J; Gardner, Malcolm J; Smith, Joseph D; Feagin, Jean E

    2011-11-01

    Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.

  8. Biomarkers of Plasmodium falciparum Infection during Pregnancy in Women Living in Northeastern Tanzania

    PubMed Central

    Boström, Stéphanie; Ibitokou, Samad; Oesterholt, Mayke; Schmiegelow, Christentze; Persson, Jan-Olov; Minja, Daniel; Lusingu, John; Lemnge, Martha; Fievet, Nadine; Deloron, Philippe; Luty, Adrian J. F.; Troye-Blomberg, Marita

    2012-01-01

    In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings. PMID:23155405

  9. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue

    PubMed Central

    Suazo, Kiall F.; Schaber, Chad; Palsuledesai, Charuta C.; Odom John, Audrey R.; Distefano, Mark D.

    2016-01-01

    Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development. In this study, we used a chemical biology strategy to experimentally characterize the entire complement of prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we found robust experimental evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. Our work contributes to an increasingly complete picture of essential, post-translational hydrophobic modifications in blood-stage P. falciparum. PMID:27924931

  10. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue.

    PubMed

    Suazo, Kiall F; Schaber, Chad; Palsuledesai, Charuta C; Odom John, Audrey R; Distefano, Mark D

    2016-12-07

    Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development. In this study, we used a chemical biology strategy to experimentally characterize the entire complement of prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we found robust experimental evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. Our work contributes to an increasingly complete picture of essential, post-translational hydrophobic modifications in blood-stage P. falciparum.

  11. Plasmodium falciparum and helminth co-infection in a semi-urban population of pregnant women in Uganda

    PubMed Central

    Hillier, Stephen D.; Booth, Mark; Muhangi, Lawrence; Nkurunziza, Peter; Khihembo, Macklyn; Kakande, Muhammad; Sewankambo, Moses; Kizindo, Robert; Kizza, Moses; Muwanga, Moses; Bambury, Mark; Elliott, Alison M.

    2010-01-01

    Introduction Helminth infections and malaria are widespread in the tropics. Recent studies suggest helminth infections may increase susceptibility to malaria. If confirmed, this could be particularly important during pregnancy-induced immunosuppression. Aim To evaluate the geographical distribution of Plasmodium falciparum-helminth co-infection, and associations between parasite species in pregnant women in Entebbe, Uganda. Methods A cross-sectional study was conducted at baseline in a trial of anti-helminthics during pregnancy. Helminth and P.falciparum infections were quantified in 2507 asymptomatic women; socio-demographic and geographical details were recorded. Results Hookworm and Mansonella perstans were associated with P.falciparum but the effect of hookworm was seen only in the absence of M.perstans (OR for P.falciparum, adjusted for age, tribe, socioeconomic status, HIV and location: hookworm without M.perstans 1.53 (95% CI 1.09-2.14); M.perstans without hookworm 2.33 (1.47-3.69), both hookworm and M.perstans, 1.85 (1.24-2.76)). No association was observed between Schistosoma mansoni, Trichuris or Strongyloides and P.falciparum. Conclusions Hookworm-P.falciparum and M.perstans-P.falciparum co-infection amongst pregnant women in Entebbe is more common than expected by chance. Further studies are needed to elucidate the mechanism of this association. Helminth-induced increased susceptibility to P.falciparum could have important consequences for pregnancy outcome and responses to malaria in infancy. PMID:18721060

  12. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    PubMed

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  13. The effect of declining exposure on T cell-mediated immunity to Plasmodium falciparum - an epidemiological "natural experiment".

    PubMed

    Bediako, Yaw; Ngoi, Joyce Mwongeli; Nyangweso, George; Wambua, Juliana; Opiyo, Michael; Nduati, Eunice Wambui; Bejon, Philip; Marsh, Kevin; Ndungu, Francis Maina

    2016-09-22

    Naturally acquired immunity to malaria may be lost with lack of exposure. Recent heterogeneous reductions in transmission in parts of Africa mean that large populations of previously protected people may lose their immunity while remaining at risk of infection. Using two ethnically similar long-term cohorts of children with historically similar levels of exposure to Plasmodium falciparum who now experience very different levels of exposure, we assessed the effect of decreased parasite exposure on antimalarial immunity. Peripheral blood mononuclear cells (PBMCs) from children in each cohort were stimulated with P. falciparum and their P. falciparum-specific proliferative and cytokine responses were compared. We demonstrate that, while P. falciparum-specific CD4(+) T cells are maintained in the absence of exposure, the proliferative capacity of these cells is altered considerably. P. falciparum-specific CD4(+) T cells isolated from children previously exposed, but now living in an area of minimal exposure ("historically exposed") proliferate significantly more upon stimulation than cells isolated from children continually exposed to the parasite. Similarly, PBMCs from historically exposed children expressed higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines after stimulation with P. falciparum. Notably, we found a significant positive association between duration since last febrile episode and P. falciparum-specific CD4(+) T cell proliferation, with more recent febrile episodes associated with lower proliferation. Considered in the context of existing knowledge, these data suggest a model explaining how immunity is lost in absence of continuing exposure to P. falciparum.

  14. Chromosome End Repair and Genome Stability in Plasmodium falciparum

    PubMed Central

    Calhoun, Susannah F.; Reed, Jake; Alexander, Noah; Mason, Christopher E.; Deitsch, Kirk W.

    2017-01-01

    ABSTRACT The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called “telomere healing,” and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. PMID:28790200

  15. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  16. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission

    PubMed Central

    Bobenchik, April M.; Witola, William H.; Augagneur, Yoann; Nic Lochlainn, Laura; Garg, Aprajita; Pachikara, Niseema; Choi, Jae-Yeon; Zhao, Yang O.; Usmani-Brown, Sahar; Lee, Albert; Adjalley, Sophie H.; Samanta, Swapna; Fidock, David A.; Voelker, Dennis R.; Fikrig, Erol; Ben Mamoun, Choukri

    2013-01-01

    Efficient transmission of Plasmodium species between humans and Anopheles mosquitoes is a major contributor to the global burden of malaria. Gametocytogenesis, the process by which parasites switch from asexual replication within human erythrocytes to produce male and female gametocytes, is a critical step in malaria transmission and Plasmodium genetic diversity. Nothing is known about the pathways that regulate gametocytogenesis and only few of the current drugs that inhibit asexual replication are also capable of inhibiting gametocyte development and blocking malaria transmission. Here we provide genetic and pharmacological evidence indicating that the pathway for synthesis of phosphatidylcholine in Plasmodium falciparum membranes from host serine is essential for parasite gametocytogenesis and malaria transmission. Parasites lacking the phosphoethanolamine N-methyltransferase enzyme, which catalyzes the limiting step in this pathway, are severely altered in gametocyte development, are incapable of producing mature-stage gametocytes, and are not transmitted to mosquitoes. Chemical screening identified 11 inhibitors of phosphoethanolamine N-methyltransferase that block parasite intraerythrocytic asexual replication and gametocyte differentiation in the low micromolar range. Kinetic studies in vitro as well as functional complementation assays and lipid metabolic analyses in vivo on the most promising inhibitor NSC-158011 further demonstrated the specificity of inhibition. These studies set the stage for further optimization of NSC-158011 for development of a class of dual activity antimalarials to block both intraerythrocytic asexual replication and gametocytogenesis. PMID:24145416

  17. Effects of zinc-desferrioxamine on Plasmodium falciparum in culture.

    PubMed Central

    Chevion, M; Chuang, L; Golenser, J

    1995-01-01

    The zinc-desferrioxamine (Zn-DFO) complex is considered to be more permeative into parasitized erythrocytes than is the metal-free DFO. The former may penetrate the cell and exchange its bound zinc for ferric ions, rendering the iron unavailable for vital parasite functions. The effects of these compounds on the in vitro development of Plasmodium falciparum are compared. The results indicate that Zn-DFO is superior to DFO, especially at concentrations below 20 microM, as shown by decreased levels of hypoxanthine incorporation, lower levels of parasitemia, and interference with the life cycle of the parasite. At low concentrations, DFO even enhanced parasite growth. Such an enhancement was not observed following exposure to Zn-DFO. Experiments in which the compounds were removed from the cultures indicated that parasites treated with Zn-DFO are less likely to recover at a later stage. Since DFO has already been used in humans for the treatment of malaria, its complex with zinc, which is more effective in vitro, should also be examined in vivo. PMID:7486946

  18. In vitro activities of novel catecholate siderophores against Plasmodium falciparum.

    PubMed Central

    Pradines, B; Ramiandrasoa, F; Basco, L K; Bricard, L; Kunesch, G; Le Bras, J

    1996-01-01

    The activities of novel iron chelators, alone and in combination with chloroquine, quinine, or artemether, were evaluated in vitro against susceptible and resistant clones of Plasmodium falciparum with a semimicroassay system. N4-nonyl,N1,N8-bis(2,3-dihydroxybenzoyl) spermidine hydrobromide (compound 7) demonstrated the highest level of activity: 170 nM against a chloroquine-susceptible clone and 1 microM against a chloroquine-resistant clone (50% inhibitory concentrations). Compounds 6, 8, and 10 showed antimalarial activity with 50% inhibitory concentrations of about 1 microM. Compound 7 had no effect on the activities of chloroquine, quinine, and artemether against either clone, and compound 8 did not enhance the schizontocidal action of either chloroquine or quinine against the chloroquine-resistant clone. The incubation of compound 7 with FeCI3 suppressed or decreased the in vitro antimalarial activity of compound 7, while no effect was observed with incubation of compound 7 with CuSO4 and ZnSO4. These results suggest that iron deprivation may be the main mechanism of action of compound 7 against the malarial parasites. Chelator compounds 7 and 8 primarily affected trophozoite stages, probably by influencing the activity of ribonucleotide reductase, and thus inhibiting DNA synthesis. PMID:8878587

  19. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection

    PubMed Central

    Berna, Amalia Z.; McCarthy, James S.; Wang, Rosalind X.; Saliba, Kevin J.; Bravo, Florence G.; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C.

    2015-01-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers. PMID:25810441

  20. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection.

    PubMed

    Berna, Amalia Z; McCarthy, James S; Wang, Rosalind X; Saliba, Kevin J; Bravo, Florence G; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C

    2015-10-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

  1. Malaria vaccines: identifying Plasmodium falciparum liver-stage targets

    PubMed Central

    Longley, Rhea J.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2015-01-01

    The development of a highly efficacious and durable vaccine for malaria remains a top priority for global health researchers. Despite the huge rise in recognition of malaria as a global health problem and the concurrent rise in funding over the past 10–15 years, malaria continues to remain a widespread burden. The evidence of increasing resistance to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious and durable preventative vaccine for malaria is urgently needed. Vaccines are one of the most cost-effective tools and have successfully been used in the prevention and control of many diseases, however, the development of a vaccine for the Plasmodium parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite delivered vaccination strategies, we know that a vaccine for malaria is an achievable goal, with sub-unit vaccines holding great promise as they are simple and cheap to both manufacture and deploy. However a major difficulty in development of sub-unit vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit malaria vaccine should preferably contain a liver-stage target. In this article we review progress in identifying and screening Plasmodium falciparum liver-stage targets for use in a malaria vaccine. PMID:26441899

  2. The gene encoding topoisomerase II from Plasmodium falciparum.

    PubMed

    Cheesman, S; McAleese, S; Goman, M; Johnson, D; Horrocks, P; Ridley, R G; Kilbey, B J

    1994-07-11

    The gene for topoisomerase II has been isolated from genomic libraries of strain K1 of the human malarial parasite, Plasmodium falciparum. The sequence reveals an open reading frame of 4194 nucleotides which predicts a polypeptide of 1398 amino acids. There are apparently no introns. The sequence is present as a single copy which has an identity of 47.4% and a similarity of 65.4% with its human homologue. Sequences conserved in topoisomerase II from other species are present in Pftopoisomerase II but in addition it has two adjacent asparagine-rich insertions which are unique to it. We have also detected asparagine-rich regions in the gene for PfDNA polymerase alpha. The gene for Pftopoisomerase II has been localised to chromosome 14 and northern analysis reveals a transcript of 5.8 kb. Two independent antisera raised in mice against glutathione-S-transferase fusion proteins containing the amino terminal portion of the malarial protein detect a weak band on western blots at about 160kDa, the expected size of the protein. Use of the same antisera for immunofluorescence analysis suggests that the protein is present at all stages of intraerythrocytic growth of the parasite.

  3. Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Alleva, L M; Kirk, K

    2001-10-01

    The regulation of intracellular Ca(2+) in the intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, was investigated using parasites 'isolated' from their host cells by saponin-permeabilisation of the erythrocyte membrane. The isolated parasites maintained tight control over their resting cytosolic Ca(2+) concentration which ranged from approximately 100 nM in the absence of extracellular Ca(2+) to approximately 700 nM in the presence of 1 mM extracellular Ca(2+). The parasite has two functionally discrete intracellular Ca(2+) stores. One is an 'endoplasmic reticulum (ER)-like' store, the other an 'acidic store'. The ER-like store was discharged by cyclopiazonic acid (CPA), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) of animal and plant cells, but not by thapsigargin (TG), a more specific inhibitor of SERCAs of animal cells. The acidic store was discharged by nigericin and by NH(4)(+). The amount of Ca(2+) in the ER-like store increased with increasing extracellular Ca(2+) concentration, whereas the amount of Ca(2+) in the acidic store did not. Ca(2+) released from the ER-like store by CPA was cleared from the parasite cytosol by uptake into the acidic store (over a range of extracellular Ca(2+) concentrations), consistent with the acidic store serving as a Ca(2+) reservoir within the intracellular parasite.

  4. Influence of host iron status on Plasmodium falciparum infection

    PubMed Central

    Clark, Martha A.; Goheen, Morgan M.; Cerami, Carla

    2014-01-01

    Iron deficiency affects one quarter of the world's population and causes significant morbidity, including detrimental effects on immune function and cognitive development. Accordingly, the World Health Organization (WHO) recommends routine iron supplementation in children and adults in areas with a high prevalence of iron deficiency. However, a large body of clinical and epidemiological evidence has accumulated which clearly demonstrates that host iron deficiency is protective against falciparum malaria and that host iron supplementation may increase the risk of malaria. Although many effective antimalarial treatments and preventive measures are available, malaria remains a significant public health problem, in part because the mechanisms of malaria pathogenesis remain obscured by the complexity of the relationships that exist between parasite virulence factors, host susceptibility traits, and the immune responses that modulate disease. Here we review (i) the clinical and epidemiological data that describes the relationship between host iron status and malaria infection and (ii) the current understanding of the biological basis for these clinical and epidemiological observations. PMID:24834053

  5. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    PubMed

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics.

  6. International population movements and regional Plasmodium falciparum malaria elimination strategies

    PubMed Central

    Tatem, Andrew J.; Smith, David L.

    2010-01-01

    Calls for the eradication of malaria require the development of global and regional strategies based on a strong and consistent evidence base. Evidence from the previous global malaria eradication program and more recent transborder control campaigns have shown the importance of accounting for human movement in introducing infections to areas targeted for elimination. Here, census-based migration data were analyzed with network analysis tools, Plasmodium falciparum malaria transmission maps, and global population databases to map globally communities of countries linked by relatively high levels of infection movements. The likely principal sources and destinations of imported cases in each region were also mapped. Results indicate that certain groups of countries, such as those in West Africa and central Asia are much more strongly connected by relatively high levels of population and infection movement than others. In contrast, countries such as Ethiopia and Myanmar display significantly greater isolation in terms of likely infection movements in and out. The mapping here of both communities of countries linked by likely higher levels of infection movement, and “natural” migration boundaries that display reduced movement of people and infections between regions has practical utility. These maps can inform the design of malaria elimination strategies by identifying regional communities of countries afforded protection from recolonization by surrounding regions of reduced migration. For more isolated countries, a nationally focused control or elimination program is likely to stand a better chance of success than those receiving high levels of visitors and migrants from high-transmission regions. PMID:20566870

  7. The spectrum of retinopathy in adults with Plasmodium falciparum malaria.

    PubMed

    Maude, Richard J; Beare, Nicholas A V; Abu Sayeed, Abdullah; Chang, Christina C; Charunwatthana, Prakaykaew; Faiz, M Abul; Hossain, Amir; Yunus, Emran Bin; Hoque, M Gofranul; Hasan, Mahtab Uddin; White, Nicholas J; Day, Nicholas P J; Dondorp, Arjen M

    2009-07-01

    A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.

  8. Polycyclic amines as chloroquine resistance modulating agents in Plasmodium falciparum.

    PubMed

    Joubert, Jacques; Kapp, Erika; Taylor, Dale; Smith, Peter J; Malan, Sarel F

    2016-02-15

    Pentacycloundecylamines (PCUs) and adamantane amines, such as NGP1-01 (1) and amantadine, have shown significant channel blocking activities. They are postulated to act as chemosensitizers and circumvent the resistance of the plasmodia parasite against chloroquine (CQ) by inhibiting the p-glycoprotein efflux pump and enabling the accumulation of CQ inside the parasite digestive vacuole. Twelve polycyclic amines containing either a PCU or adamantane amine moiety conjugated to different aromatic functionalities through various tethered linkers were selected based on their channel blocking abilities and evaluated as potential chemosensitizers. Compounds 2, 4, 5 and 10 showed significant voltage-gated calcium channel (VGCC) blocking ability (IC50=0.27-35 μM) and were able to alter the CQ IC50 in differing degrees (45-81%) in the multidrug resistant Plasmodium falciparum Dd2 isolate. Among them, the PCU-dansyl amine compound (4) displayed the best potential to act as a chemosensitizer against the Dd2 strain at a 1 μM concentration (RMI=0.19) while displaying moderate antiplasmodial activity (Dd2 IC50=6.25 μM) and low in vitro cytotoxicity against a mammalian cell line (CHO, IC50=119 μM). Compounds 2 and 10 also showed some promising chemosensitizing abilities (RMI=0.36 and 0.35 respectively). A direct correlation was found between the VGCC blocking ability of these polycyclic amines and their capacity to act as CQ resistance modulating agents.

  9. Synchronous culture of Plasmodium falciparum at high parasitemia levels.

    PubMed

    Radfar, Azar; Méndez, Darío; Moneriz, Carlos; Linares, María; Marín-García, Patricia; Puyet, Antonio; Diez, Amalia; Bautista, José M

    2009-01-01

    This protocol describes a method for preparing cultures of Plasmodium falciparum synchronized at any intraerythrocytic stage. Using this method, around 60% parasitized cells may be obtained. On the basis of Trager and Jensen's original continuous culture method, our approach relies on the use of fresh human blood not older than 2 weeks, a low hematocrit between 0.8 and 1.5%, a starting frozen inoculum of 10% ring-stage parasitemia, human serum replaced with AlbuMAX I and alternating sorbitol and Percoll synchronization methods to shorten the cycle window to 4-6 h and reduce sorbitol toxicity. From our synchronized high parasite density cultures, 3-5 ml of infected red blood cells can be obtained in 1 week, corresponding to 1.2 mg of total parasite protein per ml of harvested culture. On the basis of the variables parasitemia and packed cell volume, we provide an equation to accurately calculate the amount of complete medium required every 24 h corrected for the cycle stage and capacity of the culture flask. Ten days suffice to complete the protocol from a frozen stock of parasites.

  10. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  11. Molecular and structural insight into plasmodium falciparum RIO2 kinase.

    PubMed

    Chouhan, Devendra K; Sharon, Ashoke; Bal, Chandralata

    2013-02-01

    Among approximately 65 kinases of the malarial genome, RIO2 (right open reading frame) kinase belonging to the atypical class of kinase is unique because along with a kinase domain, it has a highly conserved N-terminal winged helix (wHTH) domain. The wHTH domain resembles the wing like domain found in DNA binding proteins and is situated near to the kinase domain. Ligand binding to this domain may reposition the kinase domain leading to inhibition of enzyme function and could be utilized as a novel allosteric site to design inhibitor. In the present study, we have generated a model of RIO2 kinase from Plasmodium falciparum utilizing multiple modeling, simulation approach. A novel putative DNA-binding site is identified for the first time in PfRIO2 kinase to understand the DNA binding events involving wHTH domain and flexible loop. Induced fit DNA docking followed by minimization, molecular dynamics simulation, energetic scoring and binding mode studies are used to reveal the structural basis of PfRIO2-ATP-DNA complex. Ser105 as a potential site of phosphorylation is revealed through the structural studies of ATP binding in PfRIO2. Overall the present study discloses the structural facets of unknown PfRIO2 complex and opens an avenue toward exploration of novel drug target.

  12. [Acute renal failure and Plasmodium falciparum malaria: a case report].

    PubMed

    Kissou, S A; Cessouma, R; Barro, M; Traoré, H; Nacro, B

    2012-01-01

    Malaria is an endemic disease caused by one of the several Plasmodium species. Severe malaria is mainly due to Plasmodium falciparum in highly endemic areas. Acute renal failure (ARF) is a criterion of malaria severity as defined by WHO. Often observed in adults, particularly in India and Southeast Asia, this complication remains a rare complication of malaria in children. We report a case of oliguric ARF that occurred in a 7-year-old girl a few days after the onset of fever. The vascular obstruction by parasitized erythrocytes often causing tubular necrosis is the primary mechanism of renal failure. As a possible diagnosis, hemolytic uremic syndrome, renal failure and quartan hemoglobinuric nephropathy are other possible causes of renal failure in malaria. Renal biopsy, which was not performed in our patient, would have been a great help, but was not available. The outcome was favorable with recovery of renal function after 3 weeks of diuretic therapy. This development is not always the rule and the prognosis depends on early diagnosis and treatment options.

  13. Plasmodium falciparum heat shock protein 70 lacks immune modulatory activity.

    PubMed

    Pooe, Ofentse Jacob; Köllisch, Gabriele; Heine, Holger; Shonhai, Addmore

    2017-02-14

    Heat shock protein 70 (Hsp70) family are conserved molecules that constitute a major part of the cell's protein folding machinery. The role of Hsp70s of parasitic origin in host cell immune modulation has remained contentious. This is largely due to the fact that several studies implicating Hsp70 in immune modulation rely on the use of recombinant protein derived from bacteria which is often fraught contamination. Thus, in the current study, we expressed recombinant Plasmodium falciparum Hsp70 (PfHsp70) using in three bacterial expression hosts: E. coli XL1 Blue, E. coli ClearColi BL21 and Brevibacillus choshinensis, respectively. We further investigated the immunostimulatory capability of the protein by assessing cytokine production by murine immune cells cultured in the presence of the protein. Recombinant PfHsp70 obtained from E. coli XL1 Blue expression host induced IL6 and IL8 cytokines. On the other hand, PfHsp70 produced in E. coli ClearColi and B. choshinensis expression systems was associated with no detectable traces of LPS and exhibited no immunomodulatory activity. Our findings suggest that PfHsp70 does not possess immunomodulatory function. Furthermore, our study suggests that E. coli ClearColi and B. choshinensis are versatile for the production of recombinant protein for use in immunomodulatory studies.

  14. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.

    PubMed

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-02

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  15. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion

    PubMed Central

    Cortés, Alfred; Carret, Celine; Kaneko, Osamu; Yim Lim, Brian Y. S.; Ivens, Alasdair; Holder, Anthony A

    2007-01-01

    The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. PMID:17676953

  16. The Dynamics of Naturally Acquired Immunity to Plasmodium falciparum Infection

    PubMed Central

    Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Kazura, James W.; Moormann, Ann M.; Davenport, Miles P.

    2012-01-01

    Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists. PMID:23093922

  17. Genetic architecture of artemisinin-resistant Plasmodium falciparum

    PubMed Central

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-01-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  18. Recombination Hotspots and Population Structure in Plasmodium falciparum

    PubMed Central

    Mu, Jianbing; Duan, Junhui; McGee, Kate M; Joy, Deirdre A; McVean, Gilean A. T

    2005-01-01

    Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations. PMID:16144426

  19. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I.

    PubMed

    Buguliskis, Jeffrey S; Casta, Louis J; Butz, Charles E; Matsumoto, Yoshihiro; Taraschi, Theodore F

    2007-10-01

    We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.

  20. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade

    SciTech Connect

    Shams-Eldin, Hosam Santos de Macedo, Cristiana; Niehus, Sebastian; Dorn, Caroline; Kimmel, Juergen; Azzouz, Nahid; Schwarz, Ralph T.

    2008-06-06

    Dolichol phosphate mannose synthase (DPM) catalyzes the reaction between dolichol phosphate (Dol-P) and guanosine diphosphate mannose (GDP-Man) to form dolichol-phosphate-mannose (Dol-P-Man). This molecule acts as mannose donor for N-glycosylation and glycosylphosphatidylinositol (GPI) biosynthesis. The Plasmodium falciparum DPM1 (Pfdpm1) possesses a single predicted transmembrane region near the N-, but not the C-terminus. Here we show that the cloned Pfdpm1 gene failed to complement a Saccharomyces cerevisiae mutant indicating that the parasite gene does not belong to the baker's yeast group, as was previously assumed. Furthermore, Pfdpm1 was unable to complement a mouse mutant deficient in DPM but efficiently complements the Schizosaccharomyces pombe fission yeast mutant, indicating a difference between fission yeast and mammalian DPM genes. Therefore, we reanalyzed the hydrophobicity scales of all known DPMs and consequently reclassify the DPM clade into six major novel subgroups. Furthermore, we show that Pfdpm1 represents a unique enzyme among these subgroups.

  1. Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor.

    PubMed

    Hurt, Darrell E; Widom, Joanne; Clardy, Jon

    2006-03-01

    Membrane-associated dihydroorotate dehydrogenase (DHODH) is an antimalarial therapeutic target without an effective inhibitor. Studies on human DHODH (HsDHODH) led to a structural mechanistic model in which respiratory quinones bind in a tunnel formed by the highly variable N-terminus that leads to the flavin mononucleotide-binding site. The therapeutic agents leflunomide (Arava) and brequinar sodium inhibit HsDHODH by binding in this tunnel. Plasmodium falciparum DHODH (PfDHODH) and HsDHODH have markedly different sensitivities to the two drugs. To understand the structural basis of this differential sensitivity and begin a structure-based drug-design cycle for PfDHODH inhibitors, the three-dimensional structure (2.4 Angstroms, R = 20.1%) of PfDHODH bound to the active metabolite of leflunomide was determined by X-ray crystallography. Comparison of the structures of HsDHODH and PfDHODH reveals a completely different binding mode for the same inhibitor in these two catalytically identical enzymes and explains the previously observed species-specific preferential binding. Because no effective inhibitors have been described for PfDHODH, this structure provides critical insight for the design of potential antimalarials.

  2. Plasmodium falciparum field isolates use complement receptor 1 (CR1) as a receptor for invasion of erythrocytes.

    PubMed

    Awandare, Gordon A; Spadafora, Carmenza; Moch, J Kathleen; Dutta, Sheetij; Haynes, J David; Stoute, José A

    2011-05-01

    A majority of Plasmodium falciparum strains invade erythrocytes through interactions with sialic acid (SA) on glycophorins. However, we recently reported that complement receptor 1 (CR1) is a SA-independent invasion receptor of many laboratory strains of P. falciparum. To determine the role of CR1 in erythrocyte invasion among P. falciparum field isolates, we tested eight isolates obtained from children in Kenya. All the parasites examined were capable of invading in a SA-independent manner, and invasion of neuraminidase-treated erythrocytes was nearly completely blocked by anti-CR1 and soluble CR1 (sCR1). In addition, anti-CR1 and sCR1 partially inhibited invasion of intact erythrocytes in a majority of isolates tested. Sequencing of the hypervariable region of P. falciparum AMA-1 showed considerable diversity among all the isolates. These data demonstrate that CR1 mediates SA-independent erythrocyte invasion in P. falciparum field isolates.

  3. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    PubMed Central

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  4. Chloroquine and sulphadoxine-pyrimethamine sensitivity of Plasmodium falciparum parasites in a Brazilian endemic area

    PubMed Central

    Gama, Bianca Ervatti; de Oliveira, Natália K Almeida; Zalis, Mariano G; de Souza, José Maria; Santos, Fátima; Daniel-Ribeiro, Cláudio Tadeu; Ferreira-da-Cruz, Maria de Fátima

    2009-01-01

    Background The goal of the present study was the characterization of Plasmodium falciparum genes associated to malaria drug resistance (pfcrt, pfdhfr and pfdhps), in samples from two Brazilian localities. Methods Parasites from 65 P. falciparum samples were genotyped using nested-PCR and direct DNA sequencing. Results Six resistant sulphadoxine-pyrimethamine (SP) pfdhfr genotypes and one haplotype associated to SP sensitivity were detected. For pfcrt gene, SVMNT chloroquine (CQ)-resistant genotype was detected as well as the CVMNK CQ-sensitive haplotype in the same sample from Paragominas, that showed a SP-sensitive genotype. Conclusion This study is the first to document the sensitivity of P. falciparum parasites to CQ and SP in Brazilian field samples. The importance of these findings is discussed. PMID:19602248

  5. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum

    PubMed Central

    Clark, Martha A.; Goheen, Morgan M.; Fulford, Anthony; Prentice, Andrew M.; Elnagheeb, Marwa A.; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M.; Kasthuri, Raj S.; Cerami, Carla

    2014-01-01

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria. PMID:25059846

  6. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion **

    PubMed Central

    Egan, Elizabeth S.; Jiang, Rays H.Y.; Moechtar, Mischka A.; Barteneva, Natasha S.; Weekes, Michael P.; Nobre, Luis V.; Gygi, Steven P.; Paulo, Joao A.; Frantzreb, Charles; Tani, Yoshihiko; Takahashi, Junko; Watanabe, Seishi; Goldberg, Jonathan; Paul, Aditya S.; Brugnara, Carlo; Root, David E.; Wiegand, Roger C.; Doench, John G.; Duraisingh, Manoj T.

    2015-01-01

    Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, precluding genetic manipulation in the cell where the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis. PMID:25954012

  7. Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum

    PubMed Central

    Moura, Ivan Cruz; Wunderlich, Gerhard; Uhrig, Maria L.; Couto, Alicia S.; Peres, Valnice J.; Katzin, Alejandro M.; Kimura, Emília A.

    2001-01-01

    Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development. PMID:11502528

  8. In Vitro Inhibition of Plasmodium falciparum Rosette Formation by Curdlan Sulfate▿

    PubMed Central

    Kyriacou, Helen M.; Steen, Katie E.; Raza, Ahmed; Arman, Monica; Warimwe, George; Bull, Peter C.; Havlik, Ivan; Rowe, J. Alexandra

    2007-01-01

    Spontaneous binding of infected erythrocytes to uninfected erythrocytes to form rosettes is a property of some strains of Plasmodium falciparum that is linked to severe complications of malaria. Curdlan sulfate (CRDS) is a sulfated glycoconjugate compound that is chemically similar to known rosette-inhibiting drugs such as heparin. CRDS has previously been shown to have antimalarial activity in vitro and is safe for clinical use. Here we show that CRDS at therapeutic levels (10 to 100 μg/ml) significantly reduces rosette formation in vitro in seven P. falciparum laboratory strains and in a group of 18 African clinical isolates. The strong ability to inhibit rosetting suggests that CRDS has the potential to reduce the severe complications and mortality rates from P. falciparum malaria among African children. Our data support further clinical trials of CRDS. PMID:17283200

  9. Estimating the parasitaemia of Plasmodium falciparum: experience from a national EQA scheme

    PubMed Central

    2013-01-01

    Background To examine performance of the identification and estimation of percentage parasitaemia of Plasmodium falciparum in stained blood films distributed in the UK National External Quality Assessment Scheme (UKNEQAS) Blood Parasitology Scheme. Methods Analysis of performance for the diagnosis and estimation of the percentage parasitaemia of P. falciparum in Giemsa-stained thin blood films was made over a 15-year period to look for trends in performance. Results An average of 25% of participants failed to estimate the percentage parasitaemia, 17% overestimated and 8% underestimated, whilst 5% misidentified the malaria species present. Conclusions Although the results achieved by participants for other blood parasites have shown an overall improvement, the level of performance for estimation of the parasitaemia of P. falciparum remains unchanged over 15 years. Possible reasons include incorrect calculation, not examining the correct part of the film and not examining an adequate number of microscope fields. PMID:24261625

  10. Mutation in pfmdr1 gene in chloroquine-resistant Plasmodium falciparum isolates, Southeast Iran.

    PubMed

    Jalousian, Fatemeh; Dalimi, Abdolhossein; Samiee, Siamak Mirab; Ghaffarifar, Fatemeh; Soleymanloo, Faramarz; Naghizadeh, Ramin

    2008-11-01

    The main objective of the present study was to detect point mutations at positions 86, 184, 1034, 1042, and 1246 of the Plasmodium falciparum multidrug resistance gene (pfmdr1) in blood samples collected from malaria patients in Chabahar, a harbor city located in Southeast Iran. Twenty-six blood samples from patients infected with P. falciparum, who had a chloroquine (CQ) response failure, were collected pre-treatment. Following treatment with CQ, drug susceptibility was assessed using an in vivo test. Molecular detection of single nucleotide polymorphisms (SNPs) was carried out using the LightCycler hybridization probe assay. The pfmdr1 N86Y mutation was found in six isolates (23.1%). Mutations at the four other positions were not observed in any isolates. The present study showed no mutation at codon positions 184, 1034, 1042, and 1246 of pfmdr1 in any of the Iranian P. falciparum isolates; thus these alleles cannot serve as markers for CQ resistance in Iran.

  11. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  12. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities

    NASA Technical Reports Server (NTRS)

    Li, Tao; Glushakova, Svetlana; Zimmerberg, Joshua

    2003-01-01

    Plasmodium falciparum replicates poorly in erythrocyte densities greater than a hematocrit of 20%. A new method to culture the major malaria parasite was developed by using a hollow fiber bioreactor that preserves healthy erythrocytes at hematocrit up to 100%. P. falciparum replicated equally well at all densities studied. This method proved advantageous for large-scale preparation of parasitized erythrocytes (and potentially immunogens thereof), because high yields ( approximately 10(10) in 4 days) could be prepared with less cost and labor. Concomitantly, secreted proteins were concentrated by molecular sieving during culture, perhaps contributing to the parasitemic limit of 8%-12% with the 3D7 strain. The finding that P. falciparum can replicate at packed erythrocyte densities suggests that this system may be useful for study of the pathogenesis of fatal cerebral malaria, of which one feature is densely packed blood cells in brain microvasculature.

  13. Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum

    NASA Astrophysics Data System (ADS)

    Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada

    The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.

  14. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria.

    PubMed

    Happi, C T; Gbotosho, G O; Folarin, O A; Bolaji, O M; Sowunmi, A; Kyle, D E; Milhous, W; Wirth, D F; Oduola, A M J

    2006-07-01

    This study investigated the association between Plasmodium falciparum chloroquine resistance transporter (pfcrt) T76 and P. falciparum multidrug resistance gene 1 (pfmdr1) Y86 alleles and in vivo amodiaquine (AQ) resistance, as well as the clearance of parasites harboring these two alleles in children treated with AQ in southwest Nigeria. One hundred one children with acute uncomplicated P. falciparum malaria infections were treated with the standard dosage of AQ and followed-up for 28 days. Blood samples were collected on filter paper samples at enrollment and during follow-up for identification of parasite genotypes and pfcrt and pfmdr1 mutations using polymerase chain reaction and restriction fragment length polymorphism approaches. Parasitologic assessment of response to treatment showed that 87% and 13% (RI) of patients were cured and failed treatment, respectively. Although infections in patients were polyclonal (as determined by merozoite surface protein 2 genotyping), the presence of both mutants pfcrtT76 and pfmdr1Y86 alleles in parasites is associated with in vivo AQ resistance (odds ratio = 7.58, 95% confidence interval = 1.58-36.25, P = 0.006) and is selected by the drug in children who failed AQ treatment. Treatment failure with the combination of mutant pfcrtT76 and pfmdr1Y86 alleles as well as the ability of patients to clear these resistant parasites is dependent on age, suggesting a critical role of host immunity in clearing AQ-resistant P. falciparum. The combination of mutant pfcrtT76 and pfmdr1Y86 alleles may be useful markers for monitoring the development and spread of AQ resistance, when combining this drug with other antimalarials for treatment of malaria in Africa.

  15. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review.

    PubMed

    Visser, Benjamin J; Wieten, Rosanne W; Kroon, Daniëlle; Nagel, Ingeborg M; Bélard, Sabine; van Vugt, Michèle; Grobusch, Martin P

    2014-11-26

    Artemisinin combination therapy (ACT) is recommended as first-line treatment for uncomplicated Plasmodium falciparum malaria, whereas chloroquine is still commonly used for the treatment of non-falciparum species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae). A more simplified, more uniform treatment approach across all malaria species is worthwhile to be considered both in endemic areas and for malaria as an imported condition alike. A PROSPERO-registered systematic review to determine the efficacy and safety of ACT for the treatment of non-falciparum malaria was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2014. The literature search identified 986 reports; 40 publications were found eligible for inclusion, all of them on non-falciparum malaria in endemic areas. Most evidence was available for P. vivax (n = 35). Five clinical trials in total were identified evaluating ACT for P. ovale, P. malariae and Plasmodium knowlesi. Most ACT presentations have high efficacy against P. vivax parasites; artemisinin-based combinations have shorter parasite and fever clearance times compared to chloroquine. ACT is as effective as chloroquine in preventing recurrent parasitaemia before day 28. Artemisinin-based combinations with long half-lives show significantly fewer recurrent parasitaemia up to day 63. The limited evidence available supports both the use of chloroquine and an ACT for P. ovale and P. malariae. ACT seems to be preferable for optimal treatment of P. knowlesi. ACT is at least equivalent to chloroquine in effectively treating non-falciparum malaria. These findings may facilitate development of simplified protocols for treating all forms of malaria with ACT, including returning travellers. Obtaining comprehensive efficacy and

  16. The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum.

    PubMed

    Balconi, Emanuela; Pennati, Andrea; Crobu, Danila; Pandini, Vittorio; Cerutti, Raffaele; Zanetti, Giuliana; Aliverti, Alessandro

    2009-07-01

    In the apicoplast of apicomplexan parasites, plastidic-type ferredoxin and ferredoxin-NADP(+) reductase (FNR) form a short electron transport chain that provides reducing power for the synthesis of isoprenoid precursors. These proteins are attractive targets for the development of novel drugs against diseases such as malaria, toxoplasmosis, and coccidiosis. We have obtained ferredoxin and FNR of both Toxoplasma gondii and Plasmodium falciparum in recombinant form, and recently we solved the crystal structure of the P. falciparum reductase. Here we report on the functional properties of the latter enzyme, which differ markedly from those of homologous FNRs. In the physiological reaction, P. falciparum FNR displays a k(cat) five-fold lower than those usually determined for plastidic-type FNRs. By rapid kinetics, we found that hydride transfer between NADPH and protein-bound FAD is slower in the P. falciparum enzyme. The redox properties of the enzyme were determined, and showed that the FAD semiquinone species is highly destabilized. We propose that these two features, i.e. slow hydride transfer and unstable FAD semiquinone, are responsible for the poor catalytic efficiency of the P. falciparum enzyme. Another unprecedented feature of the malarial parasite FNR is its ability to yield, under oxidizing conditions, an inactive dimeric form stabilized by an intermolecular disulfide bond. Here we show that the monomerdimer interconversion can be controlled by oxidizing and reducing agents that are possibly present within the apicoplast, such as H(2)O(2), glutathione, and lipoate. This finding suggests that modulation of the quaternary structure of P. falciparum FNR might represent a regulatory mechanism, although this needs to be verified in vivo.

  17. Association of CD40L gene polymorphism with severe Plasmodium falciparum malaria in Indian population.

    PubMed

    Purohit, Prasanta; Mohanty, Pradeep Kumar; Patel, Siris; Das, Padmalaya; Das, Kishalaya; Panigrahi, Jogeswar

    2017-01-01

    Many host genetic factors are associated with the disease severity and fatal outcome of falciparum malaria. CD40L gene has been found to be one of the most important factors associated with malaria in African countries. This study was aimed to investigate the possible association of CD40L gene polymorphism in severe falciparum malaria in Indian adults. One hundred fifteen adult cases with severe falciparum malaria were included in the study. Two single- nucleotide polymorphisms (SNPs) of CD40L gene, CD40L-726(C/T) and CD40L+220(C/T) were investigated, and the possible association with different clinical sub-phenotypes of severe falciparum malaria were analyzed. Statistically no significant difference was observed in the incidence of CD40L-726C between the patients and control group. The incidence of CD40L+220C allele was found to be significantly higher (OR, 2.25; p = 0.03) in male patients compared to controls but no significant difference was observed in females. Haplotype data showed the susceptibility of -726T/+220C haplotype to severe malaria whereas -726C/+220T was associated with protection against severe malaria. CD40L+220C allele was associated with severe malarial anaemia in males (χ2 = 6.60; p = 0.01). CD40L gene polymorphism was found to be associated with severe falciparum malaria in Indian population especially in severe malarial anaemia. CD40L may be considered as a factor of immunity in understanding the pathophysiology of falciparum malaria.

  18. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting.

    PubMed

    Charnaud, Sarah C; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S; Gilson, Paul R; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L; Pimanpanarak, Mupawjay; Simpson, Julie A; Beeson, James G; Nosten, François; Fowkes, Freya J I

    2016-02-10

    During pregnancy immunoglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57-0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33-0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09-0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women.

  19. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    PubMed Central

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  20. Biosynthesis of GDP-fucose and Other Sugar Nucleotides in the Blood Stages of Plasmodium falciparum*

    PubMed Central

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-01-01

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions. PMID:23615908

  1. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand.

    PubMed

    Pattaradilokrat, Sittiporn; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Siripoon, Napaporn; Harnyuttanakorn, Pongchai

    2016-10-21

    An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.

  2. Increasing Plasmodium falciparum malaria in southwest London: a 25 year observational study

    PubMed Central

    Williams, J; Chitre, M; Sharland, M

    2002-01-01

    Aims: To identify changes in the presenting number and species of imported malaria in children in southwest London. Methods: A prospective single observer study over 25 years (1975–99) of all cases of paediatric malaria seen at St George's Hospital. Results: A confirmed diagnosis was made in 249 children (56% boys; 44% girls; median age 8.0 years). Of these, 53% were UK residents and 44% were children travelling to the UK. A significant increase was noted in the number of cases over the 25 years (1975–79: mean 4.8 cases/year; 1990–99: mean 13.7 cases/year). Over the 25 years Plasmodium falciparum was seen in 77%, P vivax in 14%, P ovale in 6%, and P malariae in 3% of cases. P falciparum had increased in frequency (1975–79: P falciparum 50%, P vivax 50%; 1990–99: P falciparum 82%, P vivax 6%), associated with an increase in the proportion of children acquiring their infection in sub-Saharan Africa. Median time between arrival in the UK to the onset of fever was: P falciparum, 5 days; P ovale, 25 days; P malariae, 37 days; and P vivax, 62 days. Median time interval between the onset of fever to commencement of treatment was 4 days. This had not improved over the 25 year period. Only 41% of UK resident children presenting to hospital had taken prophylaxis and the overall number of symptomatic children taking no prophylaxis was increasing. Conclusion: Imported childhood P falciparum malaria is increasing in southwest London associated with increasing travel from sub-Saharan Africa. Over the 25 year period there has been no improvement in chemoprophylaxis rates or time to diagnosis. PMID:12023177

  3. Temporal Association of Acute Hepatitis A and Plasmodium falciparum Malaria in Children

    PubMed Central

    Klein Klouwenberg, Peter; Sasi, Philip; Bashraheil, Mahfudh; Awuondo, Ken; Bonten, Marc; Berkley, James; Marsh, Kevin; Borrmann, Steffen

    2011-01-01

    Background In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists. Materials and Methods We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period. Discussion Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation. Conclusion The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies. PMID:21754982

  4. Assessing functional annotation transfers with inter-species conserved coexpression: application to Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum is the main causative agent of malaria. Of the 5 484 predicted genes of P. falciparum, about 57% do not have sufficient sequence similarity to characterized genes in other species to warrant functional assignments. Non-homology methods are thus needed to obtain functional clues for these uncharacterized genes. Gene expression data have been widely used in the recent years to help functional annotation in an intra-species way via the so-called Guilt By Association (GBA) principle. Results We propose a new method that uses gene expression data to assess inter-species annotation transfers. Our approach starts from a set of likely orthologs between a reference species (here S. cerevisiae and D. melanogaster) and a query species (P. falciparum). It aims at identifying clusters of coexpressed genes in the query species whose coexpression has been conserved in the reference species. These conserved clusters of coexpressed genes are then used to assess annotation transfers between genes with low sequence similarity, enabling reliable transfers of annotations from the reference to the query species. The approach was used with transcriptomic data sets of P. falciparum, S. cerevisiae and D. melanogaster, and enabled us to propose with high confidence new/refined annotations for several dozens hypothetical/putative P. falciparum genes. Notably, we revised the annotation of genes involved in ribosomal proteins and ribosome biogenesis and assembly, thus highlighting several potential drug targets. Conclusions Our approach uses both sequence similarity and gene expression data to help inter-species gene annotation transfers. Experiments show that this strategy improves the accuracy achieved when using solely sequence similarity and outperforms the accuracy of the GBA approach. In addition, our experiments with P. falciparum show that it can infer a function for numerous hypothetical genes. PMID:20078859

  5. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum.

    PubMed

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-06-07

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.

  6. Bacteria- and IMD Pathway-Independent Immune Defenses against Plasmodium falciparum in Anopheles gambiae

    PubMed Central

    Blumberg, Benjamin J.; Trop, Stefanie; Das, Suchismita; Dimopoulos, George

    2013-01-01

    The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7) and Clip-domain serine protease (CLIPC2) that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify determinants of

  7. Cellular Effects of Curcumin on Plasmodium falciparum Include Disruption of Microtubules

    PubMed Central

    Chakrabarti, Rimi; Rawat, Parkash S.; Cooke, Brian M.; Coppel, Ross L.; Patankar, Swati

    2013-01-01

    Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed. PMID:23505424

  8. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    PubMed

    Chakrabarti, Rimi; Rawat, Parkash S; Cooke, Brian M; Coppel, Ross L; Patankar, Swati

    2013-01-01

    Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  9. Plasmodium falciparum malaria occurring four years after leaving an endemic area.

    PubMed

    Vantomme, B; Van Acker, J; Rogge, S; Ommeslag, D; Donck, J; Callens, S

    2016-04-01

    We present a case of a 52-year-old woman of Ghanaian origin who developed Plasmodium falciparum malaria 4 years after leaving Africa. She had not returned to an endemic area since. We hypothesize several possible scenarios to explain this infection, of which we believe recrudescence of P. falciparum is the most plausible. This occurred most likely as a consequence of waning immunity several years after leaving a high-transmission area. She recovered after a 3-day treatment with atovaquone/proguanil.

  10. Simple Molecular Methods for Early Detection of Chloroquine Drug Resistance in Plasmodium vivax and Plasmodium falciparum.

    PubMed

    Singh, Gurjeet; Singh, Raksha; Urhehar, Anant Dattatraya

    2016-07-01

    Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman's method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with pfcrt-o can be used as biomarker for chloroquine drug

  11. Plasmodium falciparum-infected mice: more than a tour de force.

    PubMed

    Moreno, Alicia; Pérignon, Jean Louis; Morosan, Serban; Mazier, Dominique; Benito, Agustin

    2007-06-01

    Up until recently, the relevance of Plasmodium falciparum-infected humanized mice for malaria studies has been questioned because of the low percentage of mice in which the parasite develops. Advances in the generation of new immunodeficient mouse strains combined with the use of protocols that modulate the innate immune defenses of mice have facilitated the harvesting of exoerythrocytic and intraerythrocytic stages of the parasite. These results renew the hope of working with P. falciparum in a laboratory animal and indicate that the next challenge (i.e. a complete parasite cycle in the same mouse, including transmission to mosquito) could be reached in the future.

  12. Identification and Mechanistic Evaluation of Hemozoin-Inhibiting Triarylimidazoles Active against Plasmodium falciparum.

    PubMed

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Hunter, Roger; Egan, Timothy J

    2017-02-09

    In a previous study, target based screening was carried out for inhibitors of β-hematin (synthetic hemozoin) formation, and a series of triarylimidazoles were identified as active against Plasmodium falciparum. Here, we report the subsequent synthesis and testing of derivatives with varying substituents on the three phenyl rings for this series. The results indicated that a 2-hydroxy-1,3-dimethoxy substitution pattern on ring A is required for submicromolar parasite activity. In addition, cell-fractionation studies revealed uncommonly large, dose-dependent increases of P. falciparum intracellular exchangeable (free) heme, correlating with decreased parasite survival for β-hematin inhibiting derivatives.

  13. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.

    PubMed

    Hikosaka, Kenji; Hirai, Makoto; Komatsuya, Keisuke; Ono, Yasuo; Kita, Kiyoshi

    2015-06-01

    The intraerythrocytic form of the human malaria parasite Plasmodium falciparum relies on glycolysis for its energy requirements. In glycolysis, lactate is an end product. It is therefore known that lactate accumulates in in vitro culture; however, its influence on parasite growth remains unknown. Here we investigated the effect of lactate on the development of P. falciparum during in vitro culture under lactate supplementation in detail. Results revealed that lactate retarded parasite development and reduced the number of merozoites in the schizont stage. These findings suggest that lactate has the potential to affect parasite development.

  14. Cytotoxic T Lymphocytes in Humans Exposed to Plasmodium Falciparum by Immunization or Natural Exposure

    DTIC Science & Technology

    1994-01-01

    Patarapotikul J, Beaudoin RL, Dubeaux C. Tartar A, Mercereau-Puijalon 0, Langsley G (1987) A liver-stage-specific antigen of Plasmodium falciparum...2 ,13 ; PNG4; BRAl G S PNG3 D Q C S GAM3; 3662,, 6,7 Q N 40610; 4191-9; GAM4; 4062 R A GAM5; 4063,9 A D In mice and humans, a peptide including amino...Exposed to Plasmodium falciparum 201 Alonso PL, Lindsay SW, Armstrong JR, Conteh M, Hill AG, David PH, Fegan G (1991) The effect of insecticide-treated

  15. Discovery of a Selective Series of Inhibitors of Plasmodium falciparum HDACs.

    PubMed

    Ontoria, Jesus M; Paonessa, Giacomo; Ponzi, Simona; Ferrigno, Federica; Nizi, Emanuela; Biancofiore, Ilaria; Malancona, Savina; Graziani, Rita; Roberts, David; Willis, Paul; Bresciani, Alberto; Gennari, Nadia; Cecchetti, Ottavia; Monteagudo, Edith; Orsale, Maria V; Veneziano, Maria; Di Marco, Annalise; Cellucci, Antonella; Laufer, Ralph; Altamura, Sergio; Summa, Vincenzo; Harper, Steven

    2016-05-12

    The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.

  16. Discovery of a Selective Series of Inhibitors of Plasmodium falciparum HDACs

    PubMed Central

    2016-01-01

    The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies. PMID:27190592

  17. Steroid Pulse Therapy May Mitigate Prolonged Neurological Manifestations after Eradication of Severe Plasmodium falciparum Parasitemia

    PubMed Central

    Hasegawa, Chihiro; Inagaki, Akiko; Yamada, Gohei; Morita, Koji; Kitamura, Isamu; Ariyoshi, Koya

    2016-01-01

    A 58-year-old Japanese man with a high parasitemia of Plasmodium falciparum, returning from Uganda, was admitted to our hospital since his consciousness level rapidly deteriorated after the initial dose of mefloquine. Despite the parasitemia was cleared by quinine by day 7, the coma remained unchanged and diffuse leukoencephalopathy was detected on magnetic resonance image. Steroid pulse therapy was initiated on day 8. Subsequently, the neurological manifestations improved and he was discharged on day 73 without any sequelae. Pathogenesis of P. falciparum causing cerebral malaria is diverse and complex. If neurological symptoms unusually prolong, steroid may be an effective treatment option. PMID:27853090

  18. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    PubMed

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  19. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    PubMed

    Merrick, Catherine J; Jiang, Rays H Y; Skillman, Kristen M; Samarakoon, Upeka; Moore, Rachel M; Dzikowski, Ron; Ferdig, Michael T; Duraisingh, Manoj T

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  20. Functional Analysis of Sirtuin Genes in Multiple Plasmodium falciparum Strains

    PubMed Central

    Merrick, Catherine J.; Jiang, Rays H. Y.; Skillman, Kristen M.; Samarakoon, Upeka; Moore, Rachel M.; Dzikowski, Ron; Ferdig, Michael T.; Duraisingh, Manoj T.

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying ‘sirtuin’ enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity. PMID:25780929

  1. Therapeutic efficacy test in malaria falciparum in Antioquia, Colombia

    PubMed Central

    Blair, Silvia; Carmona-Fonseca, Jaime; Piñeros, Juan G; Ríos, Alexandra; Álvarez, Tania; Álvarez, Gonzalo; Tobón, Alberto

    2006-01-01

    Objective Evaluate the frequency of failure of eight treatments for non-complicated malaria caused by Plasmodium falciparum in patients from Turbo (Urabá region), El Bagre and Zaragoza (Bajo Cauca region), applying the 1998 protocol of the World Health Organization (WHO). Monotherapies using chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ) and sulphadoxine-pyrimethamine (SP), and combinations using chloroquine-sulphadoxine-pyrimethamine (CQ-SP), amodiaquine-sulphadoxine-pyrimethamine (AQ-SP), mefloquine-sulphadoxine-pyrimethamine (MQ-SP) and artesunate-sulphadoxine-pyrimethamine (AS-SP), were examined. Methodology A balanced experimental design with eight groups. Samples were selected based on statistical and epidemiological criteria. Patients were followed for 21 to 28 days, including seven or eight parasitological and clinical evaluations, with an active search for defaulting patients. A non-blinded evaluation of the antimalarial treatment response (early failure, late failure, adequate response) was performed. Results Initially, the loss of patients to follow-up was higher than 40%, but the immediate active search for the cases and the monetary help for transportation expenses of patients, reduced the loss to 6%. The treatment failure was: CQ 82%, AQ 30%, MQ 4%, SP 24%, CQ-SP 17%, AQ-SP 2%, MQ-S-P 0%, AS-SP 3%. Conclusion The characteristics of an optimal epidemiological monitoring system of antimalarial treatment response in Colombia are discussed. It is proposed to focus this on early failure detection, by applying a screening test every two to three years, based on a seven to 14-day follow-up. Clinical and parasitological assessment would be carried out by a general physician and a field microscopist from the local hospital, with active measures to search for defaulter patients at follow-up. PMID:16504002

  2. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum.

    PubMed

    Omodeo-Salè, Fausta; Motti, Anna; Basilico, Nicoletta; Parapini, Silvia; Olliaro, Piero; Taramelli, Donatella

    2003-07-15

    Red blood cells infected withPlasmodium falciparum(IRBCs) undergo changes primarily in their membrane composition that contribute to malaria pathogenesis. However, all manifestations (eg, anemia) cannot be accounted for by IRBCs alone. Uninfected erythrocytes (URBCs) may play a role, but they have been under-researched. We wanted to document changes in the erythrocyte membrane that could contribute to URBC reduced life span and malaria-associated anemia. Human erythrocytes were cultured withP falciparumand washed at the trophozoite stage. IRBCs and URBCs were separated on Percoll density gradient, thus obtaining erythrocyte fractions of different densities/ages. IRBC- and URBC-purified membranes were analyzed and compared with control normal erythrocytes (NRBCs) of the same age, from the same donor, kept in the same conditions.P falciparumaccelerated aging of both IRBCs and URBCs, causing a significant shift in the cell population toward the denser (old) fraction. Protein, phospholipid, and cholesterol content were reduced in IRBCs and young URBCs. Young and medium uninfected fractions had higher levels of lipid peroxidation and phospholipid saturation (because of the loss of polyunsaturated fatty acids, PUFAs) and lower phosphatidylserine. In IRBCs, thiobarbituric reactive substances (TBARSs) were higher, and PUFAs and phosphatidylserine lower than in NRBCs and URBCs. In comparison, trophozoite membranes had lower phospholipid (particularly sphingomyelin and phosphatidylserine) and cholesterol content and a higher degree of saturation. Parasite-induced peroxidative damage might account for these modifications. In summary, we demonstrated that membrane damage leading to accelerated senescence of both infected and uninfected erythrocytes will likely contribute to malaria anemia.

  3. Calmidazolium evokes high calcium fluctuations in Plasmodium falciparum.

    PubMed

    Budu, Alexandre; Gomes, Mayrim M; Melo, Pollyana M; El Chamy Maluf, Sarah; Bagnaresi, Piero; Azevedo, Mauro F; Carmona, Adriana K; Gazarini, Marcos L

    2016-03-01

    Calcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium. In the same extracellular Ca(2+)-free conditions, the [Ca(2+)]cyt rise elicited by CZ treatment was ~3.5 fold higher when the endoplasmic reticulum (ER) calcium store was previously depleted ruling out the mobilization of calcium from the ER by CZ. The effects of the Ca(2+)/H(+) ionophore ionomycin (ION) and the Na(+)/H(+) ionophore monensin (MON) suggest that the [Ca(2+)]cyt-increasing effect of CZ is driven by the removal of Ca(2+) from at least one Ca(2+)-CaM-related (CaMR) protein as well as by the mobilization of Ca(2+) from intracellular acidic calcium stores. Moreover, we showed that the mitochondrion participates in the sequestration of the cytosolic Ca(2+) elicited by CZ. Finally, the modulation of membrane Ca(2+) channels by CZ and thapsigargin (THG) was demonstrated. The opened channels were blocked by the unspecific calcium channel blocker Co(2+) but not by 2-APB (capacitative calcium entry inhibitor) or nifedipine (L-type Ca(2+) channel inhibitor). Taken together, the results suggested that one CaMR protein is an important modulator of calcium signaling and homeostasis during the Plasmodium intraerythrocytic cell cycle, working as a relevant intracellular Ca(2+) reservoir in the parasite. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Zani, Babalwa; Gathu, Michael; Donegan, Sarah; Olliaro, Piero L; Sinclair, David

    2014-01-01

    Background The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. Objectives To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. Selection criteria Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy’ and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrine In Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower

  5. Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2015-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmful to those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In 2010, The World Health Organization (WHO) recommended a single dose of PQ at 0.75 mg/kg, alongside treatment for P. falciparum malaria to reduce transmission in areas approaching malaria elimination. In 2013 the WHO revised this to 0.25 mg/kg due to concerns about safety. Objectives To assess whether giving PQ or an alternative 8AQ alongside treatment for P. falciparum malaria reduces malaria transmission, and to estimate the frequency of severe or haematological adverse events when PQ is given for this purpose. Search methods We searched the following databases up to 10 Feb 2014 for trials: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT); and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and contacted researchers and organizations. Selection criteria Randomized controlled trials (RCTs) or quasi-RCTs comparing PQ (or alternative 8AQ) given as a single dose or short course alongside treatment for P. falciparum malaria with malaria treatment given without PQ/8AQ in adults or children. Data collection and analysis Two authors independently screened all abstracts, applied inclusion criteria, and extracted data. We sought evidence of an impact on

  6. Primaquine or other 8-aminoquinoline for reducing P. falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2014-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmful to those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In 2010, The World Health Organization (WHO) recommended a single dose of PQ at 0.75 mg/kg, alongside treatment for P. falciparum malaria to reduce transmission in areas approaching malaria elimination. In 2013 the WHO revised this to 0.25 mg/kg due to concerns about safety. Objectives To assess whether giving PQ or an alternative 8AQ alongside treatment for P. falciparum malaria reduces malaria transmission, and to estimate the frequency of severe or haematological adverse events when PQ is given for this purpose. Search methods We searched the following databases up to 10 Feb 2014 for trials: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT); and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and contacted researchers and organizations. Selection criteria Randomized controlled trials (RCTs) or quasi-RCTs comparing PQ (or alternative 8AQ) given as a single dose or short course alongside treatment for P. falciparum malaria with malaria treatment given without PQ/8AQ in adults or children. Data collection and analysis Two authors independently screened all abstracts, applied inclusion criteria, and extracted data. We sought evidence of an impact on

  7. High Number of Previous Plasmodium falciparum Clinical Episodes Increases Risk of Future Episodes in a Sub-Group of Individuals

    PubMed Central

    Loucoubar, Cheikh; Grange, Laura; Paul, Richard; Huret, Augustin; Tall, Adama; Telle, Olivier; Roussilhon, Christian; Faye, Joseph; Diene-Sarr, Fatoumata; Trape, Jean-François; Mercereau-Puijalon, Odile; Sakuntabhai, Anavaj; Bureau, Jean-François

    2013-01-01

    There exists great disparity in the number of clinical P. falciparum episodes among children of the same age and living in similar conditions. The epidemiological determinants of such disparity are unclear. We used a data-mining approach to explore a nineteen-year longitudinal malaria cohort study dataset from Senegal and identify variables associated with increased risk of malaria episodes. These were then verified using classical statistics and replicated in a second cohort. In addition to age, we identified a novel high-risk group of children in whom the history of P. falciparum clinical episodes greatly increased risk of further episodes. Age and a high number of previous falciparum clinical episodes not only play major roles in explaining the risk of P. falciparum episodes but also are risk factors for different groups of people. Combined, they explain the majority of falciparum clinical attacks. Contrary to what is widely believed, clinical immunity to P. falciparum does not de facto occur following many P. falciparum clinical episodes. There exist a sub-group of children who suffer repeated clinical episodes. In addition to posing an important challenge for population stratification during clinical trials, this sub-group disproportionally contributes to the disease burden and may necessitate specific prevention and control measures. PMID:23405191