Science.gov

Sample records for fall chinook acclimation

  1. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    SciTech Connect

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  2. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    SciTech Connect

    McLeod, Bruce

    2003-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  3. John Day Fall Chinook/Salmon Mitigation Plan Acclimation and Imprinting Site Feasibility Study: Summary Report : Completion Report.

    SciTech Connect

    U.S. Fish and Wildlife Service; Sverdrup Corporation; United States. Bonneville Power Administration.

    1987-09-01

    The purpose of this Plan is to replace upriver bright fall chinook salmon which were lost by construction of the John Day Dam. This will be accomplished by releasing salmon fry and smolts, incubated in the Spring Creek and Bonneville Hatcheries, at several upriver locations. Prior to release it is desired to feed and acclimate the juvenile fish to relieve the stress of truck transport, and to imprint them to the release site. This will ultimately produce adult chinook salmon that return to their historic spawning areas through traditional common property fisheries. It will also provide sexually mature broodstock fish that can be captured and spawned to supplement continued hatchery operation. This report summarizes results of an engineering feasibility study done for 10 potential acclimation sites on the Columbia, Yakima and Walla Walla Rivers. A detailed report has been prepared for each site and each is bound separately.

  4. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2004-01-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of

  5. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  6. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  7. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  8. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  9. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    SciTech Connect

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  10. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  11. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  12. Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.

    SciTech Connect

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving

  13. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  14. Isolation and characterization of the fall Chinook aquareovirus

    USGS Publications Warehouse

    Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.

    2017-01-01

    BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  15. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    SciTech Connect

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; Ebberts, Blaine D.; Langeslay, Mike; Ahmann, Martin L.; Feil, Daniel H.; Skalski, J. R.; Townsend, Richard L.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure of acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.

  16. Predation Susceptibility of Juvenile Fall Chinook Salmon Exposed to Sudden Temperature Changes and Slightly Supersaturated Dissolved Gas

    SciTech Connect

    Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.; Abel, Tylor K.; Linley, Timothy J.; Cullinan, Valerie I.

    2014-08-01

    High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that would be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.

  17. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  18. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone...

  19. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone...

  20. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone...

  1. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone...

  2. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone...

  3. Spawning Distribution of Fall Chinook Salmon in the Snake River : Annual Report 1999.

    SciTech Connect

    Garcia, Aaron P.

    2000-04-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999.

  4. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  6. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  7. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  9. Snake River Fall Chinook Salmon life history investigations

    USGS Publications Warehouse

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon; Rhodes, Tobyn; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  10. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2002-2003 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Brooks, Robert

    2004-01-01

    In 2002 a total of 364 adult fall chinook and 472 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 290 fall chinook and 403 chum samples. The peak redd count for fall chinook was 214. The peak redd count for chum was 776. Peak spawning time for fall chinook was set at approximately 15 November. Peak spawning time for chum occurred approximately 6 December. There were estimated to be a total of 1,881 fall chinook spawning below Bonneville Dam in 2002. The study area's 2002 chum population was estimated to be 4,232 spawning fish. Temperature unit data suggests that below Bonneville Dam 2002 brood bright stock, fall chinook emergence began on February 3 2003 and ended 7 May 2003, with peak emergence occurring 20 April. 2002 brood juvenile chum emergence below Bonneville Dam began 27 January and continued through 6 April 2003. Peak chum emergence took place 1 March. A total of 10,925 juvenile chinook and 1,577 juvenile chum were sampled between the dates of 24 January and 21 July 2003 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2003 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2002 and 2003 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI and DNA analysis

  11. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement

  12. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Brooks, Robert

    2005-01-01

    In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing

  13. Pen rearing and imprinting of fall Chinook salmon

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  15. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  16. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  17. Evaluation of Juvenile Fall Chinook Stranding on the Hanford Reach, 1997-1999 Interim Report.

    SciTech Connect

    Wagner, Paul; Nugent, John; Price, William

    1999-02-15

    Pilot work conducted in 1997 to aid the development of the study for the 1998 Evaluation of Juvenile Fall Chinook Stranding on The Hanford Reach. The objectives of the 1997 work were to: (1) identify juvenile chinook production and rearing areas..., (2) identify sampling sites and develop the statistical parameters necessary to complete the study, (3) develop a study plan..., (4) conduct field sampling activities...

  18. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  19. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    SciTech Connect

    Williams, John G.; Bjornn , Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  20. Early life history and survival of natural subyearling fall chinook salmon in the Snake and Clearwater rivers in 1995

    USGS Publications Warehouse

    Connor, William P.; Bjornn, Theodore C.; Burge, Howard L.; Garcia, Aaron P.; Rondorf, Dennis W.

    1997-01-01

    The objectives of this segment of our study were to (1) describe the early life history characteristics of naturally produced subyearling fall chinook salmon in the Snake and Clearwater rivers, and (2) estimate survival for juvenile fall chinook salmon emigrating from the Snake and Clearwater rivers to the tail race of Lower Granite Dam.

  1. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    SciTech Connect

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  2. Survival of Hatchery Subyearling Fall Chinook Salmon in the Free-Flowing Snake River and Lower Snake River Reservoirs, 1998-2001 Summary Report.

    SciTech Connect

    Smith, Steven G.; Muir, William D.

    2002-09-01

    We report results from four years (1998-2001) of an ongoing study of survival and travel time of subyearling fall chinook salmon in the Snake River. We report analyses of associations among river conditions and survival and travel time estimates, which include data from 1995 through 1997. At weekly intervals from early June to early July each year (mid-May to late June in 2001), hatchery-reared subyearling fall chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released above Lower Granite Dam at Pittsburgh Landing and Billy Creek on the Snake River and at Big Canyon Creek on the Clearwater River. Each year, a small proportion of fish released were not detected until the following spring. However, the number that overwintered in the river and migrated seaward as yearlings the following spring was small and had minimal effect on survival estimates. Concurrent with our studies, a number of subyearling fall chinook salmon that reared naturally in the Snake River were caught by beach seine, PIT tagged, and released. We compared a number of characteristics of hatchery and wild fish. Hatchery and wild fish were similar in 2001, and from 1995 through 1997. Results for 1998 through 2000 showed some relatively large differences between hatchery and wild fish. However, recent information suggests that a considerable proportion of wild subyearling chinook salmon migrating in a given year may actually be stream-type (spring/summer), rather than ocean-type (fall) fish, which may account for some of the differences we have observed.

  3. Spawning Distribution of Fall Chinook Salmon in the Snake River : Annual Report 2000.

    SciTech Connect

    Garcia, Aaron P.

    2001-08-01

    From 1997 to 2000, we collected data on the spawning distribution of fall chinook salmon above Lower Granite Dam as part of a five-year evaluation of three acclimation/release facilities: Pittsburgh Landing, Captain John, and Big Canyon Creek. The use of multiple facilities is intended to distribute spawning throughout the habitat normally used in the Snake and Clearwater rivers, and our study was designed to determine if this is achieved. In the Snake River, spawning normally occurs throughout a 100 mile reach. Pittsburgh Landing is located within the upper half of this reach, and Captain John is located within the lower half. In the Clearwater River, most spawning occurs within the lower 41 miles and the Big Canyon Creek facility is located therein. Our approach for determining spawning distribution was to first trap returning fish at Lower Granite Dam, identify their origin (all yearling fish were externally marked before they were released), and use radio tags and redd searches to determine where they spawned. Thus far we radio tagged 203 adult fish that were initially released at the acclimation sites. We confirmed the spawning location of 74 of these fish, 42 from releases at Pittsburgh Landing, seven from Captain John, and 25 from releases at the Big Canyon Creek facility. All of the fish from Pittsburgh Landing spawned in the Snake River, 86% within the upper half of the Snake River study area, and 14% in the lower half. Of the adult fish from Captain John, roughly 71% spawned in the lower half of the Snake River study area, 14% spawned in the upper half, and 14% spawned in the Clearwater River. Of the adult fish from releases at Big Canyon Creek, 80% spawned in the Clearwater River and 20% spawned in the Snake River (four in the lower half and one in the upper half). To augment the study, we determined the spawning locations of 16 adult fish that were directly released as subyearlings at or near the three acclimation sites. Ten of the fish were from

  4. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    SciTech Connect

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  5. Genetic characterization of naturally spawned Snake River fall-run Chinook salmon

    USGS Publications Warehouse

    Marshall, A.R.; Blankenship, H.L.; Connor, W.P.

    1999-01-01

    We sampled juvenile Snake River chinook salmon Oncorhynchus tshawytscha to genetically characterize the endangered Snake River fall-run population. Juveniles from fall and spring–summer lineages coexisted in our sampling areas but were differentiated by large allozyme allele frequency differences. We sorted juveniles by multilocus genotypes into putative fall and spring lineage subsamples and determined lineage composition using maximum likelihood estimation methods. Paired sMEP-1* and PGK-2* genotypes—encoding malic enzyme (NADP+) and phosphoglycerate kinase, respectively—were very effective for sorting juveniles by lineage, and subsamples estimated to be 100% fall lineage were obtained in four annual samples. We examined genetic relationships of these fall lineage juveniles with adjacent populations from the Columbia River and from Lyons Ferry Hatchery, which was established to perpetuate the Snake River fall-run population. Our samples of naturally produced Snake River fall lineage juveniles were most closely aligned with Lyons Ferry Hatchery samples. Although fall-run strays of Columbia River hatchery origin found on spawning grounds threaten the genetic integrity of the Snake River population, juvenile samples (a) showed distinctive patterns of allelic diversity, (b) were differentiated from Columbia River populations, and (c) substantiate earlier conclusions that this population is an important genetic resource. This first characterization of naturally produced Snake River fall chinook salmon provides a baseline for monitoring and recovery planning.

  6. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    SciTech Connect

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  7. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1997 Annual Report.

    SciTech Connect

    Muir, William D.; Connor, William P.; Arnsberg, Billy D.

    1999-03-01

    In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and the Nez Perce Tribe completed the third year of research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin.

  8. Snake River Fall Chinook Salmon Brood-Stock Program, 1984 Annual Report of Research.

    SciTech Connect

    Harrell, Lee W.

    1985-02-01

    The objective is the enhancement of upriver stocks through research and development of an eggbank source. Viable gametes, produced from fish held to maturity in sea pens, will be made available for restoration purposes on the Snake River. Seawater entry trials with 0+-age and 1+-age fish have shown that 0+-age Snake River fall chinook salmon are not amenable to seawater entry and will either die or require up to 6 months to fully adapt to seawater. However, 1+-age smolts experience little problem at seawater entry; it is therefore suggested that Snake River fall chinook salmon be released as 1+ smolting fish in hatchery situations. Important marine mortalities occurring from osmoregulatory dysfunction, Bacterial Kidney Disease, and precocity at various life stages have been documented. Also, a previously unreported marine fungal pathogen has been identified. Mortality from this pathogen occurs from 3-years of age to maturity and can exceed 0.5% per day (resulting in losses to 90+%). At the end of December 1984, Snake River fall chinook salmon from 1980 (n = 67), 1981 (n = 876), 1982 (n = 4809), and 1983 (n = 7100) broods were under production. Because of the extensive mortality due to the marine fungal pathogen, only seven spawners were obtained from the 1980 stock in fall 1984. The 1980-brood spawners produced only minimal eggs and these will be used to investigate possible vertical transmission of the fungal pathogen. 4 figs.

  9. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    SciTech Connect

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  10. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; Chamness, Michele A.; Abernethy, Cary S.; McKinstry, Craig A.

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  11. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  12. Spawning Distribution of Fall Chinook Salmon in the Snake River : Annual Report 1998.

    SciTech Connect

    Garcia, Aaron P.

    1999-03-01

    In 1998 data was collected on the spawning distribution of the first adult fall chinook salmon to return from releases of yearling hatchery fish upriver of Lower Granite Dam. Yearling fish were released at three locations with the intent of distributing spawning throughout the existing habitat. The project was designed to use radio-telemetry to determine if the use of multiple release sites resulted in widespread spawning.

  13. Impacts of the Columbia River Hydroelectric System on Mainstem Habitats of Fall Chinook Salmon

    SciTech Connect

    Dauble, Dennis D.; Hanrahan, Timothy P.; Geist, David R.; Parsley, Michael J.

    2003-08-01

    Salmonid habitats in mainstem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13 and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the mainstem Columbia River and 163 km of the mainstem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment, more bars and islands, and had lower water surface slopes than areas not extensively used. Because flows in the mainstem are now highly regulated, the pre-development alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes, specifically sustained peak flows for scouring, is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries and tailrace spawning areas, and hatcheries) be considered.

  14. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  15. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  16. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  17. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  18. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  19. Evaluation for Early Life Stage Fall Chinook Salmon Exposed to Hexavalent Chromium from a Contaminated Groundwater Source

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; McKinstry, Craig A.

    2007-09-01

    We conducted a laboratory evaluation to assess the risk to early life stage (i.e., eyed egg to swim up) fall Chinook salmon (Oncorhynchus tshawytscha) for exposure to hexavalent chromium from a contaminated groundwater source. Local populations of fall Chinook salmon were exposed to Hanford Site source groundwater that was diluted with Columbia River water. Specific endpoints included survival, development rate, and growth. Tissue burdens of fish were also measured to estimate uptake and elimination rates of chromium. Survival, development, and growth of early life stage fall Chinook salmon were not adversely affected by extended exposures (i.e., 98 day) to hexavalent chromium ranging from 0.79 to 260 μg/L. Survival for all treatment levels and controls exceeded 98% at termination of the test. In addition, there were no differences among the mean lengths and weights of fish among all treatment groups. Whole-body concentrations of chromium in early life stage fall Chinook salmon had a typical dose-response pattern; i.e., those subjected to highest exposure concentrations and longest exposure intervals had higher tissue concentrations. Given the spatial extent of chromium concentrations at the Hanford Site, and the dynamics of the groundwater - river water interface, the current cleanup criterion of 10 µg/L chromium appear adequate to protect fall Chinook salmon populations.

  20. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, T. P.; Geist, D. R.; Arntzen, E. V.; Abernethy, C. S.

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  1. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, Appendix, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    This document contains 43 appendices for the Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries'' report. This study was initiated to determine the distribution, contribution, and value of artificially propagated fall Chinook Salmon from the Columbia River.

  2. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach of the Columbia River. The evaluation, in the fifth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2001 field season.

  3. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    SciTech Connect

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  4. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    SciTech Connect

    Nugent, John; Newsome, Todd; Nugent, Michael

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  5. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    SciTech Connect

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  6. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    SciTech Connect

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  7. Assessing Summer and Fall Chinook Salmon Restoration in the Upper Clearwater River and Principal Tributaries, 1994 Annual Report.

    SciTech Connect

    Arnsberg, Billy D.; Statler, David P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  8. Evaluation of fall chinook salmon spawning adjacent to the In-Situ Redox Manipulation treatability test site, Hanford Site, Washington

    SciTech Connect

    Mueller, R.P.; Geist, D.R.

    1998-10-02

    The In Situ Redox Manipulation (ISRM) experiment is being evaluated as a potential method to remove contaminants from groundwater adjacent to the Columbia River near the 100-D Area. The ISRM experiment involves using sodium dithionate (Na{sub 2}O{sub 6}S{sub 2}) to precipitate chromate from the groundwater. The treatment will likely create anoxic conditions in the groundwater down-gradient of the ISRM treatability test site; however, the spatial extent of this anoxic plume is not exactly known. Surveys were conducted in November 1997, following the peak spawning of fall chinook salmon. Aerial surveys documented 210 redds (spawning nests) near the downstream island in locations consistent with previous surveys. Neither aerial nor underwater surveys documented fall chinook spawning in the vicinity of the ISRM treatability test site. Based on measurements of depth, velocity, and substrate, less than 1% of the study area contained suitable fall chinook salmon spawning habitat, indicating low potential for fall chinook salmon to spawn in the vicinity of the ISRM experiment.

  9. Landscape-level model to predict spawning habitat for Lower Columbia River fall Chinook salmon (Oncorhynchus tshawytscha)

    Treesearch

    D. Shallin Busch; Mindi Sheer; Kelly Burnett; Paul McElhany; Tom. Cooney

    2013-01-01

    We developed an intrinsic potential (IP) model to estimate the potential of streams to provide habitat for spawning fall Chinook salmon (Oncorhynchus tshawytscha) in the Lower Columbia River evolutionarily significant unit. This evolutionarily significant unit is a threatened species, and both fish abundance and distribution are reduced from...

  10. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  11. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    SciTech Connect

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surface was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.

  12. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    SciTech Connect

    Geist, D.R. |; Dauble, D.D.

    1998-09-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.

  13. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to

  14. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  15. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  16. Fall Chinook Salmon Spawning Activity Versus Daylight and Flow in the Tailrace of a Large Hydroelectric Dam

    SciTech Connect

    McMichael, Geoffrey A.; McKinstry, Craig A.; Vucelick, Jessica A.; Lukas, Joe

    2005-05-01

    We deployed an acoustic system during the fall Chinook salmon (Oncorhynchus tshawytscha) spawning season in 2001 to determine whether fall Chinook salmon spawning activity in a hydroelectric dam tailrace area was affected by daylight or river flow dynamics. The system was deployed following a randomized study design to record fall Chinook salmon spawning activity during day and night periods in two index areas downstream of Wanapum Dam on the Columbia River in Washington, USA. One index area was a deepwater spawning area located (river kilometer (rkm) 663) in 9 to 11 m of water. The other index site was a moderate depth mid-channel bar, where water depths ranged from 2.5 to 6 m. The acoustic system was used to collect spawning activity data during free-drifts in a boat through the index areas. Spawning activity was defined as digs per minute from underwater sound recordings. Fall Chinook salmon spawning activity in the Wanapum Dam tailrace was influenced by daylight and river discharge. Results showed there was a substantial amount of spawning activity occurring during both daylight and darkness. However, there was significantly more spawning activity during daylight than at night in both index areas. Spawning activity was also affected by flow. Project discharge had a pronounced non-linear effect on spawning activity. Spawning activity was generally highest at project discharges between 1,700 and 2266 m3 sec-1 in both spawning areas, with reduced activity as discharge increased to between 3,400 and 4,250 m3 sec-1. We concluded that fall Chinook salmon spawning activity in highly variable environments was affected more by flow (and velocity) than by daylight.

  17. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    SciTech Connect

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  18. Snake River fall Chinook salmon life history investigation, annual report 2007

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; McMichael , Geoffrey A.; Buchanan, Rebecca A.

    2009-01-01

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish (~95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging.

  19. Effects of a Novel Fish Transport System on the Health of Adult Fall Chinook Salmon

    SciTech Connect

    Geist, David R.; Colotelo, Alison H.; Linley, Timothy J.; Wagner, Katie A.; Miracle, Ann L.

    2016-12-01

    Movement past hydroelectric dams and related in-river structures has important implications for habitat connectivity and population persistence in migratory fish. A major problem is that many of these structures lack effective fish passage facilities, which can fragment spawning and rearing areas and negatively impact recruitment. While traditional fish passage facilities (e.g., ladders, trap and haul) can effectively enable fish to pass over barriers, their capital or operational costs can be significant. We evaluated the utility of a novel transport device that utilizes a flexible tube with differential internal air pressure to pass fish around in-river barriers. Three treatments and a control group were tested. In two of the treatments, adult fall Chinook Salmon nearing maturation were transported through the device via two lengths of tube (12 or 77 m) and their injury, stress, and immune system responses and reproductive function were compared to a third treatment where fish were moved by a standard trap and haul method and also to a control group. We observed no significant differences among the treatment or control groups in post-treatment adult survival, injury or stress. Indicators of immune system response and reproductive readiness were also not significantly different among the four groups. Egg survival was significantly different among the groups, but the differences were highly variable within groups and not consistent with the duration of treatment or degree of handling. Taken together, the results suggest the device did not injure or alter normal physiological functioning of adult fall Chinook Salmon nearing maturation and may provide an effective method for transporting such fish around in-river barriers during their spawning migration. Keywords: Whooshh, transport, in-stream barriers, hydropower

  20. Snake River fall Chinook salmon life history investigations: Annual report 2011 (April 2011 - March 2012)

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Kock, Tobias J.; Mullins, Frank; Steinhorst, R. Kirk; Christiansen, Helena E.; McCormick, Stephen D.; Ortega, Lori A.; Carter, Kathleen M.; Arntzen, Evan V.; Klett, Katherine J.C.; Deng, Z. Daniel; Abel, Tylor K.; Linley, Timothy J.; Cullinan, Valerie I.; St John, Scott J.; Erhardt, John M.; Bickford, Brad; Schmidt, Amanda; Rhodes, Tobyn

    2013-01-01

    Chapter Four – We conducted monthly beam trawling in Lower Granite and Little Goose reservoirs to describe the seasonal abundance of benthic epifauna that are potentially important as prey to juvenile fall Chinook salmon. The predominant taxa collected were Siberian prawns, the opossum shrimp Neomysis mercedis, and the amphipod Corophium sp. Prawns were relatively abundant at shallow sites in both reservoirs in June, but were more abundant at deep sites in lower and middle reservoir reaches in autumn. Prawn densities were commonly <0.2/m2. Prawn length-frequency data indicated that there were at least two size classes. Juvenile prawns present in shallow water more often than adult prawns, which were generally only found in deep water by autumn. Ovigerous prawns had an average of 171 eggs, which represented about 11.5% of their body weight. Limited diet analyses suggested that prawns consumed Corophium, Neomysis, and aquatic insects. Neomysis dominated all catches both in terms of abundance and biomass, and they were more abundant in Lower Granite compared to Little Goose reservoir. Neomysis were more abundant at shallow sites than at deep sites. Corophium were present in our collections but were never abundant, probably because our trawl was not effective at capturing them. The caloric content of prawns (4,782 Kcal), Neomysis (4,962 Kcal), and Corophium (4,926 Kcal) indicates that these prey would be energetically profitable for juvenile salmon. Subyearling fall Chinook salmon prey heavily on Neomysis and Corophium at times, but the importance of prawns as prey is uncertain.

  1. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    SciTech Connect

    Williams, John G.; Bjomn , Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  2. Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in the free-flowing and impounded Snake River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk

    2009-01-01

    We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.

  3. Designing Optimal Flow Patterns for Fall Chinook Salmon in a Central Valley, California River

    SciTech Connect

    Jager, H.I.

    2003-01-01

    Widespread declines in stocks of Pacific salmon in the genus Oncorhynchus highlight the need for research to find new and effective management strategies for recovery. Two recovery objectives are (1) to ensure that recruitment is adequate to rebuild self-sustaining populations and (2) to maintain phenotypic diversity. This study seeks to understand how seasonal flow patterns in a flow-regulated California river might be managed to attain each of these recovery objectives, specifically for the fall and late-fall runs of chinook salmon O. tshawytscha. We ask two questions: (1) Does the optimal pattern of seasonal flows change as the amount of water available is constrained by droughts or diversions of flows? and (2) How do optimal flow regimes designed for the two conservation objectives differ? We coupled simulated annealing with a recruitment model to find flow regimes that maximize either the number of smolt out-migrant ‘‘recruits’’ (MR) or the variation in spawning times among recruits (MV). Optimal flow regimes identified for both the MR and MV objectives changed as we increased the annual quantity of water available, allocating higher flows during the spring and fall seasons. Flow regimes that optimized the MR and MV objectives were different. For example, the MV flow regime with unlimited annual flow provided a pulse of high flow 2 weeks before the peak spawning date of the minority late-fall run. Simulated recruits produced by MV flow regimes were fewer in number—and had parents that spawned later and over a wider range of dates—than recruits produced by MR flow regimes. Although these results have not been verified by empirical studies, they demonstrate the potential for managing species with special conservation status by combining state-of-the-art numerical optimization methods with mechanistic ecological models.

  4. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  5. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    SciTech Connect

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  6. Influence of flow and temperature on survival of wild subyearling fall chinook salmon in the Snake River

    USGS Publications Warehouse

    Connor, W.P.; Burge, H.L.; Yearsley, J.R.; Bjornn, T.C.

    2003-01-01

    Summer flow augmentation to increase the survival of wild subyearling fall chinook salmon Oncorhynchus tshawytscha is implemented annually to mitigate for the development of the hydropower system in the Snake River basin, but the efficacy of this practice has been disputed. We studied some of the factors affecting survival of wild subyearling fall chinook salmon from capture, tagging, and release in the free-flowing Snake River to the tailrace of the first dam encountered by smolts en route to the sea. We then assessed the effects of summer flow augmentation on survival to the tailrace of this dam. We tagged and released 5,030 wild juvenile fall chinook salmon in the free-flowing Snake River from 1998 to 2000. We separated these tagged fish into four sequential within-year release groups termed cohorts (N = 12). Survival probability estimates (mean ?? SE) to the tailrace of the dam for the 12 cohorts when summer flow augmentation was implemented ranged from 36% ?? 4% to 88% ?? 5%. We fit an ordinary least-squares multiple regression model from indices of flow and temperature that explained 92% (N = 12; P < 0.0001) of the observed variability in cohort survival. Survival generally increased with increasing flow and decreased with increasing temperature. We used the regression model to predict cohort survival for flow and temperature conditions observed when summer flow augmentation was implemented and for approximated flow and temperature conditions had the summer flow augmentation not been implemented. Survival of all cohorts was predicted to be higher when flow was augmented than when flow was not augmented because summer flow augmentation increased the flow levels and decreased the temperatures fish were exposed to as they moved seaward. We conclude that summer flow augmentation increases the survival of young fall chinook salmon.

  7. Estimated Fall Chinook Salmon Survival to Emergence in Dewatered Redds in a Shallow Side Channel of the Columbia River

    SciTech Connect

    McMichael, Geoffrey A.; Rakowski, Cynthia L.; James, B B.; Lukas, Joe

    2005-08-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) often spawn in the tailraces of large hydroelectric dams on the Columbia River. Redds built in shallow habitats downstream of these dams may be periodically dewatered due to hydropower operations prior to the emergence of fry. To determine whether fall Chinook salmon redds were successful in a shallow area subjected to periodic dewatering downstream of Wanapum Dam on the Columbia River, we installed 7 redd caps and monitored fry emergence. Large numbers of live fry were captured from the redds between March 9 and May 18, 2003. Estimated survival from egg to fry for these redds, which were all subjected to some degree of dewatering during the incubation and post-hatch intragravel rearing period, ranged from 16.1 to 63.2 percent and averaged 27.8 percent (assuming 4,500 eggs/redd). The peak emergence date ranged from April 1 to 29, with the average peak about April 14, 2003. Mean fork length of fall Chinook salmon emerging from individual redds ranged from 38.3 to 41.2 mm, and lengths of fish emerging from individual redds increased throughout the emergence period.

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2001-2002 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    2003-04-01

    In 2001 a total of 309 adult fall chinook and 264 chum were sampled in the Ives and Pierce islands area below Bonneville Dam. The peak redd count for fall chinook was 48. The peak redd count for chum was 181. Peak spawning time for fall chinook was set at approximately 16 November. Peak spawning time for chum occurred approximately 26 November. There were estimated to be a total of 721 fall chinook spawning below Bonneville Dam in 2001. The 2001 chum population below Bonneville Dam was estimated to be 532 spawning fish. Temperature unit data suggests that below Bonneville Dam 2001 brood chinook emergence began on 11 March 2002 and ended 18 May 2002, with peak emergence occurring 26 April. 2001 brood juvenile chum emergence below Bonneville Dam began 29 January and continued through 31 March 2002. Peak chum emergence took place 25 February. A total of 5,487 juvenile chinook and 678 juvenile chum were sampled between the dates of 22 January and 30 July 2002 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place from mid June through early July 2002 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2001 and 2002 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration

  9. Fall acclimation patterns of interior spruce seedlings and their relationship to changes in vegetative storage proteins.

    PubMed

    Binnie, S C; Grossnickle, S C; Roberts, D R

    1994-10-01

    Changes in the content of vegetative storage proteins (VSPs) were monitored in 1-year-old interior spruce (Picea glauca (Moench) Voss x Picea engelmanni Parry complex) seedlings from late summer until midwinter. Seedlings were also monitored for days to terminal bud break (DBB(t)), dry weight fraction and frost hardiness, measured as both index of injury at -18 degrees C (IL(-18 degrees C)) and as the temperature causing 50% foliage electrolyte leakage (LT(50)). During fall acclimation, VSP content, frost hardiness and dry weight fraction increased, whereas DBB(t) decreased. In mid-November, IL(-18 degrees C) reached its lowest value, coinciding with high VSP content and dry weight fraction, and low DBB(t). The LT(50) decreased in a linear manner as dry weight fraction and VSP content increased; r(2) values were 0.69 to 0.81, respectively. The fall accumulation of VSPs was also highly correlated with increased dry weight fraction. The increase in VSP content occurred as seedling photosynthetic capacity declined, but maximum contents were obtained before complete inactivation of the photosynthetic apparatus. The results indicate that VSP accumulation is an integral part of fall acclimation in interior spruce, closely parallels frost hardiness and partially accounts for the increase in dry weight fraction.

  10. Pen Rearing and Imprinting of Fall Chinook Salmon, 1983 Annual Report.

    SciTech Connect

    Novotny, Jerry F.; Macy, Thomas L.; Gardenier, James T.

    1984-02-01

    Backwaters and protected sites located along the Columbia River between John Day and Priest Rapids dams, and the lower reaches of the Umatilla, Yakima, and Snake rivers were surveyed to determine their suitability for experimental rearing of age-0 fall (upriver bright) chinook salmon. All but eight potential study sites observed were judged as unusable based on criteria which included depth, area, accessibility, potential water level and temperature fluctuations, entrance-access to the river, public use, and obvious water quality problems. These eight sites were then thoroughly evaluated to determine suitability for rearing studies, using water quality and biological data to supplement physical observations. The criteria used in the final selection of rearing sites included an assessment of water source, depth, temperature, and quality, proximity to natural spawning sites, ease of adult capture, and benthos and zooplankton abundance. Two sites were selected as satisfying the most criteria for experimental rearing studies: Rock Creek (river km 337) and Social Security Pond (river km 468). All other sites surveyed were ranked as either less desirable, or unusable for these studies.

  11. Pen rearing and Imprinting of Fall Chinook Salmon, 1994 Final Report.

    SciTech Connect

    Beeman, John W.; Novotny, Jerry F.

    1994-06-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  12. Use of Aerial Photography to Monitor Fall Chinook Salmon Spawning in the Columbia River

    SciTech Connect

    Visser, Richard H.; Dauble, Dennis D. ); Geist, David R. )

    2002-11-01

    This paper compares two methods for enumerating salmon redds and their application to monitoring spawning activity. Aerial photographs of fall chinook salmon spawning areas in the Hanford Reach of the Columbia River were digitized and mapped using Geographic Information Systems (GIS) techniques in 1994 and 1995 as part of an annual assessment of the population. The number of visible redds from these photographs were compared to counts obtained from visual surveys with fixed wing aircraft. The proportion of the total redds within each of five general survey areas was similar for the two monitoring techniques. However, the total number of redds based on aerial photographs was 2.2 and 3.0 times higher than those observed during visual surveys for 1994 and 1995, respectively. The divergence in redd counts was most evident near peak spawning activity when the number of redds within individual spawning clusters exceeded 500. Aerial photography improved our ability to monitor numbers of visible salmon redds and to quantify habitat use.

  13. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    SciTech Connect

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  14. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    SciTech Connect

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  15. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing

  16. Pen Rearing and Imprinting of Fall Chinook Salmon, 1985 Annual Report.

    SciTech Connect

    Novotny, Jerry F.; Macy, Thomas L.; Gardenier, James T.

    1985-05-01

    Upriver bright fall chinook salmon (Oncorhynchus tshawytscha) are being reared in a backwater and a pond along John Day Reservoir to evaluate the benefits of rearing fish and releasing them off-station compared to traditional hatchery procedures. Fish reared in net pens at a density/feeding combination judged to be the economic optimum of those used during 1984 rearing trials exhibited good growth and smolt development. Size of fish averaged 112 fish/lb (4.0g/fish), ATPase activities ranged from 16.4 to 29.5 micromoles Pi/mg prot/hr at release and total mortality of fish was low among pens, ranging from 0.3 to 1.1%. Poor growth and smolt development was observed in fish reared in a large barrier net, especially during the initial two weeks after stocking. In addition, mortality of fish in the barrier net was high (49%) in relation to any of the other treatments tested thus far. The combined effects of generally poor condition of fish at stocking, low zooplankton densities during the initial two weeks of rearing, and losses to predation were thought to be the primary causes of the slow growth rates and high mortality. Unfed fish in pens utilized the available natural food base, but zooplankton densities were apparently not sufficient for growth, and may have been marginal for sustenance, especially at higher density. ATPase activities at release were significantly higher in low-density pens than in higher density pens, but development at all densities was retarded when compared with ATPase activities of fed fish. Preliminary cost estimates for producing fish-using the rearing strategies developed in the current pen-rearing study compared favorably with the average costs of rearing salmonids in a Northwest hatchery.

  17. Pen rearing and imprinting of fall Chinook salmon. Annual report 1989

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1990-01-01

    The goal of this project is to compare net-pen rearing methods to traditional hatchery methods of rearing upriver bright fall chinook salmon (Oncorhvnchus tshawvtscha). Fish were reared at several densities in net pens at three Columbia River backwater sites during 1984-1987, and in a barrier net at one site during 1984-1986; methods included both fed and unfed treatments. The purpose of this report is to summarize the results obtained from the unfed treatments and the current return of adults from all fed treatments and the barrier net. Zooplankton were the primary food item of unfed fish. Fish reared in net pens utilized insects colonizing the nets as an additional food source, whereas those reared in the barrier net did not. Growth and production of fish reared in the unfed treatments were low. Instantaneous growth rates of unfed fish were much lower than those of the fed treatments and hatchery controls except when zooplankton densities were high and chironomid larvae were important in the diet of unfed fish reared in pens. Only fish in the barrier net treatment resulted in consistent net gains in growth and production over the rearing periods. Adult returns of fish from all fed and unfed treatments are lower than those of control fish reared at the hatchery. Returns appear to be inversely related to rearing density. Even though adult returns are lower than those of traditional hatchery methods, a cost-benefit analysis, as return data becomes more complete, may prove these methods to be an economical means of expanding current hatchery production, particularly if "thinning" releases were used.

  18. Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon oncorhynchus tshawytscha in a reservoir

    USGS Publications Warehouse

    Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.

    2009-01-01

    This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.

  19. Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir.

    PubMed

    Tiffan, K F; Kock, T J; Connor, W P; Steinhorst, R K; Rondorf, D W

    2009-05-01

    This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23 degrees C on the surface to 11 degrees C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20 degrees C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5.6-7.2 h and 6.0-13.8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20 degrees C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20 degrees C when temperatures <16 and >20 degrees C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17.0 degrees C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20 degrees C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.

  20. Pen Rearing and Imprinting of Fall Chinook Salmon, 1989 Annual Report.

    SciTech Connect

    Beeman, John W.; Novotny, Jerry F.

    1990-02-01

    The goal of this project is to compare net-pen rearing methods to traditional hatchery methods of rearing upriver bright fall chinook salmon (Oncorhynchus tshawvtscha). Fish were reared at several densities in net pens at three Columbia River backwater sites during 1984-1987, and in a barrier net at one site during 1984-1986; methods included both fed and unfed treatments. The purpose of this report is to summarize the results obtained from the unfed treatments and the current return of adults from all fed treatments and the barrier net. Zooplankton were the primary food item of unfed fish. Fish reared in net pens utilized insects colonizing the nets as an additional food source, whereas those reared in the barrier net did not. Growth and production of fish reared in the unfed treatments were low. Instantaneous growth rates of unfed fish were much lower than those of the fed treatments and hatchery controls except when zooplankton densities were high and chironomid larvae were important in the diet of unfed fish reared in pens. Only fish in the barrier net treatment resulted in consistent net gains in growth and production over the rearing periods. Adult returns of fish from all fed and unfed treatments are lower than those of control fish reared at the hatchery. Returns appear to be inversely related to rearing density. Even though adult returns are lower than those of traditional hatchery methods, a cost-benefit analysis, as return data becomes more complete, may prove these methods to be an economical means of expanding current hatchery production, particularly if thinning releases were used.

  1. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) Near Ives and Pierce Island of the Columbia River, 2000.

    SciTech Connect

    Mueller, Robert P.

    2001-10-01

    Fall chinook salmon (Oncorhynchus tshawytscha), thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas included gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997), and 554 fish in 1998 (Van der Naald et al. 1999). These estimates were based on carcass surveys and visual observation of redds by boat near the shoreline. Pacific Northwest National Laboratory (PNNL) conducted underwater video surveys in the fall of 1999 and 2000 to determine the extent of the fall chinook salmon spawning and to estimate the number of redds occurring in deeper water. Estimates of redds occurring in water depths exceeding 2.2 m at 143,000 cubic feet per second (kcfs) were 499 in 1999 (Mueller and Dauble 1999) and 567 redds >2.2 m at 127 kcfs in 2000 (this study). The majority of the redds found were confined near the main river channel adjacent to Pierce Island. Chum salmon (O. keta) also have been documented using the mouth of Hamilton Creek and portions of Hamilton Slough for spawning. The majority of chum salmon were found to spawn in shallow water at the mouth of Hamilton Creek adjacent to Ives Island. Estimates of the natural chum salmon spawning population for 1998 were 226 (Van der Naald et al. 1999). Chum salmon spawning near Ives Island are part of the Columbia River evolutionary significant unit (ESU), and are included in the Endangered Species Act of 1973 (ESA) listing in March 1999. Our main objective of this study was to locate deep water spawning locations of fall chinook salmon in the main Columbia River channel and to collect additional data on physical habitat parameters at spawning sites. The secondary objective was to map any chum salmon redds located in the deep sections of

  2. Modeling Fall Run Chinook Salmon Populations in the San Joaquin River Basin Using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Keyantash, J.; Quinn, N. W.; Hidalgo, H. G.; Dracup, J. A.

    2002-12-01

    The number of chinook salmon returning to spawn during the fall run (September-November) were separately modeled for three San Joaquin River tributaries-the Stanislaus, Tuolumne, and Merced Rivers-to determine the sensitivity of salmon populations to hydrologic alterations associated with potential climate change. The modeling was accomplished using a feed-forward artificial neural network (ANN) with error backpropagation. Inputs to the ANN included modeled monthly river temperature and streamflow data for each tributary, and were lagged multiple years to include the effects of antecedent environmental conditions upon populations of salmon throughout their life histories. Temperature and streamflow conditions at downstream locations in each tributary were computed using the California Dept. of Water Resources' DSM-2 model. Inputs to the DSM-2 model originated from regional climate modeling under a CO2 doubling scenario. Annual population data for adult chinook salmon (1951-present) were provided by the California Dept. of Fish and Game, and were used for supervised training of the ANN. It was determined that Stanislaus, Tuolumne and Merced River chinook runs could be impacted by alterations to the hydroclimatology of the San Joaquin basin.

  3. A model of the effects of flow fluctuations on fall Chinook salmon spawning habitat availability in the Columbia River

    SciTech Connect

    Geist, David R.; Murray, Christopher J.; Hanrahan, Timothy P.; Xie, YuLong

    2008-12-01

    Previously we reported that about 30% to 60% of the area predicted to be used by fall Chinook salmon (Oncorhynchus tshawytscha) for spawning in the Hanford Reach of the Columbia River did not contain redds. One explanation for the overprediction of habitat was that our model did not incorporate streamflow fluctuation. Daily fluctuation in flow caused by load-following operations (power generation to meet short-term electrical demand) at Priest Rapids Dam, situated at the upper end of the Hanford Reach, changes the hydraulic characteristics to which fish respond in selecting redd sites. The purpose of the study described here was to examine the effect of flow changes on spawning habitat modeling and, in particular, to look at the connection between spawning and the variability and persistence of habitat variables caused by rapid changes in flow resulting from load-following operations at Priest Rapids Dam. We found that spawning habitat use by fall Chinook salmon was consistent with previous fall Chinook salmon studies in the Reach. Dynamic variables that were based on hourly time series were used to account for the variability in habitat as a result of flow fluctuations. The analysis showed that the proportion of velocities that fell within the range of 1.0 to 2.5 m/s differed significantly between locations that were predicted to be spawning by the logistic regression model where spawning actually occurred and locations that were predicted to be spawning where spawning did not occur. However, the resulting sequential logistic regression model that incorporated the dynamic variables did not provide significant improvement in the percentage of errors for areas predicted to be spawning; the model’s overprediction errors still ranged from 63% to 78%. We suggest that while flow fluctuation may affect spawning habitat and individual fish behavior, the high correlation between time-averaged velocities and the proportion of hourly velocities that fell within the most

  4. Upstream Passage, Spawning, and Stock Identification of Fall Chinook in the Snake River, 1992 and 1993 : Final Report.

    SciTech Connect

    Blankenship, H. Lee; Mendel, Glen W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs.

  5. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    SciTech Connect

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not

  6. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    SciTech Connect

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

  7. Hatchery Evaluation Report / Bonneville Hatchery - Tule Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Bonneville Hatchery (Tule Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  8. Hatchery Evaluation Report / Bonneville Hatchery - Urb Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Bonneville Hatchery (Upriver bright [URB] Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of at two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  9. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  10. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    SciTech Connect

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

  11. Pen Rearing and Imprinting of Fall Chinook Salmon, 1986 Annual Report.

    SciTech Connect

    Novotny, Jerry F.; Macy, Thomas L.; Gardenier, James T.; Beeman, John W.

    1986-12-01

    Pen rearing studies during 1986 completed the second of three years intended for rearing and releasing upriver bright fall chinook salmon (Oncorhynchus tshawytscha) from two study sites, a backwater and a pond, adjacent to the Columbia River; both areas are located in the Jonn Day Reservoir. Results of this study in 1984 and 1985 showed that fish could be successfully reared in net pens and that growth and physiological development of the off-station reared fish proceeded at a faster rate than in fish reared at a hatchery. Transfer of fish from the hatchery to off-station sites at Social Security Pond (pond) and Rock Creek (backwater) during early March increased the period of rearing in 1986 by about four weeks. The increased period of rearing allowed all treatments of fed fish to reach a minimum weight of YU fish/lb by release. Differences in growth of fed fish between regular density treatments and additional, high density treatments (double and triple the regular densities) were not significantly different (P > 0.05), but growth of all fed fish reared off-station was again significantly better than that of hatchery reared fish (P < 0.05), Mortalities in all groups of fed fish were low. Physiological development of fed fish was similar in all treatments. At release, development of fish at Social Security Pond appeared to be somewhat ahead of fish at Rock Creek on the same dates however, none of the groups of fed fish achieved a high state of smoltification by release. Unfed fish grew poorly over the redring period, and at release were significantly smaller than either fed groups at the off-station sites, or the control groups reared at the hatchery (P < 0.05). Development of unfed fish toward smoltification was much slower than of fed fish. Mortality of all groups of unfed fish, including the barrier net, was relatively low. Health of all fish reared off-station remained good over the rearing period, and no outbreaks of disease were noted. On-site marking and

  12. Snake River fall Chinook salmon life history investigations, annual report 2008

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.

    2010-01-01

    In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0

  13. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  14. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  15. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2000-2001 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    2002-09-17

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 2000 to 30 September 2001. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations. (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6; (9

  16. Evaluation of Fall Chinook and Chum Salmon below Bonneville, The Dalles, John Day and McNary Dams; 1998-1999 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    1999-12-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6

  17. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha).

    PubMed Central

    Amandi, A; Hiu, S F; Rohovec, J S; Fryer, J L

    1982-01-01

    A new bacterial pathogen of chinook salmon (oncorhynchus tshawytscha) was isolated from fish in Oregon's Rogue River. The bacteria are biochemically and serologically related to strains of Edwardsiella tarda. Initially isolated from chinook salmon, the bacteria were also pathogenic for steelhead and rainbow trout (Salmo gairdneri), and channel catfish (Ictalurus punctatus). The 50% lethal doses for chinook salmon, steelhead trout, and channel catfish injected intraperitoneally and maintained in 18 degrees C water were 4.1 x 10(6), 5.6 x 10(6), and 4.0 x 10(5) respectively. When chinook salmon and rainbow trout were injected intraperitoneally and held in 12 degrees C water, the mean lethal doses were 6.4 x 10(7) and 1.7 x 10(6), respectively. The invasiveness of the organism was low in steelhead trout exposed to the bacteria by the waterborne route. The optimum growth temperature of the bacteria in brain heart infusion broth was approximately 35 degrees C. The guanine plus cytosine content of DNA obtained from E. tarda isolated from salmon was 59 mol%. PMID:7103490

  18. Snake River fall Chinook salmon life history investigations, 1/1/2013 – 12/31/2013

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2015-01-01

    Smallmouth bass predation on subyearling fall Chinook salmon was examined in the upper portion of Lower Granite Reservoir during 2013. During the time subyearlings were present in the reservoir, smallmouth bass were collected, their stomach contents removed for diet analysis, and their abundance estimated with mark-recapture techniques. In 2013, the greatest consumption of subyearlings by smallmouth bass occurred in late May and early June—as much as 50% of their diet by weight. Sand rollers were the most common non-salmonid fish consumed by smallmouth bass. In the section of the reservoir above the confluence with the Clearwater River, the abundance of bass was higher in non-riprap habitat than in riprap, but the opposite was true in the section below the confluence. We estimated that over 168,000 subyearlings were lost to smallmouth bass predation in 2013. Given the predominance of sand rollers in the diet of smallmouth bass, we believe this species reduces predation on subyearling fall Chinook salmon. A complete report of our findings is provided in the Appendix.

  19. Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.

    SciTech Connect

    Geist, David R.

    2001-10-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

  20. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  1. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days of incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to

  2. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect

    Geist, David

    2005-09-01

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be

  3. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Mueller, Robert P.

    2002-10-01

    Pacific Northwest National Laboratory initiated studies to identify potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat and assess the extent of spawning in deep water (>1 m) downstream of Bonneville Dam in the fall of 1999. This report provides results from 2001, the third year of our effort. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the area. The secondary objective was to map any chum salmon redds located in the deeper sections near Hamilton Slough. River flows during the spawning surveys in 2001 were lower than in 1999 and 2000. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 9, 2001. The location of the spawning area was similar to that of 1999 and 2000. One difference was the majority of redds were found in deeper water (>1.5 m) and closer to the shoreline adjacent to Pierce Island. Because of the low river flows during the fall of 2001, only a handful of redds were found using the boat-deployed video system within Hamilton Slough. No chum salmon (O. keta) redds were found in areas surveyed during 2000. (Note: surveys were limited to deeper sections of Hamilton Slough and near the main river channel.) An estimated 717 fall chinook salmon redds at water depths exceeding 1.5 m ({approx} 125 kcfs) were documented in 2001. These estimates are expanded from the number of redds found within a predefined survey area. Fall chinook salmon redds were found at water depths from 1.5-4.6 m and were located in a general area of {approx} 4.9 ha. Fall chinook salmon redds were constructed in gravels ranging from 3.2-13.4 cm in diameter and water velocities of 0.29-0.70 m/s.

  4. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  5. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservior, 1982 Annual Report of Research.

    SciTech Connect

    Miller, David R.; Sims, Carl W.

    1983-11-01

    The National Marine Fisheries Service in cooperation with the Bonneville Power Administration is conducting a 6-year study of the effects of instream flows on the passage time, survival, and migrational behavior of juvenile fall and summer (O-age) chinook salmon in John Day Reservoir. In 1982, the second year of the study, research activities concentrated on refining distribution and behavior data in John Day Reservoir and on releasing and recapturing marked fish needed to define flow/travel time relationships. Twenty-two groups (61,887 fish) of marked O-age chinook salmon were wire-tagged, branded, and released into the tailrace at McNary Dam, and forty-four groups (13,128 fish) were branded and released into the reservoir at various other sites. Sampling at the John Day Dam airlift facility captured 54,647 subyearling chinook salmon including 482 marked recoveries. Additional marks (279) were recovered from purse seine samples taken at various sites throughout the reservoir. The average passage time to John Day Dam for marked O-age chinook salmon released in the McNary tailrace was 23 days. Weekend flow reductions at McNary Dam did not affect passage time of subyearling chinook salmon in John Day Reservoir. There was no statistical evidence to indicate that instream flows affected either the rate of movement or residence time of O-age chinook salmon in John Day Reservoir.

  6. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus tshawytscha) in the Klickitat River, Washington

    SciTech Connect

    Brown, Richard S.; Geist, David R.

    2002-07-01

    This report describes a field study by PNNL for Bonneville Power Administration in fall 2001 to study the migration and energy use of adult fall chinook salmon traveling up the Klickitat River to spawn. The salmon were tagged with surgically implanted electromyogram transmitters or gastrically implanted coded transmitters. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted to pass three waterfalls on the lower Klickitat and as they traversed free-flowing stretches between and below the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat, 40% passed the first falls, 36% passed the second falls, and 20% reached Lyle Falls but were unable to leap over. Mean swimming speeds ranged from as low as 52.6 cm/sec between falls to as high as 158.1 cm/sec at falls passage. Fish exhibited a higher percentage of occurrences of burst swimming while passing the falls than while between falls (58.9% versus 1.7%). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (52.3-236.2 kcals versus 0.3-1.1 kcals). Male-female and day-night differences in falls passage success were noted. PNNL also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days at a mean rate of 2.36 km/day to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 4,492 kcals (32% anaerobic/68% aerobic). When the salmon have expended the estimated 968 kcals needed to get through Bonneville Dam and the three falls on the Lower Klickitat, plus this 4,492 kcals to reach the spawning grounds, they are left with approximately 8 to 12% (480 to 742 kcals) of their energy reserves for spawning. A delay of 4 to 7 days along the lower Klickitat River could deplete their remaining energy reserves (at a rate of about 103 kcals/day), resulting in death before spawning would occur.

  7. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    SciTech Connect

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7

  8. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    SciTech Connect

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near

  9. Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia River

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Murray, Christopher J.; McGrath, Kathy; Bott, Yi-Ju; Hanrahan, Timothy P.

    2008-02-01

    Chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon segregate spatially during spawning in the Ives Island side channel of the lower Columbia River downstream from Bonneville Dam. Previous research during one spawning season (2000) suggested that these species selected spawning habitats based on differences in hyporheic temperature and vertical hydraulic gradient (VHG) with the river. In this study, we confirmed the spatial segregation of spawning based on hyporheic characteristics over four years (2001–2004) and examined the effects of load-following operations (power generation to meet short-term electrical demand) at Bonneville Dam on hyporheic function and characteristics. We found that during the study period, hyporheic temperature and VHG in chum salmon spawning areas were highly variable during periods of load-following operation when river levels fluctuated. In contrast, hyporheic water temperature and VHG within chum spawning areas fluctuated less when river levels were not changing due to load-following operation. Variable temperature and VHG could affect chum and fall Chinook salmon spawning segregation and incubation success by altering the cues each species uses to select redd sites. Alterations in site selection would result in a breakdown in the spatial segregation of spawning between chum and fall Chinook salmon, which would expose earlier spawning fall Chinook eggs to a greater risk of dislodgement from later spawning chum salmon. Additional research will be required to fully assess the effects of load-following operations on the hyporheic environment and spawning and incubation success of chum and fall Chinook salmon downstream from Bonneville Dam.

  10. Evaluation of Fall Chinook and Chum Salmon Spawning Habitat near Ives and Pierce Islands in the Columbia River, Progress Report 1999-2001.

    SciTech Connect

    Garland, Rodney; Tiffan, Kenneth; Rondorf, Dennis

    2003-09-01

    The area around Ives Island below Bonneville Dam on the Columbia River supports spawning populations of chum and fall chinook salmon. Because this area is sensitive to water level fluctuations caused by changes in discharge from Bonneville Dam and from tidal cycles, we initiated a study to quantify flow-dependent changes in available spawning habitat for chum and fall chinook salmon. We conducted surveys to characterize the substrates available in the Ives Island study area. Detailed bathymetry was also obtained to serve as a foundation for two-dimension hydrodynamic modeling, which was used to estimate water velocities, depths, and wetted area over a range of simulated flows. Habitat surveys were conducted and logistic regression was used to identify physical habitat variables that were important in determining the presence of chum and fall chinook salmon redds. The physical habitat data were analyzed using the logistic regression models to create probability coverages for the presence of redds in a Geographic Information System. There was generally good agreement between chum and fall chinook salmon redd locations and areas where we predicted suitable spawning habitat. We found that at Columbia River discharges less than 120 kcfs, an important chum salmon spawning area below the mouth of Hamilton Creek could only be supported by discharge from Hamilton Creek. Chum salmon did not appear to spawn in proportion to habitat availability, however our predictive model did not include all variables known to be important to chum salmon redd-site selection. Fall chinook salmon spawning habitat was less sensitive to flow and the main channel of the Columbia River along Pierce Island was predicted to contain sufficient habitat at all modeled flows.

  11. Downstream movement of fall Chinook salmon juveniles in the lower Snake River reservoirs during winter and early spring

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk

    2012-01-01

    We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.

  12. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  13. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservoir : Annual Report 1983.

    SciTech Connect

    Miller, David R.; Sims, Carl W.

    1984-06-01

    The effects of instream river flow on the passage time, survival, and migrational behavior of juvenile fall and summer (O-age) chinook salmon in John Day Reservoir is being studied. In 1983, the final year of juvenile sampling in the reservoir, research activities continued to refine flow/travel time relationships and distributional behavior of O-age chinook salmon. Fifteen groups (72,559 fish) of marked O-age chinook salmon were wire-tagged, branded, and released into the tailrace at McNary Dam, and thirty-two groups (22,206 fish) were branded and released into the reservoir at various other sites. Sampling at John Day Dam, utilizing the airlift pump system in the B and C slots of Turbine Intake Unit 3, captured 82,698 subyearling chinook salmon including 640 mark recoveries. Additional marks (458) were recovered from purse seine samples taken at various sites throughout the reservoir. Weekly mean fork lengths of O-age chinook salmon captured at McNary and John fsm Dams and in the reservoir by purse seine ranged from 103 mm in mid-June to 166 mm in mid-December. Fish captured at the John Day Dam monitoring facility and by purse seine throughout the reservoir were in excellent condition. Preliminary analysis of stomach samples taken in 1982 and 1983 from purse seine catches indicates active feeding is taking place. The average passage time of the fastest moving marked O-age chinook salmon from McNary Dam to John Day Dam was 11 days (based on 25th percentile of mark recaptures). The average reservoir residence time was 22 days. Regression analysis was used to develop a description of the relationship of river flow to the rate of downstream movement of O-age chinook salmon in John Day Reservoir in 1983. The slope of this line and the correlation coefficient (R) were not significantly different from zero.

  14. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    SciTech Connect

    Tiffan, Kenneth F.; Connor, William P.; McMichael, Geoffrey A.

    2009-08-21

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a

  15. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    SciTech Connect

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T.

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook

  16. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  17. The effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2003

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.

    2005-01-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  18. Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2004-2005 Annual Report.

    SciTech Connect

    Tiffan, Kenneth F.; Connor, William P.

    2006-03-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  19. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day and McNary Dams; 1999-2000 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Spellman, Bryant; Clark, Roy

    2001-10-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1999 to 30 September 2000. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates.

  20. Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2002-2003 Annual Report.

    SciTech Connect

    Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.

    2003-10-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  1. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  2. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the

  3. Effects of Flow and Spill on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservior : Annual Report 1987.

    SciTech Connect

    Miller, David R.; Glorgi, Albert E.

    1987-12-01

    Juvenile fall chinook salmon, Oncorhynchus tshawytscha, were freeze branded, coded wire tagged, and released into the Columbia River in the tailrace below McNary Dam during the summers of 1981--1983. The objectives of the study were to examine the effects of river flow on the passage time and migrational behavior of the juveniles and to subsequently assess any relationship to adult survival. This report details adult recovery data to June 1987. 2 refs., 11 tabs.

  4. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  5. Evidence of Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 1999.

    SciTech Connect

    Mueller, Robert P.; Dauble, Dennis D.

    2000-04-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin.

  6. Distinguishing between natural and hatchery Snake River fall Chinook salmon subyearlings in the field using body morphology

    USGS Publications Warehouse

    Tiffan, K.F.; Connor, W.P.

    2011-01-01

    We used body morphology to distinguish between natural- and hatchery-origin subyearling fall Chinook salmon Oncorhynchus tshawytscha in rearing areas of the Snake River and at a downstream dam during seaward migration. Using subjective eye and body shape characteristics, field personnel correctly classified 88.9–100% of natural subyearlings (N = 626) and 90.0–100% of hatchery subyearlings (N = 867) in rearing areas from 2001 to 2008. The morphological characteristics used by these personnel proved to have a quantitative basis, as was shown by digital photography and principal components analysis. Natural subyearlings had smaller eyes and pupils, smaller heads, deeper bodies, and shorter caudal peduncles than their hatchery counterparts during rearing and at the dam. A discriminant function fitted from this set of morphological characteristics classified the origin of fish during rearing and at the dam with over 97% accuracy. We hypothesize that these morphological differences were primarily due to environmental influences during incubation and rearing because it is highly probable that a large portion of the natural juveniles we studied were the offspring of hatchery × hatchery mating in the wild. The findings in this paper might provide guidance for others seeking to differentiate between natural and hatchery fish.

  7. Pen Rearing and Imprinting of Fall Chinook Salmon, 1987 Annual Report.

    SciTech Connect

    Nelson, William R.; Novotny, Jerry F.; Macy, Thomas L.

    1987-12-01

    The 1987 field season was the third and final year fox the rearing and release of juvenile upriver bright chinook salmon (Oncorhynchus tshawytscha) at off-station sites. Disease problems in the hatchery where fish for the study were spawned and hatched resulted in the movement of trials to Drano Lake, a backwater located near river km 261, 105 km downstream of Rock Creek and 205 km downstream of Social Security Pond, the two off-station rearing sites where studies were completed in 1984--86. Fish in fed treatments were successfully reared in pens during March, April, and May and were released in the third week of May at a mean size of about 4,5 g (l00/lb). Growth and physiological development of fish reared In Drano Lake were only slightly faster than observed in hatchery controls over much of the rearing period. However, during the final two weeks of rearing, ATPase activities and growth of the fish reared in pens increased, and at release the fed treatments tested in Drano Lake were significantly larger, and physiological development was significantly ahead of hatchery controls. The health and condition of fed fish in Drano Lake remained good throughout the study and survival was high (>99%) in all treatments; no pathogens were detected in any of the groups. However, infectious hematopoietic necrosis was diagnosed among upriver brights being reared in the hatchery; the latter group was destroyed on May 21. Unfed fish grew poorly throughout the rearing period with little or no detectable growth in the two higher density treatments and mean growth of less than 0.3 g in the lower density. Survival of fish reared at the higher density was poor, while survival in the two lower density treatments was much better. Densities tested in pen rearing trials have been much lower than the maximum recommended in terms of available rearing spare. However, during periods of limited water exchange the highest density tested so fax (4.13 kg/ma) would be above the recommended

  8. Garfield County Habitat for Fall Chinook and Steelhead, Annual Report 2006.

    SciTech Connect

    Bartels, Duane

    2007-01-01

    The objectives and tasks outlined in detail in this project report were implemented during calendar year 2006 in all the watersheds of Garfield County. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by the Northwest Power and Conservation Council (NPCC). In the years since 1993, other watersheds in Garfield County have been designated as salmon bearing streams and have received numerous practices formerly just designated for the Pataha Creek Watershed. The following sections show the individual practices, quantity of practices implemented, total costs, BPA costs and tons of soil saved for all the BPA funds used to protect and enhance the natural resources in the salmon bearing watersheds of Garfield County. In the year 2006, 55% of the funding received from BPA went into cost share practices. Of all the cost share received in the county, 22% came from BPA. This is largely due to other funding programs becoming available to address livestock influenced water quality problems and riparian health improvement. Over 95% of the sediment entering the streams can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek, Deadman Creek, and Alpowa Creek have had steelhead runs in the past. The Pataha Creek has native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow, and shiners inhabit the lower portion of Pataha Creek because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat through the CREP, CCRP, and DOE grants has improved habitat for all the fish species. The lower portion of the Pataha Creek is slowly developing into spawning and rearing habitat for Chinook salmon. With the future removal of some migration barriers on the lower portion of the Deadman and Pataha, more stream miles will become useful spawning and rearing habitat. The upland projects completed during 2006 were practices that significantly reduce

  9. Use of hydrogen peroxide during incubation of landlocked fall Chinook salmon eggs in vertical-flow incubators

    USGS Publications Warehouse

    Barnes, M.E.; Gaikowski, M.P.

    2004-01-01

    Six different hydrogen peroxide treatment regimes were evaluated in a series of three trials with landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs incubated in vertical-flow incubators. Six daily 15-min hydrogen peroxide treatment regimes (1,000 mg/L; 1,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,000 mg/L; 2,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,500 mg/L; and 2,500 mg/L with a decrease to 500 mg/L during estimated blastopore formation) were compared with daily 15-min treatments of 1,667 mg/L of formalin. Mortality at egg eye-up and fry hatch and from eye-up to hatch was significantly greater in eggs receiving the 2,500-mg/L hydrogen peroxide treatments throughout incubation and in those receiving 2,500 mg/L hydrogen peroxide with a decrease to 500 mg/L during blastopore formation than in either of the 1,000-mg/L hydrogen peroxide treatment regimes or the formalin-treated eggs in the first trial. No significant differences in mortality were observed among any of the treatments in the subsequent two trials with maximum hydrogen peroxide concentrations of 2,000 mg/L. Fungal infestations were observed primarily in the incubation trays treated at either of the 1,000-mg/L hydrogen peroxide regimens, as well as in those trays whose treatment concentrations were dropped to 500 mg/L during blastopore formation. Infestations were not observed in any of the formalin-treated trays. If minor fungal infestation is acceptable, then daily hydrogen peroxide treatments of 1,000 mg/L for 15 min would probably provide adequate fungal control compared with formalin usage.

  10. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

    2006-10-01

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

  11. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

    2005-10-01

    Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.

  12. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

    2004-08-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.

  13. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.

    SciTech Connect

    Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

    2003-09-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.

  14. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Groves, P.A.

    2008-11-25

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

  15. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect

    Hanrahan, T.; Geist, D.; Arntzen, C.

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  16. Upstream Passage, Spawning, and Stock Identification of Fall Chinook Salmon in the Snake River, 1992 : Annual Report FY 92-93.

    SciTech Connect

    Blankenship, H. Lee; Mendel, Glen Wesley

    1993-12-01

    This report summarizes the activities and results for the second year (1992) of a three year study. The goals of the study were as follows: (1) to determine the source (s) of interdam losses of adult fall chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), as well as upstream of LGR; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, and to assist with redd habitat mapping and carcass recovery (for genetic stock profile analysis). Radio telemetry was used as the method of addressing project goals. Unmarked (not adipose clipped) adult fall chinook salmon were trapped and radio tagged at IHR and LGR dams as they ascended the Snake River during their spawning migration. They used aerial and ground mobile radio tracking to determine the movements of these fish. They examined movements of all radio tagged salmon upstream of LGR Dam. That provided us with a sample of 17 radio tagged fish tagged at IHR and 20 tagged at LGR. They estimate a combined fall back rate at LGR of 37.1% (13 fish). Another 10.8--13.5% were `lost` or prespawning mortalities. They identified two potential spawning locations that would not have been detected from the aerial spawning surveys. One site was upstream of Troy on the Grande Ronde River and the other was in the upper Snake River.

  17. Snake River fall Chinook salmon life history investigations, 1/1/2012 - 12/31/2012: Annual report 2002-032-00

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, Willam P.; Bellgraph, Brian J.; Chittaro, Paul M.

    2014-01-01

    Finally, we examined the role of different invasive invertebrates in lower Snake River reservoir food webs that are food, or competitors for food, for juvenile fall Chinook salmon. The Siberian prawn, a relatively new invader, is relatively abundant but its role on the food web is largely unexplored. Prawns are successfully reproducing and their diet is 81% Neomysis (an invasive opossum shrimp) which is heavily used at times by juvenile salmon for food. Neomysis has become very abundant in lower Snake River reservoirs in recent years and may be a profitable food item for many fish species.

  18. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  19. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  20. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    SciTech Connect

    Connor, William P.

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  1. Suitability criteria analyzed at the spatial scale of redd clusters improved estimates of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat use in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, David R. ); Jones, Julia; Murray, Christopher J. ); Dauble, Dennis D. )

    1999-12-01

    We improved our predictions of fall chinook salmon (Oncorhynchus tshawytscha) habitat use by analyzing spawning habitat at the spatial scale of redd clusters. Spatial point pattern analyses indicated that redd clusters in the Hanford Reach, Columbia River, were consistent in their location from 1994 to 1995. Redd densities were 16.1 and 8.9 redds?ha-1 in 1994 and 1995, respectively, and individual redds within clusters were usually less than 30 m apart. Pattern analysis also showed strong evidence that redds were uniformly distributed within the clusters where inter-redd distances ranged from 2 to 5 m. Redd clusters were found to occur predominantly where water velocity was between 1.4 to 2 m?s-1, water depth was 2 to 4 m, and lateral slope of the riverbed was less than 4%. This habitat use represented a narrower range of use than previously reported for adult fall chinook salmon. Logistic regression analysis determined that water velocity and lateral slope were the most significant predictors of redd cluster location over a range of river discharges. Over-estimates of available spawning habitat lead to non-achievable goals for protecting and restoring critical salmonid habitat. Better predictions of spawning habitat may be possible if cluster-specific characteristics are used.

  2. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  3. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume VIII; New Model for Estimating Survival Probabilities and Residualization from a Release-Recapture Study of Fall Chinook Salmon Smolts in the Snake River, 1995 Technical Report.

    SciTech Connect

    Lowther, Alan B.; Skalski, John R.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake River fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging.

  4. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon; Bickford, Brad; Rhodes, Tobyn

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the

  5. Juvenile and adult fall Chinook and chum salmon habitat studies below Bonneville Dam on the Columbia River. Annual report 2002-2003

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.; Rondorf, D.; Skalicky, J.

    2004-01-01

    We investigated spatial and temporal changes in subyearling fall Chinook salmon rearing habitat and areas dewatered below Bonneville Dam on the Columbia River. We used two-dimensional hydrodynamic modeling to predict water velocity and depth data. By combining two-dimensional hydrodynamic modeling with a predictive model of subyearling rearing presence, we were able to illustrate spatiotemporal changes in subyearling rearing areas, areas dewatered by flow reductions, and percentage of dewatered locations that were initially subyearling rearing areas. By using a geographic information system, we located areas of persistent subyearling rearing and areas frequently dewatered at 1-h change intervals from 1 April through 31 May, 2003. We validated predicted water velocities and surface elevations using empirically collected water velocities and surface elevations. We beach seined to collect subyearlings at random locations within the study area to validate predictions of subyearling presence.

  6. Hatchery Evaluation Report / Lyons Ferry Hatchery - Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Teams (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Fall Chinook). The audit is being conducted as a requirement of the Northwest Power Planning Council (NPPC) ``Strategy for Salmon`` and the Columbia River Basin Fish and Wildlife Program. Under the audit, the hatcheries are evaluated against policies and related performance measures developed by the Integrated Hatchery Operations Team (IHOT). IHOT is a multi-agency group established by the NPPC to direct the development of new basinwide standards for managing and operating fish hatcheries. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  7. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins and fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely masked any

  8. Quantifying Upper Particle-size Limits of Salmonid Spawning Gravel: Analysis of Fall-run Chinook Salmon of the Sacramento River

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.

    2008-12-01

    Reversing the decline of historically prolific runs of Chinook salmon (Oncorhynchus tshawytscha) remains a high priority of river restoration along the US Pacific Coast. One routinely implemented strategy is gravel injection, to supplement spawning habitat which has been depleted by gravel mining and bed coarsening below dams. Gravel augmentation is generally designed around a qualitatively assessed "preferred" median particle size. Implementation sites are not always ecologically ideal, because there often is little quantitative basis for determining where added gravel would be most suitable. Although gravel augmentation may increase spawning habitat, a more mechanistic design basis could reduce costs, improve efficiency, and make results more predictable. One key to developing better designs is a better method for characterizing existing spawning gravel deposits. Here we propose a series of mechanistically oriented hypotheses about the spawning suitability of natural gravels. One hypothesis is that there is an upper size limit on particles that can be moved by salmon. We expect that this limit depends on salmon size, water velocity and the size (and embeddedness) of surrounding rocks. Another hypothesis is that spawning success is related to percent coverage by immovable particles. A corollary hypothesis is that redds become irregular (and less productive) as percent coverage by immovable particles increases. Another related hypothesis is that redd-building success should approach zero at an upper threshold of coverage by immovable particles. We explored our hypotheses for fall-run Chinook in the Sacramento River. We collected grain size data, constructed facies maps of the bed, and delineated boundaries of spawning use at the peak of spawning, prior to the run's recent population decline. Our observations suggest that particles with intermediate axes diameters bigger than about 130 mm are not generally movable by fall run Chinook. Moreover we observed no

  9. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    SciTech Connect

    Muir, William D.; Axel, Gordon A.; Smith, Steven G.

    2004-12-01

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at Mc

  10. Movement of Fall Chinook Salmon Fry Oncorhynchus Tshawytscha : A Comparison of Approach Angles for Fish Bypass in a Modular Rotary Drum Fish Screen.

    SciTech Connect

    Neitzel, D.A.; Blanton, S.L.; Abernethy, C. Scott; Daly, D.S.

    1996-08-01

    The Pacific Northwest National Laboratory (PNNL) performed tests to determine whether a significant difference in fish passage existed between a 6-ft screening facility built perpendicularly to canal flow and an identical screening facility with the screen mounted at a 45-degree angle to the approach channel. A modular drum screen built by the Washington Department of Fish and Wildlife was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fall chinook salmon fry were introduced into the test system, and their movements were monitored. A total of 14 tests (400 fish per test) that lasted 20 hours were completed during April and May, 1996. There was no significant difference in fish passage rate through the two approach configurations. Attraction flow to the bypass across the face of the screen was more evident for the angled approach, although this did not appear to play a significant role in attracting fish to the bypass. Approach velocities at the face of the screen did not exceed the 0.4 fps criteria for either approach configuration and posed not threat to fish. No fish passed over, around, or through the drum screen during any test.

  11. Predicted changes in subyearling fall Chinook salmon rearing and migratory habitat under two drawdown scenarios for John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    We evaluated the potential effects of two different drawdown scenarios on rearing and migration habitat of subyearling fall Chinook salmon Oncorhynchus tshawytscha in John Day Reservoir on the Columbia River. We compared habitats at normal operating pool elevation with habitats at drawdown to spillway crest elevation and drawdown to the historical natural river elevation for two flows (4,417 and 8,495 m3/s). Using two-dimensional hydrodynamic modeling and a predictive habitat model, we determined the quantity and spatial distribution of rearing habitat and predicted water velocities. We predicted that the most habitat area would occur under normal pool elevation, but 93% of habitat was located in the upper third of the reservoir. Although less habitat area was predicted under drawdown to the spillway crest and the natural river, it was distributed more homogeneously throughout the study area. Habitat connectivity, patch size, and percent of suitable shoreline were greatest under drawdown to the natural river elevation. Mean cross-sectional water velocity and the variation in velocity increased with increasing level of reservoir drawdown. Water velocities under drawdown to the natural river were about twice as high as those under drawdown to spillway crest and five times higher than those under normal pool. The variability in water velocity, which may provide cues to fish migration, was highest under drawdown to the natural river and lowest under normal pool elevation. The extent to which different drawdown scenarios would be effective in John Day Reservoir depends in part on restoring normative riverine processes.

  12. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  13. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservoir, 1981 Annual Report of Research.

    SciTech Connect

    Sims, Carl W.; Miller, David R.

    1982-06-01

    Research was conducted by NMFS in 1981 to define the effects of instream flows on the passage time, survival, and migrational behavior of 0-age chinook salmon in John Day Reservoir. Fourteen groups (74,683 fish) of marked 0-age chinook salmon were wire-tagged, branded, and released into the tailrace at McNary Dam, fourteen groups (13,746 fish) were branded and released into the reservoir at River Kilometer 375, and 34 groups (14,273) were branded and released into the reservoir at various other sites. More than 55,000 0-age chinook salmon were sampled at the John Day Dam airlift facility. This sample included 623 mark recoveries. Four hundred and eight (408) additional marks were recovered from purse seine samples taken at various sites throughout the reservoir. The average passage time of marked 0-age chinook salmon released in the McNary trailrace was 22 days in 1981. There was no statistically significant evidence to indicate that instream flows affected either the rate of movement or residence time of 0-age chinook salmon in John Day Reservoir in 1981. 7 references, 1 figure, 12 tables.

  14. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  15. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservoir : Annual Report 1985. [Oncorhynchus Tshawytscha

    SciTech Connect

    Miller, David R.; Giorgi, Albert E.

    1985-12-01

    As part of a study to define the effects of instream flows on the passage time, migration behavior, and survival of phi age chinook salmon migrating through John Day Reservoir from June through August juvenile fish were tagged and released below McNary Dam in 1981. This report discusses adult returns through 1984. (ACR)

  16. Evaluation of the Effects of Chromium to Fall Chinook Salmon in the Hanford Reach of the Columbia River: Integration of Recent Toxicity Test Results

    SciTech Connect

    Dauble, Dennis D. ); Patton, Gregory W. ); Poston, Ted M. ); Peterson, Robert E. )

    2003-05-01

    The objective of this report was to summarize results of a series of recent laboratory studies conducted to evaluate the effects of chromium on chinook salmon. Individual studies focused on determining the relationship between exposure concentration and toxicological response for a range of life stages including fertilization, egg through swim-up (early life history), parr health, and avoidance-preference of juveniles. Study designs were representative of possible exposure scenarios in the Hanford Reach of the Columbia River.

  17. Pilot study to access the role of Ceratomyxa shasta infection in mortality of fall-run Chinook smolts migrating through the lower Klamath River in 2008

    USGS Publications Warehouse

    Foott, Scott; Stutzer, Greg; Fogerty, R.; Hansel, Hal; Juhnke, Steven; Beeman, John W.

    2009-01-01

    Apparent survival and migration rate of radio-tagged hatchery subyearling Chinook salmon released at Iron Gate Hatchery was monitored in the Klamath River to see if the timing of mortality coincided with observations of ceratomyxosis in re-captured coded wire tag cohorts. Despite rapid emigration, these relatively large (mean fork length 92 mm) smolts had a cumulative apparent survival to the estuary of 0.074 (SE 0.024) and standardized rates of survival per 100 km tended to decrease linearly with distance from the hatchery. The last fish detection occurred 26 days after release but median travel time between Iron Gate Hatchery (rkm 309) and the last receiver near the Klamath estuary (Blake’s Riffle rkm 13) was about 10 days. The majority of apparent mortality (8-10 d post-release) occurred before disease from Ceratomyxa shasta infection is expected after exposure to infectious waters. Despite numerous observations of ceratomyxosis in the Klamath R. during June, an obvious link between disease and apparent survival was not present in this study. Future studies should examine the acute (e.g., predator types and densities) and chronic (e.g., swimming performance impairment due to disease) mortality factors for juvenile Chinook salmon smolts in the Klamath River.

  18. Falls

    MedlinePlus

    A fall can change your life. If you're elderly, it can lead to disability and a loss of independence. If your bones are fragile from osteoporosis, you could break a bone, often a hip. But aging alone doesn't make people fall. Diabetes and heart disease affect balance. So do ...

  19. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    SciTech Connect

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO), and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of 84

  20. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    SciTech Connect

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams

  1. Sacramento River chinook disease

    USGS Publications Warehouse

    Ross, A.J.; Rucker, R.R.

    1963-01-01

    Epizootics among chinook salmon fingerlings at the Coleman National Fish Hatchery have occurred periodically since 1941. A virus or virus-like filterable agent has been demonstrated to be the causative agent of this disease.

  2. Early life history attributes and run composition of PIT-tagged wild subyearling Chinook salmon recaptured after migrating downstream past Lower Granite Dam

    USGS Publications Warehouse

    Connor, W.P.; Bjornn, T.C.; Burge, H.L.; Marshall, A.R.; Blankenship, H.L.; Steinhorst, R.K.; Tiffan, K.F.

    2001-01-01

    Seaward migration timing of Snake River fall chinook salmon (Oncorhynchus tshawytscha) smolts is indexed using subyearling chinook salmon passage data collected at Lower Granite Dam. However, not all of the subyearlings are fall chinook salmon. For six years, we recaptured wild subyearling chinook salmon smolts, which had been previously PIT tagged in the Snake River, to genetically determine if the fish were offspring of spring and summer (hereafter, spring/summer), or fall chinook salmon. Springfall chinook salmon comprised over 10% of the samples of recaptured smolts in five of six years. For these five years, we used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured (i.e., not sampled for genetic identification). Accuracy of the discriminant analysis models, based on genetically identified smolts, varied between 75 and 85%. After using discriminant analysis to classify run membership for each PIT-tagged smolt that was not genetically identified, we compared early life history attributes between fall and spring/summer chinook salmon and calculated annual run composition. The life history attributes we studied overlapped, but spring/summer chinook salmon reared along the shoreline of the free-flowing Snake River earlier, were larger, and began seaward migration earlier than fall chinook salmon. Spring/summer chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam. As a result, the presence of spring/summer chinook salmon makes migration timing for the fall chinook salmon seem earlier and more protracted than is the case. If wild subyearling spring/summer chinook salmon smolts are not considered, fall chinook salmon abundance at Lower Granite Dam will be overestimated.

  3. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  4. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A.

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  6. Habitat use by subyearling Chinook and coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.

    2014-01-01

    The habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) was examined in three tributaries of Lake Ontario. A total of 1781 habitat observations were made on Chinook salmon (698) and coho salmon (1083). During both spring and fall, subyearling coho salmon used pool habitat with abundant cover. During spring, principal component analysis revealed that water depth was the most important variable governing subyearling Chinook salmon habitat use. Substrate materials used by Chinook salmon in the spring and coho salmon in the fall were significantly smaller than were present on average within the study reaches. When the two species occurred sympatrically during spring they exhibited similar habitat selection. Although the habitat used by coho salmon in Lake Ontario tributaries was consistent with observations of habitat use in their native range, higher water velocities were less important to Chinook salmon than has previously been reported.

  7. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume XVII : Effects of Ocean Covariates and Release Timing on First Ocean-Year Survival of Fall Chinook Salmon from Oregon and Washington Coastal Hatcheries.

    SciTech Connect

    Burgess, Caitlin; Skalski, John R.

    2001-05-01

    Effects of oceanographic conditions, as well as effects of release-timing and release-size, on first ocean-year survival of subyearling fall chinook salmon were investigated by analyzing CWT release and recovery data from Oregon and Washington coastal hatcheries. Age-class strength was estimated using a multinomial probability likelihood which estimated first-year survival as a proportional hazards regression against ocean and release covariates. Weight-at-release and release-month were found to significantly effect first year survival (p < 0.05) and ocean effects were therefore estimated after adjusting for weight-at-release. Negative survival trend was modeled for sea surface temperature (SST) during 11 months of the year over the study period (1970-1992). Statistically significant negative survival trends (p < 0.05) were found for SST during April, June, November and December. Strong pairwise correlations (r > 0.6) between SST in April/June, April/November and April/December suggest the significant relationships were due to one underlying process. At higher latitudes (45{sup o} and 48{sup o}N), summer upwelling (June-August) showed positive survival trend with survival and fall (September-November) downwelling showed positive trend with survival, indicating early fall transition improved survival. At 45{sup o} and 48{sup o}, during spring, alternating survival trends with upwelling were observed between March and May, with negative trend occurring in March and May, and positive trend with survival occurring in April. In January, two distinct scenarios of improved survival were linked to upwelling conditions, indicated by (1) a significant linear model effect (p < 0.05) showing improved survival with increasing upwelling, and (2) significant bowl-shaped curvature (p < 0.05) of survival with upwelling. The interpretation of the effects is that there was (1) significantly improved survival when downwelling conditions shifted to upwelling conditions in January (i

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks

  9. Major histocompatibility complex differentiation in Sacramento River chinook salmon.

    PubMed

    Kim, T J; Parker, K M; Hedrick, P W

    1999-03-01

    The chinook salmon of the Sacramento River, California, have been reduced to a fraction of their former abundance because of human impact and use of the river system. Here we examine the genetic variation at a major histocompatibility complex class II exon in the four Sacramento chinook salmon runs. Examination of the alleles found in these and other chinook salmon revealed nucleotide patterns consistent with selection for amino acid replacement at the putative antigen-binding sites. We found a significant amount of variation in each of the runs, including the federally endangered winter run. All of the samples were in Hardy-Weinberg proportions. A significant amount of genetic differentiation between runs was revealed by several measures of differentiation. Winter run was the most genetically divergent, while the spring, late-fall, and fall runs were less differentiated.

  10. Major histocompatibility complex differentiation in Sacramento River chinook salmon.

    PubMed Central

    Kim, T J; Parker, K M; Hedrick, P W

    1999-01-01

    The chinook salmon of the Sacramento River, California, have been reduced to a fraction of their former abundance because of human impact and use of the river system. Here we examine the genetic variation at a major histocompatibility complex class II exon in the four Sacramento chinook salmon runs. Examination of the alleles found in these and other chinook salmon revealed nucleotide patterns consistent with selection for amino acid replacement at the putative antigen-binding sites. We found a significant amount of variation in each of the runs, including the federally endangered winter run. All of the samples were in Hardy-Weinberg proportions. A significant amount of genetic differentiation between runs was revealed by several measures of differentiation. Winter run was the most genetically divergent, while the spring, late-fall, and fall runs were less differentiated. PMID:10049927

  11. Hatchery Evaluation Report/Lyons Ferry Hatchery - Spring Chinook : an Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.

    SciTech Connect

    Watson, Montgomery.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Spring Chinook). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead. and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  12. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  13. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    SciTech Connect

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.; Stephenson, John R.; Pflugrath, Brett D.; Welch, Abigail E.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-02-01

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to the incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.

  14. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    SciTech Connect

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  15. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.

    2017-01-01

    Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086

  16. Thermal Acclimation in Ectotherms.

    ERIC Educational Resources Information Center

    Westmoreland, David

    1994-01-01

    A major contributor to our understanding of the adaptation of all organisms to the physical environment is physiological ecology. Described here is an inexpensive, reliable and simple experiment to aid in helping students to understand better the acclimation process. (ZWH)

  17. Thermal Acclimation in Ectotherms.

    ERIC Educational Resources Information Center

    Westmoreland, David

    1994-01-01

    A major contributor to our understanding of the adaptation of all organisms to the physical environment is physiological ecology. Described here is an inexpensive, reliable and simple experiment to aid in helping students to understand better the acclimation process. (ZWH)

  18. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    SciTech Connect

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303,769 hatchery

  19. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon

    USGS Publications Warehouse

    Zimmerman, C.E.; Stonecypher, R.W.; Hayes, M.C.

    2003-01-01

    Between 1993 and 2000, precocious yearling males of hatchery-produced fall and spring chinook salmon Oncorhynchus tshawytscha composed 3.6-82.1% of chinook salmon runs to the Umatilla River, Oregon. These yearling males are smaller than typical jack salmon, which spend a full winter in the ocean, and are commonly referred to as "mini jacks." Minijack fall chinook salmon are characterized by enlarged testes and an increased gonadosomatic index. Our goal was to determine if minijacks migrated to saltwater between the time they are released from the hatchery and the time they return to the Umatilla River, a period of 4-6 months. During 1999-2000, we collected otoliths from an adult male fall chinook salmon, 12 spring chinook salmon minijacks, and 10 fall chinook salmon minijacks. We measured strontium:calcium (Sr:Ca) ratios from the age-1 annulus to the edge of the otolith to determine whether these fish had migrated to the ocean. The Sr:Ca ratios increased from low values near the age-1 annulus, similar to ratios expected from freshwaters, to higher values near the edge of the otolith. The Sr:Ca ratios increased to levels similar to ratios expected in saltwater, indicating that these fish had migrated to saltwater before returning to the Umatilla River. Analysis of published water chemistry data from the Columbia and Snake rivers and rearing experiments in the main-stem Columbia River confirmed that high Sr:Ca ratios measured in otoliths were not the result of high strontium levels encountered in the freshwater environment. Previously assumed to remain within freshwater and near the point of release, our results suggest these minijack salmon migrated at least 800 km and past three hydroelectric dams to reach saltwater and return to the Umatilla River.

  20. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    SciTech Connect

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  1. Weather, Chinook, and stroke occurrence.

    PubMed

    Field, Thalia S; Hill, Michael D

    2002-07-01

    Changes in weather and season have been linked to stroke occurrence. However, the association has been inconsistent across stroke types. Calgary is a city in the Chinook belt and is subject to high variability in weather conditions. We obtained hourly weather data over a 5-year period from 1996 to 2000; Chinook events were identified according to the accepted definition. We reviewed administrative data to determine stroke occurrence and defined stroke types to maximize specificity of diagnosis. To examine the hypothesis that weather affected the number of strokes occurring in a given day, we compared average daily stroke occurrence on Chinook days and non-Chinook days; we compared mean daily temperature, relative humidity, barometric pressure, and wind speed by the number of strokes occurring on any given day. Annual variation in stroke frequency was observed. No seasonal, monthly, or weekly variation in overall stroke occurrence or occurrence by type was evident. No relationship with changes in weather parameters was observed. We found no association between weather changes and stroke occurrence. A cause-and-effect relationship between weather and stroke occurrence is dubious because of a lack of consistency across studies.

  2. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutch

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  3. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.

    SciTech Connect

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2006-01-01

    prompting an early release. The total mortality for the acclimation period was 49 (0.05 %). The total number of fish released from the acclimation facility during the late period was 105,369. Maintenance and repair activities were conducted at the acclimation facilities in 2005. Facility maintenance work consisted of snow removal, installation of drainage lines, removal of gravel from intake area, installation of new gate at the CCAF, and complete overhaul of 2 travel trailers. The Catherine Creek Adult Capture Facility (CCACF) was put into operation on 11 February 2005. The first adult summer steelhead was captured on 4 March. A total of 190 adult summer steelhead were trapped and released from 4 March to 16 May 2005. Peak arrival at the trap was the week of 8 April. The first adult spring Chinook salmon was captured at CCACF on 6 May 2005. A total of 226 spring Chinook salmon were trapped from 6 May to 8 July 2005. There were 56 adults and 4 jacks unmarked and 136 adult and 30 jack marked spring Chinook salmon trapped. Peak arrival at the trap was the week of 10 June for the unmarked and marked fish. None of the captive broodstock returns were collected for broodstock. Broodstock was collected systematically over the entire return from 31 May to 6 July 2005. Ten of the 34 broodstock collected and transported from CCACF to LGH were unmarked fish trapped. About 18% of the naturally produced adult males and females trapped were taken to LGH for broodstock. One jack was collected for every 5 adult males that were taken to LGH. A total of 30 age 4 and 5 and 4 age 3 fish were transported to LGH for broodstock. The hatchery component of the broodstock was 66.7%. Five weekly spawning surveys were conducted below the weir on Catherine Creek beginning 30 June 2005. During these surveys no live or dead fish were observed. The trap was removed from Catherine Creek on 3 August 2005. Temperatures at the CCACF ranged from -0.1 C on 14 February to 23.7 C on 21 July. The hourly

  4. Spawning Success of Hatchery Spring Chinook Salmon Outplanted as Adults in the Clearwater River Basin, Idaho, 2001.

    SciTech Connect

    Cramer, Steven P.; Ackerman, Nichlaus; Witty, Kenneth L.

    2002-04-16

    The study described in this report evaluated spawning distribution, overlap with naturally-arriving spawners, and pre-spawning mortality of spring chinook salmon, Oncorhynchus tshawytscha, outplanted as adults in the Clearwater River Subbasin in 2001. Returns of spring chinook salmon to Snake River Basin hatcheries and acclimation facilities in 2001 exceeded needs for hatchery production goals in Idaho. Consequently, management agencies including the U.S. Fish and Wildlife Service (FWS), Idaho Department of Fish and Game (IDFG) and Nez Perce Tribe (NPT) agreed to outplant chinook salmon adults as an adaptive management strategy for using hatchery adults. Adult outplants were made in streams or stream sections that have been typically underseeded with spawners. This strategy anticipated that outplanted hatchery chinook salmon would spawn successfully near the areas where they were planted, and would increase natural production. Outplanting of adult spring chinook salmon from hatcheries is likely to be proposed in years when run sizes are similar to those of the 2001 run. Careful monitoring of results from this year's outplanting can be used to guide decisions and methods for future adult outplanting. Numbers of spring chinook salmon outplanted was based on hatchery run size, hatchery needs, and available spawning habitat. Hatcheries involved in outplanting in the Clearwater Basin included Dworshak National Fish Hatchery, Kooskia National Fish Hatchery, Clearwater Anadromous Fish Hatchery, and Rapid River Fish Hatchery. The NPT, IDFG, FWS, and the National Marine Fisheries Service (NMFS) agreed upon outplant locations and a range of numbers of spring chinook salmon to be outplanted (Table 1). Outplanting occurred mainly in the Selway River Subbasin, but additional outplants were made in tributaries to the South Fork Clearwater River and the Lochsa River (Table 1). Actual outplanting activities were carried out primarily by the NPT with supplemental outplanting done

  5. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  6. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest). Chinook salmon. [Oncorhynchus tshawytscha

    SciTech Connect

    Allen, M.A.; Hassler, T.J.

    1986-04-01

    The chinook salmon (Oncorhynchus tshawytscha) is a valuable sport and commercial fish species and accounted for over 69% of the salmon caught off the California coast from 1971 through 1983. Chinook salmon runs in the Sacramento River, the major producer of chinook salmon in California, are devided into fall, late fall, winter, and spring runs. Other coatal rivers have fall and spring runs of chinook or only a fall run. After hatching, the sac-fry live in the gravel for a month or longer before they emerge as fry. Some fry migrate immediately to saltwater, other remain 2 to 12 months in freshwater before migrating. They remain in the ocean from 1 to 7 years; most females mature and return to freshwater to spawn after 2 to 4 years at sea. Some males return to spawn after only 1 year in the ocean, but most return after 2 to 4 years. All chinook salmon die after they reenter freshwater, whether they spawn or not.

  7. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994 Annual Report.

    SciTech Connect

    Achord, Stephen; Matthews, Gene M.; Kamikawa, Daniel J.

    1995-09-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing. The authors PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1993, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, and McNary Dams during spring, summer, and fall 1994. This report details their findings.

  8. Thermoregulation in hypergravity-acclimated rats

    NASA Technical Reports Server (NTRS)

    Monson, Conrad B.; Patterson, Susan L.; Horowitz, John M.; Oyama, Jiro

    1989-01-01

    The effect of acclimation to hypergravity on thermoregulatory responses of rats was determined by comparing data on core temperature, T(c), tail temperature, and O2 consumption in rats raised at 1 G (C) and at 2.1 G. It was found that, when C rats were exposed to an ambient temperature of 9 C concurrently with exposure to 2.1 G, the T(c) fell by about 6 C, while in rats acclimated to 2.1 G, the T(c) fell only by 1 C. Results of O2 consumption measurements showed that C rats exposed simultaneously to cold and hypergravity were not activating their thermogenic mechanism sufficiently to prevent a fall in T(c). In other experiments, rats acclimated to either 1 or 2.1 G were found to lack the ability to maintain their T(c) when exposed to a 5.8-G field or when cold-stressed at 1 G for extended times.

  9. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  10. Climate variability and the collapse of a Chinook salmon stock (Invited)

    NASA Astrophysics Data System (ADS)

    Lindley, S.; Mohr, M.; Peterson, W. T.; Grimes, C.; Stein, J.; Anderson, J.; Botsford, L. W.; Bottom, D.; Busack, C.; Collier, T.; Ferguson, J.; Garza, C.; Grover, A.; Hankin, D.; Kope, R.; Lawson, P.; Low, A.; Macfarlane, B.; Moore, K.; Palmer-Zwahlen, M.; Schwing, F. B.; Smith, J.; Tracy, C.; Webb, R. S.; Wells, B.; Williams, T.

    2009-12-01

    As recently as 2002, nearly 1.5 million Sacrament River fall Chinook (SRFC) were caught in fisheries or returned to the Sacramento River basin to spawn. Only 66,000 spawners returned to natural areas and hatcheries in 2008. As a result of this dramatic decline, fisheries for Chinook salmon off California and Oregon were closed to protect SRFC in 2008 and 2009. In this paper, we show that the proximate cause of this unprecedented collapse was unusual but perhaps not unprecedented oceanographic conditions in the coastal ocean that created poor feeding conditions for juvenile salmon. The ultimate cause of the collapse may be the declining resilience of the Central Valley chinook complex that has been driven by a century and a half of land and water development. A simple conceptual model illustrates how the dynamics of a salmon population supplemented by hatchery production are influenced by trends in freshwater environmental quality, hatchery production, fitness, and climate. The model predicts that SRFC will recover to higher levels of abundance when ocean conditions improve (which may already be happening), only to decline sharply when ocean conditions again turn poor. Improving the sustainability of the Chinook salmon fishery depends on reversing trends in freshwater and estuarine habitat quality and quantity, which should also benefit runs of Chinook protected by the Endangered Species Act. Ecosystem-based management and ecological risk assessment will be required to make progress on these challenging problems, which are being exacerbated by climate change and human development.

  11. Yakima River Spring Chinook Enhancement Study, Fisheries Resource Management, Yakima Indian Nation1983 Annual Report.

    SciTech Connect

    Wasserman, Larry

    1984-02-01

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook to the Yakima River system. In January, 1983, 100,000 fish raised at Leavenworth National Fish Hatchery were transported to Nile Springs Rearing Ponds on the Naches River. These fish were allowed a volitional release as smolts in April. An additional 100,000 smolts were transported from Leavenworth Hatchery in April and immediately released to the Upper Yakima River. Relative survival of smolts from their points of release to a trap at Prosser (RM48) was 1.69:1 for fish from Nile Springs, versus the trucked smolts. The fish from Nile Springs arrived at Prosser and McNary Dam approximately 1 week earlier than the transported fish. To better determine the magnitude and location of releases, distribution and abundance studies were undertaken. There is a decrease in abundance from upstream areas over time, indicating a general downstream movement. In the Naches System, the lower Naches River is heavily utilized by juvenile spring chinook during the early summer. A preliminary study evaluated physical limitations of production. On a single evening 67 fish were killed on diversion screens at Chandler Canal. This constituted 5.7% of the wild spring chinook entering the canal and 8.2% of the fall chinook. The larger hatchery spring chinook sustained a 2.3% loss. Adult returns resulted in 443 redds in the Yakima System, with 360 in the Yakima River and 83 in the Naches System.

  12. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  13. Tradeoffs between homing and habitat quality for spawning site selection by hatchery-origin Chinook salmon

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2013-01-01

    Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165 km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p < 0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.

  14. Retrospective analysis of AYK Chinook salmon growth

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.

    2007-01-01

    Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.

  15. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    SciTech Connect

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  16. Floodplain farm fields provide novel rearing habitat for Chinook salmon.

    PubMed

    Katz, Jacob V E; Jeffres, Carson; Conrad, J Louise; Sommer, Ted R; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B

    2017-01-01

    When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

  17. Floodplain farm fields provide novel rearing habitat for Chinook salmon

    PubMed Central

    Jeffres, Carson; Conrad, J. Louise; Sommer, Ted R.; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B.

    2017-01-01

    When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon. PMID:28591141

  18. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, 1998 Annual Report.

    SciTech Connect

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-12-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m {+-} 0.2 m and 0.26 m/s {+-} 0.19 m/s, and during the fall 0.5 m {+-} 0.2 m and 0.24 m/s {+-} 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest

  19. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    SciTech Connect

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation

  20. Salt acclimation processes in wheat.

    PubMed

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994-1995 Progress (Annual) Report.

    SciTech Connect

    Achord, Stephen

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing.

  2. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 1999 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Lofy, Peter T.

    2002-11-01

    This is the second annual report of a multi-year, multi-agency project to restore spring chinook salmon populations in the Grande Ronde River Basin (Grande Ronde Endemic Chinook Salmon Program--GRESCP). The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operates adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to increase natural production and restore fisheries in these two streams. Statement of Work Objectives for 1999: (1) Participate in development and continued implementation of the comprehensive multi year operations plan for the Grande Ronde Endemic Supplementation Program. (2) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (3) Monitor adult endemic spring chinook salmon populations and collect broodstock. (4) Plan detailed Monitoring and Evaluation for future years. (5) Monitor population abundance and characteristics and local environmental factors that may influence abundance and run timing of Grande Ronde River spring chinook populations. (6) Participate in Monitoring and Evaluation of the captive brood component of the Program to assure this component is contributing to the Program. (7) Participate in data collection for incidentally-caught bull trout and summer steelhead and planning for recovery of summer steelhead populations. (8) Document accomplishments and needs to permitters, comanagers, and funding agencies. (9) Communicate project results to the scientific community.

  3. Early life history study of Grande Ronde River Basin chinook salmon. Annual progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Keefe, M.; Anderson, D.J.; Carmichasel, R.W.; Jonasson, B.C.

    1996-06-01

    The Grande Ronde River originates in the Blue Mountains in northeast Oregon and flows 334 kilometers to its confluence with the Snake River near Rogersburg, Washington. Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde basin also have been declining steadily and are substantially depressed from estimates of historic levels. It is estimated that prior to the construction of the Columbia and Snake River dams, more than 20,000 adult spring chinook salmon returned to spawn in the Grande Ronde River basin. A spawning escapement of 12,200 adults was estimated for the Grande Ronde River basin in 1957. Recent population estimates have been variable year to year, yet remain a degree of magnitude lower than historic estimates. In 1992, the escapement estimate for the basin was 1,022 adults (2.4 {times} number of redds observed). In addition to a decline in population abundance, a constriction of spring chinook salmon spawning distribution is evident in the Grande Ronde basin. Historically, 21 streams supported spawning chinook salmon, yet today the majority of production is limited to eight tributary streams and the mainstem upper Grande Ronde River. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. More than 80% of anadromous fish habitat in the upper Grande Ronde River is considered to be degraded.

  4. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  5. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and... and Aleutian Island Directed Pollock Fishery Management Measures § 679.65 Bering Sea Chinook...

  6. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and... and Aleutian Island Directed Pollock Fishery Management Measures § 679.65 Bering Sea Chinook...

  7. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and... and Aleutian Island Directed Pollock Fishery Management Measures § 679.65 Bering Sea Chinook...

  8. Heat acclimation improves exercise performance

    PubMed Central

    Lorenzo, Santiago; Halliwill, John R.; Sawka, Michael N.

    2010-01-01

    This study examined the impact of heat acclimation on improving exercise performance in cool and hot environments. Twelve trained cyclists performed tests of maximal aerobic power (V̇o2max), time-trial performance, and lactate threshold, in both cool [13°C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (∼50% V̇o2max in 40°C) program. The hot and cool condition V̇o2max and lactate threshold tests were both preceded by either warm (41°C) water or thermoneutral (34°C) water immersion to induce hyperthermia (0.8–1.0°C) or sustain normothermia, respectively. Eight matched control subjects completed the same exercise tests in the same environments before and after 10 days of identical exercise in a cool (13°C) environment. Heat acclimation increased V̇o2max by 5% in cool (66.8 ± 2.1 vs. 70.2 ± 2.3 ml·kg−1·min−1, P = 0.004) and by 8% in hot (55.1 ± 2.5 vs. 59.6 ± 2.0 ml·kg−1·min−1, P = 0.007) conditions. Heat acclimation improved time-trial performance by 6% in cool (879.8 ± 48.5 vs. 934.7 ± 50.9 kJ, P = 0.005) and by 8% in hot (718.7 ± 42.3 vs. 776.2 ± 50.9 kJ, P = 0.014) conditions. Heat acclimation increased power output at lactate threshold by 5% in cool (3.88 ± 0.82 vs. 4.09 ± 0.76 W/kg, P = 0.002) and by 5% in hot (3.45 ± 0.80 vs. 3.60 ± 0.79 W/kg, P < 0.001) conditions. Heat acclimation increased plasma volume (6.5 ± 1.5%) and maximal cardiac output in cool and hot conditions (9.1 ± 3.4% and 4.5 ± 4.6%, respectively). The control group had no changes in V̇o2max, time-trial performance, lactate threshold, or any physiological parameters. These data demonstrate that heat acclimation improves aerobic exercise performance in temperate-cool conditions and provide the scientific basis for employing heat acclimation to augment physical training programs. PMID:20724560

  9. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow

    PubMed Central

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-01-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800

  10. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  11. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  12. Salinity effects on activity and expression of glutathione S-transferases in white sturgeon and Chinook salmon.

    PubMed

    Donham, Rachel T; Morin, Dexter; Tjeerdema, Ronald S

    2006-02-01

    This study evaluated the activity and expression of the glutathione S-transferase (GST) detoxification isoenzymes in juvenile white sturgeon (Acipenser transmontanus) and Chinook salmon (Oncorhynchus tshawytscha) during acclimation from freshwater (2 per thousand) to estuarine (15 per thousand) salinity conditions. In white sturgeon, GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) increased significantly (P = 0.005; n = 5) with elevated salinity, but not for the Chinook salmon (P = 0.174; n = 10). GST activity of both sturgeon and salmon toward ethacrynic acid (ETHA) did not significantly change with elevated salinity (P = 0.516 with n = 3, and P = 0.125 with n = 3, respectively). Expression of the GST classes, and hepatic glutathione (GSH) concentration, as determined by HPLC, also did not significantly change with increased salinity. In conclusion, overall GST activity in white sturgeon, but not Chinook salmon, is stimulated by elevated water salinity, thus electrophilic chemicals such as pesticides may be more effectively detoxified by sturgeon as they undergo seaward migration.

  13. Rapid River Hatchery - Spring Chinook, Final Report

    SciTech Connect

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  14. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    SciTech Connect

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.

  15. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    USGS Publications Warehouse

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  16. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance

    SciTech Connect

    Hansen, J.A.; Marr, J.C.A.; Lipton, J.; Cacela, D.; Bergman, H.L.

    1999-09-01

    Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 {micro}g Cu/L, 24 {micro}g Co/L, and the mixture of 1.0 {micro}g Cu/L and 0.9 {micro}g Co/L, whereas rainbow trout avoided at least 1.6 {micro}g Cu/L, 180 {micro}g Co/L, and the mixture of 2.6 {micro}g Cu/L and 2.4 {micro}g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid {ge}44 {micro}g Cu/L, whereas rainbow trout failed to avoid {ge}180 {micro}g Cu/L. Furthermore, following acclimation to 2 {micro}g Cu/L, rainbow trout avoided 4 {micro}g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.

  17. Combined effects of temperature acclimation and cadmium exposure on mitochondrial function in eastern oysters Crassostrea virginica gmelin (Bivalvia: Ostreidae).

    PubMed

    Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M

    2006-09-01

    Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment.

  18. Effects of surgically implanted acoustic transmitters >2% of body mass on the swimming performance, survival, and growth of juvenile sockeye and Chinook salmon

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Deters, Katherine A.; Grassel, Mark A.

    2006-12-01

    This study examined the influence of surgical implantation of an acoustic transmitter on the swimming performance, growth, and survival of juvenile sockeye salmon (Oncorhynchus nerka) and fall Chinook salmon (O. tshawytscha). The transmitter weighed 0.72g in air and the fish weighed 6 to 23 g. Mean critical swimming speeds for fall Chinook salmon ranged from 47.5 to 51.2 cm s-1 (4.34 to 4.69 body lengths [BL] s-1) and did not differ among tagged, untagged and sham-tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46.1 cm s-1 (4.1 BL s-1) which was approximately 5% less than the mean Ucrit for control and sham fish (both groups were 48.6 cm s-1 or 4.3 BL s-1). There was no difference in length or weight among treatments (control, sham, tag) either at the start or the end of the test period suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon died from the influence of surgical implantation of transmitters. In contrast, we did find that the 21-d survival differed between tagged and control groups of fall Chinook salmon although this result was confounded by the poor health of fall Chinook salmon treatment groups.

  19. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    SciTech Connect

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  20. A heat acclimation protocol for team sports.

    PubMed

    Sunderland, C; Morris, J G; Nevill, M E

    2008-05-01

    It is well documented that heat acclimation of six or more sessions of at least 60 min duration prolongs the time to exhaustion during endurance walking, cycling and running in the heat. However, this type of acclimation is not specific to team sport activity and the effect of acclimation on prolonged high-intensity intermittent running has not yet been investigated. To assess the impact of an intermittent acclimation protocol on distance run during team sport activity. The impact of four short heat acclimation sessions (30-45 min of the Loughborough Intermittent Shuttle Test; LIST) on high-intensity intermittent running capacity (LIST) in the heat (30 degrees C, 27% relative humidity (RH)), was examined. Seventeen female well-trained games players were split into three groups: an acclimation group (30 degrees C, 24% RH), a moderate training group (18 degrees C, 41% RH) and a control group who did not complete any training between the main trials (pre-acclimation and post-acclimation). The pre-acclimation (A) and post-acclimation (B) trials were separated by 28 days to control for menstrual phase and verified using hormonal analysis. The four acclimation or moderate training sessions utilising the LIST were completed with one or two rest days interspersed between each session in a 10-day period prior to the post-acclimation trial (B). In the post-acclimation trial distance run was increased by 33% in the acclimation group (A: 7703 (SEM 1401) m vs B: 10215 (SEM 1746) m; interaction group x trial p<0.05), but was unchanged in the moderate and control groups. The acclimation group had a lower rectal temperature (interaction group x trial x time p<0.01) due to a lower rate of rise, and an increase in thermal comfort1 after acclimation (End A: 7 (SEM 2) vs 6 (SEM 2); interaction group x trial p<0.01). There was no difference in serum progesterone, aldosterone or cortisol concentrations following acclimation or between groups. Four 30-45 min sessions of intermittent

  1. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    SciTech Connect

    Hager, Robert C.; Costello, Ronald J.

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  2. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    SciTech Connect

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  3. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    SciTech Connect

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    -river survival of PIT tagged hatchery chinook salmon smolts released at the Imnaha River acclimation facility to the Imnaha River Trap. (5) Determine arrival timing, travel time and estimated survival of PIT tagged hatchery and natural chinook salmon and natural and hatchery steelhead smolts from the Imnaha River to Snake and Columbia river dams.

  4. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    SciTech Connect

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  5. Exploring life history characteristics of naturalized versus stocked chinook

    USGS Publications Warehouse

    Rogers, Mark W.; Kerns, Janice A; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2011-01-01

    Naturalization of stocked populations can result in divergence of life-history traits from domestic stocks. Lake Michigan supports popular Chinook (Oncorhynchus tshawytscha) Salmon fisheries that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the last few decades and currently contributes over 50% of Chinook Salmon recruits. Samples collected as part of a lakewide mass-marking of Lake Michigan Chinook Salmon, starting with the 2006 year class, indicated hatchery fish average 30-mm longer and 130 grams heavier than naturalized fish at age-1. We hypothesized that selective forces differ for naturalized and hatchery populations resulting in divergent life-history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. Specific life-history metrics of interest include: age- and size- at maturity, spawning run timing, fecundity, and sex ratio. Objectives: We evaluated life history characteristics between naturally recruited and stocked Chinook Salmon in Lake Michigan to help discern potential changes resulting from naturalization and implications for fisheries. A. Conduct an analysis of historical data to determine if life-history parameters changed through time as the Chinook Salmon population became increasingly naturalized. B. Conduct a two-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in life-history metrics of adults. C. Determine if reproductive potential differs between naturalized and hatchery stocked Chinook salmon by measuring egg thiamine levels.

  6. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting

    USGS Publications Warehouse

    Beckman, B.R.; Larsen, D.A.; Sharpe, C.; Lee-Pawlak, B.; Schreck, C.B.; Dickhoff, Walton W.

    2000-01-01

    Two year-classes of juvenile spring chinook salmon Oncorhynchus tshawytscha from the Yakima River, Washington, were sampled from July (3-4 months postemergence) through May (yearling smolt out-migration). Physiological characters measured included liver glycogen, body lipid, gill Na+-K+ ATPase, plasma thyroxine (T4), and plasma insulin-like growth factor-I (IGF-I). Distinct physiological changes were found that corresponded to season. Summer and fall were characterized by relatively high body lipid and condition factor. Winter was characterized by decreases in body lipid, condition factor, and plasma hormones. An increase in condition factor and body lipid was found in February and March. Finally, April and May were characterized by dramatic changes characteristic of smolting, including increased gill Na+-K+ ATPase activity, plasma T4, and IGF-I and decreased condition factor, body lipid, and liver glycogen. These results create a physiological template for juvenile spring chinook salmon in the drainage that provides a baseline for comparison with other years, populations, and life history types. In addition, this baseline provides a standard for controlled laboratory experiments and a target for fish culturists who rear juvenile spring chinook salmon for release from conservation hatcheries. The implications of these results for juvenile chinook salmon ecology and life history are discussed.

  7. Derivation of Mortal Injury Metric for Studies of Rapid Decompression of Depth-Acclimated Physostomous Fish

    SciTech Connect

    McKinstry, Craig A.; Carlson, Thomas J.; Brown, Richard S.

    2007-11-05

    In 2005 the U.S. Army Corps of Engineers (USACE) began a study to investigate the response of hatchery and run-of-the-river (ROR) juvenile Chinook salmon to the effects of rapid decompression during passage through mainstem Federal Columbia River Power System (FCRPS) Kaplan turbines. In laboratory studies conducted by Pacific Northwest National Laboratory (PNNL) for USACE since 2005, juvenile fish have been exposed to rapid decompression in a barometric pressure chamber. An initial study considered the response of juvenile Chinook salmon bearing radio transmitters to rapid decompression resulting from exposure to a pressure time history simulating the worst case condition that might be experienced during passage through an operating turbine. The study in 2005 found that acclimation depth was a very important treatment factor that greatly influenced the significantly higher incidence of injury and mortality of rapidly decompressed Chinook salmon bearing radio telemetry devices. In 2006 we initiated a statistical investigation using data in hand into derivation of a new end-point measure for assessment of the physiological response of juvenile Chinook salmon to rapid decompression. Our goal was a measure that would more fully utilize both mortality and injury data while providing a better assessment of the most likely survival outcome for juvenile physostomous fish exposed to rapid decompression. The conclusion of the analysis process was to classify fish as mortally injured when any of the 8 injuries are present, regardless of whether the fish was last observed alive or not. The mortally injured classification has replaced mortality as the end point metric for our rapid decompression studies. The process described in this report is an example of how a data set may be analyzed to identify decision criterion for objective classification of test fish to a specific end-point. The resulting list of 8 mortal injuries is applicable to assess injuries from rapid

  8. Identification of a genetic marker that discriminates ocean-type and stream-type chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Rasmussen, C.; Ostberg, C.O.; Clifton, D.R.; Holloway, J.L.; Rodriguez, R.J.

    2003-01-01

    A marker based on randomly amplified polymorphic DNA (RAPD), OT-38, was discovered that nonlethally discriminates between stream-type and ocean-type populations of chinook salmon Oncorhynchus tshawytscha in the Columbia River basin, including the threatened fall-run (ocean-type) and spring-run (stream-type) Snake River populations. This marker was developed by amplifying chinook salmon genomic DNA with a single RAPD primer, sequencing the termini of the polymorphic products, and designing primer pairs for allele-specific amplification. It was used to assay 18-80 individuals from several wild and hatchery populations differing in year-class, freshwater life history, and location along the Columbia River OT-38 unambiguously distinguished ocean-type from stream-type populations in 93.1% of the chinook salmon sampled.

  9. Loss of heat acclimation and time to re-establish acclimation.

    PubMed

    Ashley, Candi D; Ferron, John; Bernard, Thomas E

    2015-01-01

    Acclimation in a hot environment is one potent means to decrease the heat strain of work in a hot environment. However, with diminished heat exposure, positive adaptations of acclimation may be lost. This rate of loss is equivocal and, once established, could be used to prescribe the time for re-acclimation. The purpose of this study was to determine the rate of loss of heat acclimation over a period of 6 weeks and determine the time needed for re-acclimation after 2 weeks and 4 weeks of de-acclimation in ten healthy participants. All participants first underwent an initial acclimation period (a 3-day plateau in Tre was used to signify acclimation). Based on the mean time to acclimate in Phase 1 (mean time to acclimate = 6.1 ± 1.4 days), the loss of acclimation was mapped and participants were randomly assigned to one of two groups: one that underwent one 2-hr heat exposure at 1, 3, and 5 weeks post-acclimation, and one that underwent one 2-hr heat exposure session at 2,4, and 6 weeks. Complete loss of acclimation occurred in 6 weeks and, as expected, work HR and Tre increased with increasing time away from the heat (p<0.05). Based on the time for total loss of acclimation from Phase 1, participants in Phase 2 (n = 8) first underwent acclimation. Then, after either a 2-week or 4-week absence from the heat, participants returned to the laboratory for re-acclimation. While not statistically significant yet practically significant (p = 0.18; one-tailed confidence interval), average days for re-acclimation in the 2-week group tended to be fewer than in the 4-week group (days for re-acclimation = 3.8 ± 1.2 and 5.3 ± 1.9, respectively). Based on these general trends, for occupational settings, a re-acclimation period of 4 days is recommended after 2 weeks absence from the heat, 5 days for 4 weeks absence from the heat, and complete acclimation (6 days) after 6 weeks absence or more from the heat.

  10. Heat Acclimation Improves Exercise Performance

    DTIC Science & Technology

    2010-01-01

    environments. Twelve trained cyclists performed tests of maximal aerobic power ( VO2max ), time-trial performance, and lactate threshold, in both cool [13...C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (~50% VO2max in 40°C) program. The hot...and cool condition VO2max and lactate threshold tests were both preceded by either warm (41° C) water or thermoneutral (34°C) water immersion to

  11. Scour of chinook salmon redds on suction dredge tailings

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1999-01-01

    Abstract - We measured scour of the redds of chinook salmon Oncorhynchus tshawytscha on dredge tailings and natural substrates in three tributaries of the Klamath River, California. We measured maximum scour with scour chains and net scour by surveying before and after high winter flows. Scour of chinook salmon redds located on dredge tailings exceeded scour of redds...

  12. Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin, 2007 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.

    2009-04-10

    This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over the past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual implant

  13. Improved cold tolerance and its mechanism in cold-acclimated rats by high fat diet feeding.

    PubMed

    Kuroshima, A; Doi, K; Yahata, T; Ohno, T

    1977-08-01

    Cold tolerance and metabolic responses to cold were studied in cold-acclimated rats on high fat diet (CAHF). Cold tolerance at-5 degrees C was assessed by fall of colonic temperature of clipped rats after 18 h of fasting. Rate of fall in colonic temperature was greatest in warm-acclimated control rats (WAST), slowest in cold-acclimated rats on standard diet (CAST), and remained unchanged in CAHF during cold exposure for 240 min. Increment in blood free fatty acid (FFA) concentration 80 min after cold exposure was greatest in WAST, less in CAST, and least in CAHF. Blood glucose decreased similarly in WAST and CAST after cold exposure, while it remained unchanged in CAHF. Blood beta-hydroxybutyrate also increased similarly in WAST and CAST, while it did not change in CAHF. Nonshivering thermogenesis tested by noradrenaline was greatest in CAHF, followed by CAST and WAST. Shivering induced by cold exposure was less pronounced in CAST than in WAST and did not develop in CAHF; changes in colonic temperature were inversely related to the extent of shivering during cold exposure for 90 min. These results suggest that an integrating effect of cold and high fat diet could improve cold tolerance much more than cold acclimation itself, possibly through enhanced nonshivering thermogenesis caused by metabolic modifications such as increased lipid use and gluconeogenesis.

  14. Mitochondrial respiration in muscle and liver from cold-acclimated hypothyroid rats.

    PubMed

    Zaninovich, Angel A; Rebagliati, Ines; Raices, Marcela; Ricci, Conrado; Hagmuller, Karl

    2003-10-01

    The effects of long-term cold exposure on muscle and liver mitochondrial oxygen consumption in hypothyroid and normal rats were examined. Thyroid ablation was performed after 8-wk acclimation to 4 degrees C. Hypothyroid and normal controls remained in the cold for an additional 8 wk. At the end of 16-wk cold exposure, all hypothyroid rats were alive and normothermic and had normal body weight. At ambient temperature (24 degrees C), thyroid ablation induced a 65% fall in muscle mitochondrial oxygen consumption, which was reversed by thyroxine but not by norepinephrine administration. After cold acclimation was reached, suppression of thyroid function reduced muscle mitochondrial respiration by 30%, but the hypothyroid values remained about threefold higher than those in hypothyroid muscle in the warm. Blockade of beta- and alpha1-adrenergic receptors in both hypothyroid and normal rats produced hypothermia in vivo and a fall in muscle, liver, and brown adipose tissue mitochondria respiration in vitro. In normal rats, cold acclimation enhanced muscle respiration by 35%, in liver 18%, and in brown adipose tissue 450% over values in the warm. The results demonstrate that thyroid hormones, in the presence of norepinephrine, are major determinants of thermogenic activity in muscle and liver of cold-acclimated rats. After thyroid ablation, cold-induced nonshivering thermogenesis replaced 3,5,3'-triiodothyronine-induced thermogenesis, and normal body temperature was maintained.

  15. Migratory Behavior of Adult Spring Chinook Salmon in the Willamette River and its Tributaries: Completion report

    SciTech Connect

    Schreck, Carl B.

    1994-01-01

    Migration patterns of adult spring chinook salmon above Willamette Falls differed depending on when the fish passed the Falls, with considerable among-fish variability. Early-run fish often terminated their migration for extended periods of time, in association with increased flows and decreased temperatures. Mid-run fish tended to migrate steadily upstream at a rate of 30-40 km/day. Late-run fish frequently ceased migrating or fell back downstream after migrating 10-200 km up the Willamette River or its tributaries; this appeared to be associated with warming water during summer and resulted in considerable mortality. Up to 40% of the adult salmon entering the Willamette River System above Willamette Falls (i.e. counted at the ladder) may die before reaching upriver spawning areas. Up to 10% of the fish passing up over Willamette Falls may fall-back below the Falls; some migrate to the Columbia River or lower Willamette River tributaries. If rearing conditions at hatcheries affect timing of adult returns because of different juvenile development rates and improper timing of smolt releases, then differential mortality in the freshwater segment of the adult migrations may confound interpretation of studies evaluating rearing practices.

  16. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  17. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  18. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect

    Rabe, Craig D.; Nelson, Douglas D.

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  19. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  20. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    SciTech Connect

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  1. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  2. Acclimation to decompression sickness in rats.

    PubMed

    Montcalm-Smith, E A; McCarron, R M; Porter, W R; Lillo, R S; Thomas, J T; Auker, C R

    2010-03-01

    Protection against decompression sickness (DCS) by acclimation to hyperbaric decompression has been hypothesized but never proven. We exposed rats to acclimation dives followed by a stressful "test" dive to determine whether acclimation occurred. Experiments were divided into two phases. Phase 1 rats were exposed to daily acclimation dives of hyperbaric air for 30 min followed by rapid decompression on one of the following regimens: 70 ft of seawater (fsw) for 9 days (L70), 70 fsw for 4 days (S70), 40 fsw for 9 days (L40), 40 fsw for 4 days (S40), or unpressurized sham exposure for 9 days (Control). On the day following the last exposure, all were subjected to a "test" dive (175 fsw, 60 min, rapid decompression). Both L70 and S70 rats had significantly lower incidences of DCS than Control rats (36% and 41% vs. 62%, respectively). DCS incidences for the other regimens were lower than in Control rats but without statistical significance. Phase 2 used the most protective regimen from phase 1 (L70); rats were exposed to L70 or a similar regimen with a less stressful staged decompression. Another group was exposed to a single acclimation dive (70 fsw/30 min) on the day before the test dive. We observed a nonsignificant trend for the rapidly decompressed L70 dives to be more protective than staged decompression dives (44% vs. 51% DCS incidence). The single acclimation dive regimen did not provide protection. We conclude that protection against DCS can be attained with acclimating exposures that do not themselves cause DCS. The deeper acclimation dive regimens (70 fsw) provided the most protection.

  3. The relationship between chinook conditions and women's physical and mental well-being

    NASA Astrophysics Data System (ADS)

    Verhoef, Marja J.; Rose, M. Sarah; Ramcharan, Savitri

    1995-09-01

    The objective of this study was (1) to determine the relationship between chinook conditions and physical and psychological symptoms in women aged 20 49 years, and (2) to examine the possibility of subgroups of chinook-sensitive women. The evidence for this relationship is at present merely anecdotal. The study carried out in 1985 1986 in Calgary comprises the secondary analysis of a large survey of various health and health-related factors, including different symptoms, of urban women aged 20 49 years. The interview date was used to link these data to days on which pre-chinook, chinook, post-chinook and non-chinook conditions occurred. Between November 1, 1985 and February 28, 1986, 182 women were interviewed on pre-chinook days, 74 on chinook days, 229 on post-chinook days and 886 on non-chinook days. Autonomic reactions and skin disorders were found to be significantly related to chinook conditions. None of the psychological symptoms was related to chinook conditions. However, a significant relationship was found between symptoms and chinook conditions in women with a history of emotional disorders. This type of information is important to educate chinook-sensitive women and health professionals as well as for hospital emergency departments in order to be able to prepare for potential increases in workload.

  4. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  5. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  6. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

  7. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  8. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L.

    2003-05-01

    . 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  9. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    SciTech Connect

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  10. Low night temperature acclimation of Phalaenopsis.

    PubMed

    Pollet, Bruno; Vanhaecke, Lynn; Dambre, Pieter; Lootens, Peter; Steppe, Kathy

    2011-06-01

    The capability of Phalaenopsis to acclimate its photosynthetic capacity and metabolic activity to cool night temperature conditions is crucial for improving orchid production in terms of efficient greenhouse heating. The extent to which Phalaenopsis possesses acclimation potential and the mechanistic background of the metabolic processes involved, have, however, not been studied before. Plants were subjected to a direct and gradual shift from a day to night temperature regime of 28/28-28/16°C, the cold stress and cold acclimation treatment, respectively. In comparison with the cold stress treatment, the cold acclimation treatment led to a higher malate accumulation and a reduction in leaf net CO(2) uptake. Consistently, the contribution of respiratory CO(2) recycling to nocturnal malate synthesis was calculated to be 23.5 and 47.0% for the cold stress and cold acclimation treatment, respectively. Moreover, the lower levels of starch measured in the cold acclimated leaves confirmed the suggested enhanced respiratory CO(2) recycling, implying that Phalaenopsis CAM operation evolved towards CAM idling. It is, however, plausible that this adjustment was not an effect of the low night temperature per se but a consequence of cool-root induced drought stress. Apart from that, at the start of the photoperiod, membrane stability showed a depression which was directly counteracted by an increased generation of glucose, fructose and sucrose. From these observations, it can be concluded that the observed plasticity in CAM operation and metabolic flexibility may be recognized as important steps in the low night temperature acclimation of Phalaenopsis.

  11. Immune and endocrine responses of adult spring Chinook salmon during freshwater migration and sexual maturation

    USGS Publications Warehouse

    Maule, A.G.; Schrock, R.M.; Slater, C.; Fitzpatrick, M.S.; Schreck, C. B.

    1996-01-01

    The immune –endocrine responses in spring chinook salmon (Oncorhynchus tshawytscha) were examined during their freshwater migration and final maturation. In 1990, migrating fish had high plasma cortisol titres (means 200 ng ml−1) and generated relatively few antibody-producing cells (APC) from peripheral blood leukocytes (PBL) (100 –200 per culture). After three weeks acclimation in constant environmental conditions, plasma cortisol was reduced and APC increased. There were no changes in number or affinity of glucocorticoid receptors. Concentrations of several sex steroids correlated with APC in females, but there were no such correlations in males. In 1993, fish in a hatchery had significantly greater cortisol concentrations in primary circulation than in secondary circulation, but sex steroid concentrations did not differ between circulations. Mean lysozyme activity in the primary and secondary circulation did not differ in June. In August, activity in the primary circulation was significantly less than that of the secondary, perhaps the result of acute stress associated with sampling. While some sex steroids correlated with lysozyme activity, the fact that in both years all endocrine and immune variables that correlated with each other also correlated with the date of sample, raises the question as to whether or not these are cause-and-effect relations.

  12. Evaluation of the Contribution of Chinook Salmon reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1984 Annual Report.

    SciTech Connect

    Vreeland, Robert R.

    1984-12-01

    The distribution, contribution, and value of artificially propagated fall chinook on the Columbia River was determined. Total returns of fall chinook to Columbia River facilities in 1984 were 74,401. This was the second smallest return over the past five years. Returns to Bonneville, Spring Creek, Little White Salmon, Klickitat and Klaskanine hatcheries were smaller than any previous year during this study. However, returns to Priest Rapids and Sea Resources hatcheries were greater than in previous years. Final estimated catch values are available through 1982 for British Columbia, Washington, Oregon and Columbia River fisheries. Fall chinook from the Columbia River hatcheries are predominately recovered in these fisheries. The percentages of the 1978-brood fish caught in these fisheries was 40.3, 35.0, 7.5 and 17.2 respectively. Contributions to the fisheries per 1000 fish released for all hatcheries combined were 2.6 and 3.0 for the 1978 and 1979 broods respectively. Three years (1980 to 1982) were included in the contribution values for the 1978 brood and two years (1981 and 1982) for the 1979 brood. Spring Creek Hatchery had the greatest contribution to the fisheries of 8.2 and 12.7 fish per 1000 fish released for the 1978 and 1979-broods respectively. The Spring Creek contribution was followed by Stayton Pond, Abernathy, Bonneville and Big Creek at 6.3, 4.1, 2.9 and 2.6 respectively for the 1978 brood and Big Creek, Stayton Pond and Abernathy at 7.4, 6.2 and 3.9 respectively for the 1979 brood. Other facilities had contributions per 1000 releases of less than 2. These contributions are minimums since all possible catch years are not included. 2 figs., 36 tabs.

  13. Fall Frosting

    NASA Image and Video Library

    2013-10-16

    Richardson Crater is home to this sea of sand dunes. It was fall in the Southern hemisphere when NASA MRO acquired this image of the dunes frosted with the first bit of carbon dioxide ice condensed from the atmosphere.

  14. The temperature acclimation potential of tropical bryophytes.

    PubMed

    Wagner, S; Zotz, G; Bader, M Y

    2014-01-01

    Bryophyte biomass and diversity in tropical moist forests decrease dramatically from higher altitudes towards the lowlands. High respiratory carbon losses at high temperatures may partly explain this pattern, if montane species are unable to acclimatise their metabolic rates to lowland temperatures. We transplanted ten bryophyte species from two altitudes (1200 and 500 m a.s.l.) to lower (warmer) altitudes (500 m and sea level) in Panama. We studied short-term temperature acclimation of CO2 exchange for 2.5 months, and survival and growth for 21 months following transplantation. Short-term acclimation did not occur, and on a longer time scale mortality was highest and growth lowest in the transplanted samples. A few transplanted samples of most species, however, survived the whole experiment and finished with growth rates similar to controls. This recovery of growth rate suggests temperature acclimation, in spite of no measurable metabolic changes in smaller random samples. This acclimation even compensated for shorter periods of CO2 uptake due to more rapid drying. Nevertheless, these species are not abundant in lowland forests, perhaps due to dispersal or establishment limitation. The apparent heterogeneity of the acclimation potential within species may allow populations to adapt locally and avoid being forced uphill under climatic warming.

  15. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    SciTech Connect

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W.

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

  16. Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (Limnodynastes peronii).

    PubMed

    Rogers, Kris D; Thompson, Michael B; Seebacher, Frank

    2007-08-01

    Reproductive success in thermally varying environments will depend on maintaining metabolic capacity of tissues that are important in mating behaviours. Here we test the hypothesis that cold acclimation will occur in those tissues that are important for reproduction, and that acclimation will be sex specific, reflecting behavioural differences between the sexes. We used the frog Limnodynastes peronii as a model because anurans engage in energetically demanding reproductive behaviour, and many species, including L. peronii, are reproductively active across seasons. Additionally, reproductive behaviours such as calling and amplexus are sex specific. We acclimated animals to naturally occurring autumn (15 degrees C, N=10) and summer (25 degrees C, N=10) temperatures. Whole-animal resting oxygen consumption decreased with lowered temperature, but there was no difference in oxygen consumption between acclimation treatments or sexes. However, the respiratory control ratio (RCR) of mitochondria from the liver and external oblique calling muscle increased with cold acclimation. The increase in RCR with thermal acclimation was due to upregulation of state 3 respiration, and not to a decrease in state 4 respiration. Males had higher activity of citrate synthase, beta-hydroxyacyl CoA dehydrogenase and cytochrome c oxidase than females in the calling (external oblique) muscle, and males also showed thermal acclimation of these enzymes while females did not. Additionally, males had greater activity of metabolic enzymes in the principal muscle (extensor carpi radialis) used during amplexus. However, there were no differences in metabolic capacity between sexes in the gastrocnemius muscle and in liver, and both sexes showed significant acclimation of lactate dehydrogenase and cytochrome c oxidase in the former and latter, respectively. In L. peronii, thermal acclimation of metabolic capacities is linked to reproductive success, and reversible phenotypic plasticity therefore

  17. Epigenetics and cytoprotection with heat acclimation.

    PubMed

    Horowitz, Michal

    2016-03-15

    Studying "phenotypic plasticity" involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset and achievement of acclimatory homeostasis are determined by molecular programs that induce the acclimated transcriptome. In heat acclimation, much evidence suggests that epigenetic mechanisms are powerful players in these processes. Epigenetic mechanisms affect the accessibility of the DNA to transcription factors, thereby regulating gene expression and controlling the phenotype. The heat-acclimated phenotype confers cytoprotection against novel stressors via cross-tolerance mechanisms, by attenuation of the initial damage and/or by accelerating spontaneous recovery through the release of help signals. This indispensable acclimatory feature has a memory and can be rapidly reestablished after the loss of acclimation and the return to the physiological preacclimated phenotype. The transcriptional landscape of the deacclimated phenotype includes constitutive transcriptional activation of epigenetic bookmarks. Heat shock protein (HSP) 70/HSP90/heat shock factor 1 memory protocol demonstrated constitutive histone H4 acetylation on hsp70 and hsp90 promotors. Novel players in the heat acclimation setup are poly(ADP-ribose)ribose polymerase 1 affecting chromatin condensation, DNA linker histones from the histone H1 cluster, and transcription factors associated with the P38 pathway. We suggest that these orchestrated responses maintain euchromatin and proteostasis during deacclimation and predispose to rapid reacclimation and cytoprotection. These mechanisms represent within-life epigenetic adaptations and cytoprotective memory. Copyright © 2016 the American Physiological Society.

  18. Effects of heat acclimation on time perception.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi

    2015-03-01

    Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Investigations into the [Early] Life History of Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project, Oregon : Annual Report 1994 : Project Period 1 June 1993 to 31 May 1994.

    SciTech Connect

    Keefe, MaryLouise

    1996-04-01

    This study was designed to describe aspects of the life history strategies of spring chinook salmon in the Grande Ronde basin. During the past year we focused on rearing and migration patterns of juveniles and surveys of spawning adults. The specific objectives for the early life history portion of the study were: Objective 1, document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River, including the abundance of migrants, migration timing and duration; Objective 2, estimate and compare smolt survival indices to mainstem Columbia and Snake River dams for fall and spring migrating spring chinook salmon; Objective 3 initiate study of the winter habitat utilized by spring chinook salmon in the Grande Ronde River basin. The specific objectives for the spawning ground surveys were: Objective 4, conduct extensive and supplemental spring chinook salmon spawning ground surveys in spawning streams in the Grande Ronde and Imnaha basin, Objective 5; determine how adequately historic index area surveys index spawner abundance by comparing index counts to extensive and supplemental redd counts; Objective 6, determine what changes in index areas and timing of index surveys would improve the accuracy of index surveys; Objective 7, determine the relationship between number of redds observed and fish escapement for the Grande Ronde and Imnaha river basins.

  20. Effect of Heat Acclimation on Sweat Minerals

    DTIC Science & Technology

    2007-12-01

    previous studies (12,19); however, our observation of lower calcium and magnesium concentrations after heat acclimation has mixed support (10,11,19...Hallberg L. Iron losses in sweat. Am J Clin Nutr. 1986;43:438–43. 4. Buono MJ, Ball KD, Kolkhorst FW. Effect of heat acclimation on the sweat sodium ion...Curr Food Sci Nutr. 2007;3:236–41. 7. Cohn JR, Emmett EA. The excretion of trace metals in human sweat. Ann Clin Lab Sci. 1978;8:270–5. 8. Collins

  1. [Accidental falls].

    PubMed

    Inokuchi, Koichi

    2013-06-01

    Falls are common cause of injuries among elderly people, and fractures are the most serious consequence of falls. For seniors, hip fractures are the second major cause of bedridden. The feature and acute care of head injury, spinal cord injury, vertebrae fracture, and hip fracture are described. Just had fracture fixation, the patient can not go back to the original ADL. In order not to become bedridden, both medication and physical examination are important based on the new disease concept of locomotive syndrome. To do so, requires hospital and clinic cooperation. Sufficient cooperation is not currently possible, and spread of liaison service is essential.

  2. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    SciTech Connect

    Brannon, E.L.; National Science Foundation

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  3. Evaluation of the Contribution of Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1985 Annual Report.

    SciTech Connect

    Vreeland, Robert R.

    1985-10-01

    FY 1985 was the seventh year of an eight-year study to determine the distribution, contribution, and value of artificially propagated fall chinook on the Columbia River. Tagging of hatchery fall chinook was completed in FY81. Sampling of sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and Columbia River hatcheries and adjacent streams occurred in 1985 as planned. Returns of fall chinook to Columbia River facilities as of September 30, 1985 are 85,222. This return is already larger than three of the past five years. Estimated Catches of coded wire tagged salmonids are available through 1983 for all fisheries except Alaska in 1981 and Washington in 1983. Catch proportions by fishery for the 1978 brood are .01, .41, .34, .07, 0, and .17 for the Alaska, Canada, Washington, Oregon, California, and Columbia River fisheries respectively. The proportion of recoveries for the four age groups of 1978-brook fish caught are .05, .63, .30, .01 for the two-through five-year-old chinook respectively. Contributions to the fisheries per 1000 fish released for all hatcheries combined are 2.7 and 3.6 for the 1978 and 1979 broods respectively. Four years (1980 to 1983) are included in the contribution values for the 1978 brood and three years (1981 to 1983) for the 1970 brood. Spring Creek Hatchery has the greatest contribution to the fisheries of 8.3 and 12.8 fish per 1000 fish released for the 1978 and 1979 broods respectively. The Spring Creek contribution is followed by Stayton Pond, Abernathy, Bonneville and Big Creek at 6.5, 4.2, 2.9 and 2.6 respectively for the 1978 brood and Big Creek, Stayton Pond and Abernathy at 8.4, 6.7 and 4.7 respectively for the 1979 brood. Other facilities have contributions per 1000 releases of approximately 2 or less. These contributions are minimums since all possible fisheries and catch years are not yet included.

  4. Effect of Heat Acclimation on Sweat Minerals

    USDA-ARS?s Scientific Manuscript database

    Purpose: This study examined the impact of 10-days of exercise-heat acclimation on sweat mineral concentrations. Methods: Eight male subjects walked on a treadmill at 1.56 m/sec, 4% grade for 100 continuous minutes or until rectal temperature reached 39.5°C on 10 consecutive days in an environmenta...

  5. Molecular biology of cyanobacterial salt acclimation.

    PubMed

    Hagemann, Martin

    2011-01-01

    High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms.

  6. Students fall for Fall Meeting

    NASA Astrophysics Data System (ADS)

    Smedley, Kara

    2012-02-01

    From Boston to Beijing, thousands of students traveled to San Francisco for the 2011 AGU Fall Meeting. Of those who participated, 183 students were able to attend thanks to AGU's student travel grant program, which assists students with travel costs and seeks to enrich the meeting through ethnic and gender diversity. Students at Fall Meeting enjoyed a variety of programs and activities designed to help them better network with their peers, learn about new fields, and disseminate their research to the interested public. More than 800 students attended AGU's first annual student mixer, sharing drinks and ideas with fellow student members and future colleagues as well as forging new friendships and intellectual relationships.

  7. Yakima River Spring Chinook Enhancement Study, 1989 Annual Report.

    SciTech Connect

    Fast, David E.

    1989-12-01

    Smolt outmigration was monitored at Wapatox on the Naches River and Prosser on the lower Yakima. The survival from egg to smolt was calculated using the 1987 redd counts and the 1989 smolt outmigration at Prosser. Spring chinook were counted at Roza Dam from April 1 to September 29, 1989. The smolt to adult (S{sub sa}) survival will be calculated when scale analysis from spawner surveys is complete. Spring chinook adults from ten different experimental release groups were recovered in 1989. A total of 143 coded wire tags were recovered. This project is a multi-year undertaking that will evaluate different management and enhancement strategies. At the conclusion of this study, a series of alternatives will be developed that can be used to determine how best to enhance the runs of spring chinook in the Yakima Basin. 13 refs., 3 figs., 26 tabs.

  8. Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.

    SciTech Connect

    Fast, David E.

    1986-02-01

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

  9. The relationship between chinook conditions and women's illness-related behaviours

    NASA Astrophysics Data System (ADS)

    Rose, M. Sarah; Verhoef, Marja J.; Ramcharan, Savitri

    1995-09-01

    The objective of this study was to (1) to describe the relationship between chinook conditions and illness related behaviour in women, aged 20 49 years, and (2) to examine the possibility of the existence of subgroups of chinook-sensitive women. At present no empirical evidence is available regarding a relationship between chinook conditions and illness related behaviours. This study comprises the secondary analysis of a large survery of various health and health-related factors of urban women aged 20 49 years, carried out in 1985 1986 in Calgary. The interview date was used to link behaviours to chinook conditions. We found no evidence of a significant relationship between the behaviours investigated and chinook conditions in the general population. However, the data strongly supported the concept of chinook sensitivity. Women with a history of chronic health problems were more likely to visit a health care professional on chinook days than healthy women and women in the subgroup aged less than 35 years cut down their usual daily activities during chinook conditions. Women with a history of recurring migraine headaches were less likely to take prescription medication on chinook days, and women with a history of emotional disorders were more likely to have higher scores on the accident scale and to report bursts of energy or excitement during chinook days. More research is needed to identify subgroups of susceptible persons, as well as to determine whether chinook sensitive persons are equally susceptible to weather changer of other types.

  10. Cowlitz Falls Fish Passage.

    SciTech Connect

    1995-09-01

    The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system.

  11. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    SciTech Connect

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with approximately 14

  12. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B.

    2005-05-01

    interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  13. Generalist–specialist trade-off during thermal acclimation

    PubMed Central

    Seebacher, Frank; Ducret, Varlérie; Little, Alexander G.; Adriaenssens, Bart

    2015-01-01

    The shape of performance curves and their plasticity define how individuals and populations respond to environmental variability. In theory, maximum performance decreases with an increase in performance breadth. However, reversible acclimation may counteract this generalist–specialist trade-off, because performance optima track environmental conditions so that there is no benefit of generalist phenotypes. We tested this hypothesis by acclimating individual mosquitofish (Gambusia holbrooki) to cool and warm temperatures consecutively and measuring performance curves of swimming performance after each acclimation treatment. Individuals from the same population differed significantly in performance maxima, performance breadth and the capacity for acclimation. As predicted, acclimation resulted in a shift of the temperature at which maximal performance occurred. Within acclimation treatments, there was a significant generalist–specialist trade-off in responses to acute temperature change. Surprisingly, however, there was also a trade-off across acclimation treatments, and animals with greater capacity for cold acclimation had lower performance maxima under warm conditions. Hence, cold acclimation may be viewed as a generalist strategy that extends performance breadth at the colder seasons, but comes at the cost of reduced performance at the warmer time of year. Acclimation therefore does not counteract a generalist–specialist trade-off and, at least in mosquitofish, the trade-off seems to be a system property that persists despite phenotypic plasticity. PMID:26064581

  14. Basis for managing the harvest of Chinook salmon

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    On the basis of estimated spawner-recruit relations for populations of chinook salmon Oncorhynchus tshawytscha from British Columbia to California, harvest fractions of 60-70% may be reasonable for stocks for which the productivities are not known. Care should be taken to detect and to avoid excessive harvest from stocks with low productivity.

  15. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  16. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  17. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon.

    PubMed

    Kent, M L; Soderlund, K; Thomann, Estela; Schreck, C B; Sharpton, T J

    2014-10-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon ( Oncorhynchus tshawytscha ) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected

  18. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    SciTech Connect

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  19. Yakima River Spring Chinook Enhancement Study, 1987 Annual Report.

    SciTech Connect

    Fast, David E.

    1988-01-01

    The smelt outmigration was monitored at wapatox on the Naches River and Prosser on the lower Yakima. The spring outmigration at Wapatox was estimated to be 16,141 smolts. The 1987 spring outmigration of wild spring chinook from the Yakima Basin was estimated to be 251,975 smolts at Prosser. The survival from egg to smelt was calculated using the 1985 redd counts and the 1987 smolt outmigration at Prosser. The estimated survival was 4.16%, which gives a mean egg to smolt survival over four years of 6.32%. In 1987 a total of 3,683 adult and 335 jack spring chinook salmon returning to the Yakima River were counted at Prosser fish ladder. This gives a total of 4,018 salmon returning to Prosser Dam. The median dates of passage were May 12 and May 16 for adults and jacks respectively. An additional 372 fish were estimated to have been caught in the Yakima River subsistence dipnet fishery below Horn Rapids and Prosser Dams. Therefore, total return to the Yakima system was 4,390 spring chinook salmon. Spring chinook were counted at Roza Dam from May 1 to September 30, 1987. Passage at Roza Dam was 1,610 adult and 67 jack spring chinook for a total of 1,677 wild fish. The median dates of passage at Roza Dam were May 29 and May 26 for spring chinook adults and jacks respectively. The smolt to adult (S{sub sa}) survival was calculated based on the 1983 smelt outmigration estimated at Prosser and the 1984 return of jacks (3 year old fish) the 1985 return of four year old adults, and the 1986 return of five year old fish to the Yakima River. It was estimated that 6,012 wild three, four, and five year old fish returned from an estimated smolt outmigration of 135,548 fish in 1983. This gives an estimated survival from smolt to adult of 4.4%. The smolt to adult survival for the 1984 smolt outmigration was 5.3% with 423 jacks returning in 1985, 5,163 four year old adults returning in 1986, and 983 five year old fish returning in 1987 fran an estimated 123,732 smolts in 1984. Spring

  20. Behavior and passage of juvenile salmonids during the evaluation of a behavioral guidance structure at Cowlitz Falls Dam, Washington, 2011

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.

    2012-01-01

    Turbine passage was the most common passage route for tagged fish at Cowlitz Falls Dam during 2011. We found that 40 percent of the steelhead, 52 percent of the coho salmon, and 33 percent of the Chinook salmon passed through turbines. An additional 22 percent of the steelhead and 32 percent of the coho salmon passed through turbines or spillways when both passage routes were available. Fish collection numbers were relatively low during 2011 compared to long-term averages. In total, 37 percent of the steelhead, 14 percent of the coho salmon, and 23 percent of the Chinook salmon that entered the forebay were collected, primarily through collection flumes. The FSC collected a single radio-tagged fish (a Chinook salmon) in 2011.

  1. Effects of Acoustic Transmitters on the Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon

    SciTech Connect

    Anglea, Steven M.; Geist, David R.; Brown, Richard S.; Deters, Katherine A.; Mcdonald, Robert D.

    2004-03-01

    The objective of this study was to determine if juvenile chinook salmon (Oncorhynchus tshawytscha) were negatively influenced by the implantation of acoustic transmitters. The critical swimming speed (Ucrit) of tagged fish, sham (surgery but no tag), and control fish was measured in a respirometer to determine tag effects on swimming performance. Predator avoidance was evaluated by comparing the proportion of each treatment group eaten: active tag, inactive tag, sham, and control after being exposed to piscivorous adult rainbow trout (O. mykiss). Results from this study demonstrated that the surgical implantation of acoustic tags in juvenile fall chinook salmon does not significantly affect swimming performance. Swimming performance was similar between treatment groups (control, sham, and inactive tag) at 1- and 21-day post-surgery intervals. Critical swimming speeds for all treatment groups were similar to values reported in the literature. Implantation of acoustic transmitters (active and inactive) did not result in tagged fish being more susceptible to predation over untagged fish. Percentages of each prey group consumed in each of the four trials were highly variable and demonstrated no obvious selection preference by adult rainbow trout. In summary, measurable differences were not found between tagged and un-tagged fish, however, trends were consistent in the two experiments with tagged fish consistently performing slightly worse than un-tagged fish. We conclude that based on the current body of knowledge and findings of the present study, fish implanted with an acoustic tag perform and/or behave similarly to the population-at-large recognizing that subtle differences exist in the behavior of tagged fish.

  2. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B.

    2004-05-01

    is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  3. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    SciTech Connect

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  4. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    USGS Publications Warehouse

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  5. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  6. Fall Protection Introduction, #33462

    SciTech Connect

    Chochoms, Michael

    2016-06-23

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  7. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana.

    PubMed

    Zhen, Ying; Dhakal, Preeti; Ungerer, Mark C

    2011-07-01

    Abstract When resources are limited, there is a trade-off between growth/reproduction and stress defense in plants. Most temperate plant species, including Arabidopsis thaliana, can enhance freezing tolerance through cold acclimation at low but nonfreezing temperatures. Induction of the cold acclimation pathway should be beneficial in environments where plants frequently encounter freezing stress, but it might represent a cost in environments where freezing events are rare. In A. thaliana, induction of the cold acclimation pathway critically involves a small subfamily of genes known as the CBFs. Here we test for a cost of cold acclimation by utilizing (1) natural accessions of A. thaliana that originate from different regions of the species' native range and that have experienced different patterns of historical selection on their CBF genes and (2) transgenic CBF overexpression and T-DNA insertion (knockdown/knockout) lines. While benefits of cold acclimation in the presence of freezing stress were confirmed, no cost of cold acclimation was detected in the absence of freezing stress. These findings suggest that cold acclimation is unlikely to be selected against in warmer environments and that naturally occurring mutations disrupting CBF function in the southern part of the species range are likely to be selectively neutral. An unanticipated finding was that cold acclimation in the absence of a subsequent freezing stress resulted in increased fruit production, that is, fitness.

  8. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    SciTech Connect

    Wasserman, Larry

    1985-01-01

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  9. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    SciTech Connect

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  10. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    SciTech Connect

    Lindsey, Cole T.; Nugent, John J.

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  11. Transportation of Snake River Fall Chinook Salmon 2008: Final Report for the 2004 Juvenile Migration

    DTIC Science & Technology

    2010-06-01

    East Seattle, Washington 98112-2097 for Walla Walla District Northwestern Division U.S. Army Corps of Engineers 201 North 3rd Walla Walla ...Clearwater Rivers. Annual report of research activities to the U.S. Army Corps of Engineers, Walla Walla , Washington. Connor, W. P., J. G. Sneva...Report of the National Marine Fisheries Service to the U.S. Army Corps of Engineers, Walla Walla , Washington. Marsh, D. M., J. R. Harmon, N. N

  12. Deconditioning-induced exercise responses as influenced by heat acclimation

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1979-01-01

    A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.

  13. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  14. Deconditioning-induced exercise responses as influenced by heat acclimation

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1979-01-01

    A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.

  15. Preliminary acclimation strategies for successful startup in conventional biofilters.

    PubMed

    Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel

    2010-08-01

    The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.

  16. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    SciTech Connect

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposure induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.

  17. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  18. Thermal Acclimation of Heart Rates in Reptilian Embryos

    PubMed Central

    Du, Wei-Guo; Ye, Hua; Zhao, Bo; Warner, Daniel A.; Shine, Richard

    2010-01-01

    In many reptiles, the thermal regimes experienced by eggs in natural nests vary as a function of ambient weather and location, and this variation has important impacts on patterns of embryonic development. Recent advances in non-invasive measurement of embryonic heart rates allow us to answer a long-standing puzzle in reptilian developmental biology: Do the metabolic and developmental rates of embryos acclimate to local incubation regimes, as occurs for metabolic acclimation by post-hatching reptiles? Based on a strong correlation between embryonic heart rate and oxygen consumption, we used heart rates as a measure of metabolic rate. We demonstrate acclimation of heart rates relative to temperature in embryos of one turtle, one snake and one lizard species that oviposit in relatively deep nests, but found no acclimation in another lizard species that uses shallow (and hence, highly thermally variable) nests. Embryonic thermal acclimation thus is widespread, but not ubiquitous, within reptiles. PMID:21179473

  19. Thermal acclimation of heart rates in reptilian embryos.

    PubMed

    Du, Wei-Guo; Ye, Hua; Zhao, Bo; Warner, Daniel A; Shine, Richard

    2010-12-14

    In many reptiles, the thermal regimes experienced by eggs in natural nests vary as a function of ambient weather and location, and this variation has important impacts on patterns of embryonic development. Recent advances in non-invasive measurement of embryonic heart rates allow us to answer a long-standing puzzle in reptilian developmental biology: Do the metabolic and developmental rates of embryos acclimate to local incubation regimes, as occurs for metabolic acclimation by post-hatching reptiles? Based on a strong correlation between embryonic heart rate and oxygen consumption, we used heart rates as a measure of metabolic rate. We demonstrate acclimation of heart rates relative to temperature in embryos of one turtle, one snake and one lizard species that oviposit in relatively deep nests, but found no acclimation in another lizard species that uses shallow (and hence, highly thermally variable) nests. Embryonic thermal acclimation thus is widespread, but not ubiquitous, within reptiles.

  20. Waterlogging and submergence stress: affects and acclimation.

    PubMed

    Phukan, Ujjal J; Mishra, Sonal; Shukla, Rakesh Kumar

    2016-10-01

    Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas.

  1. 75 FR 58337 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Correction... rule pertaining to Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch... sections of regulations that pertain to the management of Chinook salmon bycatch in the Bering Sea...

  2. 77 FR 14304 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic... Off Alaska; Chinook ] Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic Data... Salmon Economic Data Report Program, which will evaluate the effectiveness of Chinook salmon...

  3. 75 FR 14015 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Proposed... Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea... Chinook salmon bycatch in the Bering Sea pollock fishery that combines a limit on the amount of...

  4. 75 FR 53025 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery... Part 679 RIN 0648-AX89 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch... Aleutian Islands Management Area (FMP). Amendment 91 is an innovative approach to managing Chinook...

  5. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon AGENCY: National Marine... a petition to list the Chinook salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity... actions may be warranted. We will conduct a status review of the Chinook salmon in the Upper Klamath...

  6. Use of a fish health condition profile in assessing the health and condition of juvenile Chinook salmon

    USGS Publications Warehouse

    Novotny, J.F.; Beeman, J.W.

    1990-01-01

    The fish health condition profile, a simplified system for assessing fish health and condition, was originally developed for fish hatcheries and feral trout populations in Utah. We evaluated the method during routine health assessments of juvenile fall chinook salmon (Oncorhynchus tshawytscha) reared in net pens in the Columbia River in 1986 and 1987. The procedure yielded a thorough assessment of the condition offish held under various rearing conditions. This assessment was generally consistent with results of regular diagnostic examinations completed by certified fish health pathologists. The simplicity and availability of the system to most field biologists make it useful for monitoring fish in culture facilities as well as fish from wild stocks. This system may provide the framework for developing a more comprehensive smolt condition index that could be used to evaluate the general condition of juvenile anadromous salmonids before release or during out-migration.

  7. Manchester Spring Chinook Broodstock Project : Progress Report, 2000.

    SciTech Connect

    McAuley, W. Carlin; Wastel, Michael R.; Flagg, Thomas A.

    2000-11-01

    In spring 1995 the Idaho Department of Fish and Game (IDFG) and the Oregon Department of Fish and Wildlife (ODFW) initiated captive broodstocks as part of conservation efforts for ESA-listed stocks of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha). The need for this captive broodstock strategy was identified as critical in the National Marine Fisheries Service (NMFS) Proposed Recovery Plan for Snake River Salmon. These captive broodstock programs are being coordinated by the Bonneville Power Administration (BPA) through the Chinook Salmon Captive Propagation Technical Oversight Committee (CSCPTOC). Oregon's Snake River spring/summer chinook salmon captive broodstock program currently focuses on three stocks captured as juveniles from the Grande Ronde River Basin: the upper Grande Ronde River, Catherine Creek, and the Lostine River. Idaho's Snake River program includes three stocks captured as eggs and juveniles from the Salmon River Basin: the Lemhi River, East Fork Salmon River, and West Fork Yankee Fork. The majority of captive fish from each stock of the Grande Ronde Basin will be grown to maturity in freshwater at the ODFW Bonneville Hatchery. A minority of the Salmon River Basin stocks will be grown to maturity in freshwater at the IDFG Eagle Hatchery. However, the IDFG and ODFW requested that a portion of each group also be reared in protective culture in seawater. In August 1996, NMFS began a BPA funded project (Project 96-067-00) to rear Snake River spring/summer chinook salmon captive broodstocks in seawater at the NMFS Manchester Research Station. During 1997-1999, facilities modifications were undertaken at Manchester to provide secure facilities for rearing of these ESA-listed fish. This included construction of a building housing a total of twenty 6.1-m diameter fiberglass rearing tanks, upgrade of the Manchester salt water pumping and filtration/sterilization systems to a total capacity of 5,670 L/min (1,500 gpm), and installation

  8. 75 FR 52309 - Pacific Fishery Management Council; Tule Chinook Workgroup Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... an abundance-based harvest management approach for Columbia River natural tule chinook . This meeting... Administration RIN 0648-XY40 Pacific Fishery Management Council; Tule Chinook Workgroup Meeting AGENCY: National...: Notice of public meeting. SUMMARY: The Pacific Fishery Management Council's (Pacific Council) Tule...

  9. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    USGS Publications Warehouse

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  10. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  11. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  12. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  13. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  14. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  15. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  16. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  17. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings...

  18. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  19. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  20. Dynamics of chinook salmon populations within Idaho's Frank Church Wilderness: implications for persistence

    Treesearch

    Russell F. Thurow

    2000-01-01

    Research was begun in 1995 to describe factors influencing the spatial dynamics and persistence of federally listed chinook salmon within the Frank Church River of No Return Wilderness. Results addressed two objectives: 1) description of chinook salmon redd distributions, and 2) comparison of index and total redd counts. Annual redd counts ranged from 20 to 661, and 99...

  1. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the...

  2. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the...

  3. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the...

  4. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the...

  5. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the...

  6. Survey on Mycoplasma hyopneumoniae gilt acclimation practices in Europe.

    PubMed

    Garza-Moreno, Laura; Segalés, Joaquim; Pieters, Maria; Romagosa, Anna; Sibila, Marina

    2017-01-01

    Gilts are considered to play a key role in Mycoplasma hyopneumoniae (M. hyopneumoniae) transmission and control. An effective gilt acclimation program should ideally reduce M. hyopneumoniae shedding at first farrowing, decreasing pre-weaning colonization prevalence and potential respiratory problems in fatteners. However, information on gilt acclimation practices is scarce in Europe. The aim of this study was to identify current acclimation strategies for M. hyopneumoniae in Europe using a questionnaire designed to assess 15 questions focused on gilt replacement status, acclimation strategies and methods used to ascertain its effect. A total of 321 questionnaires (representing 321 farms) were voluntarily completed by 108 veterinarians (from 18 European countries). From these farms, 280 out of 321 (87.2%) were aware of the health status of gilts on arrival. From these 280 farms, 161 (57.5%) introduced M. hyopneumoniae positive replacements. In addition, 249 out of 321 (77.6%) farms applied an acclimation process using different strategies, being M. hyopneumoniae vaccination (145 out of 249, 58.2%) and the combination of vaccine and exposure to sows selected for slaughter (53 out of 249, 21.3%) the most commonly used. Notwithstanding, only 53 out of 224 (23.6%) farms, knowing the M. hyopneumoniae initial status and performing acclimation strategies against it, verified the effect of the acclimation by ELISA (22 out of 53, 41.5%), PCR (4 out of 53, 7.5%) or both (27 out of 53, 50.9%). This study showed that three fourths of the farms represented in this European survey have M. hyopneumoniae acclimation strategies for gilts, and one fifth of them verify to some extent the effect of the process. Taking into account that the assessment of acclimation efficacy could help in optimizing replacement gilt introduction into the breeding herd, it seems these practices for M. hyopneumoniae are still poorly developed in Europe.

  7. Biophysical consequences of photosynthetic temperature acclimation for climate

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas G.; Lombardozzi, Danica; Tawfik, Ahmed; Bonan, Gordon; Dukes, Jeffrey S.

    2017-03-01

    Photosynthetic temperature acclimation is a commonly observed process that is increasingly being incorporated into Earth System Models (ESMs). While short-term acclimation has been shown to increase carbon storage in the future, it is uncertain whether acclimation will directly influence simulated future climate through biophysical mechanisms. Here, we used coupled atmosphere-biosphere simulations using the Community Earth System Model (CESM) to assess how acclimation-induced changes in photosynthesis influence global climate under present-day and future (RCP 8.5) conditions. We ran four 30 year simulations that differed only in sea surface temperatures and atmospheric CO2 (present or future) and whether a mechanism for photosynthetic temperature acclimation was included (yes or no). Acclimation increased future photosynthesis and, consequently, the proportion of energy returned to the atmosphere as latent heat, resulting in reduced surface air temperatures in areas and seasons where acclimation caused the biggest increase in photosynthesis. However, this was partially offset by temperature increases elsewhere, resulting in a small, but significant, global cooling of 0.05°C in the future, similar to that expected from acclimation-induced increases in future land carbon storage found in previous studies. In the present-day simulations, the photosynthetic response was not as strong and cooling in highly vegetated regions was less than warming elsewhere, leading to a net global increase in temperatures of 0.04°C. Precipitation responses were variable and rates did not change globally in either time period. These results, combined with carbon-cycle effects, suggest that models without acclimation may be overestimating positive feedbacks between climate and the land surface in the future.

  8. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  9. Testing advances in molecular discrimination among Chinook salmon life histories: evidence from a blind test.

    PubMed

    Banks, Michael A; Jacobson, David P; Meusnier, Isabelle; Greig, Carolyn A; Rashbrook, Vanessa K; Ardren, William R; Smith, Christian T; Bernier-Latmani, Jeremiah; Van Sickle, John; O'Malley, Kathleen G

    2014-06-01

    The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.

  10. Migratory behavior of Chinook salmon microjacks reared in artificial and natural environments

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2015-01-01

    Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P<0.01). In addition, they differed significantly (P<0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P<0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.

  11. An estimate of chinook salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River

    SciTech Connect

    Hanrahan, Timothy P.; Dauble, Dennis D.; Geist, David R.

    2004-02-01

    Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specific segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.

  12. Behavior and dam passage of juvenile Chinook salmon and juvenile steelhead at Detroit Reservoir and Dam, Oregon, March 2012-February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin D.

    2014-01-01

    The in-reservoir movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) were studied at Detroit Reservoir and Dam, near Detroit, Oregon, during 2012 and 2013. The goal of the study was to provide data to inform decisions about future downstream passage alternatives and factors affecting downstream passage rates with the existing dam configuration. In 2012, 468 juvenile Chinook salmon and 200 juvenile steelhead were tagged and released during a 3-month period in the spring, and another 514 juvenile Chinook salmon were tagged and released during a 3-month period in the fall. The fish were surgically implanted with a small acoustic transmitter with an expected life of about 3 months and a passive integrated transponder tag with an indefinite life, and were released into the two main tributaries several kilometers upstream of the reservoir. Juvenile Chinook salmon migrated from the release sites to the reservoir in a greater proportion than juvenile steelhead, but once in the reservoir, juvenile steelhead migrated to the forebay faster and had a higher dam passage rate than juvenile Chinook salmon. The routes available for passing water and fish varied throughout the year, with low reservoir elevations in winter and high reservoir elevations in summer in accordance with the flood-control purpose of the dam. Most dam passage was through the spillway during the spring and summer, when the reservoir elevation was high and the spillway and powerhouse were the most common routes in operation, and via the powerhouse during the fall and winter period, when the reservoir elevation was low and the regulating outlet and powerhouse were the most common routes in operation. Few tagged fish passed when the powerhouse was the only route in operation. Dam passage rates during the spring and summer were greatest at night, increased with dam discharge, and were greater when water was passed freely over the

  13. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program, Annual Report 2002-2003.

    SciTech Connect

    Larsen, Donald; Beckman, Brian; Cooper, Kathleen

    2003-08-01

    The Yakima River Spring Chinook Salmon Supplementation Project in Washington State is currently one of the most ambitious efforts to enhance a natural salmon population in the United States. Over the past five years we have conducted research to characterize the developmental physiology of naturally- and hatchery-reared wild progeny spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River basin. Fish were sampled at the main hatchery in Cle Elum, at remote acclimation sites and, during smolt migration, at downstream dams. Throughout these studies the maturational state of all fish was characterized using combinations of visual and histological analysis of testes, gonadosomatic index (GSI), and measurement of plasma 11-ketotestosterone (11-KT). We established that a plasma 11-KT threshold of 0.8 ng/ml could be used to designate male fish as either immature or precociously maturing approximately 8 months prior to final maturation (1-2 months prior to release as 'smolts'). Our analyses revealed that 37-49% of the hatchery-reared males from this program undergo precocious maturation at 2 years of age and a proportion of these fish appear to residualize in the upper Yakima River basin throughout the summer. An unnaturally high incidence of precocious male maturation may result in loss of potential returning anadromous adults, skewing of female: male sex ratios, ecological, and genetic impacts on wild populations and other native species. Precocious male maturation is significantly influenced by growth rate at specific times of year and future studies will be conducted to alter maturation rates through seasonal growth rate manipulations.

  14. Mechanisms of thermal acclimation to exercise and heat

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Pandolf, K. B.; Roberts, M. F.; Stolwijk, J. A. J.

    1974-01-01

    By plotting local sweating rate from a given area against the central sweating drive (which is analogous to esophageal temperature, when mean skin temperature is constant), it is possible to determine the characteristic gain constant of that area as well as its point of zero central drive. An increase in the gain constant as a result of acclimation would indicate an increased sensitivity of the sweating mechanism per unit of central sweating drive, i.e., enhanced peripheral sensitivity. A displacement of the point of zero central drive as a result of acclimation would indicate that central mechanisms are responsible for the heightened sweating response. The study was undertaken to provide information about whether central or peripheral physiological mechanisms provide for increased sweating capabilities during acclimation, and about whether the increased sweating capabilities in heat acclimation and physical training are provided for by the same mechanisms.

  15. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  16. Fall Enrollment Report. 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    This report summarizes and analyzes fall enrollment in Iowa's community colleges. Each year, Iowa's 15 community colleges submit data on enrollment on the 10th business day of the fall semester. Some highlights from this report include: (1) Fall 2014 enrollment was 93,772 students--a decline of 0.49 percent from last fall; (2) Enrollment continues…

  17. A Virus-like disease of chinook salmon

    USGS Publications Warehouse

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  18. Supplement Analysis for Yakima/Klickitat Fisheries Project, Boone Pond Acclimation Site (DOE/EIS-0169-SA-08)

    SciTech Connect

    Smith, Patricia R.

    2004-04-07

    Yakima/Klickitat Fisheries Project – Under the Monitoring and Evaluation Program (M&E), the coho acclimation research task would be modified to include a new site located in the upper Yakima south of Cle Elum, WA. The Yakima Fisheries Project Final Environmental Impact Statement (YFP EIS) (USDOE/BPA 1996) analyzed impacts of undertaking fishery research and mitigation activities in the Yakima River Basin. The EIS focused on the impacts of construction, operation and maintenance of anadromous fish production facilities in order to conduct research designed to increase knowledge of supplementation techniques. Spring chinook were the priority species analyzed in the EIS, however, Coho feasibility studies, potential harvest benefits, and predation impacts for returning natural production of Coho salmon to the Yakima River Basin were also evaluated. Subsequent Supplement Analyses (SA’s) have analyzed the potential impacts of research activities relating to this experimental design program (DOE/EIS-0169-SA-01 through SA-07). The purpose of this Supplement Analysis (SA) is to determine if a Supplemental EIS (SEIS) is needed to analyze the changes proposed in the Yakima Klickitat Fisheries Project (YKFP) Coho Program feasibility studies.

  19. Peripheral Sweat Gland Function Improves With Humid Heat Acclimation

    DTIC Science & Technology

    2009-04-01

    Individual variations in structure and function of human eccrine sweat gland . Am. j. Physio!. 245, R203-R208. strydom, N.B .. Wyndham, e.H., Williams, e.G...Naval Health Research Center Peripheral Sweat Gland Function Improves With Humid Heat Acclimation . M. J. Buono S. L. Martha...Biology E!.SFVILR journal homepage: www.elsevier.com/locate/jtherbio Peripheral sweat gland function is improved with humid heat acclimation Michael

  20. Tolerance and acclimation to zinc of Ceriodaphnia dubia.

    PubMed

    Muyssen, Brita T A; Janssen, Colin R

    2002-01-01

    Zinc is an essential metal for all living organisms. However, so far, little or no attention has been paid to the consequences of zinc deficiency or acclimation to this metal during culturing and testing on toxicity test results. In this study, the cladoceran Ceriodaphnia dubia was acclimated for 10 generations to four zinc concentrations ranging from 0 to 100 microg Zn/l and changes in zinc tolerance were monitored using acute (48 h) and chronic (9 days) assays. C. dubia deprived of zinc and acclimated to 13 microg Zn/l had a lower fitness in comparison with organisms acclimated to 50 and 100 microg Zn/l. In the two lowest versus the two highest acclimation concentrations the 9dEC50 values (on immobility) were 358-387 microg Zn/l versus 486-489 microg Zn/l; the mean number of young per female was 11-18 versus 25-32; and the time to first brood was 4.7-5.0 days versus 4.0-4.3 days. Moreover, the coefficient of variation of all parameters tested was highest in the two lowest acclimation concentrations. The results indicate that culturing test animals in media lacking trace metals such as zinc could give rise to animals that are unnaturally sensitive to those same metals daring toxicity tests.

  1. Transgenerational acclimation of fishes to climate change and ocean acidification.

    PubMed

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  2. Foliar temperature acclimation reduces simulated carbon sensitivity to climate

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas G.; Malyshev, Sergey L.; Shevliakova, Elena; Kattge, Jens; Dukes, Jeffrey S.

    2016-04-01

    Plant photosynthesis and respiration are the largest carbon fluxes between the terrestrial biosphere and the atmosphere, and their parameterizations represent large sources of uncertainty in projections of land carbon uptake in Earth system models (ESMs). The incorporation of temperature acclimation of photosynthesis and foliar respiration, commonly observed processes, into ESMs has been proposed as a way to reduce this uncertainty. Here we show that, across 15 flux tower sites spanning multiple biomes at various locations worldwide (10° S-67° N), acclimation parameterizations improve a model's ability to reproduce observed net ecosystem exchange of CO2. This improvement is most notable in tropical biomes, where photosynthetic acclimation increased model performance by 36%. The consequences of acclimation for simulated terrestrial carbon uptake depend on the process, region and time period evaluated. Globally, including acclimation has a net effect of increasing carbon assimilation and storage, an effect that diminishes with time, but persists well into the future. Our results suggest that land models omitting foliar temperature acclimation are likely to overestimate the temperature sensitivity of terrestrial carbon exchange, thus biasing projections of future carbon storage and estimates of policy indicators such as the transient climate response to cumulative carbon emissions.

  3. Acclimation of Chlamydomonas reinhardtii to Different Growth Irradiances*

    PubMed Central

    Bonente, Giulia; Pippa, Sara; Castellano, Stefania; Bassi, Roberto; Ballottari, Matteo

    2012-01-01

    We report on the changes the photosynthetic apparatus of Chlamydomonas reinhardtii undergoes upon acclimation to different light intensity. When grown in high light, cells had a faster growth rate and higher biomass production compared with low and control light conditions. However, cells acclimated to low light intensity are indeed able to produce more biomass per photon available as compared with high light-acclimated cells, which dissipate as heat a large part of light absorbed, thus reducing their photosynthetic efficiency. This dissipative state is strictly dependent on the accumulation of LhcSR3, a protein related to light-harvesting complexes, responsible for nonphotochemical quenching in microalgae. Other changes induced in the composition of the photosynthetic apparatus upon high light acclimation consist of an increase of carotenoid content on a chlorophyll basis, particularly zeaxanthin, and a major down-regulation of light absorption capacity by decreasing the chlorophyll content per cell. Surprisingly, the antenna size of both photosystem I and II is not modulated by acclimation; rather, the regulation affects the PSI/PSII ratio. Major effects of the acclimation to low light consist of increased activity of state 1 and 2 transitions and increased contributions of cyclic electron flow. PMID:22205699

  4. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have

  5. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have

  6. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    USGS Publications Warehouse

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    DNA in fish dually-infected with R. salmoninarum. Overall, results in Aim 1 indicated: 1) that the experimental diets impacted bacterial but not parasitic infection patterns, 2) that low thiamine levels may reduce the severity of R. salmoninarum infection, and 3) that fish infected with R. salmoninarum may be less able to clear a secondary infection with a parasite. The second study (Aim 2) focused on the role that temperature plays in the progression of BKD from the asymptomatic infected state to a diseased state. Lake Michigan Chinook salmon were infected with R. salmoninarum at a common intermediate water temperature and, at 2 weeks post-infection, were split into three temperature groups (cool, intermediate and warm). Fish held at the cool temperature (8°C) had significantly greater mortality following challenge, significantly higher levels of bacteria in the kidney, and shed significantly greater amounts of bacteria into the water relative to fish held at the intermediate (12°C) and warm (15°C) temperatures. Thus, our results support the hypothesis that, for BKD, warm temperature stress does not contribute to greater disease progression and increased bacterial shedding. Our laboratory results are consistent with field epidemiological observations that BKD mortality in the Great Lakes is commonly associated with declining water temperatures in the fall or when water temperatures begin to increase but are still cool after over-wintering. 

  7. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    USGS Publications Warehouse

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    DNA in fish dually-infected with R. salmoninarum. Overall, results in Aim 1 indicated: 1) that the experimental diets impacted bacterial but not parasitic infection patterns, 2) that low thiamine levels may reduce the severity of R. salmoninarum infection, and 3) that fish infected with R. salmoninarum may be less able to clear a secondary infection with a parasite. The second study (Aim 2) focused on the role that temperature plays in the progression of BKD from the asymptomatic infected state to a diseased state. Lake Michigan Chinook salmon were infected with R. salmoninarum at a common intermediate water temperature and, at 2 weeks post-infection, were split into three temperature groups (cool, intermediate and warm). Fish held at the cool temperature (8°C) had significantly greater mortality following challenge, significantly higher levels of bacteria in the kidney, and shed significantly greater amounts of bacteria into the water relative to fish held at the intermediate (12°C) and warm (15°C) temperatures. Thus, our results support the hypothesis that, for BKD, warm temperature stress does not contribute to greater disease progression and increased bacterial shedding. Our laboratory results are consistent with field epidemiological observations that BKD mortality in the Great Lakes is commonly associated with declining water temperatures in the fall or when water temperatures begin to increase but are still cool after over-wintering. 

  8. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.

    SciTech Connect

    Daniel, Mitch; Gebhards, John; Hill, Robert

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

  9. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed Central

    Xia, J. H.; Roberts, JKM.

    1996-01-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells. PMID:12226288

  10. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  11. The Fall and Fall of Gary Hart.

    ERIC Educational Resources Information Center

    Rowland, Robert C.

    The fall of Gary Hart, brought about because of his indiscretions during the 1988 presidential campaign, should not be treated exclusively as a consequence of Hart's moral failings. Rather, the fall of Hart can be traced to a complex of factors including bad judgment, the near total control that the press exercises over the political agenda, and…

  12. Smolt Quality Assessment of Spring Chinook Salmon : Annual Report.

    SciTech Connect

    Zaugg, Waldo S.

    1991-04-01

    The physiological development and physiological condition of spring chinook salmon are being studied at several hatcheries in the Columbia River Basin. The purpose of the study is to determine whether any or several smolt indices can be related to adult recovery and be used to improve hatchery effectiveness. The tests conducted in 1989 on juvenile chinook salmon at Dworshak, Leavenworth, and Warm Springs National Fish Hatcheries, and the Oregon State Willamette Hatchery assessed saltwater tolerance, gill ATPase, cortisol, insulin, thyroid hormones, secondary stress, fish morphology, metabolic energy stores, immune response, blood cell numbers, and plasma ion concentrations. The study showed that smolt development may have occurred before the fish were released from the Willamette Hatchery, but not from the Dworshak, Leavenworth, or Warm Springs Hatcheries. These results will be compared to adult recovery data when they become available, to determine which smolt quality indices may be used to predict adult recovery. The relative rankings of smolt quality at the different hatcheries do not necessarily reflect the competency of the hatchery managers and staff, who have shown a high degree of professionalism and expertise in fish rearing. We believe that the differences in smolt quality are due to the interaction of genetic and environmental factors. One aim of this research is to identify factors that influence smolt development and that may be controlled through fish husbandry to regulate smolt development. 35 refs., 27 figs., 5 tabs.

  13. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  14. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  15. Assimilation efficiency of PBDE congeners in Chinook salmon.

    PubMed

    Dietrich, Joseph P; Strickland, Stacy A; Hutchinson, Greg P; Van Gaest, Ahna L; Krupkin, Alex B; Ylitalo, Gina M; Arkoosh, Mary R

    2015-03-17

    Polybrominated diphenyl ether (PBDE) flame retardants are environmental contaminants that can accumulate in biota. PBDE accumulation in an organism depends on exposure, assimilation efficiency, and elimination/metabolism. Net assimilation efficiency represents the fraction of the contaminant that is retained in the organism after exposure. In the present study, congener-specific estimates of net PBDE assimilation efficiencies were calculated from dietary exposures of juvenile Chinook salmon. The fish were exposed to one to eight PBDE congeners up to 1500 ng total PBDEs/g food. Mean assimilation efficiencies varied from 0.32 to 0.50 for BDE congeners 28, 47, 99, 100, 153, and 154. The assimilation efficiency of BDE49 was significantly greater than 100%, suggesting biotransformation from higher brominated congeners. Whole body concentrations of BDE49 significantly increased with both exposure to increasing concentrations of BDE99 and decreasing fish lipid levels, implying lipid-influenced debromination of BDE99 to BDE49. Excluding BDE49, PBDE assimilation efficiency was not significantly related to the numbers of congeners in the diets, or congener hydrophobicity, but was greater in foods with higher lipid levels. Estimates of PBDE assimilation efficiency can be used in bioaccumulation models to assess threats from PBDE exposure to Chinook salmon health and recovery efforts, as well as to their predators.

  16. Proteomic Analysis of Chinook Salmon (Oncorhynchus tshawytscha) Ovarian Fluid

    PubMed Central

    Johnson, Sheri L.; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P. Mark; Gemmell, Neil J.

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species. PMID:25089903

  17. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  18. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid.

    PubMed

    Johnson, Sheri L; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P Mark; Gemmell, Neil J

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  19. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?

    PubMed

    Charrier, Guillaume; Bonhomme, Marc; Lacointe, André; Améglio, Thierry

    2011-11-01

    As observed for most stresses, tree frost resistance can be split into two main processes: avoidance and tolerance. Avoidance of freezing is achieved by introducing species only in the climatic context in which the probability of freezing events is very low for the sensitive stages of buds or stems; i.e., when good synchronism exists between the annual cycle and the critical climatic periods. Buds become able to grow only after chilling requirements have been satisfied (endodormancy released) during winter; they subsequently break after heat requirements have been completed (end of ecodormancy) in early spring. Actually, this period is often subject to more or less severe freezing events. Trees are also able to adjust their freezing tolerance by increasing their capacity of extracellular freezing and decreasing the possibility of intracellular freezing through the process of frost acclimation. Both freezing resistance processes (avoidance and tolerance) are environmentally driven (by photoperiod and temperature), but there are also genotypic effects among species or cultivars. Here, we evaluated the degree to which differences in dormancy release and frost acclimation were related to environmental and genetic influences by comparing trees growing in common garden conditions. This investigation was carried out for two winters in lowland and mountain locations on different walnut genotypes differing significantly for budburst dates. Chilling requirement for endodormancy release and heat requirement during ecodormancy were evaluated in all situations. In addition, frost acclimation was assessed by the electrolyte leakage method on stems from the same trees before leaf fall through budburst. No significant differences were observed in chilling requirements among genotypes. Moreover, frost acclimation dynamics were similar between genotypes or locations when expressed depending on chilling units accumulated since 15 September as a time basis instead of Julian day. The

  20. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  1. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming?

    PubMed

    Gorsuch, Peter A; Pandey, Subedar; Atkin, Owen K

    2010-07-01

    We quantified a broad range of Arabidopsis thaliana (Col-0) leaf phenotypes for initially warm-grown (25/20 degrees C day/night) plants that were exposed to cold (5 degrees C) for periods of a few hours to 45 d before being transferred back to the warm, where leaves were allowed to mature. This allowed us to address the following questions: (1) For how long do warm-grown plants have to experience cold before developing leaves become irreversibly cold acclimated? (2) To what extent is the de-acclimation process associated with changes in leaf anatomy and physiology? We show that leaves that experience cold for extended periods during early development exhibit little plasticity in either photosynthesis or respiration, and they do not revert to a warm-associated carbohydrate profile. The eventual expansion rate in the warm was inversely related to the duration of previous cold treatment. Moreover, cold exposure of immature/developing leaves for as little as 5 d resulted in irreversible changes in the morphology of leaves that subsequently matured in the warm, with 15 d cold being sufficient for a permanent alteration of leaf anatomy. Collectively, these results highlight the impact of transitory cold during early leaf development in determining the eventual phenotype of leaves that mature in the warm.

  2. Meteorite Falls in Morocco

    NASA Astrophysics Data System (ADS)

    Chennaoui Aoudjehane, H.

    2016-08-01

    The number of meteorite falls reported in Morocco since 2000 is highest than any other place compared to the other countries in the world, that call into question the efficiency of the randomly meteorite falls on Earth.

  3. Falls after stroke.

    PubMed

    Batchelor, Frances A; Mackintosh, Shylie F; Said, Catherine M; Hill, Keith D

    2012-08-01

    Falls are common at all stages after stroke, occurring in the acute, rehabilitative, and chronic phases. Consequences of falls include death or serious injury, minor injuries, functional limitations, reduced mobility and activity, and fear of falling. These consequences can have implications for independence and quality of life after stroke. The high frequency of falls may be due to a combination of existing falls risk factors prior to the stroke as well as impairments from the stroke, such as decreased strength and balance, hemineglect, perceptual problems, and visual problems. This paper reviews the magnitude of the problem of falls in people with stroke, highlights risk factors, and summarizes the limited randomized controlled trial evidence on falls prevention in this population. There is a need for further high quality research investigating the effectiveness of interventions to reduce falls and injury in people with stroke from onset through to the chronic stage. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  4. ``Föhn illness'' and human biometeorology in the Chinook area of Canada

    NASA Astrophysics Data System (ADS)

    Fletcher, Roy J.

    1988-09-01

    Literature on the nature and possible causes of ‘föhn illness’ is reviewed. Seven physiological and psychological aspects of human well-being were solicited from 1828 residents of southern Alberta by telephone interview. Data were evaluated to determine if well-being was weather related. Meteorological parameters included eight 48-h weather types, temperature, humidity, wind and pressure. The expected increase in föhn illness symptoms during the frequent warm chinook and decrease at times of cold non-chinook weather were not present. However, with the cool chinook (temperature slightly below freezing) many people claimed additional irritability and, to a lesser extent, more pain in their joints, headaches and nervousness. Several adverse symptoms were positively correlated with wind velocity. However, no widespread ‘chinook illness’ comparable to the föhn illness was found.

  5. Short Duration Heat Acclimation in Australian Football Players

    PubMed Central

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  6. Short Duration Heat Acclimation in Australian Football Players.

    PubMed

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  7. Effectiveness of an integrated hatchery program: Can genetic-based performance differences between hatchery and wild Chinook salmon be avoided?

    USGS Publications Warehouse

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Drake, Deanne C.; Stenberg, Karl D.; Young, Sewall F.

    2013-01-01

    Performance of wild (W) and hatchery (H) spring Chinook salmon (Oncorhynchus tshawytscha) was evaluated for a sixth generation hatchery program. Management techniques to minimize genetic divergence from the wild stock included regular use of wild broodstock and volitional releases of juveniles. Performance of HH, WW, and HW (hatchery female spawned with wild male) crosses was compared in hatchery and stream environments. The WW juveniles emigrated from the hatchery at two to three times the rate of HH fish in the fall (HW intermediate) and 35% more HH than WW adults returned (27% more HW than WW adults). Performance in the stream did not differ statistically between HH and WW fish, but outmigrants (38% WW, 30% HW, and 32% HH fish) during the first 39 days of the 16-month sampling period composed 74% of total outmigrants. Differences among hatchery-reared crosses were partially due to additive genetic effects, were consistent with domestication (increased fitness for the hatchery population in the hatchery program), and suggested that selection against fall emigration from the hatchery was a possible mechanism of domestication.

  8. First Aid: Falls

    MedlinePlus

    ... Your 1- to 2-Year-Old First Aid: Falls KidsHealth > For Parents > First Aid: Falls Print A A A en español Folleto de instructiones: Caídas (Falls) With all the running, climbing, and exploring kids ...

  9. Falls risk assessment.

    PubMed

    Gallacher, Rose

    2017-02-22

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The CPD article outlined the causes and consequences of falls for older patients. It discussed the falls risk assessment tools, and falls prevention measures.

  10. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Modeling acclimation of photosynthesis to temperature in evergreen conifer forests.

    PubMed

    Gea-Izquierdo, Guillermo; Mäkelä, Annikki; Margolis, Hank; Bergeron, Yves; Black, T Andrew; Dunn, Allison; Hadley, Julian; Kyaw Tha Paw U; Falk, Matthias; Wharton, Sonia; Monson, Russell; Hollinger, David Y; Laurila, Tuomas; Aurela, Mika; McCaughey, Harry; Bourque, Charles; Vesala, Timo; Berninger, Frank

    2010-10-01

    • In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. • A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. • The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean > 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. • Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.

  12. The influence of Chinook winds and other weather patterns upon neuropathic pain.

    PubMed

    Ngan, Sybil; Toth, Cory

    2011-10-01

    Although Chinook winds are often viewed positively during a cold prairie winter, patients suffering with neuropathic pain (NeP) anecdotally report exacerbations of NeP during Chinooks and during other weather changes. Our objective was to identify if Chinook winds lead to acute exacerbations in pain severity in a NeP patient population. Prospective diary-based assessments of patients with at least moderate NeP over 6-month periods during different seasons of the year were performed. Concurrent weather conditions were tracked hourly, with Chinook winds defined using accepted meteorological definition. We also examined other aspects of weather including precipitation, temperature, and humidity. Days with acute exacerbations were defined when a daily visual analog score pain score was ≥2 points above their average NeP score over the entire 6-month period. Chinooks were not associated with individual acute exacerbations in NeP. Instead, Chinook days were found to be protective against acute exacerbations in NeP (odds ratio 0.52 [0.33-0.71]). Post hoc study associated Chinooks with NeP relief (odds ratio 1.83 [1.17-2.49]). We could not identify relationship between precipitation or humidity with acute NeP exacerbation. However, days with cold temperature ≤ -14°C were associated with greater risk of NeP exacerbation. Weather-mediated changes occur for patients with NeP, manifesting as relief from Chinook winds while cold temperature conditions can provoke exacerbations in NeP. Wiley Periodicals, Inc.

  13. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may

  14. Survival of Juvenile Chinook Salmon during Barge Transport

    SciTech Connect

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model with acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival from

  15. Fall Prevention: Simple Tips to Prevent Falls

    MedlinePlus

    ... of falls by improving strength, balance, coordination and flexibility. If you avoid physical activity because you're ... custom exercise program aimed at improving your balance, flexibility, muscle strength and gait. Consider changing your footwear ...

  16. Acclimation of zebrafish to transport stress.

    PubMed

    Dhanasiri, Anusha K S; Fernandes, Jorge M O; Kiron, Viswanath

    2013-03-01

    Welfare of fish is commonly neglected when they are transported. This study examines the effect of a 72-h mock transport on certain aspects of the stress physiology of two groups of zebrafish-the first transported in water enriched with a nitrifying bacterial consortium and the second in water without the enrichment. Zebrafish were examined at different time points-before packing (BP), immediately after packing them in transport bags (AP), at the end of transport (AT), and 72 h thereafter (PT)-to assess the primary (cortisol) and secondary (glucose) stress responses. In addition, the relevant genes in hypothalamic-pituitary-interrenal (HPI) axis (crf in brain, mc2r, star, cyp11c1, and hsd11b2 in kidney), including that of mineralocorticoid receptor (mr in kidney), were studied. Procedures during packing caused an increase in whole body cortisol levels of both fish groups. Only in the fish transported without the bacterial consortium, an increase in the levels of whole body cortisol as well as blood glucose was observed at the end of the transport. At the same time point and in the same fish group, the transcripts of mr and hsd11b2 were enhanced, probably to cope with the stress and to maintain homeostasis. The mRNA levels of the other genes in the HPI stress axis (crf, mc2r, star, and cyp11c1) were not significantly altered. Zebrafish transported in water enriched with the bacterial consortium exhibited a speedier stress acclimation. Nevertheless, only through in-depth studies the beneficial effect of the consortium can be confirmed.

  17. Immobility and falls.

    PubMed

    Mahoney, J E

    1998-11-01

    Immobility is a common problem for hospitalized older adults. Excessive bed rest results in multiple adverse physiologic consequences and may contribute to functional decline and increased risk for falls in the hospital setting. About 2% of hospitalized older adults fall during hospitalization. Risk factors for in-hospital falls includes cognitive impairment, mobility impairment, specific diagnoses, multiple comorbidities, and psychotropic medications. Appropriate actions to prevent immobility and falls include increasing exercise and activity levels, improving the hospital environment, and decreasing the use of psychotropic medications. Bed alarms and increased supervision for high-risk patients also may help prevent falls.

  18. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    SciTech Connect

    Schroder, S.L.; Knudsen, C.M.; Rau, J.A.

    2003-01-01

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environments during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.

  19. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  20. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    USGS Publications Warehouse

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  1. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    PubMed

    Caudill, Christopher C; Keefer, Matthew L; Clabough, Tami S; Naughton, George P; Burke, Brian J; Peery, Christopher A

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  2. Indirect Effects of Impoundment on Migrating Fish: Temperature Gradients in Fish Ladders Slow Dam Passage by Adult Chinook Salmon and Steelhead

    PubMed Central

    Caudill, Christopher C.; Keefer, Matthew L.; Clabough, Tami S.; Naughton, George P.; Burke, Brian J.; Peery, Christopher A.

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species. PMID:24392020

  3. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  4. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  5. Photosynthetic acclimation to dynamic changes in environmental conditions associated with deciduous overstory phenology in Daphniphyllum humile, an evergreen understory shrub.

    PubMed

    Katahata, Shinichiro; Naramoto, Masaaki; Kakubari, Yoshitaka; Mukai, Yuzuru

    2005-04-01

    Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.

  6. Acclimation of Rice Photosynthesis to Irradiance under Field Conditions1

    PubMed Central

    Murchie, Erik H.; Hubbart, Stella; Chen, Yizhu; Peng, Shaobing; Horton, Peter

    2002-01-01

    Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (Pmax), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and Pmax all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of Pmax (measured at 350 μL L−1 CO2) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher Pmax (measured at 350 μL L−1 CO2) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with Pmax. Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy. PMID:12481083

  7. Acclimation of rice photosynthesis to irradiance under field conditions.

    PubMed

    Murchie, Erik H; Hubbart, Stella; Chen, Yizhu; Peng, Shaobing; Horton, Peter

    2002-12-01

    Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (P(max)), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and P(max) all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of P(max) (measured at 350 microL L(-1) CO(2)) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher P(max) (measured at 350 microL L(-1) CO(2)) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with P(max). Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy.

  8. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    SciTech Connect

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  9. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    SciTech Connect

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W.

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  10. The effect of starving and feeding on copper toxicity and uptake in Cu acclimated and non-acclimated carp.

    PubMed

    Hashemi, Shodja; Blust, Ronny; De Boeck, Gudrun

    2008-01-31

    Common carp (Cyprinus carpio) were fed two different food rations: 0.5% body weight (low ration, LR) and 5% body weight (high ration, HR) and were either acclimated to sublethal copper (1 microM) for 28 days in softened Antwerp city tap water or not acclimated. Fish were exposed for 10 days to high Cu levels using four different concentrations (3.5, 6, 10, and 15 microM) before and after the Cu acclimation. Fish tolerance against Cu exposure was evaluated, and gill, liver, and carcass Cu and sodium levels were measured in dead and surviving fish. HR fish were twice as sensitive as LR fish in both tests. The 96h median lethal concentration (LC50) values for the non-acclimated LR and HR fish were 8.46+/-2.79 and 4.34+/-0.82 microM, respectively. The fish became more resistant to low Cu concentrations after Cu acclimation and the LC50 values were slightly increased, reaching 9.20+/-1.56 microM and 5.01+/-1.93 in LR and HR fish accordingly. Cu concentrations in the gills, liver, and carcass were significantly elevated in response to the short-term Cu exposure, and were significantly higher in LR fish than in HR fish. High Cu levels caused a net loss of sodium resulting in a severe ion regulatory disturbance. The rate of sodium loss increased linearly with increasing exposure concentrations. Cu acclimation resulted in reduced sodium loss and increased the resistance and tolerance to Cu toxicity.

  11. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration.

    PubMed

    Way, Danielle A; Yamori, Wataru

    2014-02-01

    While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.

  12. Minority Enrollment Trends, Catonsville Community College: Fall 84-Fall 88.

    ERIC Educational Resources Information Center

    Catonsville Community Coll., MD. Office of Institutional Research.

    The enrollment of minority students at Catonsville Community College (CCC) generally followed the same pattern of decline and growth as the student population as a whole between fall 1984 and fall 1989. Minority enrollments increased by 1.5% from fall 1984 to fall 1985, decreased by 12.2% in fall 1986, increased by 5.8% in fall 1987, and increased…

  13. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  14. Meteorite falls in Africa

    NASA Astrophysics Data System (ADS)

    Khiri, Fouad; Ibhi, Abderrahmane; Saint-Gerant, Thierry; Medjkane, Mohand; Ouknine, Lahcen

    2017-10-01

    The study of meteorites provides insight into the earliest history of our solar system. From 1800, about the year meteorites were first recognized as objects falling from the sky, until December 2014, 158 observed meteorite falls were recorded in Africa. Their collected mass ranges from 1.4 g to 175 kg with the 1-10 kg cases predominant. The average rate of African falls is low with only one fall recovery per 1.35-year time interval (or 0.023 per year per million km2). This African collection is dominated by ordinary chondrites (78%) just like in the worldwide falls. The seventeen achondrites include three Martian meteorite falls (Nakhla of Egypt, Tissint of Morocco and Zagami of Nigeria). Observed Iron meteorite falls are relatively rare and represent only 5%. The falls' rate in Africa is variable in time and in space. The number of falls continues to grow since 1860, 80% of which were recovered during the period between 1910 and 2014. Most of these documented meteorite falls have been recovered from North-Western Africa, Eastern Africa and Southern Africa. They are concentrated in countries which have a large surface area and a large population with a uniform distribution. Other factors are also favorable for observing and collecting meteorite falls across the African territory, such as: a genuine meteorite education, a semi-arid to arid climate (clear sky throughout the year most of the time), croplands or sparse grasslands and possible access to the fall location with a low percentage of forest cover and dense road network.

  15. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-02-27

    Essential facts Falls are the most frequent adverse event reported in hospitals, usually affecting older patients. Every year, more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wales, equivalent to more than 600 a day, according to the Royal College of Physicians (RCP). But research shows that when nurses, doctors and therapists work together, falls can be reduced by 20-30%.

  16. The Patient Who Falls

    PubMed Central

    Tinetti, Mary E.; Kumar, Chandrika

    2013-01-01

    Falls are common health events that cause discomfort and disability for older adults and stress for caregivers. Using the case of an older man who has experienced multiple falls and a hip fracture, this article, which focuses on community-living older adults, addresses the consequences and etiology of falls; summarizes the evidence on predisposing factors and effective interventions; and discusses how to translate this evidence into patient care. Previous falls; strength, gait, and balance impairments; and medications are the strongest risk factors for falling. Effective single interventions include exercise and physical therapy, cataract surgery, and medication reduction. Evidence suggests that the most effective strategy for reducing the rate of falling in community-living older adults may be intervening on multiple risk factors. Vitamin D has the strongest clinical trial evidence of benefit for preventing fractures among older men at risk. Issues involved in incorporating these evidence-based fall prevention interventions into outpatient practice are discussed, as are the trade-offs inherent in managing older patients at risk of falling. While challenges and barriers exist, fall prevention strategies can be incorporated into clinical practice. PMID:20085954

  17. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...) Column A Column B Percent ofCDQ Program pollock Column C Number ofChinook salmon for the...

  18. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...) Column A Column B Percent ofCDQ Program pollock Column C Number ofChinook salmon for the...

  19. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of...

  20. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...) Column A Column B Percent ofCDQ Program pollock Column C Number ofChinook salmon for the...

  1. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of...

  2. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...) Column A Column B Percent ofCDQ Program pollock Column C Number ofChinook salmon for the...

  3. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of...

  4. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of...

  5. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of...

  6. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...) Column A Column B Percent ofCDQ Program pollock Column C Number ofChinook salmon for the...

  7. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  8. Heat stress in grapevine: the pros and cons of acclimation.

    PubMed

    Carvalho, Luísa C; Coito, João L; Colaço, Silvana; Sangiogo, Maurício; Amâncio, Sara

    2015-04-01

    Heat stress is a major limiting factor of grapevine production and quality. Acclimation and recovery are essential to ensure plant survival, and the recovery mechanisms can be independent of the heat response mechanisms. An experimental set up with and without acclimation to heat followed by recovery [stepwise acclimation and recovery (SAR) and stepwise recovery (SR), respectively] was applied to two grapevine varieties, Touriga Nacional (TN), and Trincadeira (TR), with different tolerance to abiotic stress. Major differences were found between leaves of SAR and SR, especially after recovery; in SAR, almost all parameters returned to basal levels while in SR they remained altered. Acclimation led to a swifter and short-term antioxidative response, affecting the plant to a lesser extent than SR. Significant differences were found among varieties: upon stress, TN significantly increased ascorbate and glutathione reduction levels, boosting the cell's redox-buffering capacity, while TR needed to synthesize both metabolites, its response being insufficient to keep the redox state at working levels. TR was affected by stress for a longer period and the up-regulation pattern of antioxidative stress genes was more obvious. In TN, heat shock proteins were significantly induced, but the canonical heat-stress gene signature was not evident probably because no shutdown of the housekeeping metabolism was needed.

  9. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grenchik, M. K.; Donelson, J. M.; Munday, P. L.

    2013-03-01

    Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.

  10. Cold Acclimation Improves Regrowth of Cryopreserved Apple Shoot Tips

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation is important for preserving the genetic resources of apple germplasm in Kazakhstan, the center of origin for apples. In this study of five apple genotypes [Malus domestica Borkh. and Malus sieversii (Ledeb.) M. Roem] we determined cold hardiness and the effect of cold acclimation o...

  11. Seasonal Acclimation of Constitutive Immunity in Gopher Tortoises Gopherus polyphemus.

    PubMed

    Goessling, Jeffrey M; Guyer, Craig; Mendonça, Mary T

    Studies have suggested a role for natural seasonal change to drive patterns of disease, especially within ectothermic vertebrates. In light of recent climate change, it is important to understand baseline disease resistance in a seasonal context to further understand the role that changes in seasonal weather patterns may have in increasing disease frequency. Herein we found support for the seasonal acclimation hypothesis in Gopherus polyphemus (gopher tortoise), which indicated that natural seasonal variation causes differences in baseline immune function across seasonal acclimation states. We found that an innate immune parameter, bactericidal ability (BA), was significantly elevated in the summer (P < 0.00001). Circulating leukocyte profiles varied significantly among seasons, with heterophils and monocytes increased (P = 0.00019 and P = 0.0001, respectively) and lymphocytes decreased (P < 0.00001) during winter. We assayed baseline glucocorticoid concentration (e.g., corticosterone [CORT]) across seasons and sampling conditions to test whether CORT drove the seasonal pattern in immunological acclimation. CORT was significantly lowest during winter and in animals temporarily maintained in seminatural conditions. These changes in CORT occurred independently of the immunological adjustments, suggesting that the seasonal pattern of immunity was not mediated by CORT secretion. The reduction in lymphocytes and BA and also BA during winter suggest that seasonal acclimation is likely a restraint on energetic output when temperature is low and physiological performance is thermally constrained. While these parameters were reduced in winter, the increase in heterophils and monocytes may indicate a compensatory immune adjustment to increase the number of innate phagocytic cells.

  12. Molecular processes of transgenerational acclimation to a warming ocean

    NASA Astrophysics Data System (ADS)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  13. Identification of genes associated with cold acclimation in perennial ryegrass.

    USDA-ARS?s Scientific Manuscript database

    Sensitivity to cold temperatures restricts the cultivation of perennial ryegrass (Lolium perenne L.) in some temperate areas. Understanding cold-acclimation mechanisms is important for plant cultivation and breeding for cold tolerance. Our objective was to profile the transcriptome in perennial ry...

  14. Summary of Findings from Coded Wire Tag Analysis from Spring Chinook Salmon Spawning Surveys in the Clearwater Basin, Technical Report 2001.

    SciTech Connect

    S.P. Cramer & Associates, Inc.

    2002-05-31

    We recently received data on the decoded coded wire tags (CWT's) recovered from spring chinook snouts we collected during spawning surveys in the Clearwater Basin last fall (2001). We were curious about what could be learned from the tags recovered (even though our project is over), so we did some cursory analyses and have described our findings in the attached memo. Snouts were processed and codes determined by Idaho Department of Fish and Game. Most snouts did not contain CWTs, because most ad-clipped fish were not given a CWT. Further, because adults were outplanted live, we do not know what codes they contained. Each of the hatcheries from which outplanted adults were obtained had several CWT code groups returning. That means that the best we can do with the codes recovered is compare the hatchery of origin for the tag with the hatchery from which outplants were taken. The results are interesting and not exactly as we would have predicted.

  15. Sustained and generalized extracellular fluid expansion following heat acclimation

    PubMed Central

    Patterson, Mark J; Stocks, Jodie M; Taylor, Nigel A S

    2004-01-01

    We measured intra- and extravascular body-fluid compartments in 12 resting males before (day 1; control), during (day 8) and after (day 22) a 3-week, exercise–heat acclimation protocol to investigate plasma volume (PV) changes. Our specific focus was upon the selective nature of the acclimation-induced PV expansion, and the possibility that this expansion could be sustained during prolonged acclimation. Acclimation was induced by cycling in the heat, and involved 16 treatment days (controlled hyperthermia (90 min); core temperature = 38.5°C) and three experimental exposures (40 min rest, 96.9 min (s.d. 9.5 min) cycling), each preceded by a rest day. The environmental conditions were a temperature of 39.8°C (s.d. 0.5°C) and relative humidity of 59.2% (s.d. 0.8%). On days 8 and 22, PV was expanded and maintained relative to control values (day 1: 44.0 ± 1.8; day 8: 48.8 ± 1.7; day 22: 48.8 ± 2.0 ml kg−1; P < 0.05). The extracellular fluid compartment (ECF) was equivalently expanded from control values on days 8 (279.6 ± 14.2versus 318.6 ± 14.3 ml kg−1; n = 8; P < 0.05) and 22 (287.5 ± 10.6 versus 308.4 ± 14.8 ml kg−1; n = 12; P < 0.05). Plasma electrolyte, total protein and albumin concentrations were unaltered following heat acclimation (P > 0.05), although the total plasma content of these constituents was elevated (P < 0.05). The PV and interstitial fluid (ISF) compartments exhibited similar relative expansions on days 8 (15.0 ± 2.2% versus 14.7 ± 4.1%; P > 0.05) and 22 (14.4 ± 3.6%versus 6.4 ± 2.2%; P = 0.10). It is concluded that the acclimation-induced PV expansion can be maintained following prolonged heat acclimation. In addition, this PV expansion was not selective, but represented a ubiquitous expansion of the extracellular compartment. PMID:15218070

  16. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  17. Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation

    PubMed Central

    Nunn, Brook L.; Faux, Jessica F.; Hippmann, Anna A.; Maldonado, Maria T.; Harvey, H. Rodger; Goodlett, David R.; Boyd, Philip W.; Strzepek, Robert F.

    2013-01-01

    Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i

  18. Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation.

    PubMed

    Fields, Peter A; Zuzow, Marcus J; Tomanek, Lars

    2012-04-01

    The ability to acclimate to variable environmental conditions affects the biogeographic range of species, their success at colonizing new habitats, and their likelihood of surviving rapid anthropogenic climate change. Here we compared responses to temperature acclimation (4 weeks at 7, 13 and 19°C) in gill tissue of the warm-adapted intertidal blue mussel Mytilus galloprovincialis, an invasive species in the northeastern Pacific, and the cold-adapted M. trossulus, the native congener in the region, to better understand the physiological differences underlying the ongoing competition. Using two-dimensional gel electrophoresis and tandem mass spectrometry, we showed that warm acclimation caused changes in cytoskeletal composition and proteins of energy metabolism in both species, consistent with increasing rates of filtration and respiration due to increased ciliary activity. During cold acclimation, changes in cytoskeletal proteins were accompanied by increasing abundances of oxidative stress proteins and molecular chaperones, possibly because of the increased production of aldehydes as indicated by the upregulation of aldehyde dehydrogenase. The cold-adapted M. trossulus showed increased abundances of molecular chaperones at 19°C, but M. galloprovincialis did not, suggesting that the two species differ in their long-term upper thermal limits. In contrast, the warm-adapted M. galloprovincialis showed a stronger response to cold acclimation than M. trossulus, including changes in abundance in more proteins and differing protein expression profiles between 7 and 13°C, a pattern absent in M. trossulus. In general, increasing levels of oxidative stress proteins inversely correlate with modifications in Krebs cycle and electron transport chain proteins, indicating a trade-off between oxidative stress resistance and energy production. Overall, our results help explain why M. galloprovincialis has replaced M. trossulus in southern California over the last century, but

  19. Effects of Chinook winds (foehn) on snow cover in western Canada

    NASA Astrophysics Data System (ADS)

    MacDonald, M. K.; Essery, R. L. H.; Pomeroy, J. W.

    2012-04-01

    Chinooks are the North American variety of foehn: strong, warm and dry downslope winds that occur as a result of synoptically driven cross barrier flow. In Alberta, Canada, these winds occur as the predominant cold Arctic air mass is displaced by westerly Pacific winds as they descend the eastern slopes of the Rocky Moutains. The strong wind speeds, high temperatures and humidity deficits cause the ablation of important prairie surface water stores, particularly snow cover during winter. The aim of this study was to characterize and quantify the ablation of surface water stores during Chinooks. This was accomplished using detailed in-situ observations of meteorological variables, and snowpack and subsurface conditions at three open, prairie sites over two winters. One site is a FluxNet site located in southern Alberta, and is subject to frequent Chinooks and low winter precipitation. Another site is located in an open area immediately adjacent to mountains, and is subject to other strong wind events in addition to Chinooks. The other site is located in central Alberta, and is least affected by Chinooks. Eddy covariance systems were deployed and manual snow surveys were performed. A number of snow models were evaluated to supplement observations, to elucidate important snowpack processes and to establish a model that is appropriate for Chinook conditions. Observations and modelling results show that ablation during Chinooks can generally be considered as three phases: the cold, transitional and warm phases. Winds tend to remain strong throughout Chinooks. During the cold phase, ambient temperatures increase but are below freezing and snow covers (if present) are complete. As a result, considerable snow transport by wind occurs and blowing sublimation rates are high. During the transitional phase, ambient temperatures rise above freezing. Snow covers warm and begin to become discontinuous. Sublimation from the snowpack occurs. Blowing snow is mostly suppressed; only

  20. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...We, NMFS, announce a 12-month finding on a petition to list the Chinook salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin (UKTR) as threatened or endangered and designate critical habitat under the Endangered Species Act (ESA). We have reviewed the status of the UKTR Chinook salmon Evolutionarily Significant Unit (ESU) and considered the best scientific and......

  1. 76 FR 42099 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... cost of harvesting pollock; and Reduction of the annual bycatch of Chinook salmon. Current Data for...: Individual Chinook salmon are difficult to detect in the water column with current sonar technology, prior to..., along with other existing data (e.g., catch accounting and observer data) provide useful information...

  2. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Assessment and to Conduct San Joaquin River Chinook Salmon Scoping Meeting AGENCY: National Marine Fisheries... the potential impacts of the proposed reintroduction of spring-run Chinook salmon to the mainstem of... electronically to SJRSpringSalmon@nooa.gov . Comments and materials received will be available for...

  3. 77 FR 42629 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Gulf of Alaska... Chinook salmon (Oncorhynchus tshawytscha), which would cause NMFS to close the directed pollock fishery in... also requires retention of salmon by all vessels in the Central and Western GOA pollock fisheries...

  4. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D.

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  5. 78 FR 5162 - Designation of a Nonessential Experimental Population of Central Valley Spring-Run Chinook Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Experimental Population of Central Valley Spring-Run Chinook Salmon Below Friant Dam in the San Joaquin River..., published a proposed rule to designate a nonessential experimental population of Central Valley spring-run... population of Central Valley spring-run Chinook salmon under section 10(j) of the Endangered Species Act in...

  6. Learning From Falling

    ERIC Educational Resources Information Center

    Joh, Amy, S.; Adolph, Karen, E.

    2006-01-01

    Walkers fall frequently, especially during infancy. Children (15, 21, 27, 33, and 39 month-olds) and adults were tested in a novel foam pit paradigm to examine age-related changes in the relationship between falling and prospective control of locomotion. In trial 1, participants walked and fell into a deformable foam pit marked with distinct…

  7. Engineering Enrollments, Fall 1984.

    ERIC Educational Resources Information Center

    Ellis, R. A.

    1985-01-01

    Provides: (1) graduate and undergraduate enrollment data for 1984, including enrollment by curriculum and by institution; (2) a 10-year summary (fall 1975 to fall 1984); and (3) women and selected minorities in undergraduate engineering (1983-84). These and other enrollment data as well as enrollment trends are discussed. (JN)

  8. Fall Leaf Portraits

    ERIC Educational Resources Information Center

    O'Hara, Cristina

    2012-01-01

    In this article, the author describes how students can create a stunning as well as economical mosaic utilizing fall's brilliantly colored leaves, preserved at their peak in color. Start by choosing a beautiful fall day to take students on a nature walk to collect a variety of leaves in different shapes, sizes, and colors. Focus on collecting a…

  9. Experiments in Free Fall

    ERIC Educational Resources Information Center

    Art, Albert

    2006-01-01

    A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…

  10. Liability for falls.

    PubMed

    Fiesta, J

    1998-03-01

    Reengineering of roles, inexperienced personnel and poor communications among departments has led to an increase in patient falls--a major source of liability. While health care facilities are not liable for all falls, they are expected to take precautions based on patients' deficits.

  11. Experiments in Free Fall

    ERIC Educational Resources Information Center

    Art, Albert

    2006-01-01

    A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…

  12. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-01-04

    Falls are the most frequent adverse event reported in hospitals, usually affecting older patients. Every year, more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wales, equivalent to more than 600 per day, according to the Royal College of Physicians (RCP).

  13. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-01-31

    Essential facts Falls are the most frequently reported adverse events in hospitals, especially among older patients. According to the Royal College of Physicians (RCP) more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wale.

  14. Predation by northern squawfish on live and dead juvenile chinook salmon

    SciTech Connect

    Gadomski, D.M.; Hall-Griswold, J.A. )

    1992-09-01

    Northern squawfish Ptychocheilus oregonensis is a major predator of juvenile salmonids Oncorhynchus spp. migrating downstream through the Columbia River. High predation rates occur just below dams. If northern squawfish selectively consume salmonids killed or injured during dam passage, previous estimates of predation mortality may be too high. We conducted laboratory experiments that indicate northern squawfish prefer dead juvenile chinook salmon O. tshawytscha over live individuals. When equal numbers of dead and live chinook salmon were offered to northern squawfish maintained on a natural photoperiod (15 h light: 9 h darkness), significantly more (P < 0.05) dead than live fish were consumed, both in 1,400-L circular tanks and in an 11,300-L raceway (62% and 79% of prey consumed were dead, respectively). When dead and live juvenile chinook salmon were provided in proportions more similar to those below dams (20% dead, 80% live), northern squawfish still selected for dead prey (36% of fish consumed were dead). In additional experiments, northern squawfish were offered a proportion of 20% dead juvenile chinook salmon during 4-h periods of either light or darkness. The predators were much more selective for dead chinook salmon during bright light (88% of fish consumed were dead) than during darkness (31% were dead).

  15. Predation by northern squawfish on live and dead juvenile Chinook salmon

    USGS Publications Warehouse

    Gadomski, Dena M.; Hall-Griswold, Judy A.

    1992-01-01

    Northern squafish Ptychocheilus oregonensis is a major predator of juvenile salmonids Oncorhynchus spp. migrating downstream through the Columbia River. High predation rates occur just below dams. If northern squafish selectively consume salmonids killed or injured during dam passage, previous estimates of predation mortality may be too high. We conducted laboratory experiments that indicate northern squafish prefer dead juvenile chinook salmon O. tshawytscha over live individuals. When equal numbers of dead and live chinook salmon were offered to northern squafish maintained on a natural photoperiod (15 h light: 9 h darkness), significantly more (P < 0.05) dead than live fish were consumed, both in 1,400-L circular tanks and in an 11,300-L raceway (62% and 79% of prey consumed were dead, respectively). When dead and live juvenile chinook salmon were provided in proportions more similar to those below dams (20% dead, 80% live), northern squafish still selected for dead prey (36% of fish consumed were dead). In additional experiments, northern squafish were offered a proportion of 20% dead juvenile chinook salmon during 4-h periods of either light or darkness. The predators were much more selective for dead chinook salmon during bright light (88% of fish consumed were dead) than during darkness (31% were dead).

  16. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    USGS Publications Warehouse

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  17. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  18. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    SciTech Connect

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated; to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.

  19. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    SciTech Connect

    Patterson, Scott

    2009-04-10

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an

  20. Shedding of Renibacterium salmoninarum by infected chinook salmon Oncorhynchus tschawytscha

    USGS Publications Warehouse

    McKibben, C.L.; Pascho, R.J.

    1999-01-01

    Laboratory studies of the transmission and pathogenesis of Renibacterium salmoninarum may describe more accurately what is occurring in the natural environment if test fish are infected by waterborne R. salmoninarum shed from infected fish. To quantify bacterial shedding by chinook salmon Oncorhynchus tschawytscha at 13??C in freshwater, groups of fish were injected intraperitoneally with R. salmoninarum at either 1.3 x 106 colony forming units (CFU) fish-1 (high-dose injection group) or 1.5 x 103 CFU fish-1 (low-dose injection group). R. salmoninarum infection levels were measured in the exposed fish by the enzyme-linked immunosorbent assay (BKD-ELISA). At regular intervals for 30 d, the numbers of R. salmoninarum shed by the injected fish were calculated on the basis of testing water samples by the membrane filtration-fluorescent antibody test (MF-FAT) and bacteriological culture. Mean BKD-ELISA optical densities (ODs) for fish in the low-dose injection group were not different from those of control fish [p > 0.05), and no R. salmoninarum were detected in water samples taken up to 30 d after injection of fish in the low-dose group. By 12 d after injection a proportion of the fish from the high-dose infection group had high (BKD-ELISA OD ??? 1.000) to severe (BKD-ELISA OD ??? 2.000) R. salmoninarum infection levels, and bacteria were detected in the water by both tests. However, measurable levels of R. salmoninarum were not consistently detected in the water until a proportion of the fish maintained high to severe infection levels for an additional 8 d. The concentrations of R salmoninarum in the water samples ranged from undetectable up to 994 cells ml-1 on the basis of the MF-FAT, and up to 1850 CFU ml-1 on the basis of bacteriological culture. The results suggest that chinook salmon infected with R. salmoninarum by injection of approximately 1 x 106 CFU fish-1 can be used as the source of infection in cohabitation challenges beginning 20 darter injection.

  1. Fall prevention conceptual framework.

    PubMed

    Abraham, Sam

    2011-01-01

    Falls can have lasting psychological and physical consequences, particularly fractures and slow-healing processes, and patients may also lose confidence in walking. Injuries from falls lead to functional decline, institutionalization, higher health care costs, and decreased quality of life. The process related to the problem of patient falls in the hospital, using the nursing model developed by the theorist, Ida Jean Orlando, is explained in this article. The useful tool that provides guidance to marketers in this endeavor is Maslow's hierarchy of needs. During acute illness, individuals are greatly in need of satisfying their physiological needs. If these needs are not met, patients leave the hospital lacking a positive experience. Initial fall risk assessment is critical to plan intervention and individualize care plan. Interventions depend on the severity of fall risk factors.

  2. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River; 1994 Annual Report.

    SciTech Connect

    Ashe, Becky L.; Miller, Alan C.; Kucera, Paul A.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout.

  3. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    SciTech Connect

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.

  4. 149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; CLOSE-UP OF MAIN CANAL GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; OVERALL WEST VIEW FROM CANAL SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; VIEW OF MAIN HEADGATES, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; HEADGATES AT INLET, SOUTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; PROFILE VIEW, SOUTH. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; CLOSE-UP OF OUTLET SIDE OF GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; CLOSE-UP OF MAIN HEADGATES, RADIAL GATES INSIDE, SOUTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.

    SciTech Connect

    Whisler, Howard C.

    1997-06-01

    This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominance of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.

  12. Antisomatostatin-induced growth acceleration in chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Mayer, I; McLean, E; Kieffer, T J; Souza, L M; Donaldson, E M

    1994-10-01

    Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g(-1)), recombinant bovine GH (rbGH, 2.5 μg g(-1)), recombinant porcine GH (rpGH, 2.5 μg g(-1)) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.

  13. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.

  14. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    USGS Publications Warehouse

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.