Sample records for falling water table

  1. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite oxidation rates near WP1. However, this mechanism could be important in the case of a shallow dynamic water table and more abundant/reactive sulfides in the shallow subsurface. Data from WP1 and numerical modeling results are thus consistent with the falling water table hypothesis, and illustrate fundamental processes linking climate and sulfide weathering in mineralized watersheds.

  2. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

    USGS Publications Warehouse

    Holmberg, Michael J.

    2017-05-15

    The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response of the alluvium to varying environmental and anthropogenic conditions, the percentage of area of the lower Arkansas Valley showing an absolute change of 3 feet or less was calculated for each of the six water-table altitude change maps. For fall water-table altitude change maps, the periods between 2002 and 2008, 2008 and 2015, and 2002 and 2015 showed that 86.5 percent, 85.2 percent, and 66.3 percent of the study area, respectively, showed a net change of 3 feet or less. In the spring water-table altitude change maps these periods showed a net change of 3 feet or less in 94.4 percent, 96.1 percent, and 90.2 percent of the study area, respectively. While the estimated change in water-table altitude was slightly greater and more variable in fall-to-fall comparisons, these high percentages of area with relatively small net changes indicated that, at least in comparisons of the years presented, there was not a large amount of fluctuation in the altitude of the water table.The saturated thickness in the lower Arkansas Valley was between 25 and 50 feet in 34.4 to 35.9 percent of the study area, depending on the season and year. Between 30.2 and 35.6 percent of the area showed saturated thicknesses between 0 and 25 feet. Less than 1 percent of the area showed a saturated thickness greater than 200 feet in all mapped seasons and years.

  3. Diameter growth and phenology of trees on sites with high water tables

    Treesearch

    D.C. McClurkin

    1965-01-01

    On a site where the water table always was within the root zone, thinning had little effect on diameter growth of white ash or sweetgum but increased the growth of baldcypress. Thinning did not extend durating of growth into the fall, nor was growth related to seasonal fluctuations in the water table. In ash and sweetgum, growth initiation seemed related to soil...

  4. "How low can it go?" - Scenarios for the future of water tables and groundwater irrigated agriculture in India

    NASA Astrophysics Data System (ADS)

    Modi, V.; Fishman, R.

    2010-12-01

    Groundwater irrigation, while critical for food production and rural livelihood in many developing countries, is often unsustainable. India, the world’s largest consumer of groundwater, mostly for irrigation, is a prime example: data suggests water tables are falling in the most of its productive regions. Because of the long-term consequences for the viability and efficiency of agriculture, it is important to know how far water tables might fall and what will eventually stabilize them: will it be a reduction in water use and increases in water use efficiency (a sustainable path) or more pessimistically, an energy ‘crunch’ or the hydrological ‘bottom’. Using national-level data, we document an alarming trend of non-decreasing water withdrawals supported by increasing energy use and little, if any, improvement in efficiency. We also study in detail a particular hot spot of advanced depletion that presents a grave warning signal of how far things can go if allowed to proceed on their present course. In our study area, water tables have been falling rapidly for three decades now and reach as much as 200m, with the astounding consequence that energy use for pumping, subsidized by the state, is now worth more than the income farmers generate from its use. Despite this, the large potential for water savings in agriculture there is still unexploited. We discuss policy measures that can prevent other parts of the country from following the same disastrous trajectory.

  5. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  6. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    NASA Astrophysics Data System (ADS)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  7. Long-Term Changes In The Shallow Water Table In A Mining Area: The Lubin-Glogow Copper Region, Southwestern Poland

    NASA Astrophysics Data System (ADS)

    Bochenska, T.; Limisiewicz, P.; Loprawski, L.

    1995-03-01

    In regions of intense mining, shortages of water are common. Increased water demand is normally associated with industry in mining areas, and mine unwatering has negative effects on the natural groundwater balance. The study area occupies 3,300 square kilometers within the copper mining region of Lubin-Glogow, southwestern Poland. Pumping of groundwater to drain mines has created a cone of depression that underlies 2,500 square kilometers. The lowering of potentiometric surfaces has occurred in deep aquifers, which are isolated from the surface by thick confining units (loams and clays). Changes of hydraulic head in the shallow aquifer have not previously been observed. In this study, the authors analyzed the water-table changes in the shallow aquifer. The statistical analysis of the water table was based on two sets of water-level measurements in about 1,200 farm wells during dry seasons. The first set was done in the fall of 1986, the second in the fall of 1991. In addition to these measurements, multi-seasonal observations were made by the mining survey in several tens of wells. During five years, the head declined an average of 0.4 meter. Locally, the lowering was as great as five meters. The regional decline of head resulted in a loss of water resources about 2×108 cubic meters. Regionally, this loss is not directly related to the dewatering of copper mines. Locally, however, mining activity strongly influences the water table. The general trend of the decline is probably an effect of decreasing precipitation.

  8. Will it rise or will it fall? Managing the complex effects of urbanization on base flow

    USGS Publications Warehouse

    Bhaskar, Aditi; Beesley, Leah; Burns, Matthew J.; Fletcher, T. D.; Hamel, Perrine; Oldham, Carolyn; Roy, Allison

    2016-01-01

    Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Research shows a variable response of stream base flow to urbanization, with base flow or water tables rising in some locations, falling in others, or elsewhere remaining constant. The variable baseflow response is due to the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps as a consequence of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. This paper addresses this management need by presenting a decision support tool. The tool considers the natural vulnerability of the landscape, together with aspects of urban development in predicting the likelihood and direction of baseflow change. Where the tool identifies a likely increase or decrease it guides managers toward strategies that can reduce or increase groundwater recharge, respectively. Where the tool finds an equivocal result, it suggests a detailed water balance be performed. The decision support tool is embedded within an adaptive-management framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water table height, and monitor baseflow responses to urbanization. We trial our framework using two very different case studies: Perth, Western Australia, and Baltimore, Maryland, USA. Together, these studies show how pre-development water table height, climate and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interact such that urbanization has overall led to rising base flow (Perth) and falling base flow (Baltimore). Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban freshwaters.

  9. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    USGS Publications Warehouse

    Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 ??g 1-1), and low bicarbonate concentrations (2 mg l4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system. ?? 1993.

  10. Importance of unsaturated zone flow for simulating recharge in a humid climate

    USGS Publications Warehouse

    Hunt, R.J.; Prudic, David E.; Walker, J.F.; Anderson, M.P.

    2008-01-01

    Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.

  11. Interpolations of groundwater table elevation in dissected uplands.

    PubMed

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  12. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  13. JPRS Report China

    DTIC Science & Technology

    1988-02-19

    as much as possible so as to use the rain water that falls largely during the three months of fall when it is really needed, in the the spring. To...fullest extent and reduce its negative aspects to a minimum. To bring this about, it is necessary to create three conditions . First, it is necessary to...from the formation process of total commodity demand and commodity supply as detailed in Table 2, we can see that the national income use deficit for

  14. Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Weatherford, J. M.; Eibert, D.

    2015-12-01

    Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.

  15. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  16. Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India.

    PubMed

    Tripathi, Amarnath; Mishra, Ashok K; Verma, Geetanjali

    2016-07-01

    Indian states like Punjab and Haryana, epicenters of the Green Revolution, are facing severe groundwater shortages and falling water tables. Recognizing it as a serious concern, the Government of Punjab enacted the Punjab Preservation of Subsoil Water Act in 2009 (or the 2009 act) to slow groundwater depletion. The objective of this study is to assess the impact of this policy on groundwater depletion, using panel data from 1985 to 2011. Results from this study find a robust effect of the 2009 act on reducing groundwater depletion. Our models for pre-monsoon, post-monsoon, and overall periods of analysis find that since implementation of the 2009 act, groundwater tables have improved significantly. Second, our study reveals that higher shares of tube wells per total cropped area and increased population density have led to a significant decline in the groundwater tables. On the other hand, rainfall and the share of area irrigated by surface water have had an augmenting effect on groundwater resources. In the two models, pre-monsoon and post-monsoon, this study shows that seasonality plays a key role in determining the groundwater table in Punjab. Specifically, monsoon rainfall has a very prominent impact on groundwater.

  17. Modeling falling groundwater tables in major cities of the world

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, E.; Erkens, G.

    2015-12-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  18. Modeling falling groundwater tables in major cities of the world

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; Erkens, Gilles

    2016-04-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  19. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  20. Enrollment Data: Community Colleges--Day Division. Fall Semester, 1981.

    ERIC Educational Resources Information Center

    O'Connor, T.

    This series of six tables provides fall 1981 data on enrollments in each of the 15 community colleges in Massachusetts and for the system as a whole. Table 1 presents information on the number of freshman, sophomore, and unclassified students who made requests for admission, were qualified applicants, and were notified of admission. In table 2,…

  1. 12 CFR 607.3 - Assessment of banks, associations, and designated other System entities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fall within the graduated risk-adjusted asset tiers contained in the following table. An institution's... falling into each applicable tier, subject to adjustment for its FIRS rating as required in paragraphs (b... percentage of X1 in the following table) will be applied to each dollar value of risk-adjusted assets falling...

  2. Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study.

    PubMed

    Watto, Muhammad Arif; Mugera, Amin

    2014-11-01

    Massive groundwater pumping for irrigation has started lowering water tables rapidly in different regions of Pakistan. Declining water tables have thus prompted research efforts to improve agricultural productivity and efficiency to make efficient use of scarce water resources. This study employs a restricted stochastic production frontier to estimate the level of, and factors affecting, technical efficiency of groundwater-irrigated cotton farms in the Punjab province of Pakistan. The mean technical efficiency estimates indicate substantial technical inefficiencies among cotton growers. On average, tube-well owners and water buyers can potentially increase cotton production by 19% and 28%, respectively, without increasing the existing input level. The most influential factors affecting technical efficiency positively are the use of improved quality seed, consultation with extension field staff and farmers' perceptions concerning the availability of groundwater resources for irrigation in the future. This study proposes that adopting improved seed for new cotton varieties and providing better extension services regarding cotton production technology would help to achieve higher efficiency in cotton farming. Within the context of falling water tables, educating farmers about the actual crop water requirements and guiding them about groundwater resource availability may also help to achieve higher efficiencies. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  3. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with limited lateral transfer of water above the ice. Conceptually this means that peatlands which tend to have lower rates of growth are largely unaffected by the presence of a shallow ice layer in the early growing season, and are able to maintain moist sub-surface conditions in the absence of precipitation. They will thus be more resistant to severe wildfire. Conversely, peatlands which tend towards higher levels of moss productivity are able to maintain moss growth during dry periods. In the presence of an ice layer this greater productivity leads to a disconnection from deep water sources, extensive drying out of moss above the ice, and a greater susceptibility to severe wildfires. Our study gives important insights into the mechanisms behind heterogeneity in burning and depth of burn in northern peatland wildfires, as well as into burn heterogeneity within peatland microtopography.

  4. Water levels in observation wells in Nebraska during 1955

    USGS Publications Warehouse

    Keech, C.F.

    1956-01-01

    The objective of the dbservation-well program in Nebraska is to provide an evaluation of the status of the ground-water supplies. Many uses for water-.level data are known but not all potential uses can be forseen. Among the important uses are the following:To indicate the status of ground water in storage or in transit and the availability of supplies.To show the trend of ground-water supplies and the outlook for the future.To estimate or forcast the base flow of streams.To indicate areas in which the water level is approaching too close to the land surface (water-logging) or is receding toward economic limits of lift or tow rd impairment by water of poor quality.To provide long-term vidence for evaluating the effectiveness of land-management and water...0 nservation programs in relation to water conservation actually of ected, and for use in basin or "watershed" studies.To provide longterm ontinuous records to serve as a framework to which short-term records collected during intensive investigation may be related.The water level in an observation well functions as a gage to indicate the position of the water table o The water table is defined as the upper surface of the zone of saturation except where that surface is formed by overlying impermeable materials. The water table is also the boundary between the zone of saturation and the zone of aeration. It is not a level surface but is a sloping surface that has many irregularities, and it often conforms in a general way to the land surface. The irregularities are caused by several factors. In places where the recharge to the ground-water reservoir is exceptionally large, the water-table may rise to form a mound from which the water slowly spreads. Depressions or troughs in the water table indicate places where the ground water is discharging, as along streams that are below the normal level of the water table, or indicate places where water is being withdrawn by wells or vegetation.The several factors that influence the water table vary in fact and amount from time to time because of changes in weather and the water requirements of vegetation and man; thus, the water table is nearly always rising or falling.The fluctuations of the water table are shown by the changes in water levels in wells. Thus, the rate and amount of the fluctuation of the water table can be ascertained by observing the water levels in wells, and the magnitude of the several factors effecting the position of the water table can be interpreted by analyzing the water—level data.Water-level measurements are given, in this report, in feet below the land surface at the well site. Water levels that are above land surface are preceded by a plus (+) sign, whereas those below land surface have no sign but are understood to be minus (-). The words "land-surface datum" are abbreviated "lsd" in tables of this report.The altitude above mean sea level (msl) of the land surface at many of the well sites has been determined and is included in the tables of this report.Lower case letters which appear in the table of water level measurements indicate the following: 6', nearby well pumped recently; f, dry; g, measured by outside agency; and j, frozen.Twenty-.six observation wells in Nebraska are equipped with recording gages. Each recording gage produces a continuous graph of water-level fluctuations in the well. Only the lowest water level on the last day of record in each month, as recorded by the gage, is given in this report; the complete record is on file in the office of the U. S. Geological Survey in Lincoln, Nebr.

  5. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  6. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  7. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  8. Effect of sequential release of NAPLs on NAPL migration in porous media

    NASA Astrophysics Data System (ADS)

    Bang, Woohui; Yeo, In Wook

    2016-04-01

    NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of porous media. To study the effect of subsequent release of NAPLs, as soon as LNAPL was released to porous medium with 1 mm of glass beads, being buoyant above water table, water table was lowered, which left residuals along the path of LNAPL. DNAPL was subsequently released. DNAPL was breaking through the water table now, which was opposed to only DNAPL release case. This study indicates that sequential release of NAPLs can leads to different migration characteristics of NAPLs, compared with the release of single phase NAPL into porous media.

  9. River-aquifer interactions, geologic heterogeneity, and low-flow management

    USGS Publications Warehouse

    Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.

    2006-01-01

    Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).

  10. Water resources of the Salmon Falls Creek basin, Idaho-Nevada

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1969-01-01

    The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is presently economically feasible. About 8,000 acre-feet was withdrawn for all uses in 1960. Natural discharge of ground water is northward -- toward the Twin Falls South Side Project and the Snake River--and is provisionally estimated to be 115,000 acre-feet annually. Ground water in the Salmon Falls tract has a medium- to high salinity hazard and a low sodium hazard. The salinity does not appear to affect crops presently grown in the tract. The southern part of the Salmon Falls Creek basin, referred to as the upper drainage basin, has little agricultural development and is used mostly for grazing livestock. Silicic volcanic rocks and tuffaceous sedimentary rocks of Tertiary age and alluvial deposits yield water to livestock, domestic, and commercial wells.

  11. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    USGS Publications Warehouse

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  12. Terrain and subsurface influences on runoff generation in a steep, deep, highly weathered system

    NASA Astrophysics Data System (ADS)

    Mallard, J. M.; McGlynn, B. L.; Richter, D. D., Jr.

    2017-12-01

    Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete, despite the prevalence occupation of these landscapes worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA, a region that extends east of the Appalachians from Maryland to Alabama, and home to some of the most rapid population growth in the country. Although regionally the relief is modest, the landscape is often highly dissected and local slopes can be steep and highly varied. The typical soils of the region are kaolinite dominated ultisols, with hydrologic properties controlled by argillic Bt horizons, often with >50% clay-size fraction. The humid subtropical climate creates relatively consistent precipitation intra-annually and seasonally variable energy availability. Consequently, the mixed deciduous and coniferous tree cover creates a strong evapotranspiration-mediated hydrologic dynamic. While moist soils and extended stream networks are typical from late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. Here, we seek to elucidate the relative influence of the vertical soil and spatial terrain structure of this region on watershed hillslope hydrology and subsequent runoff generation. We installed a network of nested, shallow groundwater wells and soil water content probes within an ephemeral to first-order watershed to continuously measure soil and groundwater dynamics across soil horizons and landscape position. We also recorded local precipitation and discharge from this watershed. Most landscape positions exhibited minimal water table response to precipitation throughout dry summer periods, with infrequently observed responses rarely coincident with streamflow generation. In contrast, during the wetter late fall through early spring period, streamflow was driven by the interaction between transient perched water tables and topographically mediated redistribution of shallow groundwater downslope. Our findings suggest that understanding streamflow generation in regions possessing both complex terrain and complex vertical soil structure requires synchronous characterization of terrain mediated water redistribution and subsurface soil hydrology.

  13. China - The Rising Dragon: How Should the U.S. Respond?

    DTIC Science & Technology

    2009-03-26

    Deterioration of the Environment . Air pollution, soil erosion, and the steady fall of the water table are some of the environmental issues plaguing China...Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on Higher Education is an institutional accrediting agency recognized by...on Higher Education of the Middle States Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The

  14. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  15. Report for Florida Community Colleges, 1983-1984. Part I: Statistical Tables.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Community Colleges.

    Statistical data are presented on student enrollments, academic programs, personnel and salaries, and finances for the Florida community colleges for 1983-84. A series of tables provide data on: (1) opening fall enrollment by class, program and student status; (2) fall enrollment headcount by age groups; (3) annual program headcount enrollment;…

  16. Hydrology of the cavernous limestones of the Mammoth Cave area, Kentucky

    USGS Publications Warehouse

    Brown, Richmond F.

    1966-01-01

    The Mammoth Cave National Park in central Kentucky offers a unique opportunity to study the occurrence of ground water in limestone under natural conditions. Ground water occurs as perched and semiperched bodies in alternate sandstone, shale, and limestone formations and under water-table conditions at the approximate level of the Green River in thick soluble limestone. Three continuous recorders that operated for 5 years indicate that precipitation on the Mammoth Cave plateau recharges the underlying sandstone rapidly. Ground water from the sandstone discharges horizontally to the edges of the plateau and vertically to underlying formations. Some of the precipitation recharges underlying formations almost immediately through overland flow to sinkholes and free fall through open shafts to pools at the water table. Much of the precipitation on the Pennyroyal plain flows overland into sinkholes and then through solution openings to the Green River. Water from the Green River flows into limestone solution channels under Mammoth Cave plateau at some stages, and this water discharges again to the Green River downstream. The presence of salt water, high in chloride in the Green River, makes it possible to trace the movement of the river water through the underground streams. Graphs show relationships of chloride concentration, stage of the Green River, time, precipitation, ground-water levels, and stratigraphy.

  17. Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA

    USGS Publications Warehouse

    Pigati, Jeffery S.; Bright, Jordon E.; Shanahan, Timothy M.; Mahan, Shannon

    2009-01-01

    Ground-water discharge (GWD) deposits form in arid environments as water tables rise and approach or breach the ground surface during periods of enhanced effective precipitation. Where preserved, these deposits contain information on the timing and elevation of past ground-water fluctuations. Here we report on the investigation of a series of GWD deposits that are exposed in discontinuous outcrops along a ???150-km stretch of the San Pedro Valley in southeastern Arizona, near the boundary of the Sonoran and Chihuahuan Deserts. Chronologic, isotopic, geochemical, faunal assemblage (ostracodes and gastropods), and sedimentological evidence collectively suggest that the elevation of the regional water table in the valley rose in response to a change in climate ???50 ka ago and remained relatively high for the next ???35 ka before falling during the B??lling-Aller??d warm period, rebounding briefly during the Younger Dryas cold event, and falling again at the onset of the Holocene. The timing of these hydrologic changes coincides closely with variations in ??18O values of calcite from a nearby speleothem to the west and changes in lake levels at pluvial Lake Cochise to the east. Thus, in southeastern Arizona, the assumption that changes in climate are reflected in all aspects of the hydrologic cycle of a region simultaneously is validated. The timing of these changes also broadly coincides with variations in the GISP2 ??18O record, which supports the hypothesis that atmospheric teleconnections existed between the North Atlantic and the deserts of the American Southwest during the late Pleistocene.

  18. Analysis of aquifer tests in the Punjab region of West Pakistan

    USGS Publications Warehouse

    Bennett, Gordon D.; ,; Sheikh, Ijaz Ahmed; Alr, Sabire

    1967-01-01

    The results of 141 pumping tests in the Punjab Plain of West Pakistan are reported. Methods of test analysis are described in detail, and an outline of the theory underlying these methods is given. The lateral permeability of the screened interval is given for all tests; the specific yield of the material at water-table depth is given for 1(6 tests; and the vertical permeability of the material between the water table and the top of the screen is given for 14 tests. The lateral permeabilities are predominantly in the range 0.001 to 0.006 cfs per sq ft; the average value is 0.0032 cfs per sq ft. Specific yields generally range from 0.02 to 0.26; the average value is 0.14. All vertical permeability results fall in the range 10 -5 to 10 -3 cfs per sq ft.

  19. A Longitudinal Analysis of Departmental Credits by Curriculum for Fall 1980, Spring 1981 & Fall 1981 Semesters.

    ERIC Educational Resources Information Center

    Cohen, Edward G.

    Designed to enable Queensborough Community College to predict with greater accuracy the impact of changing enrollments on the number of credits generated in particular departments, this report provides data tables showing the relationships between curriculum and department in terms of credits and/or remedial hours generated. Tables 1 through 18…

  20. Home Improvements Prevent Falls

    MedlinePlus

    ... turn JavaScript on. Feature: Falls and Older Adults Home Improvements Prevent Falls Past Issues / Winter 2014 Table ... and ensure your safety. "Safe-ty-fy" Your Home Some Questions for Your Provider Will my medicines ...

  1. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    NASA Astrophysics Data System (ADS)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  2. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  3. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  4. Detailed Statistical Tables - Graduate Science Education: Student Support and Postdoctorals, Fall 1974. Appendix III.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reflecting enrollment as of Fall 1974, the 155 tables in this document provide extensive data on graduate and post-graduate students in all areas of science and engineering. A total of 354 institutions with 7,505 masters and doctoral level departments participated in the study. Data are organized to show the sources of support for students in the…

  5. Profile of Graduate and First-Professional Students: Trends from Selected Years, 1995-96 to 2007-08. Web Tables. NCES 2011-219

    ERIC Educational Resources Information Center

    Chen, Xianglei

    2010-01-01

    Enrollment in graduate and first-professional education in the United States has increased in recent years--from about 2 million students in fall 1995 to more than 2.6 million students in fall 2007 (Snyder, Dillow, and Hoffman 2009, tables 206 and 207). Increasing enrollments overall raise questions regarding the types of students entering…

  6. Fall Enrollment, 1978. Research and Planning Series Report No. 79-1.

    ERIC Educational Resources Information Center

    Elliott, Loretta Glaze; And Others

    The first in a series of annual analytical reports prepared by the Missouri Department of Higher Education from the annual state data collection is presented. Tables, charts, and graphs provide numerical data, supplemented by brief analyses, in these areas: enrollment by sector; enrollment trends for fall 1974 through fall 1978; fall enrollment…

  7. Analog-model analysis of effect of wastewater management on the ground-water reservoir in Nassau and Suffolk Counties, New York: Report I: Proposed and current sewerage

    USGS Publications Warehouse

    Kimmel, Grant E.; Harbaugh, Arlen W.

    1976-01-01

    By 1995, the water table may fall by as much as 5 metres (16 feet) in east-central Nassau County and as much as 1.8 metres (6 feet) in central Suffolk County as a result of proposed sewerage programs. similar, but generally slightly less, change may occur in the potentiometric head in the Magothy aquifer. Streamflow may decrease by as much as 55 percent in streams draining from Nassau County Sewage Disposal District 3 and as much as 56 percent in streams draining from the Huntington-Northport Sewer District.

  8. Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change.

    PubMed

    Carroll, Matthew J; Heinemeyer, Andreas; Pearce-Higgins, James W; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E; Thomas, Chris D

    2015-07-31

    Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56-81% declines in cranefly abundance and, hence, 15-51% reductions in the abundances of these birds by 2051-2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators.

  9. Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change

    PubMed Central

    Carroll, Matthew J.; Heinemeyer, Andreas; Pearce-Higgins, James W.; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E.; Thomas, Chris D.

    2015-01-01

    Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56–81% declines in cranefly abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators. PMID:26227623

  10. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes

    2003-12-01

    REPORT A: UMATILLA HATCHERY MONITORING AND EVALUATION--This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for 1 November, 1999 to 31 October, 2002. Studies at UFH are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated along with the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirementsmore » for fish health monitoring at UFH are mandatory. An experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. An evaluation of survival of subyearling fall chinook salmon reared at three densities will be completed with final returns in 2005. Two new evaluations were started during this reporting period. The first is an evaluation of spring chinook survival of groups transferred to Imeques acclimation facility in the fall, overwinter-acclimated and released with the standard acclimated production groups in March. The second is an evaluation of subyearling fall chinook survival and straying of a direct-stream released group in the lower Umatilla River and the standard group acclimated at Thornhollow acclimation facility in the upper Umatilla River. An important aspect of the project is evaluation of the spring chinook and summer steelhead fisheries in the upper and lower Umatilla River. REPORT B: Fish Health Monitoring and Evaluation, 2000 Fiscal Year--The results presented in this report are from the ninth year of Fish Health Monitoring and Evaluation in the Umatilla Hatchery program. Broodstock monitoring for hatchery production was conducted on adult returns to the Umatilla River at Three Mile Dam and South Fork Walla Walla adult facilities for salmon; steelhead adults were monitored at Minthorn adult facility. A new addition to this year's report is the effort to bring together an overview of fish health monitoring results including historical and year to date pathogen information. This information is in table form (Appendix Tables A-28, A-29 and A-30). A summary of juvenile disease outbreaks at Umatilla Hatchery is also included (Appendix Table A-31). REPORT C: Fish Health Monitoring and Evaluation, 2001 Fiscal Year--Results from the 2001 annual report cover the 10th year of Fish Health Monitoring in the Umatilla Hatchery program. Efforts were again made to provide up to date fish health and juvenile disease outbreak loss summary tables from the beginning of the Umatilla Hatchery program (Appendix Tables A-27, A-28, A-29 and A-30). Outmigrant Fish Health Monitoring results were included in this report since this was part of the fish health work statement for this report period. The discussion section for the 2001 and 2002 annual reports are combined in the 2002 report due to time constraints and consolidation efforts to complete this report by the end of May 2003.« less

  11. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  12. Dynamic chemistry in the perched groundwater flowing through weathered bedrock underling a steep forested hillslope, north California

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rempe, D. M.; Bishop, J. K.; Dietrich, W.; Fung, I.; Wood, T. J.

    2012-12-01

    The spatial and temporal pattern of groundwater chemistry in the seasonally perched groundwater systems that develop in the weathered bedrock zone under hillslopes have rarely been documented, yet chemical evolution of water here dictates the runoff chemistry to streams in many places. Here we exploit an intensively instrumented hillslope to document water well chemistry at three wells and adjacent stream. We have been sampling groundwater at daily frequency since October 2008 on a forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. The site is typical of California's coastal Mediterranean climate. The groundwater samples have been collected from a depth near the boundary between the weathered and fresh bedrock at three locations along the hillslope: Well 1 (bottom of hillslope), Well 3 (mid-slope), and Well 10 (near the ridge). Bulk rainwater and throughfall samples were collected at a meadow across the hillslope and at the middle of the slope, respectively, as well. Near the ridge (Well 10), during the first significant rainstorms of 2009 (133mm/42.5hours) and 2010 (220mm/42hours), when the water table changed only 0.32m and 0.66m, respectively, the concentration of Ca, Mg, and Na started to increase rapidly compared to the dry season (e.g. 2-6 μM vs 0.02-0.2μM [Mg]/day). However, during these same storms, K concentration sharply increased to 50-60 μM and decreased to 20-30μM, synchronizing with the water table responses. Throughfalls of these storms had at least 10 fold lower Ca, Mg, and Na concentrations than the well water while they had 10 fold higher K compared to the pre-event groundwater values. When the total seasonal cumulative rainfall exceeds 600 mm, the Well 10 solute concentration was diluted nearly 3 fold (e.g. [Mg] 0.3 mM vs. 0.1 mM) and the water table was raised significantly (2-6 meters). Throughout the rainy season, Well10 retained its diluted chemistry signature and on average the water table remained elevated as subsequent rainstorms repeatedly recharged the system. Well10 solute concentration slowly increased at the end of the rainy season when the water table fell. In contrast, at the foot of the hill slope, even though the water table was responsive to each rainfall event, its water chemistry developed a strong dilution signatures only during the intense rainstorms (total rainfall > 70mm); the solute concentration decreased (e.g. [Mg] = 0.1mM) during the rising limb of the well hydrograph and recovered back to its pre-event value (e.g. [Mg] = 0.3mM) during the falling limb of the well hydrograph. During small storms, the solute concentration of Well 1 either did not change or slightly increased. Mid-slope showed similar behavior to Well 1. The Well 3 solute concentration was diluted about 3 fold (e.g. [Mg] 0.3mM to 0.1mM) as the water table rose and increased as the water table receded. However unlike Well 1, the water chemistry of Well 3 did not recover to its pre-event composition at any point during the rainy season and the recovery rate was slower than that of Well 1. These water chemistry observations provide insight into the dynamics of water movement within the fractured, weathered bedrock zone, and point to both vertical and lateral mixing processes that influence the chemical evolution of waters.

  13. Mobility of Undergraduate College Students Between Washington Colleges and Universities, Fall 1971.

    ERIC Educational Resources Information Center

    Winchester, E. Anne; Kenny, Eleanore

    This study investigated the mobility of undergraduate college students between Washington colleges and universities fall, 1971. Data were taken from Table 1 of the Higher Education Enrollment Projection (HEEP) model report forms. HEEP data reports transfers on a fall to fall basis whereas this study has recorded transfers on a spring to fall…

  14. Impacts of Vegetation Change on the Water Balance of Superficial, Coastal Aquifers: a Comparative Study of Pre-clearing and Post-clearing Recharge Under Native Vegetation, and Pine Plantations

    NASA Astrophysics Data System (ADS)

    Bekele, E. B.; Salama, R. B.

    2003-12-01

    Replacing native vegetation with pasture across the northern Perth Basin in Western Australia has profoundly altered the water balance and led to dramatic increases in recharge and groundwater levels from about the mid-1960's, whereas replacing native vegetation with pine plantations and market gardens further south in the Gnangara groundwater Mound together with declining rainfall has caused continuous declines in recharge and water levels. Long-term monitoring of water levels in the Parmelia Formation, a superficial, semi-confined aquifer of predominantly weathered sand in the northern Perth Basin, indicates maximum rates of water level rise on the order of 40 to 55 cm/yr within the past decade. In the Gnangara Mound, water levels are falling by 10 to 20 cm/yr in the unconfined aquifer. Quantifying groundwater capture due to the removal of native vegetation is crucial for predicting the extent of groundwater development in the northern Perth Basin, whereas in the Gnangara Mound, it is necessary to limit the total water use to the declining resource to arrest the trend in falling water levels. Estimates of groundwater recharge before the removal of native vegetation in the northern Perth Basin determined from chloride tracer measurements in the soil water beneath native bushland and from groundwater samples ranged from 12 to 16 mm/yr, while estimates from soil water flux at the water table are approximately 5 mm/yr. In contrast, recharge estimates under cleared conditions since 1970 are between 24 and 50 mm/yr, based on hydrograph analyses of different bores. CFC and chloride analyses of water sampled from piezometers screened at the water table gave recharge estimates of 20 to 30 mm/yr and less than 10 mm/yr, respectively. In the Gnangara Mound recharge varies between 70 to 200 mm/year; the lowest recharge values were under the pines and the highest in the urban areas. Due to increasing demand on the groundwater resources and the declining water levels, additional resources can be provided only by removing the pine plantations, proper management of the Banksia woodland areas and capture of fresh groundwater discharging to the sea.

  15. The Falling Chain of Hopkins, Tait, Steele and Cayley

    ERIC Educational Resources Information Center

    Wong, Chun Wa; Youn, Seo Ho; Yasui, Kosuke

    2007-01-01

    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3 if the motion is nonconservative, but g/2 if the motion is conservative, g being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home…

  16. Certificated Personnel and Related Information, Fall 1996.

    ERIC Educational Resources Information Center

    Wamboldt, Martina

    Information used to prepare this publication about certificated school personnel in Colorado was gathered from the state's public schools and Boards of Cooperative Services during fall 1995. Tables describe teacher salaries and characteristics, including educational background and ethnicity. The fall 1996 average salary for Colorado's 36,397.9…

  17. Certificated Personnel and Related Information Fall 1995 (Revised).

    ERIC Educational Resources Information Center

    Wamboldt, Martina

    Information used to prepare this publication about certificated school personnel in Colorado was gathered from the state's public schools and Boards of Cooperative Services during fall 1995. Tables describe teacher salaries and characteristics, including educational background and ethnicity. The fall 1995 average salary for Colorado's 35,387.9…

  18. Washington Community Colleges Fall Quarter Report, 1980.

    ERIC Educational Resources Information Center

    Story, Sherie; And Others

    This three-part report presents a series of 46 tables providing data about enrollments, student characteristics, and personnel in the Washington community college system for Fall Quarter 1980. After a summary of the statistical highlights of the study, Chapter I offers historical data on Fall Quarter, full-time equivalent (FTE) and student…

  19. Dissecting the variable source area concept - Flow paths and water mixing processes

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Easton, Z. M.; Lyon, S. W.; Brown, L. D.; Walter, M. T.; Steenhuis, T.

    2010-12-01

    Variable source areas (VSAs) are hot spots of hydrological (saturation excess runoff) and biogeochemical processes (e.g. nitrogen, phosphorus, organic carbon cycling) in the landscapes of the northeastern U.S. The prevalence of shallow, highly transmissive soils, steep topography, and impeding layers in the soil (i.e. fragipan) have long been recognized as first-order controls on VSA formation. Nevertheless, there is still understanding to be gained by studying subsurface flow processes in VSAs. Thus, we instrumented (trenched) a 0.5 ha hillslope in the southern tier of New York State, U.S.A. and measured water fluxes in the trench, upslope water table dynamics, surface and bedrock topography in conjunction with isotopic and geochemical tracers in order to four-dimensionally characterize (XYZ and Time) subsurface storm flow response within the VSA for five storm events. We used tracer-based hydrograph separation models and physically measured flow components to separate temporally (i.e. event and pre-event) and spatially shallow water from above the fragipan layer (including both surface runoff and shallow interflow) and deeper water from below the fragipan layer. Shallow water (event/pre-event) contributions were greatest during storms with wet antecedent conditions and large rainfall amounts (> 15 mm), when soils above the fragipan were saturated, prohibiting deep percolation through cracks in the fragipan. Shallow water contributions were well correlated to the saturated contributing area. During these events, the pre-event shallow water peaked on the rising and falling limb, which can be explained by flushing of pre-event water from macropores on the rising limb and subsequent drainage of pre-event water from micropores into macropores on the falling limb. During events with dry antecedent conditions, greater amounts of event water (24 - 28 %) are proportionally contributed by surface runoff in the top 10 cm of the soil through macropores than by shallow interflow from the soil-fragipan interface. Pre-event deeper water contributions to total trench discharge varied between 15 and 65% but were independent of total rainfall amounts, rainfall intensities, and water table dynamics. Our results have important implication for the protection of streams from dissolved pollutant transport and recommend that preference be given to variable-width buffers over fixed-width stream buffers.

  20. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Dzwairo, Bloodless; Hoko, Zvikomborero; Love, David; Guzha, Edward

    In resource-poor and low-population-density areas, on-site sanitation is preferred to off-site sanitation and groundwater is the main source of water for domestic uses. Groundwater pollution potential from on-site sanitation in such areas conflicts with Integrated Water Resources Management (IWRM) principles that advocate for sustainable use of water resources. Given the widespread use of groundwater for domestic purposes in rural areas, maintaining groundwater quality is a critical livelihood intervention. This study assessed impacts of pit latrines on groundwater quality in Kamangira village, Marondera district, Zimbabwe. Groundwater samples from 14 monitoring boreholes and 3 shallow wells were analysed during 6 sampling campaigns, from February 2005 to May 2005. Parameters analysed were total and faecal coliforms, NH4+-N, NO3--N, conductivity, turbidity and pH, both for boreholes and shallow wells. Total and faecal coliforms both ranged 0-TNTC (too-numerous-to-count), 78% of results meeting the 0 CFU/100 ml WHO guidelines value. NH4+-N range was 0-2.0 mg/l, with 99% of results falling below the 1.5 mg/l WHO recommended value. NO3--N range was 0.0-6.7 mg/l, within 10 mg/l WHO guidelines value. The range for conductivity values was 46-370 μS/cm while the pH range was 6.8-7.9. There are no WHO guideline values for these two parameters. Turbidity ranged from 1 NTU to 45 NTU, 59% of results meeting the 5 NTU WHO guidelines limit. Depth from the ground surface to the water table for the period February 2005 to May 2005 was determined for all sampling points using a tape measure. The drop in water table averaged from 1.1 m to 1.9 m and these values were obtained by subtracting water table elevations from absolute ground surface elevation. Soil from the monitoring boreholes was classified as sandy. The soil infiltration layer was taken as the layer between the pit latrine bottom and the water table. It averaged from 1.3 m to 1.7 m above the water table for two latrines and 2-3.2 m below it for one pit latrine. A questionnaire survey revealed the prevalence of diarrhoea and structural failure of latrines. Results indicated that pit latrines were microbiologically impacting on groundwater quality up to 25 m lateral distance. Nitrogen values were of no immediate threat to health. The shallow water table increased pollution potential from pit latrines. Raised and lined pit latrines and other low-cost technologies should be considered to minimize potential of groundwater pollution.

  1. Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1985-01-01

    The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south-central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperatures, water-table hydrographs, and water-level changes in nearby wells clearly depict the recharge process. Antecedent moisture conditions and the thickness and nature of the unsaturated zone were found to be the major factors affecting recharge. Although the two instrumented sites are located in sand-dune environments in areas characterized by shallow water table and subhumid continental climate, a significant difference was observed in the estimated effective recharge. The estimates ranged from less than 2.5 to approximately 154 mm at the two sites from February to June 1983. The main reasons for this large difference in recharge estimates were the greater thickness of the unsaturated zone and the lower moisture content in that zone resulting from lower precipitation and higher potential evapotranspiration for one of the sites. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. ?? 1985.

  2. Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Papakyriakou, T. N.

    2013-07-01

    Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008-2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m-2 yr-1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m-2 yr-1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2-13 cm below and lowest when it was at or above the mean peat surface.

  3. Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Papakyriakou, T. N.

    2013-03-01

    Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyzer in four years (2008-2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m-2 yr-1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m-2 yr-1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near surface soil temperature at 5 cm most correlated across spring, fall, and the whole season. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but water table also exerted influence with FCH4 highest when water was 2-13 cm below and least when it was at or above the mean peat surface.

  4. Certificated Personnel and Related Information, Fall 1995.

    ERIC Educational Resources Information Center

    Wamboldt, Martina

    Information to prepare this publication was collected from Colorado school districts. Tables present data about the certificated personnel and related data for Colorado public schools as of fall 1995. The fall 1995 average salary for the state's 35,387.9 full-time-equivalent (FTE) teachers was $35,364, which represented a 2.3% increase over the…

  5. Student Enrollment Data and Trends in the Public Community Colleges of Illinois: Fall 1975, Second Term FY1976, and Fall 1976. Data and Characteristics Volume IV Number 1 [and] Volume V Number 2.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    These documents contain narrative analyses and tables of data pertaining to student enrollment and enrollment trends in Illinois public community colleges for fall 1975, spring 1976, and fall 1976. Data presented in tabular form include: comparison and trends in enrollment data from 1965 through 1975, enrollment data for fall 1975 relating to…

  6. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex

    NASA Astrophysics Data System (ADS)

    Bubier, Jill L.; Crill, Patrick M.; Moore, Tim R.; Savage, Kathleen; Varner, Ruth K.

    1998-12-01

    We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to -3.9 μmol CO2 m-2 s-1) < poor fen (6.3 to -6.5 μmol CO2 m-2 s-1) < intermediate fen (10.5 to -7.8 μmol CO2 m-2 s-1) < rich fen (14.9 to -8.7 μmol CO2m-2 s-1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.

  7. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Mastin, L.G.

    1997-01-01

    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  8. Summary of hydrologic data for the East Everglades, Dade County, Florida

    USGS Publications Warehouse

    Schneider, James J.; Waller, Bradley G.

    1980-01-01

    The East Everglades area in south-central Dade County, Fla., occupies approximately 240 square miles. The area is flat and low lying with elevations ranging from sea level in the southeast part to 10 feet at Chekika Hammock with an average elevation of about 6 feet. Rainfall in the area averages 57.9 inches a year with about 80% of the total falling during the May to October wet season. There is some residential development and farming in the east-central part of the area where land elevations are slightly higher. Pressure by agricultural, commerical, and housing interests to develop the area is increasing. Historically, most of the area was flooded for extended periods of time. The construction of canals, levees, and controls has lowered the average water levels of the area. This has reduced the extent and decreased the time of flooding. Long-term hydrographs show graphically the effects that the water control works have had on the hydrologic system. The change in discharge into the north end of the East Everglades through the Tamiami Canal outlets, Levees 30 to 67A, due to construction is very pronounced. Maps showing the altitude of the water table for wet and dry periods indicate that Levee 67 Extended Canal greatly influences the water levels and shape of the water-table contours in the northwestern part of the East Everglades. (USGS)

  9. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more efficient well performance. A generalized water-table contour map of the area shows that the principal general direction of ground-water movement is toward the west and northwest. The southwestern part of the American Falls Reservoir, and a segment of the Snake River below the dam, may be perched above the water table. Ground water appears to move beneath this segment of the river to the Snake River Plain on the northwest side. So far as is known, recharge to the ground-water reservoir is chiefly from local sources and from the runoff from the mountain area southeast of the project. Seepage losses from surface water spread for irrigation would contribute a substantial amount of new recharge to the ground water, but the amount of such recharge might be less than the depletion of ground water by pumping. Therefore, with ground-water irrigation a part of the project, return flow to the American Falls Reservoir might be less than it is in the existing regimen. Ground-water pumping where the ground water is not tributary to the reservoir might not deplete the reservoir appreciably, but would reduce the net supply of water available west of Neeley. Evidence indicates that at least moderate supplies of ground water can be obtained in low-lying areas southwest and northeast of American Falls, but the safe perennial yields of the aquifers cannot now be estimated. The ground-water potential in high and outlying lands is not known. It is unlikely that this potential is sufficient to supply all high and outlying lands, but the supply may be adequate for a substantial part of these lands. Thorough investigation appears to be warranted.

  10. Risk assessment of groundwater level variability using variable Kriging methods

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49. Kitanidis, P. K. (1997). Introduction to geostatistics, Cambridge: University Press.

  11. Water Table Depth and Growth of Young Cottonwood

    Treesearch

    W. M. Broadfoot

    1973-01-01

    Planted cottonwood grew best when the water table was about 2 feet deep, whether the tree was planted on soil with a high water table or the water table was raised 1 year after planting. Growth over a 1- foot-deep water table was about the same as over no water table, but a surface water table restricted growth of cuttings planted in the water, and killed trees planted...

  12. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  13. Precipitation v. River Discharge Controls on Water Availability to Riparian Trees in the Rhône River Delta

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Sargeant, C. I.; Vallet-Coulomb, C.; Evans, C.; Bates, C. R.

    2014-12-01

    Water availability to riparian trees in lowlands is controlled through precipitation and its infiltration into floodplain soils, and through river discharge additions to the hyporheic water table. The relative contributions of both water sources to the root zone within river floodplains vary through time, depending on climatic fluctuations. There is currently limited understanding of how climatic fluctuations are expressed at local scales, especially in 'critical zone' hydrology, which is fundamental to the health and sustainability of riparian forest ecosystems. This knowledge is particularly important in water-stressed Mediterranean climate systems, considering climatic trends and projections toward hotter and drier growing seasons, which have the potential to dramatically reduce water availability to riparian forests. Our aim is to identify and quantify the relative contributions of hyporheic (discharge) water v. infiltrated precipitation to water uptake by riparian Mediterranean trees for several distinct hydrologic years, selected to isolate contrasts in water availability from these sources. Our approach includes isotopic analyses of water and tree-ring cellulose, mechanistic modeling of water uptake and wood production, and physically based modeling of subsurface hydrology. We utilize an extensive database of oxygen isotope (δ18O) measurements in surface water and precipitation alongside recent measurements of δ18O in groundwater and soil water and in tree-ring cellulose. We use a mechanistic model to back-calculate source water δ18O based on δ18O in cellulose and climate data. Finally, we test our results via 1-D hydrologic modeling of precipitation infiltration and water table rise and fall. These steps enable us to interpret hydrologic cycle variability within the 'critical zone' and their potential impact on riparian trees.

  14. Measuring and computing natural ground-water recharge at sites in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Perry, C.A.

    1987-01-01

    To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)

  15. Get the Real Picture About College Drinking | NIH MedlinePlus the Magazine

    MedlinePlus

    ... JavaScript on. Get the Real Picture About College Drinking Past Issues / Fall 2015 Table of Contents Get the Real Picture About College Drinking Learn more at CollegeDrinkingPrevention.gov Fall 2015 Issue: ...

  16. Engineering Enrollments, Fall 1986.

    ERIC Educational Resources Information Center

    Ellis, Richard A.

    1987-01-01

    Reports on the results of the Engineering Manpower Commission's 1986 survey of engineering enrollments, comparing them to the previous ten years of surveys. Provides tables of fall 1986 engineering enrollments categorized by curriculum, women, minorities, foreign nationals, schools, and by all students. (TW)

  17. How well do testate amoebae transfer functions relate to high-resolution water-table records?

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Swindles, Graeme; Raby, Cassandra; Blundell, Antony

    2014-05-01

    Testate amoebae (TA) community composition records from peat cores are often used to infer past water-table conditions on peatland sites. However, one of the problems is that validation of water-table depths used in such work typically comes from a one-off water-table measurement or a few measurements of water-table depth from the testate amoebae sample extraction point. Furthermore, one value of water-table depth is produced by the transfer function reconstruction, with sample-specific errors generated through a statistical resampling approach. However, we know that water tables fluctuate in peatlands and are dynamic. Traditional TA water-table data may not adequately capture a mean value from a site, and may not account for water-table dynamics (e.g. seasonal or annual variability) that could influence the TA community composition. We analysed automatically logged (at least hourly, mainly 15-min) peatland water-table data from 72 different dipwells located across northern Sweden, Wales and the Pennine region of England. Each location had not been subject to recent management intervention. A suite of characteristics of water-table dynamics for each point were determined. At each point surface samples were extracted and the TA community composition was determined. Our results show that estimated water-table depth based on the TA community transfer functions poorly represents the real mean or median water tables for the study sites. The TA approach does, however, generally identify sites that have water tables that are closer to the surface for a greater proportion of the year compared to sites with deeper water tables for large proportions of the year. However, the traditional TA approach does not differentiate between sites with similar mean (or median) water-table depths yet which have quite different water table variability (e.g. interquartile range). We suggest some ways of improving water-table metrics for use in Holocene peatland hydrology reconstructions.

  18. Ground-water resources of the Middle Loup division of the lower Platte River basin, Nebraska, with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Brown, Delbert Wayne; Rainwater, Frank Hays

    1955-01-01

    The Middle Loup division of the lower Platte River basin is an area of 650 square miles which includes the Middle Loup River valley from the confluence of the Middle and North Loup Rivers in Howard County, Nebr., to the site of the diversion dam that the U. S. Bureau of Reclamation proposes to construct in Blaine County near Milburn, Nebr. It also includes land in Howard and Sherman Counties designated by the Bureau of Reclamation as the Farwell unit. Irrigable land in this division is present on both sides of the Middle Loup River and along its tributaries. Most of the Middle Loup River valley is already irrigated by the Middle Loup Public Power and Irrigation District, which is strictly an irrigation enterprise. The uplands are not irrigated. Loess, dune sand, gravel, silt, and clay of Pleistocene or Recent age are exposed in the report area. These unconsolidated sediments rest on bedrock consisting of alternating layers of shale, mudstone, sandstone, and limestone, which are essentially fiat lying or slightly warped. The Ogallala formation, of Tertiary (Pliocene) age, immediately underlies the Pleistocene sediments and rests on the Pierre shale of Cretaceous age. Belts of alluvium occupy the Middle Loup River valley and the valleys of the principal streams in the area. The soils, dune sand, and terrace deposits are the most recent deposits. The Ogallala formation is water bearing and is the source of supply for some domestic and livestock wells. The saturated part of the sand and gravel formations of Pleistocene age, which yields water freely to wells, is the most important aquifer in the Middle Loup division. The water generally is under water-table conditions. The yields of properly constructed wells range from a few gallons per minute (gpm) to as much as 1,800 gpm. Some wells tap water in both the sand and gravel of Pleistocene age and in the underlying Ogallala formation. No wells are known to penetrate into formations older than the Ogallala. Fluctuations of the water table indicate changes in the amount of ground water stored in the water-bearing formations. The principal factors controlling the rise of the water table are the amount of precipitation within the area, the quantity of water coming into the area as underflow from the west and northwest, seepage from the Middle Loup River at times when the water surface in the river is higher than the adjoining water table, and the infiltration of irrigation water not utilized by vegetation or lost by runoff or evaporation. The principal factors controlling the decline of the water table are the discharge as effluent seepage into the Middle Loup River and its tributaries, the amount of water pumped from wells, evapotranspiration losses, and the amount of water leaving the area as underflow. Periodic water-level measurements were made in a total of 241 observation wells during the period 1948-50. Hydrographs of three observation wells having a longer period of record (1934-50) indicate that the water table rose slightly from 1934 until 1950 and that it remained nearly constant during the 1950 water year. The configuration of the water table in the Middle Loup division shows that, except north and northwest of Sargent, the Middle Loup River is an effluent, or gaining, stream throughout its entire length in this area. Thus any rise or fall in the ground-water level will increase or decrease the discharge of the river. The river recharges the ground- water reservoir only during periods when it is at flood stage. The depth to the water table from the land surface is governed largely by irregularities in topography. The depth to water is less than 10 feet near the river and increases to as much as 60 feet near the valley margins and the bordering intermediate slopes. In the Far- well unit the depth to water is more than 100 feet and in some parts more than 150 feet. Ground water pumped from wells is the source of supply for the principal municipalities in th

  19. Dependency of Ecosystem Respiration in a Cool Temperate Bog on Peat Temperature and Water Table

    NASA Astrophysics Data System (ADS)

    Moore, T.; Lafleur, P.; Roulet, N.; Frolking, S.

    2003-12-01

    We measured ecosystem respiration (ER) from nighttime net ecosystem exchange of carbon dioxide determined from an eddy covariance tower located in a large ombrotrophic bog near Ottawa, Canada. Measurements were made from May to October over 5 years, 1998 to 2002. Ecosystem respiration ranged from <0.05 mg CO2/m2/s in spring (May) and late fall (late October) to 0.10-0.15 mg CO2/m2/s during the summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures, such as at a depth of 5 cm (r2 = 0.63). Q10 over 5° to 15° C varied from 2.2 to 4.2 depending upon the choice of temperature level and location within a hummock or hollow. Unexpected for a wetland ecosystem, there was only a weak relationship between ER and water table position (r2 = 0.11). Comparison of ER in early and late summer, 2002 with similar surface temperature revealed no significant difference in ER. A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in samples from below a depth of 30 cm. We believe that the lack of correlation between ER and water table position in this ecosystem results from an increase in CO2 production at depth compensating a decrease in production of CO2 by heterotrophic respiration in the near surface layers and autotrophic respiration in the moss community.

  20. Residence and Migration of First-Time Freshmen Enrolled in Higher Education Institutions: Fall 1992. E.D. TABS.

    ERIC Educational Resources Information Center

    Korb, Roslyn

    This report presents 10 tables of data on the residence and migration of first-time college freshmen in the fall of 1992 using data from the residency portion of the "Fall Enrollment" survey of the Integrated Postsecondary Education Data System (IPEDS). The data are presented by state, by control and level of institution, for all…

  1. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.

  2. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    NASA Astrophysics Data System (ADS)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  3. International board-foot volume tables for trees in the Susitna River Basin, Alaska.

    Treesearch

    Frederic R. Larson

    1990-01-01

    International 1/4-inch board-foot volume equations and tables were derived from fall, buck, and scale data for 374 trees at 78 locations in the Susitna River Basin, Alaska. Tree species included white and black spruce, paper birch, black cottonwood, and quaking aspen.

  4. Report on Staffing and Salaries, Fall 1989.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This report presents fall 1989 demographic, staffing, salary, and workload information on California community college employees, based on data collected from 70 of the 71 districts in the state. First, tables present the total number of district employees by primary occupational activity; the number of full-time equivalent (FTE) employees by…

  5. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  6. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Lateral groundwater flow can cause a large rise in water table at toeslope and depressional landscape positions. As plants transpire, water can move up into the root zone from the water table and wet soil below the root zone. Roots can utilize water in the capillary fringe. The purpose of this study was to interface automated measurements of soil water content and water table depth for determining the importance of drainage and upward movement. In 2006 soil water and water table depth were monitored at three positions: shoulder, backslope, and toeslope. Neutron access tubes were manually monitored to 2.3 m depth, and automated soil moisture was measured using CS616 probes installed at 0.3, 0.5, 0.7, and 0.9 m depth. Water table depths were monitored manually and automated, but the automated measurements failed during the season at two sites. In 2007, similar measurements were made at one toeslope position, but the CS616 probes were installed at nine depths and better quality automated well depth equipment was used. The 2006 data revealed little landscape position effect on daytime soil water loss on a wetter date; however, on a dry day just before a rain, daytime water loss was greatest for the toeslope positon and least for the shoulder position. After a period of intense rain, a rapid and significant water table rise occurred at the toeslope position but little water table rise occurred at the other landscape positions. The rapid toeslope water table rise was likely caused by lateral groundwater flow whereas minor water table rise at the other positions was likely due to preferential flow since the soil had not wet up below 0.6 m. Use of automated equipment has improved our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  7. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    USGS Publications Warehouse

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in areas of shallow water table, by seepage into Fountain and Jimmy Camp Creeks, and through wells. About 3 to 4 mgd (million gallons per day) of ground water moves through the Fountain Valley alluvium at a velocity of about 15 feet per day. About 1 mgd of ground water moves through the Jimmy Camp Valley alluvium at a velocity of about 6 feet per day. Most of the wells in the area are drilled, but a few are dug. Many large-diameter wells are used for irrigation and public supply: one of the wells

  8. Geographic Origins of Students, Fall 1991. Volume II.

    ERIC Educational Resources Information Center

    State Univ. of New York, Albany. Central Staff Office of Institutional Research.

    This volume (second of three) contains statistical tables displaying origin or origin grouping of credit course students attending the State University of New York System. The volume contains six parts: Part 1 contains separate tables for each New York State county; Part 2 displays the permanent residence of students from outside of New York State…

  9. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  10. 40 CFR Appendix - Tables to Part 132

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT... Tables to Part 132 Table 1—Acute Water Quality Criteria for Protection of Aquatic Life in Ambient Water... FR 35286, June 2, 2000] Table 2—Chronic Water Quality Criteria for Protection of Aquatic Life in...

  11. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  12. Report on Staffing and Salaries, Fall 1988. Report Number 89-2.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This report presents fall 1989 demographic, staffing, salary, and workload information on all California community college employees, based on data from 69 of the 71 districts in the state. First, tables present the total number of district employees by primary occupational activity; full-time equivalency; type of assignment; weekly faculty…

  13. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harrisburg, PA. (c) Lancaster County Solid Waste Management Authority, Conoy Township, Lancaster County, PA. (d) Montenay Montgomery Limited Partnership, Plymouth Township, Montgomery County, PA. (e) Wheelabrator Falls, Inc., Falls Township, Bucks County, PA. (f) York County Solid Waste and Refuse Authority...

  14. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Harrisburg, PA. (c) Lancaster County Solid Waste Management Authority, Conoy Township, Lancaster County, PA. (d) Montenay Montgomery Limited Partnership, Plymouth Township, Montgomery County, PA. (e) Wheelabrator Falls, Inc., Falls Township, Bucks County, PA. (f) York County Solid Waste and Refuse Authority...

  15. Enrollment and Facilities Inventory, Fall 1972.

    ERIC Educational Resources Information Center

    Maine State Higher Education Facilities Commission, Augusta.

    The tables in this report present a summary of the area, in net assignable square feet, used by each institution of higher education in Maine, broken down by room type and also by organizational unit for fall 1972. Data is presented concerning enrollment information of public and independent colleges and organizational units and room type for…

  16. Facilities Inventory, Fall 1971.

    ERIC Educational Resources Information Center

    Maine State Higher Education Facilities Commission, Augusta.

    The tables in this report present a summary of the area, in net assignable square feet, used by each institution of higher education in Maine, broken down by room type and by organizational unit for fall 1971. Data is presented concerning enrollment information of public and independent colleges and organizational unit and room type for public…

  17. Manoa's Community College Transfers, Fall 1970-Fall 1974.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Community Coll. System.

    This document presents a series of tables providing information regarding community college transfers to the Manoa and Hilo campuses of the University of Hawaii. Data was obtained from several campus computer reports and the community college graduate lists submitted to the Office of the Vice President for Community Colleges. The following tables…

  18. Appraisal of water in bedrock aquifers, northern Cascade County, Montana

    USGS Publications Warehouse

    Wilke, K.R.

    1982-01-01

    Suburban residential expansion of the city of Great Falls has resulted in an increased demand on water supplies from bedrock aquifers in northern Cascade County. The unconsolidated deposits aquifer of Quaternary age, including alluvium and glacial lake deposits, also is an important source of water in the area. Water levels in the Madison-Swift aquifer and all overlying aquifers, including the Quaternary deposits aquifer, reflect unconfined (water-table) conditions in the Great Falls vicinity. This interconnected hydrologic system is the result of breaching of the major anticlinal structure, by ancestral and present day erosion of drainage channels by the Missouri River and its tributaries. Significant vertical inter-aquifer mixing of water, as well as surface water/groundwater interchange, probably occurs in the central part of the study area. Characterization of the chemical composition of water in individual aquifers based on samples from wells in this area probably is unreliable because of this mixing. Quality of water from two wells in the Madison-Swift aquifer near Giant Springs is similar to water from the springs. Water from these three samples is less mineralized than most groundwater in the study area; dissolved solids concentrations for the three samples range from 516 to 550 mg/L. The quality of water varies among aquifers and throughout the study area. The ranges of dissolved solids concentrations determined by chemical analysis are Madison-Swift aquifer, about 520 to 1,570 mg/L; Morrison Formation, 908 to 1 ,480 mg/L; Kootenai Formation, 558 to 1,550 mg/L; Colorado Group , 2,690 and 2,740 mg/L (two samples); and unconsolidated Quaternary deposits, 383 to 2,060 mg/L. The chemical quality of water from the Colorado Group in the western one-third of the area generally is more mineralized than water from aquifers in the rest of the area. Specific conductance of water from eight wells completed in the Colorado Group averages 4,440 micromhos at 25 C. (Author 's abstract)

  19. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    USGS Publications Warehouse

    Snyder, Daniel T.

    2008-01-01

    Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc

  20. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    PubMed

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I. cylindrica, and facilitate the restoration of P. australis-dominated marsh plant community.

  1. An Assessment of the Vulnerability of Native Phreatophytes to Replacement by Invasive Species in a Mid-Continent Riparian Setting

    NASA Astrophysics Data System (ADS)

    Shea, J. A.; Bauer, J. P.; Keller, J.; Butler, J. J.; Kluitenberg, G. J.; Whittemore, D. O.; Jin, W.; Loheide, S. P.

    2005-12-01

    In many areas of the Great Plains region of the United States, non-native phreatophytes, particularly the salt cedar (Tamarix spp.) and the Russian olive (Elaeagnus angustifolia L.), have become the dominant riparian-zone vegetation. The factors that contribute to the establishment of invasive species are under investigation at the Larned Research Site (LRS), located in the riparian corridor of the Arkansas River in south-central Kansas. The riparian zone at the LRS consists of native vegetation; the major phreatophytes at the site are the cottonwood (Populus deltoids), willow (Salix spp.), and mulberry (Morus spp.). The LRS has been the focus of extensive research on stream-aquifer interactions, so considerable data have been collected on the shallow groundwater flow system underlying the area. On-site instrumentation includes 18 wells equipped for continuous water-level monitoring, eight neutron-probe access tubes for observation of soil moisture, and a weather station. Inventories of all trees larger than 0.08 m in diameter at breast height (1266 trunks) were conducted in a portion of the LRS in the summers of 2002 and 2005, and sapflow data were collected in the summers of 2003 and 2004. Water-level data from mid-August 2002 to the present show diurnal fluctuations during the growing season superimposed on a general water-level decline. These diurnal fluctuations are a diagnostic indicator of phreatophyte activity, while the declining water levels can be attributed to regional irrigation pumping during periods of little recharge from streamflow. Estimates of groundwater consumption by phreatophytes, obtained using the approach of White (1932), show a year-to-year decrease in water use, associated with a falling water table; however, potential evapotranspiration values calculated from meteorological data did not decrease significantly. Groundwater consumption estimates using the White method are consistent with sapflow and soil-moisture data. In addition, comparison of the tree inventories performed in the summers of 2002 and 2005 reveal a 20-25% mortality rate over the study period, with an additional 20% of trees under severe water stress. The native phreatophytes appear to be having difficulty keeping pace with the falling water table, leading to severe stress and a high rate of mortality. At present, the canopy is still sufficiently dense to prevent encroachment by salt cedar and Russian olive. However, if the present rate of mortality continues, non-native phreatophytes will likely exploit open areas created by tree die-off, leading to large changes in the riparian-zone community.

  2. A computer program for predicting recharge with a master recession curve

    USGS Publications Warehouse

    Heppner, Christopher S.; Nimmo, John R.

    2005-01-01

    Water-table fluctuations occur in unconfined aquifers owing to ground-water recharge following precipitation and infiltration, and ground-water discharge to streams between storm events. Ground-water recharge can be estimated from well hydrograph data using the water-table fluctuation (WTF) principle, which states that recharge is equal to the product of the water-table rise and the specific yield of the subsurface porous medium. The water-table rise, however, must be expressed relative to the water level that would have occurred in the absence of recharge. This requires a means for estimating the recession pattern of the water-table at the site. For a given site there is often a characteristic relation between the water-table elevation and the water-table decline rate following a recharge event. A computer program was written which extracts the relation between decline rate and water-table elevation from well hydrograph data and uses it to construct a master recession curve (MRC). The MRC is a characteristic water-table recession hydrograph, representing the average behavior for a declining water-table at that site. The program then calculates recharge using the WTF method by comparing the measured well hydrograph with the hydrograph predicted by the MRC and multiplying the difference at each time step by the specific yield. This approach can be used to estimate recharge in a continuous fashion from long-term well records. Presented here is a description of the code including the WTF theory and instructions for running it to estimate recharge with continuous well hydrograph data.

  3. Effect of Water-Table Fluctuations on Source Depletion and Dissolved-Plume Behavior of a Multi-Component Light Nonaqueous-Phase Liquid

    NASA Astrophysics Data System (ADS)

    Dobson, R.; Schroth, M. H.; Zeyer, J.

    2006-12-01

    Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel are among the most common soil and groundwater contaminants. Dissolution and subsequent advective transport of LNAPL components can negatively impact downgradient water supplies, while biodegradation is commonly thought to be an important sink for this class of contaminants. Water-table fluctuations, either naturally occurring or intentionally induced, may affect LNAPL component transport and biodegradation in aquifers. We present a laboratory investigation of the effect of water-table fluctuations on the dissolution and biodegradation of a multi-component LNAPL in a pair of similar model aquifers, one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of LNAPL contamination and an increase in the volume of water passing through the contaminated zone. Effluent concentrations of dissolved LNAPL components were higher and those of dissolved nitrate were lower in the aquifer model where a fluctuation had been induced. Thus, water table fluctuation led to enhanced LNAPL dissolution as well as enhanced biodegradation activity. The increase in biodegradation observed after fluctuation was of lesser magnitude than the increase in LNAPL dissolution, such that water-table fluctuations might be expected to result in increased exposure of downgradient receptors to dissolved LNAPL components. Conversely, the potential for free-phase LNAPL migration was reduced following a water-table fluctuation, as LNAPL entrapment by the rising water table reduced the amount of free phase LNAPL. Lateral migration of LNAPL following emplacement was observed in the model aquifer where no fluctuation occurred, but not in the model aquifer where a water-table fluctuation was induced.

  4. Water table dynamics in undisturbed, drained and restored blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.

    2011-05-01

    SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.

  5. Water-Table Levels and Gradients, Nevada, 1947-2004

    USGS Publications Warehouse

    Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.

    2006-01-01

    In 1999, the U.S. Environmental Protection Agency began a program to protect the quality of ground water in areas other than ground-water protection areas. These other sensitive ground water areas (OSGWA) are areas that are not currently, but could eventually be, used as a source of drinking water. The OSGWA program specifically addresses existing wells that are used for underground injection of motor-vehicle waste. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on depth to water and the water table, which partly control the susceptibility of ground water to contamination and contaminant transport. This report describes a study that used available maps and data to create statewide maps of water-table and depth-to-water contours and surfaces, assessed temporal changes in water-table levels, and characterized water-table gradients in selected areas of Nevada. A literature search of published water-table and depth-to-water contours produced maps of varying detail and scope in 104 reports published from 1948 to 2004. Where multiple maps covered the same area, criteria were used to select the most recent, detailed maps that covered the largest area and had plotted control points. These selection criteria resulted in water-table and depth-to-water contours that are based on data collected from 1947 to 2004 being selected from 39 reports. If not already available digitally, contours and control points were digitized from selected maps, entered into a geographic information system, and combined to make a statewide map of water-table contours. Water-table surfaces were made by using inverse distance weighting to estimate the water table between contours and then gridding the estimates. Depth-to-water surfaces were made by subtracting the water-table altitude from the land-surface altitude. Water-table and depth-to-water surfaces were made for only 21 percent of Nevada because of a lack of information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan

  6. A Measurement of "g" Listening to Falling Balls

    ERIC Educational Resources Information Center

    White, J. A.; Medina, A.; Roman, F. L.; Velasco, S.

    2007-01-01

    A ball placed on the edge of a horizontal table is hit with a pendulum and thrown over the floor. The fall time is measured by recording the sounds produced by the collisions with the pendulum and the floor. If the height of the ball with respect to the floor is known, one can determine the acceleration of gravity.

  7. Report on Staffing and Salaries, Fall 1987. California Community Colleges Report Number 88-6.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This report presents fall 1987 demographic, staffing, salary, and workload information on California community college employees, based on data provided by 68 of the 70 districts in the state. First, tables present the total number of district employees by: primary occupational activity; the number of full-time equivalent (FTE) employees by…

  8. Certificated Personnel and Related Information--Fall 1990.

    ERIC Educational Resources Information Center

    Keith, Jo Ann; MacKenzie, Stella

    Twelve tables present data concerning the salaries and characteristics of school certified personnel in Colorado as of fall 1990. The average salary for Colorado's 32,342 public school teachers was $31,819 in 1990, which represents a slight increase over the 1989 figure ($30,758). The number of classroom teachers had increased slightly to 32,342;…

  9. Characteristics of Illinois Public Community College Faculty and Staff, Fall Term 1984.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    Data on Illinois community college faculty and staff characteristics are presented and analyzed in this report for fall 1984. Tables provide statistics on faculty and staff employment classification by college; full-time employment classification by sex and ethnic origin; full-time teaching faculty by highest degree held, age, sex, tenure status,…

  10. A Measurement of g Listening to Falling Balls

    NASA Astrophysics Data System (ADS)

    White, J. A.; Medina, A.; Román, F. L.; Velasco, S.

    2007-03-01

    A ball placed on the edge of a horizontal table is hit with a pendulum and thrown over the floor. The fall time is measured by recording the sounds produced by the collisions with the pendulum and the floor. If the height of the ball with respect to the floor is known, one can determine the acceleration of gravity.

  11. Digest of Statistics on Higher Education in the United States. 1974-75--1978-79.

    ERIC Educational Resources Information Center

    1979

    Data about U.S. higher education provided by the Office of Education and other public and private educational organizations is presented in tables with accompanying texts. Included are information on: (1) the total number of institutions, including a report of a three percent increase between Fall 1974 and Fall 1978; (2) enrollment statistics…

  12. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    NASA Astrophysics Data System (ADS)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently present result from removal of sediments from below, as a result of the tidal fluctuations.

  13. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  14. Modeling a thick unsaturated zone at San Gorgonio Pass, California: lessons learned after five years of artificial recharge

    USGS Publications Warehouse

    Flint, Alan L.; Ellett, Kevin M.; Christensen, Allen H.; Martin, Peter

    2012-01-01

    The information flow among the tasks of framework assessment, numerical modeling, model forecasting and hind casting, and system-performance monitoring is illustrated. Results provide an understanding of artificial recharge in high-altitude desert settings where large vertical distances may separate application ponds from their target aquifers.Approximately 3.8 million cubic meters of surface water was applied to spreading ponds from 2003–2007 to artificially recharge the underlying aquifer through a 200-meter thick unsaturated zone in the San Gorgonio Pass area in southern California. A study was conducted between 1997 and 2003, and a numerical model was developed to help determine the suitability of the site for artificial recharge. Ongoing monitoring results indicated that the existing model needed to be modified and recalibrated to more accurately predict artificial recharge at the site. The objective of this work was to recalibrate the model by using observation of the application rates, the rise and fall of the water level above a perching layer, and the approximate arrival time to the water table during the 5-yr monitoring period following initiation of long-term artificial recharge. Continuous monitoring of soil-matric potential, temperature, and water levels beneath the site indicated that artificial recharge reached the underlying water table between 3.75 and 4.5 yr after the initial application of the recharge water. The model was modified to allow the simulation to more adequately match the perching layer dynamics and the time of arrival at the water table. The instrumentation also showed that the lag time between changes in application of water at the surface and the response at the perching layer decreased from about 4 mo to less than 1 mo due to the wet-up of the unsaturated zone and the increase in relative permeability. The results of this study demonstrate the importance of iteratively monitoring and modeling the unsaturated zone in layered alluvial systems in the context of artificial recharge. They show that adequate geologic and hydraulic-property data on perching layers are critical to success. Continuous monitoring in the unsaturated and saturated zones beneath a site provides data to develop and constrain numerical models, better understand local unsaturated zone process, manage artificial recharge operations, and to determine the timing and volume of recoverable water for consumptive use.

  15. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, L.S.; Bauder, J.W.; Phelps, S.D.

    2006-04-15

    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplexmore » spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.« less

  16. TOPMODEL simulations of streamflow and depth to water table in Fishing Brook Watershed, New York, 2007-09

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Burns, Douglas A.

    2011-01-01

    TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.

  17. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    PubMed

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  18. 40 CFR Appendix - Tables to Part 132

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Tables to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Application of part 132 requirements in Great Lakes States and Tribes. Pt. 132, Tables Tables to Part 132 Table 1—Acute Water Quality...

  19. Predicting water table response to rainfall events, central Florida.

    PubMed

    van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M

    2013-01-01

    A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  20. Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments

    PubMed Central

    He, Yupu; Yang, Shihong; Wang, Yijiang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha−1, respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields. PMID:24741349

  1. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    PubMed

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  2. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Istok, J. D.; Kling, G. F.

    1983-09-01

    Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.

  3. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming; Li, Le

    2018-02-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  4. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Treesearch

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  5. Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota

    USGS Publications Warehouse

    Rosenberry, Donald O.; Winter, Thomas C.

    1997-01-01

    Data from a string of instrumented wells located on an upland of 55 m width between two wetlands in central North Dakota, USA, indicated frequent changes in water-table configuration following wet and dry periods during 5 years of investigation. A seasonal wetland is situated about 1.5 m higher than a nearby semipermanent wetland, suggesting an average ground water-table gradient of 0.02. However, water had the potential to flow as ground water from the upper to the lower wetland during only a few instances. A water-table trough adjacent to the lower semipermanent wetland was the most common water-table configuration during the first 4 years of the study, but it is likely that severe drought during those years contributed to the longevity and extent of the water-table trough. Water-table mounds that formed in response to rainfall events caused reversals of direction of flow that frequently modified the more dominant water-table trough during the severe drought. Rapid and large water-table rise to near land surface in response to intense rainfall was aided by the thick capillary fringe. One of the wettest summers on record ended the severe drought during the last year of the study, and caused a larger-scale water-table mound to form between the two wetlands. The mound was short in duration because it was overwhelmed by rising stage of the higher seasonal wetland which spilled into the lower wetland. Evapotranspiration was responsible for generating the water-table trough that formed between the two wetlands. Estimation of evapotranspiration based on diurnal fluctuations in wells yielded rates that averaged 3–5 mm day−1. On many occasions water levels in wells closer to the semipermanent wetland indicated a direction of flow that was different from the direction indicated by water levels in wells farther from the wetland. Misinterpretation of direction and magnitude of gradients between ground water and wetlands could result from poorly placed or too few observation wells, and also from infrequent measurement of water levels in wells.

  6. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.

  7. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    NASA Astrophysics Data System (ADS)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  8. A time series approach to inferring groundwater recharge using the water table fluctuation method

    NASA Astrophysics Data System (ADS)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  9. Surface water quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : geochemical data for fine-fraction streambed sediment from high- and low-order streams, 1987

    USGS Publications Warehouse

    Colman, John A.; Sanzolone, R.F.

    1991-01-01

    Geochemical data are presented from a synoptic survey of 46 elements in fine-fraction streambed sediments of the Upper Illinois River Basin during the fall of 1987. The survey was a component study of the Illinois pilot project of the U.S. Geological Survey's National Water-Quality Assessment program. Most of the sampling sites were randomly chosen--135 on main stems of rivers and 238 on first- and second-order streams. In addition, 196 samples were collected for quality-assurance and special-study purposes. The report includes element concentration data and summary-statistics tables of percentiles, nested analysis of variance, and correlation coefficients. All concentration data are included in tabular form and can be selected by map reference number, latitude and longitude, or remark code indicating purpose for collecting sample.

  10. Next Generation Integrated Power System: NGIPS Technology Development Roadmap

    DTIC Science & Technology

    2007-11-30

    under transient conditions ( regenerative braking for example). A Power Load may exchange control and information signals with System Control...Ship applications for NGIPS requirement categories 3 Table 2: Power Architectures for NGIPS Requirement Categories 5 Table 3: MVAC Largest Generator...different ship types that comprise the U.S. Navy fall into the different NGIPS requirement categories . Figure 3 shows the NGIPS insertion timelines for the

  11. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat cores are being assayed monthly from June - October for two oxidase enzyme activities (phenol oxidase, peroxidase) and four hydrolase enzyme activities (β-glucosidase, chitinase, cellobiohydrolase, and acid-phosphatase). Early season assays (June and July) where water table treatments did not significantly vary showed trends of decreasing oxidase activities while hydrolase activities increased. These preliminary results show no significant differences between vegetation treatments but as the season progresses (August - October), water table levels between high and low treatments will continue to experience greater dissimilarities. These water table declines within sedge and ericaceous shrub communities may have opposing effects on rhizosphere extracellular enzyme activities indicating plant communities may significantly influence belowground carbon storage mechanisms in ways not previously considered in peatland ecosystems.

  12. Investigating In-Situ Mass Transfer Processes in a Groundwater U Plume Influenced by Groundwater-River Hydrologic and Geochemical Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.

    2009-12-01

    The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during oscillating rising and falling water table events. A large scale injection experiment to evaluate in situ U(VI) desorption kinetics controlled by mass transfer is planned for the fall of 2009. The presentation will summarize key results from these different activities, and discuss their implications to improved plume forecasting and development of an effective groundwater remedy.

  13. Improvements to a global-scale groundwater model to estimate the water table across New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; Miguez-Macho, Gonzalo; White, Paul

    2017-04-01

    Groundwater models at the global scale have become increasingly important in recent years to assess the effects of climate change and groundwater depletion. However, these global-scale models are typically not used for studies at the catchment scale, because they are simplified and too spatially coarse. In this study, we improved the global-scale Equilibrium Water Table (EWT) model, so it could better assess water table depth and water table elevation at the national scale for New Zealand. The resulting National Water Table (NWT) model used improved input data (i.e., national input data of terrain, geology, and recharge) and model equations (e.g., a hydraulic conductivity - depth relation). The NWT model produced maps of the water table that identified the main alluvial aquifers with fine spatial detail. Two regional case studies at the catchment scale demonstrated excellent correlation between the water table elevation and observations of hydraulic head. The NWT water tables are an improved water table estimation over the EWT model. In two case studies the NWT model provided a better approximation to observed water table for deep aquifers and the improved resolution of the model provided the capability to fill the gaps in data-sparse areas. This national model calculated water table depth and elevation across regional jurisdictions. Therefore, the model is relevant where trans-boundary issues, such as source protection and catchment boundary definition, occur. The NWT model also has the potential to constrain the uncertainty of catchment-scale models, particularly where data are sparse. Shortcomings of the NWT model are caused by the inaccuracy of input data and the simplified model properties. Future research should focus on improved estimation of input data (e.g., hydraulic conductivity and terrain). However, more advanced catchment-scale groundwater models should be used where groundwater flow is dominated by confining layers and fractures.

  14. Carbon cycling responses to a water table drawdown and decadal vegetation changes in a bog

    NASA Astrophysics Data System (ADS)

    Talbot, J.; Roulet, N. T.

    2009-12-01

    The quantity of carbon stored in peat depends on the imbalance between production and decomposition of organic matter. This imbalance is mainly controlled by the wetness of the peatland, usually described by the water table depth. However, long-term processes resulting from hydrological changes, such as vegetation succession, also play a major role in the biogeochemistry of peatlands. Previous studies have looked at the impact of a water table lowering on carbon fluxes in different types of peatlands. However, most of these studies were conducted within a time frame that did not allow the examination of vegetation changes due to the water table lowering. We conducted a study along a drainage gradient resulting from the digging of a drainage ditch 85 years ago in a portion of the Mer Bleue bog, located near Ottawa, Canada. According to water table reconstructions based on testate amoeba, the drainage dropped the water table by approximately 18 cm. On the upslope side of the ditch, the water table partly recovered and the vegetation changed only marginally. However, on the downslope side of the ditch, the water table stayed persistently lower and trees established (Larix and Betula). The importance of Sphagnum decreased with a lower water table, and evergreen shrubs were replaced by deciduous shrubs. The water table drop and subsequent vegetation changes had combined and individual effects on the carbon functioning of the peatland. Methane fluxes decreased because of the water table lowering, but were not affected by vegetation changes, whereas respiration and net ecosystem productivity were affected by both. The carbon storage of the system increased because of an increase in plant biomass, but the long-term carbon storage as peat decreased. The inclusion of the feedback effect that vegetation has on the carbon functioning of a peatland when a disturbance occurs is crucial to simulate the long-term carbon balance of this ecosystem.

  15. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected tomore » eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.« less

  16. 78 FR 66844 - Special Local Regulation; Southern California Annual Marine Events for the San Diego Captain of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... enforce the special local regulations in 33 CFR 100.1101 during the San Diego Fall Classic, held on... INFORMATION: The Coast Guard will enforce the special local regulations in 33 CFR 100.1101 in support of the San Diego Fall Classic (Item 1 on Table 1 of 33 CFR 100.1101). The Coast Guard will enforce the...

  17. Northern part, Ten Mile and Taunton River basins

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.

    1967-01-01

    This report is one of two prepared by the Geological Survey for the Water Resources Commission. The principal purpose of this report is to make available the basic data on which the other, a map showing availability of ground water, is based. This basic-data report also can be used by engineers, planners, and others interested in or responsible for water-resources planning to determine the materials to be encountered (tables 3 and 4) and the yields which may be obtained from wells and test holes (tables 1 and 2) in the stratified sand and gravel that are the principal source of ground water and in bedrock. Partial and complete chemical analyses (tables 7 and 8) of these test holes and of some privately-owned wells provide information on the general quality of the water for domestic and other uses. A tabulation of existing municipal supplies, their capacity, production (table 5), and chemical quality of the water (table 6) may be used for regional planning purposes. Water-level measurements (figure 1) can be used to determine the annual fluctuations of the water table in certain types of materials. Seismic work (table 9) in the Canoe River valley, Norton, and test drilling with a power augur (tables 2 and 4) were done for the Geological Survey as  part of the investigation.

  18. Investigations of infiltration processes from flooded areas by column experiments

    NASA Astrophysics Data System (ADS)

    Mohrlok, U.; Bethge, E.; Golalipour, A.

    2009-04-01

    In case of inundation of flood plains during flood events there is an increased risk of groundwater contamination due to infiltration of increasingly polluted river water. Specifically in densely populated regions, this groundwater may be used as source for drinking water supply. For the evaluation of this a detailed quantitative understanding of the infiltration processes under such conditions is required. In this context the infiltration related to a flood event can be described by three phases. The first phase is defined by the saturation of the unsaturated soils. Within the second phase infiltration takes place under almost saturated conditions determined by the hydraulic load of the flood water level. The drainage of the soils due to falling groundwater table is characterizing the third phase. Investigations by soil columns gave a detailed insight into the infiltration processes caused by flooding. Inflow at the soil top was established by a fixed water table fed by a Mariotte bottle. Free outflow and a groundwater table were used as lower boundary condition. Inflow and outflow volume were monitored. The evolution of the matrix pressure was observed by micro-tensiometers installed at several depths within the soil column. The flow processes during phase one and two were characterized by a tracer test. Some of the experiments were repeated in order to study the influence of preliminary events. Main results were a difference in infiltration due to the lower boundary condition with regard to inflow rate, outflow dynamics and matrix pressure evolution which is directly related to the water content evolution. Further, the influence of preliminary events was different for the different boundary conditions. A replacement of pre-event water could be observed which was confirmed by volume balances calculated for the infiltration experiments. Although these water balances were almost closed significant dynamics of the matrix pressure remained in soil column in the drainage phase. The detailed analysis of the hydraulic conditions and the flow rates provided an estimate of the unsaturated hydraulic conductivity that could be related to the degree of saturation. Numerical simulations were not able to reproduce these conditions. These results could be used to estimate time scales of flow and solute transport in soils caused by flood events.

  19. Water-table decline in the south-central Great Basin during the Quaternary Period; implications for toxic-waste disposal

    USGS Publications Warehouse

    Winograd, I.J.; Szabo, B. J.

    1986-01-01

    The distribution of vein calcite, tufa, and other features indicative of paleo-groundwater discharge, indicates that during the early to middle Pleistocene, the water table at Ash Meadows, in the Amargosa Desert, Nevada, and at Furnace Creek Wash, in east-central Death Valley, California, was tens to hundreds of meters above the modern water table, and that groundwater discharge occurred up to 18 km up-the-hydraulic gradient from modern discharge areas. Uranium series dating of the calcitic veins permits calculation of rates of apparent water table decline; rates of 0.02 to 0.08 m/1000 yr are indicated for Ash meadows and 0.2 to 0.6 m/1000 yr for Furnace Creek Wash. The rates for Furnace Creek Wash closely match a published estimate of vertical crustal offset for this area, suggesting that tectonism is a major cause for the displacement observed. In general, displacements of the paleo-water table probably reflect a combination of: (a) tectonic uplift of vein calcite and tufa, unaccompanied by a change in water table altitude; (b) decline in water table altitude in response to tectonic depression of areas adjacent to dated veins and associated tufa; (c) decline in water table altitude in response to increasing aridity caused by major uplift of the Sierra Nevada and Transverse Ranges during the Quaternary; and (d) decline in water altitude in response to erosion triggered by increasing aridity and/or tectonism. A synthesis of geohydrologic, neotectonic, and paleoclimatologic information with the vein-calcite data permits the inference that the water table in the south-central Great Basin progressively lowered throughout the Quaternary. This inference is pertinent to an evaluation of the utility of thick (200-600 m) unsaturated zones of the region for isolating solidified radioactive wastes from the hydrosphere for hundreds of millenia. Wastes buried a few tens to perhaps 100 m above the modern water table--that is above possible water level rises due to future pluvial climates--are unlikely to be inundated by a rising water table in the foreseeable geologic future. (Author 's abstract)

  20. Sequence stratigraphic distribution of coaly rocks: Fundamental controls and paralic examples

    USGS Publications Warehouse

    Bohacs, K.; Suter, J.

    1997-01-01

    Significant volumes of terrigenous organic matter can be preserved to form coals only when and where the overall increase in accommodation approximately equals the production rate of peat. Accommodation is a function of subsidence and base level. For mires, base level is very specifically the groundwater table. In paralic settings, the groundwater table is strongly controlled by sea level and the precipitation/evaporation ratio. Peat accumulates over a range of rates, but always with a definite maximum rate set by original organic productivity and space available below depositional base level (groundwater table). Below a threshold accommodation rate (nonzero), no continuous peats accumulate, due to falling or low groundwater table, sedimentary bypass, and extensive erosion by fluvial channels. This is typical of upper highstand, lowstand fan, and basal lowstand-wedge systems tracts. Higher accommodation rates provide relatively stable conditions with rising groundwater tables. Mires initiate and thrive, quickly filling local accommodation vertically and expanding laterally, favoring accumulation of laterally continuous coals in paralic zones within both middle lowstand and middle highstand systems tracts. If the accommodation increase balances or slightly exceeds organic productivity, mires accumulate peat vertically, yielding thicker, more isolated coals most likely during of late lowstand-early transgressive and late transgressive-early highstand periods. At very large accommodation increases, mires are stressed and eventually inundated by clastics or standing water (as in middle transgressive systems tracts). These relations should be valid for mires in all settings, including alluvial, lake plain, and paralic. The tie to sea level in paralic zones depends on local subsidence, sediment supply, and groundwater regimes. These concepts are also useful for investigating the distribution of seal and reservoir facies in nonmarine settings.

  1. Water table variability and runoff generation in an eroded peatland, South Pennines, UK

    NASA Astrophysics Data System (ADS)

    Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.

    2008-10-01

    SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.

  2. The design of a research water table

    NASA Technical Reports Server (NTRS)

    Fike, R. L.; Kinney, R. B.; Perkins, H. C.

    1973-01-01

    A complete design for a research water table is presented. Following a brief discussion of the analogy between water and compressible-gas flows (hydraulic analogy), the components of the water table and their function are described. The major design considerations are discussed, and the final design is presented.

  3. Temporal changes in the configuration of the water table in the vicinity of the management systems evaluation area site, central Nebraska

    USGS Publications Warehouse

    Kilpatrick, John M.

    1996-01-01

    To improve understanding of the hydrologic characteristics of the shallow aquifer in the vicinity of the Management Systems Evaluation Area site near Shelton, Nebraska, water levels were measured in approximately 130 observation wells in both June and September 1991. Two water-table maps and a water-level-change map were drawn on the basis of these measurements. In addition, historical data from U.S. Geological Survey computer files and published reports were used to determine the approximate configuration of the water table in 1931 and to draw one short-term and two-long term water- level hydrographs. Comparison of the three water- table maps indicates general similarities. The average horizontal hydraulic gradient in the shallow aquifer is about 7.5 feet per mile, and the flow direction is to the east-northeast. The water table declined 2 to 10 feet between June and September 1991, with the greatest decline occurring in a wedge-shaped area south of the Wood River and north of the Platte River. The 1991 water-table configurations appear to indicate that the aquifer either was discharging to the Platte River in this reach or there was little flow between the river and the aquifer. Comparison of the 1931 and 1991 water-table maps indicates that, except for short-term variations, the water-table configuration changed little during this 61-year period. Two long-term water-level hydrographs confirm this conclusion, indicating that the shallow aquifer in this area has been in long-term, dynamic equilibrium.

  4. Can Baby Hear?

    MedlinePlus

    ... Current Issue Past Issues Special Section: Focus on Communication Can Baby Hear? Past Issues / Fall 2008 Table ... to the National Institute on Deafness and Other Communication Disorders (NIDCD). Prior to this, the average age ...

  5. Introducing medlineplus.gov

    MedlinePlus

    ... Bar Home Current Issue Past Issues Introducing medlineplus.gov Past Issues / Fall 2006 Table of Contents For ... Discover a world of FREE medical resources: medlineplus.gov Your gateway to the world's most comprehensive and ...

  6. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  7. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    USGS Publications Warehouse

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  8. What Is Asthma?

    MedlinePlus

    ... Current Issue Past Issues Special Section What Is Asthma? Past Issues / Fall 2007 Table of Contents For ... major trigger for asthma. Photo: iStock Who Gets Asthma? People get asthma because of an interaction between ...

  9. Asthma and Health Disparities

    MedlinePlus

    ... Javascript on. Feature: Breathing Easier Asthma and Health Disparities Past Issues / Fall 2013 Table of Contents Among ... Action Plan to Reduce Racial and Ethnic Asthma Disparities. The Action Plan presents a framework to maximize ...

  10. Blood Pressure Quiz | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Blood Pressure Blood Pressure Quiz Past Issues / Fall 2011 Table of Contents Blood pressure changes throughout the day. It… is highest while ...

  11. Sports and Concussion

    MedlinePlus

    ... this page please turn JavaScript on. Feature: Concussion Sports and Concussion Past Issues / Summer 2015 Table of ... ages—reducing blows to the head by playing sports safely and avoiding falls is vital to a ...

  12. "Diabetes has instant consequences…"

    MedlinePlus

    ... Javascript on. Feature: Diabetes Stories "Diabetes has instant consequences…" Past Issues / Fall 2009 Table of Contents Photo: ... to chuck it all. But Diabetes has instant consequences. You learn to be responsible pretty quickly, or ...

  13. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling

    NASA Astrophysics Data System (ADS)

    Price, Jonathan S.; Whittington, Peter N.

    2010-02-01

    SummaryThe internal water fluxes within Sphagnum mosses critically affect the rate of evaporation and the wetness of the living upper few centimetres of moss (capitula) and the physiological processes (e.g. photosynthesis) that support them. To quantify water fluxes and stores in Sphagnum rubellum hummocks we used a 30 cm high column (mesocosm) of undisturbed hummock moss including the capitula, and applied a number of experiments to investigate (1) staged lowering (and raising) of the water table ( wt) with a manometer tube; (2) pumped seepage of about 0.7 cm d -1 to produce a wt drop of 1.5 cm day -1; and (3) evaporation averaging 3.2 mm d -1. Water content ( θ) at saturation ( θ s) was ˜0.9 cm 3 cm -3 for all depths. Residual water content ( θ r) was 0.2 cm 3 cm -3 at 5 cm depth, increasing to 0.47 cm 3 cm -3 at 25 cm depth. Hydraulic conductivity ( K) of the same top 5 cm layer ranged from 1.8 × 10 -3 m s -1 at θ s to 4 × 10 -8 m s -1 at θ r. By comparison K at 25 cm depth had a much more limited range from 2.3 × 10 -4 m s -1 at θ s to 1.1 × 10 -5 m s -1 at θ r. Staged wt lowering from -10 cm to -30 cm (no evaporation allowed) resulted in an abrupt change in θ that reached a stable value generally within an hour, indicating the responsiveness of moss to drainage. Staged increases also resulted in an abrupt rise in θ, but in some cases several days were required for θ to equilibrate. Pumped seepage resulted in a sequential decline of θ, requiring about 10 days for each layer to reach θ r after the water table dropped below the sensor at the respective depths. Evaporation resulted in a similar pattern of decline but took almost three times as long. The computer simulation Hydrus 1D was used to model the fluxes and provided a good fit for the staged lowering and pumped seepage experiments, but overestimated the water loss by evaporation. We believe the reason for this is that over the longer evaporation experiment, the monolith underwent consolidation and shrinkage which reduced saturated hydraulic conductivity, thus reducing the rate of upward water flux - not accounted for in the simulation. Declining θ s in lower layers (i.e., before pore drainage) was evidence of consolidation. The study confirms that the hydraulic structure results in a rapid transition to a low but stable water content in upper mosses when the water table falls, a low unsaturated hydraulic conductivity in such circumstances that constrains upward water flux caused by evaporation when θ r is reached, but sustains it for a wide range of water tables. Moreover, the hydraulic parameters can be represented with the Mualem-van Genuchten approach, enabling the fluxes to be modelled in one dimension with reasonable accuracy.

  14. Global patterns of groundwater table depth.

    PubMed

    Fan, Y; Li, H; Miguez-Macho, G

    2013-02-22

    Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.

  15. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less

  16. Glaucoma: Screening Can Save Your Sight!

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Glaucoma Glaucoma: Screening Can Save Your Sight! Past Issues / Fall 2009 Table of Contents People with glaucoma see the world through a tunnel. Glaucoma is ...

  17. For Seniors, Eat with Caution

    MedlinePlus

    ... page please turn Javascript on. Healthy Holiday For Seniors, Eat with Caution Past Issues / Fall 2009 Table ... reduce risks of illness from bacteria in food, seniors (and others who face special risks of illness) ...

  18. Migraine Headaches: Treatment & Research

    MedlinePlus

    ... please turn JavaScript on. Feature: Migraine Headaches Treatment & Research Past Issues / Fall 2015 Table of Contents Nondrug ... since some drugs may cause side effects. What Research Is Being Done? Several studies either conducted or ...

  19. "Stop Diabetes Now!"

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Diabetes "Stop Diabetes Now!" Past Issues / Fall 2009 Table of Contents ... Tips for Seniors at Risk for Type 2 Diabetes Lifestyle changes that lead to weight loss—such ...

  20. Discussing Diabetes with Your Healthcare Provider

    MedlinePlus

    ... Javascript on. Feature: Diabetes Discussing Diabetes with Your Healthcare Provider Past Issues / Fall 2009 Table of Contents Diabetes Medicines—Always Discuss Them with Your Healthcare Provider If you have diabetes, how low should ...

  1. "Control Your Diabetes. For Life."

    MedlinePlus

    ... this page please turn Javascript on. Feature: Diabetes "Control Your Diabetes. For Life." Past Issues / Fall 2009 Table of Contents For information about "Control Your Diabetes. For Life" campaign, visit www.YourDiabetesInfo. ...

  2. HealthLines: Facts About Fat

    MedlinePlus

    ... Current Issue Past Issues Health Lines Facts About Fat Past Issues / Fall 2008 Table of Contents For ... Writer, NLM Scientists are learning more about our fat cells, and their findings could explain why some ...

  3. New Vaccines Help Protect You

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues New Vaccines Help Protect You Past Issues / Fall 2006 Table ... this page please turn Javascript on. Important new vaccines have recently been approved for use and are ...

  4. Challenge of COPD: Getting Tested

    MedlinePlus

    ... please turn JavaScript on. Feature: The Challenge of COPD Getting Tested Past Issues / Fall 2014 Table of Contents Getting Tested Everyone at risk for COPD who has cough, sputum production, or shortness of ...

  5. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen

    USGS Publications Warehouse

    Churchill, A.C.; Turetsky, Merritt R.; McGuire, A. David; Hollingsworth, Teresa N.

    2014-01-01

    Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.

  6. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  7. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d). i. Measuring...

  8. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  9. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  10. Hydrogeology of the surficial aquifer in the vicinity of a former landfill, Naval Submarine Base Kings Bay, Camden County, Georgia

    USGS Publications Warehouse

    Leeth, David C.

    1999-01-01

    Neogene and Quaternary sediments constitute the surficial aquifer beneath the study area; in descending order from youngest to oldest these include-the Quaternary undifferentiated surficial sand and Satilla Formation; the Pliocene(?) Cypresshead Formation; and the middle Miocene Coosawhatchie Formation. Beneath the surficial aquifer, the upper Brunswick aquifer consists of part of the lower Miocene Marks Head Formation. The surficial aquifer is divided into three water-bearing zones on the basis of lithologic and geophysical properties of sediments, hydraulic-head differences between zones, and differences in ground-water chemistry. The shallowest zone-the water-table zone-consists of medium to fine sand and clayey sand and is present from land surface to a depth of about 77 feet. Below the water-table zone, the confined upper water-bearing zone consists of medium to very coarse sand and is present from a depth of about 110 to 132 feet. Beneath the upper water-bearing zone, the confined lower water-bearing zone consists of coarse sand and very fine gravel and is present from a depth of about 195 to 237 feet. Hydraulic separation is suggested by differences in water chemistry between the water-table zone and upper water-bearing zone. The sodium chloride type water in the water-table zone differs from the calcium bicarbonate type water in the upper water-bearing zone. Hydraulic separation also is indicated by hydraulic head differences of more than 6.5 feet between the water-table zone and the upper water-bearing zone. Continuous and synoptic water-level measurements in the water-table zone, from October 1995 to April 1997, indicate the presence of a water-table high beneath and adjacent to the former landfill-the surface of which varies about 5 feet with time because of recharge and discharge. Water-level data from clustered wells also suggest that restriction of vertical ground-water flow begins to occur at an altitude of about 5 to 10 feet below sea level (35 to 40 feet below land surface) in the water-table zone because of the increasing clay content of the Cypresshead Formation.

  11. Flow and discharge of groundwater from a snowmelt-affected sandy beach

    NASA Astrophysics Data System (ADS)

    Chaillou, G.; Lemay-Borduas, F.; Larocque, M.; Couturier, M.; Biehler, A.; Tommi-Morin, G.

    2018-02-01

    The study is based on a complex and unique data set of water stable isotopes (i.e., δ18O and δ2H), radon-222 activities (i.e., 222Rn) and groundwater levels to better understand the interaction of fresh groundwater and recirculated seawater in a snowmelt-affected subterranean estuary (STE) in a boreal region (Îles-de-la-Madeleine, Qc, Canada). By using a combination of hydrogeological and marine geochemical approaches, the objective was to analyze and quantify submarine groundwater discharge processes through a boreal beach after the snow melt period, in early June. The distribution of δ18O and δ2H in beach groundwater showed that inland fresh groundwater contributed between 97 and 30% of water masses presented within the STE. A time series of water table levels during the 16 days of the study indicated that tides propagated as a dynamic wave limiting the mass displacement of seawater within the STE. This up-and-down movement of the water table (∼10-30 cm) induced the vertical infiltration of seawater at the falling tide. At the front of the beach, a radon-based mass balance calculated with high-resolution 222Rn survey estimated total SGD of 3.1 m3/m/d at the discharge zone and a mean flow to 1.5 m3/m/d in the bay. The nearshore discharge agreed relatively well with Darcy fluxes calculated at the beach face. Fresh groundwater makes up more than 50% of the total discharge during the measuring campaign. These results indicate that beaches in boreal and cold regions could be important sources of freshwater originate and groundwater-borne solutes and contaminants to the marine environment after the snowmelt.

  12. Soil-water content characterisation in a modified Jarvis-Stewart model: A case study of a conifer forest on a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.

    2017-01-01

    Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.

  13. Synopsis of ground-water and surface-water resources of North Dakota

    USGS Publications Warehouse

    Winter, T.C.; Benson, R.D.; Engberg, R.A.; Wiche, G.J.; Emerson, D.G.; Crosby, O.A.; Miller, J.E.

    1984-01-01

    This report describes the surface- and ground-water resources of North Dakota and the limitations of our understanding of these resources. Ground water and surface water are actually one resource, because they are often hydraulically interconnected. They are discussed separately for convenience. In general, the surface-water resources of the mainstem of the Missouri river are abundant and suitable for most uses. Other rivers may be important locally as water-supply sources, but the quantities of flow are small, quite variable in time, and generally of an unsuitable quality for most uses. Streamflow characteristics of North Dakota reflect its arid to semiarid climate (annual precipitation varies from 13 to 20 inches from west to east across the State), cold winters (usually including a significant snowpack available for spring snowmelt runoff), and the seasonal distribution of annual precipitation (almost 50 percent falls from Nky to July).Significant volumes of shallow ground water, of variable quality are found in the glacial-drift aquifers in parts of central, northern, and eastern North Dakota. Existing information provides only a limited capability to assess the long-term reliability of these scattered aquifers. There are significant indications, however, of water-quality problems related to sustained production of wells if long-term utilization of these aquifers is planned. A summary of the general suitability for use of surface water and ground water is given in Table E1.

  14. Estimated depth to the water table and estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas

    USGS Publications Warehouse

    Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.

    1996-01-01

    In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.

  15. Preventing Breast Cancer: Making Progress

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  16. Do You Have Major Depression?

    MedlinePlus

    ... turn Javascript on. Feature: Depression Do You Have Major Depression? Past Issues / Fall 2009 Table of Contents Simple ... following two questions will detect the possibility of major depression: Over the past two weeks, have you felt ...

  17. Imagine stopping the progression of Alzheimer's

    MedlinePlus

    ... Issue Past Issues Imagine stopping the progression of Alzheimer's Past Issues / Fall 2006 Table of Contents For ... I have friends and loved ones suffering from Alzheimer's. But I can imagine… and hope for… a ...

  18. The High Price of Noise Exposure

    MedlinePlus

    ... Current Issue Past Issues Hearing Disorders The High Price of Noise Exposure Past Issues / Fall 2008 Table ... These tiny structures convert sound waves into electrical energy. Our auditory nerve sends this energy to the ...

  19. Toddlers at the Table: Avoiding Power Struggles

    MedlinePlus

    ... she refuses. For some kids, dinner becomes a negotiation session from the very start, and parents have ... one bite" but don't fall into the negotiating trap. Prepare and serve healthy meals and let ...

  20. Glaucoma: Symptoms, Diagnosis, Treatment and Latest Research

    MedlinePlus

    ... Feature: Glaucoma Glaucoma: Symptoms, Diagnosis, Treatment and Latest Research Past Issues / Fall 2009 Table of Contents Symptoms ... patients may need to keep taking drugs. Latest Research Researchers are studying the causes of glaucoma, looking ...

  1. Avoiding the Flu

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Flu Avoiding the Flu Past Issues / Fall 2009 Table of Contents Children ... help avoid getting and passing on the flu. Influenza (Seasonal) The flu is a contagious respiratory illness ...

  2. College Drinking: Get the Real Picture

    MedlinePlus

    ... Drinking Task Force Recommendations College Drinking: Get the real picture Past Issues / Fall 2015 Table of Contents " ... 599,000 injuries, and 97,000 cases of sexual assault or date rape each year. High-risk drinking ...

  3. MedlinePlus.gov Turns 10!

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues MedlinePlus.gov Turns 10! Past Issues / Fall 2008 Table of ... Photo courtesy of Michael Spencer, NIH NIH's MedlinePlus.gov , the popular, consumer-friendly health Web site produced ...

  4. Don't Panic! | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Phobias and Anxiety Disorders Don't Panic! Past Issues / Fall 2010 Table of Contents Phobias and other anxiety disorders affect millions of Americans. But researchers have found ...

  5. NIH Research Leads to Cervical Cancer Vaccine

    MedlinePlus

    ... Transmitted Diseases NIH Research Leads to Cervical Cancer Vaccine Past Issues / Fall 2008 Table of Contents For ... Douglas Lowy (left) and John Schiller developed the vaccine to prevent HPV infection in women, the cause ...

  6. What Causes COPD?

    MedlinePlus

    ... please turn JavaScript on. Feature: The Challenge of COPD What Causes COPD? Past Issues / Fall 2014 Table of Contents Long- ... and the airways usually is the cause of COPD. In the United States, the most common irritant ...

  7. WTAQ: A Computer Program for Calculating Drawdowns and Estimating Hydraulic Properties for Confined and Water-Table Aquifers

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    1999-01-01

    The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.

  8. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    Little existing information was available describing pesticide occurrence in ground water of Wyoming, so the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture and the Wyoming Department of Environmental Quality on behalf of the Wyoming Ground-water and Pesticides Strategy Committee, collected ground-water samples twice (during late summer/early fall and spring) from 296 wells during 1995-2006 to characterize pesticide occurrence. Sampling focused on the State's ground water that was mapped as the most vulnerable to pesticide contamination because of either inherent hydrogeologic sensitivity (for example, shallow water table or highly permeable aquifer materials) or a combination of sensitivity and associated land use. Because of variations in reporting limits among different compounds and for the same compound during this study, pesticide detections were recensored to two different assessment levels to facilitate qualitative and quantitative examination of pesticide detection frequencies - a common assessment level (CAL) of 0.07 microgram per liter and an assessment level that differed by compound, referred to herein as a compound-specific assessment level (CSAL). Because of severe data censoring (fewer than 50 percent of the data are greater than laboratory reporting limits), categorical statistical methods were used exclusively for quantitative comparisons of pesticide detection frequencies between seasons and among various natural and anthropogenic (human-related) characteristics. One or more pesticides were detected at concentrations greater than the CAL in water from about 23 percent of wells sampled in the fall and from about 22 percent of wells sampled in the spring. Mixtures of two or more pesticides occurred at concentrations greater than the CAL in about 9 percent of wells sampled in the fall and in about 10 percent of wells sampled in the spring. At least 74 percent of pesticides detected were classified as herbicides. Considering only detections using the CAL, triazine pesticides were detected much more frequently than all other pesticide classes, and the number of different pesticides classified as triazines was the largest of all classes. More pesticides were detected at concentrations greater than the CSALs in water from wells sampled in the fall (28 different pesticides) than in the spring (21 different pesticides). Many pesticides were detected infrequently as nearly one-half of pesticides detected in the fall and spring at concentrations greater than the CSALs were detected only in one well. Using the CSALs for pesticides analyzed for in 11 or more wells, only five pesticides (atrazine, prometon, tebuthiuron, picloram, and 3,4-dichloroaniline, listed in order of decreasing detection frequency) were each detected in water from more than 5 percent of sampled wells. Atrazine was the pesticide detected most frequently at concentrations greater than the CSAL. Concentrations of detected pesticides generally were small (less than 1 microgram per liter), although many infrequent detections at larger concentrations were noted. All detected pesticide concentrations were smaller than U.S. Environmental Protection Agency (USEPA) drinking-water standards or applicable health advisories. Most concentrations were at least an order of magnitude smaller; however, many pesticides did not have standards or advisories. The largest percentage of pesticide detections and the largest number of different pesticides detected were in samples from wells located in the Bighorn Basin and High Plains/ Casper Arch geographic areas of north-central and southeastern Wyoming. Prometon was the only pesticide detected in all eight geographic areas of the State. Pesticides were detected much more frequently in samples from wells located in predominantly urban areas than in samples from wells located in predominantly agricultural or mixed areas. Pesticides were detected distinctly less often in sa

  9. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  10. Real-time 4D ERT monitoring of river water intrusion into a former nuclear disposal site using a transient warping-mesh water table boundary (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Hammond, G. E.; Versteeg, R. J.; Zachara, J. M.

    2013-12-01

    The Hanford 300 Area, located adjacent to the Columbia River in south-central Washington, USA, is the site of former research and uranium fuel rod fabrication facilities. Waste disposal practices at site included discharging between 33 and 59 metric tons of uranium over a 40 year period into shallow infiltration galleries, resulting in persistent uranium contamination within the vadose and saturated zones. Uranium transport from the vadose zone to the saturated zone is intimately linked with water table fluctuations and river water intrusion driven by upstream dam operations. As river stage increases, the water table rises into the vadose zone and mobilizes contaminated pore water. At the same time, river water moves inland into the aquifer, and river water chemistry facilitates further mobilization by enabling uranium desorption from contaminated sediments. As river stage decreases, flow moves toward the river, ultimately discharging contaminated water at the river bed. River water specific conductance at the 300 Area varies around 0.018 S/m whereas groundwater specific conductance varies around 0.043 S/m. This contrast provides the opportunity to monitor groundwater/river water interaction by imaging changes in bulk conductivity within the saturated zone using time-lapse electrical resistivity tomography. Previous efforts have demonstrated this capability, but have also shown that disconnecting regularization constraints at the water table is critical for obtaining meaningful time-lapse images. Because the water table moves with time, the regularization constraints must also be transient to accommodate the water table boundary. This was previously accomplished with 2D time-lapse ERT imaging by using a finely discretized computational mesh within the water table interval, enabling a relatively smooth water table to be defined without modifying the mesh. However, in 3D this approach requires a computational mesh with an untenable number of elements. In order to accommodate the water table boundary in 3D, we propose a time-lapse warping mesh inversion, whereby mesh elements that traverse the water table are modified to generate a smooth boundary at the known water table position, enabling regularization constraints to be accurately disconnected across the water table boundary at a given time. We demonstrate the approach using a surface ERT array installed adjacent to the Columbia River at the 300 Area, consisting of 352 electrodes and covering an area of approximately 350 m x 350 m. Using autonomous data collection, transmission, and filtering tools coupled with high performance computing resources, the 4D imaging process is automated and executed in real time. Each time lapse survey consists of approximately 40,000 measurements and 4 surveys are collected and processed per day from April 1st , 2013 to September 30th, 2013. The data are inverted on an unstructured tetrahedral mesh that honors LiDAR-based surface topography and is comprised of approximately 905,000 elements. Imaging results show the dynamic 4D extent of river water intrusion, and are validated with well-based fluid conductivity measurements at each monitoring well within the imaging domain.

  11. Altitude of the water table in the alluvial and other shallow aquifers along the Colorado River near La Grange, Texas, December 1980

    USGS Publications Warehouse

    Rettman, Paul

    1981-01-01

    The delineation of the water table in the alluvium of the Colorado River is fairly well defined, and 10-feet contour intervals may be interpreted with confidence in the area called ' potential lignite-mining area. ' The water table in the bedrock aquifers is more difficult to delineate with the available data; therefore, the contours are only estimates of the position of the water table in the hilly bedrock area adjacent to the Colorado River alluvium. 

  12. Hydrologic conditions, recharge, and baseline water quality of the surficial aquifer system at Jekyll Island, Georgia, 2012-13

    USGS Publications Warehouse

    Gordon, Debbie W.; Torak, Lynn J.

    2016-03-08

    Groundwater levels and specific-conductance measurements showed the dependence of freshwater resources on rainfall to recharge the water-table zone of the surficial aquifer system and to influence groundwater flow on Jekyll Island. The unseasonably dry conditions during November 2012 to April 2013 induced saline water infiltration to the water-table zone from the marshland separating the Jekyll River from the island. A strong correlation (R2 = 0.97) of specific conductance to chloride concentration in water samples from wells installed in the water-table zone provided support for the determination of seasonal directions of groundwater flow by confirming salinity changes in the water-table zone. Unseasonably wet conditions during the late spring to August caused groundwater-flow reversals in some areas. The high dependence of the water-table zone in the surficial aquifer system on precipitation to replenish the aquifer with freshwater underscored the importance of monitoring groundwater levels, water quality, and water use to identify aquifer-discharge conditions that have the potential to promote seawater encroachment and degrade freshwater resources on Jekyll Island.

  13. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    PubMed

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of added fertilizer P between HEI (187kg P2O5/ha) and REI (124kg P2O5/ha), soil Mehlich 1 P (M1P) values were similar for both systems while they received Pinput. Soil M1P for REI and REI-SD increased to a maximum of 55mg/kg while they received Pinput, and then gradually decreased after Pinput ceased. However, M1P for HEI increased steadily to a maximum of 145mg/kg by the end of the study with continued Pinput. Mehlich-1 P measured six years after the study still showed relatively high levels of P, a legacy effect of Pinput. The main factors influencing groundwater P concentration varied by seasons. During fall with frequent rainfall, the concentrations were influenced mainly by M1P and Pinput, and highlight a need for greater focus on Pinput management (vs. water management) during this season. However, during the dry period of spring, a greater focus on irrigation management is required since depth to water table and rainfall also become contributing factors. Three multivariate models (r(2)=0.67 to 0.93), for spring, fall, and annual periods, were developed for predicting groundwater P concentrations for a wide range of water and P inputs (0 to 191kg P2O5/ha of Pinput). The uniqueness of these models is that they use readily available hydrologic (rainfall and water table depth), management (Pinput), and soil (M1P) data commonly monitored by growers when managing water and nutrient inputs on agricultural landscapes. The development of similar models may not be necessary for other agro-ecosystems in similar regions since long-term data collected in these regions may be applied, with verification, to the models presented here. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Measurement and modeling of phosphorous transport in shallow groundwater environments

    NASA Astrophysics Data System (ADS)

    Hendricks, G. S.; Shukla, S.; Obreza, T. A.; Harris, W. G.

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI = 2098 μg/L and REI-SD = 2048 μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090 μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of added fertilizer P between HEI (187 kg P2O5/ha) and REI (124 kg P2O5/ha), soil Mehlich 1 P (M1P) values were similar for both systems while they received Pinput. Soil M1P for REI and REI-SD increased to a maximum of 55 mg/kg while they received Pinput, and then gradually decreased after Pinput ceased. However, M1P for HEI increased steadily to a maximum of 145 mg/kg by the end of the study with continued Pinput. Mehlich-1 P measured six years after the study still showed relatively high levels of P, a legacy effect of Pinput. The main factors influencing groundwater P concentration varied by seasons. During fall with frequent rainfall, the concentrations were influenced mainly by M1P and Pinput, and highlight a need for greater focus on Pinput management (vs. water management) during this season. However, during the dry period of spring, a greater focus on irrigation management is required since depth to water table and rainfall also become contributing factors. Three multivariate models (r2 = 0.67 to 0.93), for spring, fall, and annual periods, were developed for predicting groundwater P concentrations for a wide range of water and P inputs (0 to 191 kg P2O5/ha of Pinput). The uniqueness of these models is that they use readily available hydrologic (rainfall and water table depth), management (Pinput), and soil (M1P) data commonly monitored by growers when managing water and nutrient inputs on agricultural landscapes. The development of similar models may not be necessary for other agro-ecosystems in similar regions since long-term data collected in these regions may be applied, with verification, to the models presented here.

  15. What is Asthma? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... turn Javascript on. Feature: Breathing Easier What is Asthma? Past Issues / Fall 2013 Table of Contents Click ... other healthcare providers. Common signs and symptoms of asthma include: Coughing. Wheezing. Chest tightness, like something squeezing ...

  16. Get Tested for Glaucoma!

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Glaucoma Get Tested for Glaucoma! Past Issues / Fall 2009 Table of Contents Taylor ... aoa.org/ When were you finally diagnosed with glaucoma? Not until 1969, after a game of basketball. ...

  17. Seniors and Chronic Pain | NIH MedlinePlus the Magazine

    MedlinePlus

    ... version of this page please turn Javascript on. Seniors and Chronic Pain Past Issues / Fall 2011 Table ... the role of pain self-management can help seniors reduce or eliminate this condition. Questions to Ask ...

  18. MedlinePlus.gov on Twitter

    MedlinePlus

    ... page please turn Javascript on. MedlinePlus.gov on Twitter Past Issues / Fall 2009 Table of Contents You can now follow MedlinePlus.gov on Twitter: twitter.com/medlineplus4you The medlineplus4you Twitter feed provides ...

  19. Asthma: NIH-Sponsored Research and Clinical Trials | NIH MedlinePlus the Magazine

    MedlinePlus

    ... turn Javascript on. Feature: Asthma Asthma: NIH-Sponsored Research and Clinical Trials Past Issues / Fall 2011 Table of Contents NIH-Sponsored Research Asthma in the Inner City: Recognizing that asthma ...

  20. College Students and Alcohol Abuse: New Resources Can Help

    MedlinePlus

    ... turn Javascript on. College Students and Alcohol Abuse: New Resources Can Help Past Issues / Fall 2009 Table ... to reducing drunk driving, NIH research is developing new intervention tools and techniques to help colleges, students, ...

  1. 2014 Awards Gala Event | NIH MedlinePlus the Magazine

    MedlinePlus

    ... on. Friends of the National Library of Medicine 2014 Awards Gala Event Past Issues / Fall 2014 Table ... Capitol Building Photos courtesy of Michael Spencer, NIH 2014 Awards Gala Event! On September 9, the Friends ...

  2. Good Health For the Holidays!

    MedlinePlus

    ... Current Issue Past Issues Good Health For the Holidays! Past Issues / Fall 2007 Table of Contents For ... PhotoDisc When the family comes together for the holidays, make sure everyone knows about MedlinePlus.gov —your ...

  3. 4. Photocopy of a photographWATER SPILLING OVER DAM FROM ISLAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of a photograph--WATER SPILLING OVER DAM FROM ISLAND PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  4. Supplement Analysis for the Watershed Management Program Final EIS (DOE EIS /SA-156) - Upper Salmon River Anadromous Fish Passage Improvement Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Carl J.

    2004-07-13

    BPA proposes to fund IDFG to plan and complete construction of fish passage improvements and water conservation activities that are contained within IDFG’s Statement of Work (SOW) for the period 7/1/04 to 6/30/05. The funding request contained in their SOW is part of an ongoing IDFG effort to fund anadromous fish passage projects that fall outside the scope of the Mitchell Act. The proposed SOW activities fall within the following four categories: Phase I-Planning and Design (gather data, perform investigations, and exchange information; perform surveys and assessments to be compliant; survey project sites and perform engineering designs; perform contract andmore » project management); Phase II-Construction and Implementation (procure materials and supplies, prepare contracts and solicit bids, plant native seedlings, complete capital improvements); Phase III-Operation and Maintenance (maintain office operations); and Phase IV- Monitoring and Evaluation (monitor and evaluate post-project effects, reporting). The SOW culminates with proposed construction of 18 capital improvement projects (Table 1 attached). The types of capital improvements include: screening gravity water diversions; consolidating and/or eliminating ditches; evaluating and screening pump diversions; evaluating and implementing water conservation activities; constructing screens along migration routes and rearing areas for hatchery and wild salmon; improving upstream and downstream passage for anadromous fish; and maximize benefits to aquatic habitat. Because each of the proposed projects in the SOW is still in the planning stages, the specifics of each still need to be completed.« less

  5. The complex relationships between methane emissions and water table at an ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Humphreys, Elyn; Roulet, Nigel; Moore, Tim

    2017-04-01

    Broad spatial and temporal variations in methane emissions from peatlands have been related to many variables including water table position, temperature and vegetation characteristics and functioning. In general, wetter peatlands tend to have greater methane emissions. However, over shorter periods of time and space, the relationship between water table and methane emissions can reverse, show hysteresis or be absent entirely. These relationships are investigated at the Mer Bleue Bog, a temperate ombrotrophic bog near Ottawa, Canada. Six years of concurrent growing season eddy covariance and automated chamber fluxes reveal the expected broad patterns. During the wettest growing season, the water table remained within 40 cm of the bog's hummock surfaces. Methane emissions were upwards of 20 to 45 mg C m-2 d-1 and exceeded the emission rates from two drier growing seasons which saw periods where the water table dropped to nearly 80 cm below the hummock surface. In those periods, methane emission rates declined to about 5 mg C m-2 d-1 or less. Lawn plots with aerenchymatous Eriophorum vegetation and high water tables had greatest emissions (exceeding 200 mg C m-2 d-1) compared to hummock plots vegetated by ericaceous shrubs, which had emissions rates similar to those measured by eddy covariance. However, within a growing season, hysteresis and inverse relationships between water table and methane emissions were observed at both ecosystem and chamber plot scales. These included periods between rainfall events where methane emissions increased while the water table deepened. The potential roles of methane production, consumption, storage and transport processes on these patterns will be discussed.

  6. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    NASA Astrophysics Data System (ADS)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  7. Transport of E. coli in a sandy soil as impacted by depth to water table.

    PubMed

    Stall, Christopher; Amoozegar, Aziz; Lindbo, David; Graves, Alexandria; Rashash, Diana

    2014-01-01

    Septic systems are considered a source of groundwater contamination. In the study described in this article, the fate of microbes applied to a sandy loam soil from North Carolina coastal plain as impacted by water table depth was studied. Soil materials were packed to a depth of 65 cm in 17 columns (15-cm diameter), and a water table was established at 30, 45, and 60 cm depths using five replications. Each day, 200 mL of an artificial septic tank effluent inoculated with E. coli were applied to the top of each column, a 100-mL sample was collected at the water table level and analyzed for E. coli, and 100 mL was drained from the bottom to maintain the water table. Two columns were used as control and received 200 mL/day of sterilized effluent. Neither 30 nor 45 cm of unsaturated soil was adequate to attenuate bacterial contamination, while 60 cm of separation appeared to be sufficient. Little bacterial contamination moved with the water table when it was lowered from 30 to 60 cm.

  8. Acquisition Review Quarterly. Vol. 3, No. 2, Fall 1996

    DTIC Science & Technology

    1996-11-02

    ACQUISITION Fall 1996 TABLE OF CONTENTS OPINION 79 - "CYCLE TIME" - A MILITARY IMPERATIVE Dr. Walter B. LaBerge Emphasis on "minimum cycle time" and...MILITARY IMPERATIVE AS WELL Dr. Walter B. LaBerge Dean Clubb, President of the Defense Systems of Electronics Group, Texas Instruments, Inc., makes in his...lives of resources to provide a broad range of tech- American personnel involved. Also, today Dr. LaBerge is Visiting Professor, Executive Institute at

  9. Feasibility Report for Hydropower, St. Anthony Falls Locks and Dams, Mississippi River, Minneapolis, Minnesota.

    DTIC Science & Technology

    1984-02-01

    Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for

  10. Climate-change-driven deterioration of water quality in a mineralized watershed.

    PubMed

    Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan

    2012-09-04

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  11. Climate-change-driven deterioration of water quality in a mineralized watershed

    USGS Publications Warehouse

    Todd, Andrew; Manning, Andrew H.; Verplanck, Philip L.; Crouch, Caitlin; McKnight, Diane M.; Dunham, Ryan

    2012-01-01

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100–400% (400–2000 μg/L) during low-flow months, when metal concentrations are highest. SO4 and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2–1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  12. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.

  13. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    PubMed

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  14. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  15. Asthma and Schools | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn Javascript on. Feature: Breathing Easier Asthma and Schools Past Issues / Fall 2013 Table of ... of America 800–727–8462 www.aafa.org Asthma and Physical Activity Exercise-induced asthma is triggered ...

  16. Tips to Help Parents Manage Their Child's Asthma Every Day

    MedlinePlus

    ... to Help Parents Manage Their Child's Asthma Every Day Past Issues / Fall 2013 Table of Contents Asthma ... persistent asthma (for example, symptoms more than 2 days a week). Your health provider will help you ...

  17. Risk Factors, Treatment and Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Feature: Fighting Gum Disease Risk Factors, Treatment and Research Past Issues / Fall 2010 Table of Contents Risk ... out whether it offers this service. Latest NIH Research Researchers supported by the National Institute of Dental ...

  18. Take Care of Your Teeth | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Feature: Fighting Gum Disease Take Care of Your Teeth Past Issues / Fall 2010 Table of Contents Ever ... never show him smiling? He suffered from poor dental health, lost his teeth at an early age, ...

  19. HealthLines: Control Blood Pressure, Protect Your Kidneys

    MedlinePlus

    ... Home Current Issue Past Issues Health Lines Control Blood Pressure, Protect Your Kidneys Past Issues / Fall 2008 Table ... on. By Shana Potash, Staff Writer, NLM High blood pressure is a leading cause of chronic kidney disease ( ...

  20. An interoperability experiment for sharing hydrological rating tables

    NASA Astrophysics Data System (ADS)

    Lemon, D.; Taylor, P.; Sheahan, P.

    2013-12-01

    The increasing demand on freshwater resources is requiring authorities to produce more accurate and timely estimates of their available water. Calculation of continuous time-series of river discharge and storage volumes generally requires rating tables. These approximate relationships between two phenomena, such as river level and discharge, and allow us to produce continuous estimates of a phenomenon that may be impractical or impossible to measure directly. Standardised information models or access mechanisms for rating tables are required to support sharing and exchange of water flow data. An Interoperability Experiment (IE) is underway to test an information model that describes rating tables, the observations made to build these ratings, and river cross-section data. The IE is an initiative of the joint World Meteorological Organisation/Open Geospatial Consortium's Hydrology Domain Working Group (HydroDWG) and the model will be published as WaterML2.0 part 2. Interoperability Experiments (IEs) are low overhead, multiple member projects that are run under the OGC's interoperability program to test existing and emerging standards. The HydroDWG has previously run IEs to test early versions of OGC WaterML2.0 part 1 - timeseries. This IE is focussing on two key exchange scenarios: Sharing rating tables and gauging observations between water agencies. Through the use of standard OGC web services, rating tables and associated data will be made available from water agencies. The (Australian) Bureau of Meteorology will retrieve rating tables on-demand from water authorities, allowing the Bureau to run conversions of data within their own systems. Exposing rating tables and gaugings for online analysis and educational purposes. A web client will be developed to enable exploration and visualization of rating tables, gaugings and related metadata for monitoring points. The client gives a quick view into available rating tables, their periods of applicability and the standard deviation of observations against the relationship. An example of this client running can be seen at the link provided. The result of the IE will form the basis for the standardisation of WaterML2.0 part 2. The use of the standard will lead to increased transparency and accessibility of rating tables, while also improving general understanding of this important hydrological concept.

  1. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. Plant diversity surveys reveal differences in the total density of herbaceous growth and species distribution between the floodplain above and below the knickpoint. Results from >100 plots show that there is more leaf litter, less exposed ground, and a decrease in floodplain species cover in the incised portion of the floodplain. The changes in flood frequency and water table elevation appear to have allowed one invasive species, Japanese stilt grass (Microstegium vimineum), to become dominant in the floodplain understory, displacing native wetland species.

  2. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  3. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York

    USGS Publications Warehouse

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald J.

    2016-12-02

    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and west.Water levels in many of the wells in the network fluctuated in response to precipitation, upgradient groundwater flow, and tidal flux in Shinnecock Bay. Water level altitudes ranged from 6.66 to 0.47 feet (ft) above the North American Vertical Datum of 1988 during the spring measurement period, and from 5.25 to -0.24 ft (NAVD 88) during fall 2014. Historically, annual and seasonal precipitation seem to indicate long-term water level trends in an index well located in the town of Southampton, correlates with changes in storage in the upper glacial aquifer, but does not necessarily indicate water level extremes in the shallow groundwater system. To place the study period in perspective, calendar year 2014 was the 32d wettest year on record, with precipitation for the year totaling 48.1 inches, a 2.6-percent increase from the annual average (46.9 inches per year), based on 81 years of complete record at the National Oceanographic and Atmospheric Administration, National Weather Service cooperative meteorological station at Bridgehampton, New York. Estimated recharge to the water table beneath the tribal lands from precipitation for 2014 is 25.4 inches.Tidal flux caused water levels in wells to fluctuate from 0.30 to -0.24 ft during May 2014. Water levels in wells located north of Old Fort Pond and beneath the southernmost extent of the tribal lands were most influenced by tidal flux. During June 2014, hydrographs indicate that tidal flux influenced water levels by 0.48 ft in a well located near the southernmost extent of the tribal lands approximately 0.3 miles north of Shinnecock Bay, and was zero at a well located approximately 0.5 miles south of Montauk Highway, and 0.4 miles west of Heady Creek, near the geographic center of the tribal lands. Tidal-influence delay time (time interval between peak high-tide stage and corresponding peak high-water level) ranged from 1.75 hours at the well located near the southernmost extent of the tribal lands, to more than 4 hours at a well located north of Old Fort Pond, near the northwestern part of the tribal lands.Estimated hydraulic-conductivity values derived from the results of specific-capacity tests that were completed at nine observation wells during March 2015 were used to calculate average linear velocity. Average linear velocity along conceptualized flow-path segments of the upper glacial aquifer located beneath the tribal lands was estimated using an assumed effective porosity value, and hydraulic-conductivity and hydraulic-head values that were interpolated from measured values. Groundwater travel times were estimated by dividing the length of the flow-path segment by the average linear velocity along the flow-path segment. Total estimated groundwater travel time along a conceptualized flow path, beginning near Sunrise Highway and terminating at Shinnecock Bay, is approximately 45 years using a porosity value of 30 percent.A surficial-silty unit was identified from approximately 0 to 10 ft below land surface at multiple locations beneath the tribal lands. The lithology of the surficial unit was verified by interpreted gamma log results obtained from select wells, and auger-rig drill cuttings from an observation well located near the geographic center of the tribal lands. The altitude of the unit varies with topography and was delineated along a cross section line that trends north-south along the approximate centerline (spine) of the tribal lands. The altitude of the hydrogeologic contact between the upper glacial and the Magothy aquifers generally decreases from northwest to southeast, occurs at a depth ranging from about 150 to 200 ft beneath the tribal lands, and was identified at two locations north of the tribal lands, near Sunrise Highway and Sebonac Road. Results of electrical geophysical surveys indicate that the depth to the freshwater/saltwater interface decreases from north to south with decreasing water level altitude, and the Magothy and upper glacial aquifers contain saltwater at varying depths along the north-south trending section. Results of the surveys also indicate that the Magothy aquifer beneath the tribal lands contains brackish and salty water and is not considered a source of potable water supply. In general, depth to the interface increases with increasing geographic distance from the coastline. Low water table altitudes can result in increased saltwater encroachment into the surficial aquifer beneath the tribal lands. This upward movement and shallow depth of the freshwater/saltwater interface can jeopardize water quality in wells that supply water for domestic use.

  4. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  5. Transfection of Murine and Human Hematopoietic Progenitors with Rearranged Immunoglobulin Genes

    DTIC Science & Technology

    1991-01-01

    fluorouracil (SFU) to eliminate most cycling progenitors. Previous studies have shown that 5FU -treatment enriches for one early progenitor with high...Table I shows a time course of SCA-I positive cell expression various times post- 5FU treatment. Table 1 clearly shows that 5FU treatment can increase...the percentage of SCA-l-positive cells to 6-7% by day 7 post- 5FU treatment. The level of SCA-I expression falls to approximately 1% of total nucleated

  6. Minimum Distance Estimation of Mixture Proportions.

    DTIC Science & Technology

    1986-12-01

    35 iii Page Bibliography . . . . . . . . . . . . . . . . . . . . 40 iv List of Tables Table Page I. Simulation Results for Mixtures of Two Exponen- 33...extended this research to the mixed Weibull, Falls(14) and Rider( 35 ) using the method of moments and Kao(26) using a graphical method, for example. In...samp(750),true(3),temp,min(3),mse,a,b,c real sammom(3),meanl,mean2,estip,x,y,z,msemom,tempt( 3 ) real xl,yl,zl integer nr,n,m,d,ier complex zsm ,zlg

  7. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    PubMed

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    NASA Astrophysics Data System (ADS)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  9. Health of native riparian vegetation and its relation to hydrologic conditions along the Mojave River, southern California

    USGS Publications Warehouse

    Lines, Gregory C.

    1999-01-01

    The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize ground water that has moved upward from the water table into the capillary fringe and into unsaturated soil nearer to land surface. Most precipitation (average is 4 to 6 inches per year) is lost by evaporation and by transpiration of shallow-rooted xeric plants, and very little reaches the root zone of trees along the Mojave River. Water-table depth had no strong correlation to many individual tree-growth characteristics, such as density, diameter, height, and live-crown volume. However, leaf-area index (corrected for stem area) of both healthy and stressed cottonwood?willow woodlands had a highly significant statistical relation to water-table depth, and a curvilinear regression model was defined. As in cottonwood?willow woodlands, leaf-area index of mesquite bosques also decreased with increased water-table depth. However, because of the small number of sites, no significant statistical relation could be defined for mesquite bosques. Because it can be accurately measured repeatedly at the same locations, leaf-area index (corrected for stem area) is recommended as the primary growth characteristic that should be monitored. Future vegetation changes along the Mojave River can be quantified using the sites established for this study. Mortality was as high as 39 percent in healthy cottonwood?willow woodlands, but mortality of 50 to 100 percent was common where water-table depth was greater than about 7 feet or in areas where permanent water-table declines greater than about 5 feet had occurred. At a healthy mesquite bosque where the water-table depth ranged from about 8 to 11 feet, mortality was about 20 percent. Where the water table had been lowered an additional 10 to 25 feet by pumping, mortality of the mesquite was extremely high (80 to 99 percent). On the basis of observations of plant reproduction, it was concluded that established cottonwood?willow woodlands probably will reproduce, mainly by root sprouting of mature trees, if the water-t

  10. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Teramoto, Elias Hideo; Chang, Hung Kiang

    2017-03-01

    Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.

  11. Step 4: Get Routine Care to Avoid Problems | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Fall 2014 Table of Contents Accelerating Medicines Partnership (AMP—Part 3 of 4) Type 2 Diabetes The ... organizations have together created the Accelerating Medicines Partnership (AMP) to develop new models for identifying and validating ...

  12. What Are Clinical Trials? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Clinical Trials What Are Clinical Trials? Past Issues / Fall 2010 Table of Contents ... conducted all the time. The Different Phases of Clinical Trials Clinical trials related to drugs are classified ...

  13. How Does Seasonal Flu Differ From Pandemic Flu?

    MedlinePlus

    ... Home Current Issue Past Issues How Does Seasonal Flu Differ From Pandemic Flu? Past Issues / Fall 2006 Table of Contents For ... of this page please turn Javascript on. Seasonal Flu Pandemic Flu Outbreaks follow predictable seasonal patterns; occurs ...

  14. Visit the new MedlinePlus | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Visit the new MedlinePlus Past Issues / Fall 2010 Table of Contents ... trusted, up-to-date medical information Visit the new MedlinePlus From the top medical experts at the ...

  15. What is Migraine? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Migraine Headaches What is Migraine? Past Issues / Fall 2015 Table of Contents If ... exhausted or weak following a migraine. Who Gets Migraines? Migraines occur in both children and adults, but ...

  16. ClinicalTrials.gov Turns 10! | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Clinical Trials ClinicalTrials.gov Turns 10! Past Issues / Fall 2010 Table of ... and whom to contact for more information. ClinicalTrials.gov's Helpful Features ClinicalTrials.gov has many helpful consumer ...

  17. 7 Warning Signs of Alzheimer's | Alzheimer's disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Alzheimer's Disease 7 Warning Signs of Alzheimer's Past Issues / Fall 2010 Table ... is to alert the public to the early warning signs of Alzheimer's disease. If someone has several ...

  18. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  19. Type 2 Diabetes Widespread in Adults

    MedlinePlus

    ... in Adults Past Issues / Fall 2006 Table of Contents One-Third of People with Type 2 Still Don't Know They Have It By Harrison Wein, Ph.D. In a new analysis of national survey data, researchers found that the ...

  20. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  1. Columbia Plateau Basin and Fifteenmile Subbasin Water Rights Acquisitons; Oregon Water Trust Combined Work Plan, 2002-2003 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Fritz

    2003-12-01

    This is the Final Report submitted regarding Oregon Water Trust's Combined Work Plan for fiscal year 2003, with the contract period April 2002 to May 2003. Of this 12 month period, six month were spent concluding our work for the 2002 irrigation season and six months were spent preparing for the 2003 irrigation season. After this grant was completed, projects were finished with funding from the Columbia Basin Water Transactions Program. Many of the 2003 irrigation season successes began in the fall of 2002, when projects were researched and partnerships were developed. Trout Creek Ranch was one of the largemore » successes. During the 2003 irrigation season, 2.6 cfs was leased which led to a permanent instream transfer, protecting critical spawning habitat for summer steelhead in the Deschutes basin. Another success was the Walla Walla Lease Bank project. This project is an agreement between the OWT, the Walla Walla Irrigation District and 11 individual landowners. Through this single year lease, 7.9 cfs of water was legally protected in the Walla Walla River. The Vidando lease on Middle Fork John Day River was renewed for 2 more years, protecting 11.29 cfs. An innovative single year split-season lease was conducted with Voight on Standard Creek in the John Day basin to protect 4.93 cfs. Many other deals were conducted and the total was an impressive 50.43 cfs instream during 2003 and 9.39 cfs pending approval for the 2004 season. Included is a summary of the activities within the Fifteenmile subbasin and the Columbia Plateau basin by quarter and two tables. The summary of activities is broken down by objectives and quarters. The first summarizes the total cfs by type of lease or transfer. The second table lists all the projects by subbasin and provides project type, lease number, cfs, cost of acquisition, partners in the project and funding source.« less

  2. Water tables constrain height recovery of willow on Yellowstone's northern range.

    PubMed

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery of tall willow stands. Because tall willow stems are important elements of habitat for beaver, mitigating water table decline may be necessary in these areas to promote recovery of historical willow-beaver mutualisms.

  3. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of wetlands to buffer water table variation is most pronounced along a 'sweet spot' where P and ET are relatively balanced. High P and low ET yielded consistently high water tables with wetlands acting predominantly as sinks (i.e., little switching behavior), while low P and high ET scenarios limited wetland inundation. On the other hand, when both P and ET were moderate, the SD of the regional water table was reduced by nearly 50% for landscapes with 30% wetland area distributed over ~1 ha watersheds. Additionally, we found these buffering effects to be stronger in coarser soils compared with finer soils. Considering the strong influence of regional water table on downstream surface water systems, loss of isolated wetland area or mitigation of this loss at the expense of wetland density (i.e., large mitigation banks to replace small distributed systems) has the potential to significantly impact downstream water bodies. Isolated wetlands buffer surficial aquifer dynamics by providing water storage capacitance at the landscape scale and ultimately exert hydraulic regulation of regional surface waters through an indirect, but significant nexus.

  4. Raised Water Tables Affect Southern Hardwood Growth

    Treesearch

    W. M. Broadfoot

    1973-01-01

    In natural stands near Demopolis Lock and Dam Reservoir in Alabama, the average growth in tree radius increased about 50 percent in the 5 years after the water table was raised from an indefinite depth to within reach of the tree roots. In natural stands near the Jim Woodruff Reservoir in Florida, radial growth of trees also increased markedly after the water table was...

  5. Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship

    NASA Astrophysics Data System (ADS)

    Viswanathan, M. N.

    1984-02-01

    The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.

  6. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    NASA Astrophysics Data System (ADS)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  7. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, G.S.; Trudeau, D.A.; Savard, C.S.

    The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather thanmore » ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.« less

  8. Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Macy, J. P.

    2017-12-01

    The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.

  9. Reference manual for data base on Nevada water-rights permits

    USGS Publications Warehouse

    Cartier, K.D.; Bauer, E.M.; Farnham, J.L.

    1995-01-01

    The U.S. Geological Survey and Nevada Division of Water Resources have cooperatively developed and implemented a data-base system for managing water-rights permit information for the State of Nevada. The Water-Rights Permit data base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Manage-ment System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, three ancillary tables, and five lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.

  10. Evaluating the value of ENVISAT ASAR Data for the mapping and monitoring of peatland water table depths

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Schlaffer, Stefan

    2015-04-01

    The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.

  11. Quiz: Alzheimer's Disease Quiz | Alzheimer's disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Quiz Past Issues / Fall 2010 Table of ... How many people in the United States have Alzheimer's disease? as many as 5.1 million as ...

  12. I Live with Psoriasis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn Javascript on. Feature: Living with Psoriasis I Live with Psoriasis Past Issues / Fall 2013 Table of Contents Kristin ... equally. "Know as much as you can about psoriasis..." —Kristin Donahue Psoriasis first flared into Kristin Donahue's ...

  13. How Is Psoriasis Treated? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn Javascript on. Feature: Living with Psoriasis How Is Psoriasis Treated? Past Issues / Fall 2013 Table of Contents ... nih.gov/ Clinical Trials — www.clinicaltrials.gov National Psoriasis Foundation — www.psoriasis.org American Academy of Dermatology — ...

  14. Understanding, Treating, and Preventing STDs / Questions to Ask your Health Care Professional

    MedlinePlus

    ... Treating, and Preventing STDs / Questions to Ask your Health Care Professional Past Issues / Fall 2008 Table of Contents ... than one sexual partner Questions to Ask Your Health Care Professional How can I prevent getting an STD? ...

  15. Prescription Pain Medicines - An Addictive Path?

    MedlinePlus

    ... Addictive Path? Past Issues / Fall 2007 Table of Contents For an enhanced version of this page please turn Javascript on. Many Americans may have been startled last summer when an Associated Press (AP) analysis of U.S. Drug Enforcement Administration statistics showed that ...

  16. Rapid Response of Hydrological Loss of DOC to Water Table Drawdown and Warming in Zoige Peatland: Results from a Mesocosm Experiment

    PubMed Central

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065

  17. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID:19643908

  18. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    PubMed

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  19. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  20. How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment

    PubMed Central

    Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565

  1. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland

    Treesearch

    M.R. Turetsky; C.C. Treat; M. Waldrop; J.M. Waddington; J.W. Harden; A.D. McGuire

    2008-01-01

    Growing season CH4 fluxes were monitored over a two year period following the start of ecosystem-scale manipulations of water table position and surface soil temperatures in a moderate rich fen in interior Alaska. The largest CH4 fluxes occurred in plots that received both flooding (raised water table position) and soil...

  2. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Treesearch

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  3. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Treesearch

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  4. Forecast model for a water table control system in cranberry production

    NASA Astrophysics Data System (ADS)

    Racine, Cintia; José Gumiere, Silvio; Paniconi, Claudio; Dupuis, Christian; Lafond, Jonathan; Scudeler, Carlotta; Camporese, Matteo

    2017-04-01

    Water table control is gaining popularity in cranberry production. Cranberry plants require specific soil moisture conditions to enhance crop yields. In fact, water table control systems installed in the fields allow the plants to respond efficiently to the daily demand for evapotranspiration by capillarity rise and also regulate the soil water excess in drainage conditions. The scope of this study is to develop a forecast hydrological model at the field scale, able to simulate water level for water table control operations. In this work, the finite element CATHY (CATchment Hydrology) model associated with sequential data assimilation with an ensemble Kalman filter (EnKF) method will be used to simulated the soil water dynamics and perform model calibration in real-time. The study is conducted in cranberry fields located in Québec, Canada. During the last five years, these fields were extensive characterized regarding hydrological, pedological, and geological processes. Data collected from LIDAR and Ground Penetrating Radar (GPR) surveys and in-situ soil sampling have been used to define the domain geometry and initial soil properties. First results are promising and in agreement the in-situ water table measurements.

  5. Coupling Aeolian Stratigraphic Architecture to Paleo-Boundary Conditions: The Scour-Fill Dominated Jurassic Page Sandstone

    NASA Astrophysics Data System (ADS)

    Cardenas, B. T.; Kocurek, G.; Mohrig, D. C.; Swanson, T.

    2017-12-01

    The stratigraphic architecture of aeolian sandstones is thought to encode signals originating from both autogenic dune behavior and allogenic boundary conditions within which the dune field evolves. Mapping of outcrop-scale bounding surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, AZ, USA, demonstrates that dune autogenic behavior manifested in variable dune scour depth, whereas the dominant boundary conditions were antecedent topography and water-table elevation. At the study area, the Page Sandstone is 60 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity, which shows meters of relief. Filling J-2 depressions are thin, climbing sets of cross-strata. In contrast, the overlying Page consists of packages of one to a few, meter-scale sets of cross-strata between the outcrop-scale bounding surfaces. These surfaces, marked by polygonal fractures and local overlying sabkha deposits, are regional in scale and correlated to high stands of the adjacent Carmel sea. Over the km-scale outcrop, the surfaces show erosional relief and packages of cross-strata are locally truncated. Notably absent within these cross-strata packages are early dune-field accumulations, interdune deposits, and apparent dune-climbing. These strata are interpreted to represent a scour-fill architecture created by migrating large dunes within a mature dry aeolian sand sea, in which early phases of dune-field construction have been cannibalized and dune fill of the deepest scours is recorded. At low angles of climb, set thickness is dominated by the component of scour-depth variation over the component resulting from the angle of climb. After filling of J-2 depressions, the Page consists of scour-fill accumulations formed during low stands. Carmel transgressions limited sediment availability, causing deflation to the water table and development of the regional bounding surfaces. Each subsequent fall of the water table with Carmel regressions renewed sediment availability, including local breaching of the resistant surfaces and cannibalization of Page accumulations. The Page record exists because of preservation associated with Carmel transgressions and subsidence, without which the Page would be represented by an erosional surface.

  6. Altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana creeks and the Trinity River, Texas, December 1979

    USGS Publications Warehouse

    Garza, Sergio

    1980-01-01

    This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)

  7. Differences in the Photosynthetic Activity of C3 and C4 Graminoids in Short-Hydroperiod Marl Prairies of the Florida Everglades: Responses to Seasonality and Water Management

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Olivas, P. C.; Schedlbauer, J. L.; Moser, J.

    2011-12-01

    Short hydroperiod marsh of the Everglades is dominated by a mix of sawgrass (Cladium jamaicense, a C3 sedge) and Muhly grass (Muhlenbergia capillaris, a C4 grass). Although the Everglades are located in a subtropical region, the climate is classified as tropical with distinct annual rainy and dry seasons during the summer and winter, respectively. Water levels in marl prairies vary greatly over the year driven by seasonality of rainfall, but are modified strongly by water management practices. As a result, the rainy season and period of inundation generally do not completely coincide. Water tables fall as much as 80 cm below the surface for approximately 6-7 months starting about December/January and reach up to 40 cm above the surface during the inundation period. Eddy covariance studies from this habitat revealed strong reductions in CO2 uptake coinciding with water tables inundating the surface. Submersion of macrophyte leaf area accounts for some of the reduction. To test if changes in leaf physiology also contribute to this reduced ecosystem CO2 uptake, we measured maximum assimilation rates (Amax) of the dominant species during both seasons in the marsh and on a nearby levee that remains above water. Typical of C4 plants, Amax of Muhlenbergia were high, > 20 μmol m-2 s-1, during the dry season. However when plant crowns were submerged, photosynthetic rates of emergent leaves of Muhlenbergia were strongly reduced to near compensation in some cases. In contrast, Amax of Muhlenbergia measured from higher terrain within 30 m of the flooded sites maintained high rates. Rates of Cladium were lower overall but did not show strong seasonality at either site. This wetland represents an unusual situation in which one of the codominants is effectively photosynthetically inactive during wet season. Planned changes to increase water flow to the Everglades and predicted changes in rainfall with climate change will strongly affect the carbon balance of this habitat.

  8. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  9. Data Tables - Environments and Contaminants - Drinking Water Contaminants

    EPA Pesticide Factsheets

    This document contains a table of the estimated percentage of children ages 0 to 17 years served by community water systems that did not meet all applicable health-based drinking water standards, 1993-2009.

  10. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil.

    PubMed

    Teramoto, Elias Hideo; Chang, Hung Kiang

    2017-03-01

    Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental factors controlling methane emissions from peatlands in northern Minnesota

    NASA Technical Reports Server (NTRS)

    Dise, Nancy B.; Gorham, Eville; Verry, Elon S.

    1993-01-01

    The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.

  12. Paleoclimatic Inferences from a 120,000-Yr Calcite Record of Water-Table Fluctuation in Browns Room of Devils Hole, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kolesar, Peter T.; Riggs, A.C.; Winograd, I.J.; Ludwig, K. R.

    1994-01-01

    The petrographic and morphologic differences between calcite precipitated below, at, or above the present water table and uranium-series dating were used to reconstruct a chronology of water-table fluctuation for the past 120,000 yr in Browns Room, a subterranean air-filled chamber of Devils Hole fissure adjacent to the discharge area of the large Ash Meadows groundwater flow system in southern Nevada. The water table was more than 5 m above present level between about 116,000 and 53,000 yr ago, fluctuated between about +5 and +9 m during the period between about 44,000 and 20,000 yr ago, and declined rapidly from +9 to its present level during the past 20,000 yr. Because the Ash Meadows groundwater basin is greater than 12,000 km2 in extent, these documented water-table fluctuations are likely to be of regional significance. Although different in detail, water-level fluctuation recorded by Browns Room calcites generally correlate with other Great Basin proxy palcoclimatic data.

  13. Basement flooding and foundation damage from water-table rise in the East New York section of Brooklyn, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1976-01-01

    A rising water table following cessation of public-supply pumping has been causing basement flooding and building-foundation damage in the East New York section of Brooklyn, Kings County, Long Island, N.Y., since 1975. The water table in the central part of the area rose from a low of about 12 feet (3.7 meters) below sea level in 1936 to about 8 to 10 feet (2.4 to 3 meters) above sea level in March 1976. Public-supply pumping in Brooklyn ceased in 1947 and ceased in 1974 in the adjacent Woodhaven section of Queens County. A further water-table rise of about 2 feet (0.6 meter) is anticipated in the next several years in the central part of the East New York area, and the ultimate water-table height could be as much as about 15 feet (4.6 meters) above sea level. Relief from the flooding by dewatering operations is complicated by problems with disposal of pumped-out ground water. (Woodard-USGS)

  14. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground aquifers to compensate for the lack of water from Upper Klamath Lake. As the water table drops, clean water stops flowing from the springs and wells, and dirty water from fields flows into the water beneath Bonanza. Area farmers, many of them entirely dependent on irrigation, immediately launched protests when the court's decision to stop irrigation flows was announced, leading to national media coverage. On July 24 the Department of the Interior approved the release of some irrigation water from Upper Klamath Lake, but the flow lasted only until August 23. The water was enough to save some fields growing winter feed for livestock, but some other crops were unsalvageable, and water didn't reach every farmer who needed it. The Klamath Project dates back to 1903, when the Reclamation Service (now the Bureau of Reclamation, a branch of the U.S. Department of the Interior) investigated the possibility of converting rangeland, wetlands, and natural lakes into irrigated farmland. Construction began in 1906, the first water deliveries were made in 1907, and the project was completed in 1924. The Bureau of Reclamation supplies water to the farmers at the cost of delivery, without charging for the water. Fodder, barley, oats, potatoes, and wheat are the principal crops on the 225,000 acres of irrigated land. In addition, the irrigation dams control floodwaters, and the Link River Dam supplies hydroelectric power. The images above show the northeast portion of the Klamath Basin in 2000 (top) and 2001 (lower). These true-color images were acquired by the Enhanced Thematic Mapper Plus sensor aboard the Landsat 7 satellite, launched by NASA and operated by the U.S. Geological Survey. Upper Klamath Lake, with its endangered sucker fish, is at the upper left, with the town of Klamath falls immediately below it. Bonanza is to the right of Klamath Falls. Tule Lake, which has been partially converted to farmland, is at the lower right and is surrounded by the Tule Lake National Wildlife Refuge. To the left of Tule Lake are the remains of Lower Klamath Lake and the marshes of the Lower Klamath National Wildlife Refuge. Farms left dry by the water shortage appear brown in this year's image. Most of the farms without irrigation water are between Upper Klamath Lake and Tule Lake. The land immediately surrounding Tule Lake did receive irrigation water this year, and as a result is greener than the fields to the north. Some farms rely on wells and not Klamath Project water, and many of these remained green, as well. Images courtesy USGS EROS Data Center and the Landsat 7 Science Team

  15. Turning Discovery Into Health – Asthma | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Asthma Turning Discovery Into Health – Asthma Past Issues / Fall 2011 Table of Contents (Top ... show a cross-section of an airway during asthma symptoms and attack. CLICK IMAGE TO ENLARGE R ...

  16. Florida Gulf Coast University Annual Accountability Report, 2013-14

    ERIC Educational Resources Information Center

    Board of Governors, State University System of Florida, 2014

    2014-01-01

    This statistical report provides data tables on Florida Gulf Coast University's (FGCU's) financial resources, personnel, enrollment, undergraduate education, graduate education, and research & economic development. Highlighted data include: (1) Recent results (fall 2013) of FGCU's participation in the National Survey of Student Engagement…

  17. What You Can Do to Stop the Flu

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Flu What You Can Do to Stop the Flu Past Issues / Fall 2009 Table of Contents To ... Health and Human Services: http://flu.gov NIH Flu Research to Results Scientists at the National Institute ...

  18. Mystery #25 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... to the northeast of this region, less than a week away by car. Answer: TRUE. Table Mountain is not far from Victoria Falls, a ... For those who want a more relaxing experience, a cable car can take visitors to the top where they will find a restaurant complex. ...

  19. 2009 H1N1 Flu Vaccine Facts

    MedlinePlus

    ... turn Javascript on. Feature: Flu 2009 H1N1 Flu Vaccine Facts Past Issues / Fall 2009 Table of Contents ... H1N1 flu vaccine. 1 The 2009 H1N1 flu vaccine is safe and well tested. Clinical trials conducted ...

  20. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  1. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  2. Proceedings of the Pacific Conference on Operations Research, Held April 23-28, 1979, Seoul, Korea. Volume 2

    DTIC Science & Technology

    1979-04-01

    and wa rgame s tori the ana ly t ical tools of the TRAI)OC c ommun i ty are shiown in Table 4. ’TABLE 4 SCENARIO DEVELOPMENT AND PLAY TINE DEVELOP...TO TOURISM * W. W. SWART TURCUT VAR CHARLES E. GEARING ABSRrCr. This paper categorizes the application of Operations Research to Tourism as falling...into the areas of tourist forecasting, the determination of tourist flows, the measurement and evaluation of the impact of tourism oriented facilities

  3. 41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE SAW (L TO R)-LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  4. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  5. Seasonal changes in ground-water levels in the shallow aquifer near Hagerman and the Pecos River, Chaves County, New Mexico

    USGS Publications Warehouse

    Garn, H.S.

    1988-01-01

    The Pecos River near Hagerman in Chaves County, New Mexico, historically has been a gaining stream. In 1938, the slope of the water table in the shallow alluvial aquifer near Hagerman was toward the Pecos River. By 1950, a large water-table depression had formed in the alluvial aquifer southwest of Hagerman. Continued enlargement of this depression could reverse the direction of groundwater flow to the Pecos River. Water levels were measured during 1981-85 in wells along a section extending from the Pecos River to a point within the depression. Although the water-table depression has not caused a perennial change in direction of groundwater flow, it has caused a seasonal reversal in the slope of the water table between the river and the depression during the growing season when pumpage from the shallow aquifer is the greatest. (USGS)

  6. Falls From the O.R. or Procedure Table.

    PubMed

    Prielipp, Richard C; Weinkauf, Julia L; Esser, Thomas M; Thomas, Brian J; Warner, Mark A

    2017-09-01

    Patient safety secured by constant vigilance remains a primary responsibility of every anesthesia professional. Although significant attention has been focused on patient falls occurring before and after surgery, a potentially catastrophic complication is when patients fall off an operating room or procedure table during anesthesia care. Because such events are (fortunately) uncommon, and because very little information is published in our literature, we queried 2 independent closed claims databases (the American Society of Anesthesiologists Closed Claims Project and the secure records of a private, anesthesia specialty-specific liability insurer) for information. We acquired documentation of patient events where a fall occurred during anesthesia care, noting the surrounding conditions of the provider, the patient, and the environment at the time of the event. We identified 21 claims (1.2% of cases) from the American Society of Anesthesiologists Closed Claims Project, while information from a private liability insurer identified falls in only 0.07% of cases. The percentage of these patients under general, regional, or monitored anesthesia care anesthesia was 71.5%, 19.5%, and 9.5%, respectively. To educate personnel about these uncommon events, we summarized this cohort with illustrative examples in a series of mini-case reports, noting that both inpatients and outpatients undergoing a broad array of procedures with various anesthetic techniques within and outside operating rooms may be vulnerable to patient falls. Based on detailed reports, we created 2 supplementary videos to further illuminate some of the unique mechanisms by which these events and their resulting injuries occur. When such information was available, we also noted the associated liability costs of defending and settling malpractice claims associated with these events. Our goal is to inform anesthesia and perioperative personnel about the common patient, provider, and environmental risk factors that appear to contribute to these mishaps, and suggest key strategies to mitigate the risks.

  7. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  8. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  9. Privatization of tubewells in North China: Determinants and impacts on irrigated area, productivity and the water table

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Huang, Qiuqiong; Rozelle, Scott

    2006-03-01

    Despite the rise in importance of the private sector in the expansion of the use of groundwater in China and the potential implications this might have for production and poverty, little has been written about the effect of these phenomena on northern China’s economy. In examining determinants of tubewell privatization and its impact on producers in northern China, data were collected using a community leader survey, carried out in 448 villages in six provinces in northern China. The results show that since 1990 collective ownership of tubewells has largely been replaced by private ownership. Increasing water scarcity, government grants and bank loans for tubewell investment and the declining investment capacity of China’s local communities have led to the observed change in tubewell ownership patterns. By far, the most important positive effect on income appears to be due to the expansion of newly irrigated area that has been fueled by the rise of private tubewells. Many newly private tubewells also have begun to replace irrigation from surface water sources. While helping increase income and productivity, the rise of private tubewells also has contributed to the fall in groundwater levels.

  10. Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan

    DTIC Science & Technology

    1993-10-01

    5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water

  11. Water table tests of proposed heat transfer tunnels for small turbine vanes

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  12. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average uncertainty in discharge measurements at the four Idaho Power Company streamgages in the study reach ranged from 4.3 percent (Snake River below Lower Salmon Falls Dam) to 7.8 percent (Snake River below C J Strike Dam) for discharges less than 7,000 ft3/s in water years 2007–11. This range in uncertainty constituted most of the total quantifiable uncertainty in computed discharge, represented by prediction intervals calculated from the discharge rating of each streamgage. Uncertainty in computed discharge in the Snake River below Swan Falls Dam near Murphy was 10.1 and 6.0 percent at the Adjusted Average Daily Flow thresholds of 3,900 and 5,600 ft3/s, respectively. All discharge measurements and records computed at streamgages have some level of uncertainty that cannot be entirely eliminated. Knowledge of uncertainty at the Adjusted Average Daily Flow thresholds is useful for developing a measurement and reporting protocol for purposes of distributing water to hydropower and minimum flow water rights in the middle Snake River.

  13. --No Title--

    Science.gov Websites

    | |----------|--------|----------------------------------------------------------| | | | | | GFSCLS1 | A60243 | TABLE A ENTRY - GFSMODEL MESSAGES | | | | | | HEADR | 362001 | TABLE D ENTRY - PROFILE COORDINATES | | PROFILE | 362002 | TABLE D ENTRY - PROFILE DATA | | CLS1 | 362003 | TABLE D ENTRY - SURFACE | TABLE B ENTRY - SNOW WATER EQUIVALENT | | LCLD | 020051 | TABLE B ENTRY - AMOUNT OF LOW CLOUD | | MCLD

  14. Youth Attitude Tracking Study II Wave 17 -- Fall 1986.

    DTIC Science & Technology

    1987-06-01

    decision, unless so designated by other official documentation. TABLE OF CONTENTS Page PREFACE ................................................. xi...Segmentation Analyses .......................... 2-7 .3. METHODOLOGY OF YATS II....................................... 3-1 A. Sampling Design Overview...Sampling Design , Estimation Procedures and Estimated Sampling Errors ................................. A-i Appendix B: Data Collection Procedures

  15. Coronary Artery Disease | Coronary Artery Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Coronary Artery Disease Coronary Artery Disease Past Issues / Fall 2010 Table of Contents David ... up inside your arteries. One atherosclerosis-related disease, coronary artery disease (CAD) is the most common heart disease and ...

  16. 40 CFR 132.3 - Adoption of criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a site... water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific....3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY...

  17. Installation Restoration Program. Preliminary Assessment: Record Search for the 110th Tactical Air Support Group, Michigan Air National Guard, W. K. Kellogg Regional Airport, Battle Creek, Michigan.

    DTIC Science & Technology

    1987-09-01

    these wetlands. Because of the generally low relief at the Base, several manmade drainage ditches have been constructed to improve surface water ...northerly boundary (Hickock, 1985). Within the Marshall Formation, the water table or piezometric surface con- forms somewhat to the land surface. The...34hills" in the water table underlie hills seen on land. The " lows " in the water table coincide with low areas on land (Vanlier, 1966). Thus, the

  18. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  19. Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey

    USGS Publications Warehouse

    Chang, Ming; Tasker, Gary D.; Nieswand, Steven

    2001-01-01

    Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.

  20. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    NASA Astrophysics Data System (ADS)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  1. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.

  2. Changing Groundwater and Lake Storage in the Americas from the Last Glacial Maximum to the Present Day

    NASA Astrophysics Data System (ADS)

    Callaghan, K. L.; Wickert, A. D.; Michael, L.; Fan, Y.; Miguez-Macho, G.; Mitrovica, J. X.; Austermann, J.; Ng, G. H. C.

    2017-12-01

    Groundwater accounts for 1.69% of the globe's water storage - nearly the same amount (1.74%) that is stored in ice caps and glaciers. The volume of water stored in this reservoir has changed over glacial-interglacial cycles as climate warms and cools, sea level rises and falls, ice sheets advance and retreat, surface topography isostatically adjusts, and patterns of moisture transport reorganize. During the last deglaciation, over the past 21000 years, all of these factors contributed to profound hydrologic change in the Americas. In North America, deglaciation generated proglacial lakes and wetlands along the isostatically-depressed margin of the retreating Laurentide Ice Sheet, along with extensive pluvial lakes in the desert southwest. In South America, changing patterns of atmospheric circulation caused regional and time-varying wetting and drying that led to fluctuations in water table levels. Understanding how groundwater levels change in response to these factors can aid our understanding of the effects of modern climate change on groundwater resources. Using a model that incorporates temporally evolving climate, topography (driven by glacial isostatic adjustment), ice extent, sea level, and spatially varying soil properties, we present our estimates of changes in total groundwater storage in the Americas over the past 21000 years. We estimate depth to water table at 500-year intervals and at a 30-arcsecond resolution. This allows a comparative assessment of changing groundwater storage volumes through time. The model has already been applied to the present day and has proven successful in estimating modern groundwater depths at a broad scale (Fan et al., 2013). We also assess changing groundwater-fed lakes, and compare model-estimated lake sizes and locations to paleorecords of these lakes. Our data- and model-integrated look back at the terminal Pleistocene provides an estimate of groundwater variability under extreme climate change. Preliminary results show changes in groundwater storage within the Americas on the order of tens of centimetres in units of equivalent global sea-level change.

  3. Seasonal variability of near surface soil water and groundwater tables in Florida : phase II.

    DOT National Transportation Integrated Search

    2008-01-01

    The seasonal high groundwater table (SHGWT) is a critical measure for design projects requiring : surface water permits including roadway design and detention or retention pond design. Accurately : measuring and, more importantly, predicting water ta...

  4. Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Westbrook, C.; Mercer, J.

    2016-12-01

    Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.

  5. The Impact of Water Table Drawdown and Drying on Subterranean Aquatic Fauna in In-Vitro Experiments

    PubMed Central

    Stumpp, Christine; Hose, Grant C.

    2013-01-01

    The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda) under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity. PMID:24278111

  6. Impact-induced acceleration by obstacles

    NASA Astrophysics Data System (ADS)

    Corbin, N. A.; Hanna, J. A.; Royston, W. R.; Singh, H.; Warner, R. B.

    2018-05-01

    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls faster than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.

  7. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  8. Trajectories of water table recovery following the re-vegetation of bare peat

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan

    2016-04-01

    The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.

  9. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    USGS Publications Warehouse

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl

  10. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    NASA Astrophysics Data System (ADS)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  11. Ground-water data, Sevier Desert, Utah

    USGS Publications Warehouse

    Mower, Reed W.; Feltis, Richard D.

    1964-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.

  12. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, David P.

    1989-01-01

    A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.

  13. A risk-factor analysis of medical litigation judgments related to fall injuries in Korea.

    PubMed

    Kim, Insook; Won, Seonae; Lee, Mijin; Lee, Won

    2018-01-01

    The aim of this study was to find out the risk factors through analysis of seven medical malpractice judgments related to fall injuries. The risk factors were analysed by using the framework that approaches falls from a systems perspective and comprised people, organisational or environmental factors, with each factor being comprised of subfactors. The risk factors found in each of the seven judgments were aggregated into one framework. The risk factors related to patients (i.e. the people factor) were age, pain, related disease, activities and functional status, urination state, cognitive function impairment, past history of fall, blood transfusion, sleep endoscopy state and uncooperative attitude. The risk factors related to the medical staff and caregivers (i.e. people factor) were observation negligence, no fall prevention activities and negligence in managing high-risk group for fall. Organisational risk factors were a lack of workforce, a lack of training, neglecting the management of the high-risk group, neglecting the management of caregivers and the absence of a fall prevention procedure. Regarding the environment, the risk factors were found to be the emergency room, chairs without a backrest and the examination table. Identifying risk factors is essential for preventing fall accidents, since falls are preventable patient-safety incidents. Falls do not happen as a result of a single risk factor. Therefore, a systems approach is effective to identify risk factors, especially organisational and environmental factors.

  14. Contributions of algae to GPP and DOC production in an Alaskan fen: effects of historical water table manipulations on ecosystem responses to a natural flood.

    PubMed

    Wyatt, Kevin H; Turetsky, Merritt R; Rober, Allison R; Giroldo, Danilo; Kane, Evan S; Stevenson, R Jan

    2012-07-01

    The role of algae in the metabolism of northern peatlands is largely unknown, as is how algae will respond to the rapid climate change being experienced in this region. In this study, we examined patterns in algal productivity, nutrients, and dissolved organic carbon (DOC) during an uncharacteristically wet summer in an Alaskan rich fen. Our sampling was conducted in three large-scale experimental plots where water table position had been manipulated (including both drying and wetting plots and a control) for the previous 4 years. This study allowed us to explore how much ecosystem memory of the antecedent water table manipulations governed algal responses to natural flooding. Despite no differences in water table position between the manipulated plots at the time of sampling, algal primary productivity was consistently higher in the lowered water table plot compared to the control or raised water table plots. In all plots, algal productivity peaked immediately following seasonal maxima in nutrient concentrations. We found a positive relationship between algal productivity and water-column DOC concentrations (r (2) = 0.85, P < 0.001). Using these data, we estimate that algae released approximately 19% of fixed carbon into the water column. Algal exudates were extremely labile in biodegradability assays, decreasing by more than 55% within the first 24 h of incubation. We suggest that algae can be an important component of the photosynthetic community in boreal peatlands and may become increasingly important for energy flow in a more variable climate with more intense droughts and flooding.

  15. 33 CFR 165.902 - Niagara River at Niagara Falls, New York-safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Niagara River at Niagara Falls... § 165.902 Niagara River at Niagara Falls, New York—safety zone. (a) The following is a safety zone—The United States waters of the Niagara River from the crest of the American and Horseshoe Falls, Niagara...

  16. 33 CFR 165.902 - Niagara River at Niagara Falls, New York-safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Niagara River at Niagara Falls... § 165.902 Niagara River at Niagara Falls, New York—safety zone. (a) The following is a safety zone—The United States waters of the Niagara River from the crest of the American and Horseshoe Falls, Niagara...

  17. 33 CFR 165.902 - Niagara River at Niagara Falls, New York-safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Niagara River at Niagara Falls... § 165.902 Niagara River at Niagara Falls, New York—safety zone. (a) The following is a safety zone—The United States waters of the Niagara River from the crest of the American and Horseshoe Falls, Niagara...

  18. 33 CFR 165.902 - Niagara River at Niagara Falls, New York-safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Niagara River at Niagara Falls... § 165.902 Niagara River at Niagara Falls, New York—safety zone. (a) The following is a safety zone—The United States waters of the Niagara River from the crest of the American and Horseshoe Falls, Niagara...

  19. Effect of Niagara power project on ground-water flow in the upper part of the Lockport Dolomite, Niagara Falls area, New York

    USGS Publications Warehouse

    Miller, Todd S.; Kappel, W.M.

    1987-01-01

    The Niagara River Power Project near Niagara Falls, N.Y., has created recharge and discharge areas that have modified the direction of groundwater flow east and northeast of the falls. Before construction of the power project in 1962, the configuration of the potentiometric surface in the upper part of the Silurian Lockport Dolomite generally paralleled the buried upper surface of the bedrock. Ground water in the central and east parts of the city of Niagara Falls flowed south and southwestward toward the upper Niagara River (above the falls), and ground water in the western part flowed westward into Niagara River gorge. The power project consists of two hydroelectric powerplants separated by a forebay canal that receives water from the upper Niagara River through two 4-mi-long, parallel, buried conduits. During periods of nonpeak power demand, some water in the forebay canal is pumped to a storage reservoir for later release to generate electricity during peak-demand periods. Since the power project began operation in 1962, groundwater within 0.5 mi of the buried conduits has seeped into the drain system that surrounds the conduits, then flows both south from the forebay canal and north from the Niagara River toward the Falls Street tunnel--a former sewer that crosses the conduits 0.65 mi north of the upper Niagara River. Approximately 6 million gallons of ground water a day leaks into the Falls Street tunnel, which carries it 2.3 mi westward to the Niagara River gorge below the falls. Daily water-level fluctuations in the forebay canal affect water levels in the drain system that surrounds the conduits, and this , in turn, affects the potentiometric surface in the Lockport Dolomite within 0.5 mi of the conduits. The drains transmit changes in pressure head near the forebay canal southward at least as far as the Falls Street tunnel area and possibly to the upper Niagara River. Some water in the pumped-storage reservoir recharges ground water in the Lockport Dolomite by seepage through bedding joints, which are exposed in the unlined reservoir bottom, and through the grout curtain beneath the reservoir 's dike. Water-level fluctuations in the reservoir cause slight ground-water fluctuations near the reservoir. (Author 's abstract)

  20. Time to Get Your Seasonal Flu Shot | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Flu Season Time to Get Your Seasonal Flu Shot Past Issues / Fall 2014 Table of Contents ... protect/vaccine/index.htm Signs and Symptoms of Flu People who have the flu often feel some ...

  1. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  2. Geology and ground-water resources of Washington, D.C., and vicinity

    USGS Publications Warehouse

    Johnston, Paul McKelvey

    1964-01-01

    The area of this report includes 436 square miles centered about the District of Columbia. The area contains parts of two distinctly different physiographic provinces-the Piedmont and the Coastal Plain. The Fall Line, which separates the Piedmont province on the west from the Coastal Plain Province on the east, bisects the area diagonally from northeast to southwest. Northwest of the Fall Line, deeply weathered igneous and metamorphic rocks are exposed ; to the southeast, these rocks are covered by Coastal Plain sediments; the nonconformity between crystalline rock and sediments dips southeast at an average rate of about 125 feet per mile. The rocks of the Piedmont include: (1) schist, phyllite, and quartzite of the Wissahickon Formation; (2) altered mafic rocks such as greenstone and serpentine; (3) the Laurel Gneiss of Chapman, 1942, and the Sykesville Formation of Jonas, 1928--both probably derived from the Wissahickon ; and (4) later granitic intrusive rocks. Lying upon this basement of hard rocks east of the Fall Line are the generally unconsolidated sediments of the Coastal Plain, which include gravel, sand, and clay, ranging in age from Cretaceous to Recent. These sediments measure only a few inches at their western extremity but thicken to 1,800 feet at the southeast corner of the mapped area. Owing to the great diversity in the geology of the two provinces, the waterbearing characteristics of the rocks also vary greatly. In the Piedmont, ground water occurs under unconfined or water-table conditions in openings and fissures in the hard rocks or in the residual weathered blanket that overlies them. In the Coastal Plain, the shallow wells tap unconfined water, but beneath the upper clay layers the water is contained in the sand and gravel under artesian pressure and must be recovered by deep drilled wells. Wells are of three types--drilled, bored, and dug. Drilled wells furnish a permanent water supply and are the least subject to pollution when properly constructed. Bored or dug wells allow greater storage capacity and are satisfactory for domestic supplies in some locations, but they are polluted easily. If not properly constructed or of sufficient depth, they may fail in dry weather. Ground-water supplies for domestic use, 5 to 10 gpm (gallons per minute), are obtainable in most places. In the Piedmont, recorded yields in drilled wells range from 0.2 to 212 gpm. In the Coastal Plain, wells yield from 1 to 800 gpm. The quality of the ground water in the report area is generally satisfactory for domestic, industrial, and irrigation use. High iron content and corrosiveness are troublesome in places. The water is soft to moderately hard--2 to 175 ppm (parts per million). Water in the Piedmont province is. dominantly the calcium and bicarbonate type; in the Coastal Plain most water is of calcium-magnesium bicarbonate type. In the Piedmont, careful location of wells with respect to the geology (rock type and structure) and to topography usually results in higher yields and may mean the difference between success and failure. In the Coastal Plain, drilled artesian wells are not affected by topography, but the yield obtained depends upon the penetration of a water-bearing sand or gravel bed at sufficient depth. The early settlers obtained water from the springs and streams, and later from dug wells. After Washington was established as the Capital in 1800, water was obtained from public and privately owned wells. Water was piped from some of the springs to government buildings and to private homes and business houses. In 1863 a diversion dam was completed in the Potomac above Great Falls and a conduit was built into the city to furnish a public water supply. This system with modifications has been in use ever since. A new diversion dam and pumping station at Little Falls was put into service in the summer of 1959. In 1961 the total pumpage from Coastal Plain aquifers in the report area was estimate

  3. Mobility Analyses of Standard- and High-Mobility Tactical Support Vehicles (HIMO Study)

    DTIC Science & Technology

    1976-02-01

    l, APPENDIX G: PARTICIPANTS IN SCENARIO EXERCISES ... ....... Gl I ?S LIST OF TABLES Table Page I Summary of Vehicle Caracteristics and Some...15 1 :1010 2 :1111 Organid silts and clays ( plastic ) >7-30 0 11212 1 1 1313Peat (nou plastic ) _._>_3_0 0 .1414 Li Groups with Different Materiai in 0...diameter LL = Liquid limit PI - Plasticity index Drainage potential classified by occurrence of water table as follows: Class 0 Water table occurs at

  4. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, D.P.

    1988-01-01

    A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)

  5. Characterising groundwater dynamics in Western Victoria, Australia using Menyanthes software

    NASA Astrophysics Data System (ADS)

    Woldeyohannes, Yohannes; Webb, John

    2010-05-01

    Water table across much of the western Victoria, Australia have been declining for at least the last 10-15 years, and this is attributed to the consistently low rainfall for these years, but over the same period of time there has been substantial change in land use, with grazing land replaced by cropping and tree plantations appearing in some areas. Hence, it is important to determine the relative effect the climate and land use factors on the water table changes. Monitoring changes in groundwater levels to climate variables and/or land use change is helpful in indicating the degree of threat faced to agricultural and public assets. The dynamics of the groundwater system in the western Victoria, mainly on the basalt plain, have been modelled to determine the climatic influence in water table fluctuations. In this study, a standardized computer package Menyanthes was used for quantifying the influence of climatic variables on the groundwater level, statistically estimating trends in groundwater levels and identify the properties that determine the dynamics of groundwater system. This method is optimized for use on hydrological problems and is based on the use of continuous time transfer function noise model, which estimates the Impulse response function of the system from the temporal correlation between time series of groundwater level and precipitation surplus. In this approach, the spatial differences in the groundwater system are determined by the system properties, while temporal variation is driven by the dynamics of the input into the system. 80 time series models are analysed and the model output parameter values characterized by their moments. The zero-order moment Mo of a distribution function is its area and M1 is related to the mean of the impulse response function. The relation is M1/Mo. It is a measure of the system's memory. It takes approximately 3 times the mean time (M1/Mo) for the effect of a shower to disappear completely from the system. Overall, the model fitted the data well, explaining 89% (median value of R2) of variation in groundwater level using the climatic variables (rainfall and evaporation) left without significant trend (-0.046 m/yr, on average), which is within the range of variable input standard error. The average estimated system response (memory to disappear) is 5.2 years which is less than by 1/10th of the previously estimated time using Ground Water Flow System approach. The average Mo is 1.45 m, which means that a precipitation of 365 mm/yr will eventually lead to a ground water level rise of 1.45 m on the location. The Menyanthes result is compared with HARTT (Hydrograph Analysis and Time Trends) method. The trend and Mo estimate using Menyanthes and HARTT show comparable result. From a time series analysis there is no indication that the groundwater table was rising/falling due to changes in landuse, at least not during the observation period.

  6. Human Health Benchmarks for Pesticides

    EPA Pesticide Factsheets

    Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.

  7. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride concentration in water from the water table aquifer ranged from 200 to 590 mg/L as a result of intrusion. In areas adjacent to tidal-water bodies, the water table aquifer contains water that is very saline, Where the wells in such areas have been constructed with metal casings, the metal corrodes when exposed to the saline water, and many ultimately develop holes. This permits saline water to leak into the well where the water level in the well is lower than the water table. The intrusion of saline water from the water-table aquifer into the upper part of the Hawthorn Formation is a major problem in parts of Cape Coral. Withdrawal of water from the upper part of the Hawthorn Formation has caused water levels to decline below the lowest annual position of the water table, so that downward leakage is perennial. In some coastal areas, wells that tap the upper part of the Hawthorn Formation contain water whose chloride concentration is as much as 9,500 mg/L. Upward leakage of saline water from the deep artesian aquifers and downward leakage of saline water from the water-table aquifer can be prevented by proper well construction.

  8. Fall season atypically warm weather event leads to substantial CH4 loss in Arctic ecosystems?

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Moreaux, Virginie; Liljedahl, Anna; Losacco, Salvatore; Murphy, Patrick; Oechel, Walter

    2014-05-01

    In the last century (during 1875-2008) high-latitudes are warming at a rate of 1.360C century-1, almost 2 times faster than the Northern Hemisphere trend (Bekryaev et al., 2010). This warming has been more intense outside of the summer season, with anomalies of 1.09, 1.59, 1.730C in the fall, winter, and spring season respectively (Bekryaev et al., 2010). This substantial temperature anomalies have the potential to increase the emission of greenhouse gas (CO2 and CH4) fluxes from arctic tundra ecosystems. In particular, CH4 emissions, which are primarily controlled by temperature (in addition to water table), can steeply increase with warming. Despite the potential relevance of CH4 emissions, very few measurements have been performed outside of the growing season across the entire Arctic, due to logistic constrains. Importantly, no flux measurements achieved a temporal and spatial data coverage sufficient to estimate with confidence an annual CH4 emissions from tundra ecosystem in Alaska, and its sensitivity to warming. Fall 2013 was unusually warm in central and northern Alaska. Following a relatively warm summer with dramatically above-average rainfall, the October mean monthly temperatures was the 4th and top warmest in Barrow (1949-2013) and Ivotuk (1998-2013), respectively. As we just upgraded several eddy covariance towers to measure CO2 and CH4 fluxes year-round, the atypical weather conditions of fall 2013 represented a unique chance for testing the sensitivity of CH4 loss to these atypically warm temperatures. All our sites across a latitudinal gradient (from the northern site, Barrow, to the southern site, Ivotuk), presented substantial CH4 loss in the fall. Importantly, in two of these sites (Barrow, Ivotuk) where the fall weather was substantially warmer than the long term trend, fall CH4 emission represented between 44-63% of the June-November cumulative emission. Surprisingly, in the southernmost site (Ivotuk), when the temperature anomaly was the highest, cumulative fall CH4 emission outpaced even the summer emission. This shows the sensitivity of CH4 loss to abnormal conditions, and the importance of fall periods for the annual CH4 budget in these Arctic ecosystems. Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev. 2010. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate 23(14):3888-3906.

  9. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  10. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.

  11. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  12. Borders Uncorked: Exporting Wine to the United States

    ERIC Educational Resources Information Center

    Alpern, Barbara E.; Odett, David C.

    2008-01-01

    Last fall, in an effort to raise awareness of Canadian table wines, the Consulate General commissioned a group of International Business MBA students from Walsh College, in suburban Detroit, to create the "Canadian Wine Exporter's Guide." This report, which was officially presented to Canadian wine producers prior to the tasting,…

  13. Budget of the U.S. Government, Fiscal Year 2017

    ERIC Educational Resources Information Center

    Office of Management and Budget, Executive Office of the President, 2016

    2016-01-01

    "Budget of the United States Government, Fiscal Year 2017" contains the Budget Message of the President, information on the President's priorities, and summary tables. President Obama's 2017 Budget makes critical investments while adhering to the bipartisan budget agreement he signed into the previous fall, and it lifts sequestration in…

  14. Another Look at Public Library Referenda in Illinois.

    ERIC Educational Resources Information Center

    Adams, Stanley E.

    1996-01-01

    Presents 14 tables depicting Illinois public library referenda data from fiscal year 1977/78 through November 1995. Discusses success rates in terms of even versus odd years and spring versus fall for fiscal years 1986-95. Outlines types of library referenda, including: annexation; tax increase; bond issue; establishment (district); conversion to…

  15. Washington Community Colleges Factbook.

    ERIC Educational Resources Information Center

    Meier, Terre

    The 109 tables and graphs in this six-chapter factbook present a statistical profile of the Washington Community College System for Fall 1979. Chapter I presents background information on the history and organization of the 27 state-supported colleges. Chapter II outlines data on annual and quarterly enrollments from 1969 through 1979; student…

  16. Statistical Summary of Missouri Higher Education, 1996-1997.

    ERIC Educational Resources Information Center

    Missouri Coordinating Board for Higher Education, Jefferson City.

    Extensive data tables on higher education in Missouri present information on: the academic preparation of college freshmen (fall 1996), including distribution of American College Testing (ACT) scores and high school rankings; tuition, fees, and financial aid (state and federal, by aid type, including merit-based scholarships) and trends;…

  17. Missouri Higher Education: 1995-1996 Statistical Summary.

    ERIC Educational Resources Information Center

    Missouri State Coordinating Board for Higher Education, Jefferson City.

    Extensive data tables on higher education in Missouri present information on: the academic preparation of college freshmen (fall 1995), including distribution of American College Testing (ACT) scores and high school rankings; tuition, fees, and financial aid (state and federal, by aid type, including merit-based scholarships) and trends;…

  18. Transfer Assembly Project, 2001: VCCS Transfer Rates.

    ERIC Educational Resources Information Center

    McHewitt, Earl R.; Taylor, Garry

    This document discusses the transfer rates of students who entered Virginia's community colleges in the fall of 1995, using the methodology developed by the Center for the Study of Community Colleges. Numerous tables in the document include individual college rates with breakdowns by race/ethnicity and gender. College-specific transfer rates are…

  19. Vital Statistics for Ohio Appalachian School Districts, Fiscal Year 1999.

    ERIC Educational Resources Information Center

    Ohio Univ., Athens. Coalition of Rural and Appalachian Schools.

    This document compiles school district data on 18 factors for the 29 southeastern Ohio counties designated as "Appalachian." Data tables present state means, Appalachian means and ranges, and individual district data for fall enrollment; percentage of minority students; percentage of Aid to Dependent Children; average income; property…

  20. Hydrologic relations between lakes and aquifer in a recharge area near Orlando, Florida

    USGS Publications Warehouse

    Lichtler, William F.; Hughes, G.H.; Pfischner, F.L.

    1976-01-01

    The three lakes investigated in Orange County, Florida, gain water from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydraulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake and ground-water level is the same on all sides of the lake--with regard to each aquifer--and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer. (Woodard-USGS)

  1. Potential effects of sea-level rise on the depth to saturated sediments of the Sagamore and Monomoy flow lenses on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.

    2016-05-25

    In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea-level rises, partially fixing the local water table altitude.The region has a generally thick vadose zone with a mean of about 38 feet; areas with depths to water of 5 feet or less, as estimated from light detection and ranging (lidar) data from 2011 and simulated water table altitudes, currently [2011] occur over about 24.9 square miles, or about 8.4 percent of the total land area of the Sagamore and Monomoy flow lenses, generally in low-lying coastal areas and inland near ponds and streams. Excluding potentially submerged areas, an additional 4.5, 9.8, and 15.9 square miles would have shallow depths to water (5 feet or less) for projected sea-level rises of 2, 4, and 6 feet above levels in 2011. The additional areas with shallow depths to water generally occur in the same areas as the areas with current [2011] depths to water of 5 feet or less: low-lying coastal areas and near inland surface water features. Additional areas with shallow depths to water for the largest sea-level rise prediction (6 feet) account for about 5.7 percent of the total land area, excluding areas likely to be inundated by seawater. The numerous surface water drainages will dampen the response of the water table to sea-level rise. This dampening, combined with the region’s thick vadose zone, likely will mitigate the potential for groundwater inundation in most areas. The potential does exist for groundwater inundation in some areas, but the effects of sea-level rise on depths to water and infrastructure likely will not be substantial on a regional level.

  2. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    NASA Astrophysics Data System (ADS)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the same redox activity. We report these results in the context of previous observations of higher methane fluxes from the raised water table plot. Taken together, these findings provide the mechanistic details needed to understand residual error in modeling efforts of anaerobic carbon evasion (methane and carbon dioxide) in boreal wetlands.

  3. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  4. R-Area Reactor 1993 annual groundwater monitoring report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells inmore » the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50{mu}g/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells.« less

  5. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    NASA Astrophysics Data System (ADS)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.

  6. Desert water harvesting to benefit wildlife: a simple, cheap, and durable sub-surface water harvester for remote locations.

    PubMed

    Rice, William E

    2004-12-01

    A sub-surface desert water harvester was constructed in the sagebrush steppe habitat of south-central Idaho, U.S.A. The desert water harvester utilizes a buried micro-catchment and three buried storage tanks to augment water for wildlife during the dry season. In this region, mean annual precipitation (MAP) ranges between about 150-250 mm (6"-10"), 70% of which falls during the cold season, November to May. Mid-summer through early autumn, June through October, is the dry portion of the year. During this period, the sub-surface water harvester provides supplemental water for wildlife for 30-90 days, depending upon the precipitation that year. The desert water harvester is constructed with commonly available, "over the counter" materials. The micro-catchment is made of a square-shaped, 20 mL. "PERMALON" polyethylene pond liner (approximately 22.9 m x 22.9 m = 523 m2) buried at a depth of about 60 cm. A PVC pipe connects the harvester with two storage tanks and a drinking trough. The total capacity of the water harvester is about 4777 L (1262 U.S. gallons) which includes three underground storage tanks, a trough and pipes. The drinking trough is refined with an access ramp for birds and small animals. The technology is simple, cheap, and durable and can be adapted to other uses, e.g. drip irrigation, short-term water for small livestock, poultry farming etc. The desert water harvester can be used to concentrate and collect water from precipitation and run-off in semi-arid and arid regions. Water harvested in such a relatively small area will not impact the ground water table but it should help to grow small areas of crops or vegetables to aid villagers in self-sufficiency.

  7. 3. DETAIL OF STONEWORK ON ARCH, WATER TABLE AND DENTILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF STONEWORK ON ARCH, WATER TABLE AND DENTILS ON EAST ELEVATION LOOKING NORTHWEST. - Original Airport Entrance Overpass, Spanning original Airport Entrance Road at National Airport, Arlington, Arlington County, VA

  8. Wetland tree transpiration modified by river-floodplain connectivity

    USGS Publications Warehouse

    Allen, Scott T.; Krauss, Ken W.; Cochran, J. Wesley; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White River floodplain in Arkansas, USA. Our objective was to investigate how connectivity-driven water table variations affected water use, an indicator of tree function. Meteorological variables (photosynthetically active radiation and vapor pressure deficit) were the dominant controls over water use at both sites; however, water table variations explained some site differences. At the wetter site, highest sapflow rates were during a late-season overbank flooding event, and no flood stress was apparent. At the drier site, sapflow decreased as the water table receded. The late-season flood pulse that resulted in flooding at the wetter site did not affect the water table at the drier site; accordingly, higher water use was not observed at the drier site. The species generally associated with wetter conditions (Q. lyrata) was more positively responsive to the flood pulse. Flood water subsidy lengthened the effective growing season, demonstrating ecological implications of hydrologic connectivity for alleviating water deficits that otherwise reduce function in this humid floodplain wetland.

  9. HCMM energy budget data as a model input for assessing regions of high potential ground-water pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.

    1978-01-01

    The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.

  10. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    DOT National Transportation Integrated Search

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  11. 33 CFR 117.653 - St. Mary's Falls Canal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Mary's Falls Canal. 117.653 Section 117.653 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.653 St. Mary's Falls Canal. The draw of...

  12. 33 CFR 117.653 - St. Mary's Falls Canal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false St. Mary's Falls Canal. 117.653 Section 117.653 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.653 St. Mary's Falls Canal. The draw of...

  13. 33 CFR 117.653 - St. Mary's Falls Canal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false St. Mary's Falls Canal. 117.653 Section 117.653 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.653 St. Mary's Falls Canal. The draw of...

  14. 33 CFR 117.653 - St. Mary's Falls Canal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false St. Mary's Falls Canal. 117.653 Section 117.653 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.653 St. Mary's Falls Canal. The draw of...

  15. 33 CFR 117.653 - St. Mary's Falls Canal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false St. Mary's Falls Canal. 117.653 Section 117.653 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.653 St. Mary's Falls Canal. The draw of...

  16. Investigating local variation in groundwater recharge along a topographic gradient, Walnut Creek, Iowa, USA

    USGS Publications Warehouse

    Schilling, K.E.

    2009-01-01

    Groundwater recharge is an important component to hydrologic studies but is known to vary considerably across the landscape. The purpose of this study was to examine 4 years of water-level behavior in a transect of four water-table wells installed at Walnut Creek, Iowa, USA to evaluate how groundwater recharge varied along a topographic gradient. The amount of daily water-table rise (WTR) in the wells was summed at monthly and annual scales and estimates of specific yield (Sy) were used to convert the WTR to recharge. At the floodplain site, Sy was estimated from the ratio of WTR to total rainfall and in the uplands was based on the ratio of baseflow to WTR. In the floodplain, where the water table is shallow, recharge occurred throughout the year whenever precipitation occurred. In upland areas where the water table was deeper, WTR occurred in a stepped fashion and varied by season. Results indicated that the greatest amount of water-table rise over the 4-year period was observed in the floodplain (379 mm), followed by the upland (211 mm) and sideslopes (122 mm). Incorporating spatial variability in recharge in a watershed will improve groundwater resource evaluation and flow and transport modeling. ?? Springer-Verlag 2008.

  17. Predcition of Long term Water table Trends in Response to Groundwater Irrigation and Climate Change in an Indian Context

    NASA Astrophysics Data System (ADS)

    Thekkemeppilly Sivakumar, I.; Steenhuis, T. S.; Walter, M. F.; Ghosh, S.; Salvi, K. A.

    2015-12-01

    Intensified groundwater irrigation is a major factor that contributes to water table decline. This phenomenon has been documented in many parts of the world. This study investigates trends in water table in response to agriculture intensification to meet increasing food demand, water management practices and climate change. A shallow-aquifer model based on the extended Thornthwaite-Mather procedure is used to predict groundwater levels in response to precipitation, evapotranspiration, and groundwater pumping for irrigation. Krishna district in the state of Andhra Pradesh in southern India which has a sub-humid, monsoon climate and Calicut district of Kerala state with a wet tropical monsoon climate have been chosen as sites for this study. The effect of increasing food demand by a growing population is investigated by increasing the number of crops per year from one to three. We consider three climate scenarios and two water management practices in this study. The three climate scenarios are the ones those envisaged by the Intergovernmental Panel for Climate Change (IPCC). The two water management practices considered are the traditional flooded agriculture and the system of rice intensification method which does not use total flooding. The results show that single crop agriculture in Krishna district is sustainable for all climate scenarios and water management practices with a maximum depth to water table around 6 - 7 m at the end of dry season and the water table recovers to the surface most of the time. Increasing crop production with two or three crops per year with groundwater irrigation is unsustainable with the water table levels dropping potentially to 200 - 1000 m at the end of 21st century. We found that climate change and better irrigation water management practices affected ground water levels only minimally compared to the growing more than one crop per year. Our study leads to the conclusion that ground water irrigated rice can only be sustainable when crop evaporation is less then precipitation and in order to meet increasing food demands the rice yield per unit water should be improved.

  18. A fluid-mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Lister, John; Chiu-Webster, Sunny

    2004-11-01

    It is a breakfast-table experience that when a viscous fluid thread falls a sufficient height onto a stationary horizontal surface the thread is undergoes a coiling instability. We describe experimental observations of a viscous thread falling onto a steadily moving horizontal belt. Low (or zero) belt speeds produce coiling as expected. High belt speeds produce a steady thread, whose shape is well-predicted by theory for a stretching catenary with surface tension and inertia. Intermediate belt speeds show various modes of oscillation, which produce a variety of `stitching' patterns on the belt. The onset of oscillations is predicted theoretically.

  19. Estimation of water table based on geomorphologic and geologic conditions using public database of geotechnical information over Japan

    NASA Astrophysics Data System (ADS)

    Koshigai, Masaru; Marui, Atsunao

    Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.

  20. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog

    NASA Astrophysics Data System (ADS)

    Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.

    2011-12-01

    The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.

  1. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry

    2018-06-01

    Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.

  2. Holes in the Bathtub: Water Table Dependent Services and Threshold Behavior in an Economic Model of Groundwater Extraction

    NASA Astrophysics Data System (ADS)

    Kirk-lawlor, N. E.; Edwards, E. C.

    2012-12-01

    In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would be the case if only the benefits and costs of groundwater extraction were considered. This hole-in-the-bathtub model can motivate managers to consider the costs of the loss of such flows, which may be very costly (in terms of loss of environmental services, loss of access to surface water, etc.). Alternatively, the decision to maintain the water table at an elevation that sustains a threshold-dependent outflow may cause income loss from the imposition of lower groundwater extraction rates. Weighing the benefits of maintaining threshold-dependent flows (including non-market benefits) with the net benefits of increased extraction is an important step in a prudent water management framework. To illustrate the usefulness of the modified model in a joint economic-hydrologic context, we provide a short case study of the Ojos de San Pedro area of the Rio Loa Basin in northern Chile. Evidence indicates that a wetland and lacustrine environment and a village dependent on that environment disappeared due to water extraction for industrial use. We demonstrate how the key features of the model provide important insight in understanding the tradeoffs that were made in this case.

  3. A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Dixon, S.; Evans, M.

    2014-12-01

    This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.

  4. Stick balancing, falls and Dragon-Kings

    NASA Astrophysics Data System (ADS)

    Cabrera, J. L.; Milton, J. G.

    2012-05-01

    The extent to which the occurrence of falls, the dominant feature of human attempts to balance a stick at their fingertip, can be predicted is examined in the context of the "Dragon-King" hypothesis. For skilled stick balancers, fluctuations in the controlled variable, namely the vertical displacement angle θ, exhibit power law behaviors. When stick balancing is made less stable by either decreasing the length of the stick or by requiring the subject to balance the stick on the surface of a table tennis racket, systematic departures from the power law behaviors are observed in the range of large θ. This observation raises the possibility that the presence of departures from the power law in the large length scale region, possibly Dragon-Kings, may identify situations in which the occurrence of a fall is more imminent. However, whether or not Dragon-Kings are observed, there is a Weibull-type survival function for stick falling. The possibility that increased risk of falling can, at least to some extent, be predicted from fluctuations in the controlled variable before the event occurs has important implications for the development of preventative strategies for the management of phenomena ranging from earthquakes to epileptic seizures to falls in the elderly.

  5. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  6. Geoarchaeological and paleohydrological evidence for a clovis-age drought in North America and its bearing on extinction

    NASA Astrophysics Data System (ADS)

    Haynes, C. Vance

    1991-05-01

    At the Murray Springs Clovis site in southeastern Arizona, stratigraphic and geomorphic evidence indicates that an abnormally low water table 10,900 yr B.P. was followed soon thereafter by a water-table rise accompanied by the deposition of an algal mat (the black mat) that buried mammoth tracks, Clovis artifacts, and a well. This water-table fluctuation correlates with pluvial lake fluctuations in the Great Basin during and immediately following Clovis occupation of that region. Many elements of Pleistocene megafauna in North America became extinct during the dry period. Oxygen isotope records show a marked decrease in δ18O correlated with the Younger Dryas cold-dry event of northern Europe which ended 10,750 yr B.P., essentially the same time as the water table began to rise in southeastern Arizona. Clovis hunters may have found large game animals easier prey when concentrated at water holes and under stress. If so, both climate and human predation contributed to Pleistocene extinction in America.

  7. Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range

    USGS Publications Warehouse

    Hurwitz, S.; Kipp, K.L.; Ingebritsen, S.E.; Reid, M.E.

    2003-01-01

    The position of the water table within a volcanic edifice has significant implications for volcano hazards, geothermal energy, and epithermal mineralization. We have modified the HYDROTHERM numerical simulator to allow for a free-surface (water table) upper boundary condition and a wide range of recharge rates, heat input rates, and thermodynamic conditions representative of continental volcano-hydrothermal systems. An extensive set of simulations was performed on a hypothetical stratovolcano system with unconfined groundwater flow. Simulation results suggest that the permeability structure of the volcanic edifice and underlying material is the dominant control on water table elevation and the distribution of pressures, temperatures, and fluid phases at depth. When permeabilities are isotropic, water table elevation decreases with increasing heat flux and increases with increasing recharge, but when permeabilities are anisotropic, these effects can be much less pronounced. Several conditions facilitate the ascent of a hydrothermal plume into a volcanic edifice: a sufficient source of heat and magmatic volatiles at depth, strong buoyancy forces, and a relatively weak topography-driven flow system. Further, the plume must be connected to a deep heat source through a pathway with a time-averaged effective permeability ???1 ?? 10-16 m2, which may be maintained by frequent seismicity. Topography-driven flow may be retarded by low permeability in the edifice and/or the lack of precipitation recharge; in the latter case, the water table may be relatively deep. Simulation results were compared with observations from the Quaternary stratovolcanoes along the Cascade Range of the western United States to infer hydrothermal processes within the edifices. Extensive ice caps on many Cascade Range stratovolcanoes may restrict recharge on the summits and uppermost flanks. Both the simulation results and limited observational data allow for the possibility that the water table beneath the stratovolcanoes is relatively deep.

  8. Water Table and Soil Gas Emission Responses to Disturbance in Northern Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Davis, J.; Wagenbrenner, J. W.; Sebestyen, S. D.; Kolka, R. K.

    2014-12-01

    Exotic pest infestations are increasingly common throughout North American forests. In forested wetlands, disturbance events may alter nutrient, carbon, and hydrologic pathways. Recently, ash (Fraxinus spp.) forests in North Central and Eastern North America have been exposed to the exotic emerald ash borer (EAB) (Burprestidae: Agrilus planipennis), and the rapid and extensive expansion of EAB populations since 2001 may soon eliminate most existing ash stands. Limited research has focused on post-establishment ecosystem impacts of an EAB disturbance, and to our knowledge, there are no studies that have evaluated the coupled response of black ash (Fraxinus nigra) wetland water tables, soil temperatures, and soil gas emissions to an EAB infestation. We present preliminary results that detail those responses to a simulated EAB disturbance. Water table position, soil temperature, and soil gas emissions (CO2 and CH4) were monitored in nine black ash wetlands in the Upper Peninsula of Michigan for three years, including one year of pre-treatment and two years of post-treatment data-collection. An EAB disturbance was simulated by girdling (Girdle) or felling (Clearcut) all black ash trees with diameters of 2.5 cm or greater within the wetland, and each treatment was applied to three sites. The results indicate that wetland water tables were insensitive to treatment effects, soil temperatures were significantly higher in the Clearcut treatment, soil gas flux was significantly higher in the Clearcut treatment, and the rate of soil gas flux was strongly regulated by water table position and temperature. No significant treatment effects were detected in the Girdle treatment during the first post-treatment year. Because water tables were insensitive to treatment, we concluded that water tables did not independently generate a soil gas flux response despite their strong regulatory influence. Furthermore, we concluded that the response of soil temperature to disturbance was largely the reason why elevated soil gas flux rates were observed in the Clearcut treatment.

  9. 1. Photocopy of a photographca. 1920 VIEW OF AMERICAN FALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of a photograph--ca. 1920 VIEW OF AMERICAN FALLS PRIOR TO CONSTRUCTION OF HYDROELECTRIC PLANTS - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  10. Methods to predict seasonal high water table (SHGWT) : final report.

    DOT National Transportation Integrated Search

    2017-04-03

    The research study was sectioned into 5 separate tasks. Task 1 included defining the seasonal high ground water table (SHGWT); describing : methods and techniques used to determine SHGWTs; identify problems associated with estimating SHGWT conditions...

  11. Thermal and hydrological observations near Twelvemile Lake in discontinuous permafrost, Yukon Flats, interior Alaska, September 2010-August 2011

    USGS Publications Warehouse

    Jepsen, Steven M.; Koch, Joshua C.; Rose, Joshua R.; Voss, Clifford I.; Walvoord, Michelle Ann

    2012-01-01

    A series of ground-based observations were made between September 2010 and August 2011 near Twelvemile Lake, 19 kilometers southwest of Fort Yukon, Alaska, for use in ongoing hydrological analyses of watersheds in this region of discontinuous permafrost. Measurements include depth to ground ice, depth to water table, soil texture, soil moisture, soil temperature, and water pressure above the permafrost table. In the drained basin of subsiding Twelvemile Lake, we generally find an absence of newly formed permafrost and an undetectable slope of the water table; however, a sloping water table was observed in the low-lying channels extending into and away from the lake watershed. Datasets for these observations are summarized in this report and can be accessed by clicking on the links in each section or from the Downloads folder of the report Web page.

  12. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  13. Modeling Subsurface Hydrology in Floodplains

    NASA Astrophysics Data System (ADS)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  14. Relationships between water table and model simulated ET

    Treesearch

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  15. Soil property changes during loblolly pine production

    Treesearch

    R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir; Christine D. Blanton

    2006-01-01

    Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth, rainfall and meteorological data. Data continuously collected on the site since 1988 include response of hydrologic and water quality variables for nearly all growth stages of a Loblolly pine plantation. Data for drainage outflow rates and water table...

  16. Methodology and application of combined watershed and ground-water models in Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve

  17. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1995-01-01

    A Laplace transform solution is presented for flow to a well in a homogeneous, water-table aquifer with noninstanta-neous drainage of water from the zone above the water table. The Boulton convolution integral is combined with Darcy's law and used as an upper boundary condition to replace the condition used by Neuman. Boulton's integral derives from the assumption that water drained from the unsaturated zone is released gradually in a manner that varies exponentially with time in response to a unit decline in hydraulic head, whereas the condition used by Newman assumes that the water is released instantaneously. The result is a solution that reduces to the solution obtained by Neuman as the rate of release of water from the zone above the water table increases. A dimensionless fitting parameter, γ, is introduced that incorporates vertical hydraulic conductivity, saturated thickness, specific yield, and an empirical constant α1, similar to Boulton's α. Results show that theoretical drawdown in water-table piezometers is amplified by noninstantaneous drainage from the unsaturated zone to a greater extent than drawdown in piezometers located at depth in the saturated zone. This difference provides a basis for evaluating γ by type-curve matching in addition to the other dimensionless parameters. Analysis of drawdown in selected piezometers from the published results of two aquifer tests conducted in relatively homogeneous glacial outwash deposits but with significantly different hydraulic conductivities reveals improved comparison between the theoretical type curves and the hydraulic head measured in water-table piezometers.

  18. High-Functioning Wetland Formed Atop Abandoned Pavement in Eutrophic Reservoir Watershed

    NASA Astrophysics Data System (ADS)

    Clifford, C.; Heffernan, J. B.

    2017-12-01

    Water scientists and managers regularly observe how wetlands, whether natural or created, can mitigate the influence of artificial impervious surfaces on water quality. However, we rarely study or mention wetlands accidentally (sensu Palta et al. 2017) formed atop impervious surfaces. This silence occurs even though many urbanites have likely noticed sedges rimming a clogged drainage grate or in the low bits of a poorly graded or aging parking lot, or similar. A more extreme example occurs in the Little River Waterfowl Impoundment vicinity of the Butner-Falls of Neuse Game Land in Durham, North Carolina. There, a macadam road that connected local residents and a store, and served as the primary route through the area, by 1910-1920, was apparently abandoned by 1951. Later, damming nearby downstream Falls Lake Reservoir in 1981, and smaller-scale construction locally, apparently increased water table depth and flow exposure. Yet, the road remains largely intact structurally, though mostly buried and sometimes underwater. In a particularly wet segment of the road, surrounded by and partially holding back standing water even in drought, a substantial, mostly native wetland plant community has formed. This community includes trees such as overcup oak (Quercus lyrata) as large as 15 cm in diameter, shrubs such as (Cephalanthus occidentalus), sedges such as woolgrass (Scirpus cyperinus), rushes (multiple Juncus species), grasses such as wood oats (Chasmanthium latifolium), crayfish and fish, and multiple orders of herptiles. The plants grow rooted in fluffy sediment three to rarely more than 20cm deep, over solid pavement. Alongside the old road, the ditches have widened and become shallower and less surficially connected through tree roots and debris dams; they resemble pools. Sediment in these abandoned ditches has accumulated to depths of tens of centimeters, generally reforming a clay-dominated, gleyed soil, in some places buried under more tens of centimeters of very low-density particulate organic matter. How this old road and its ditches has apparently "naturalized," in spite of the pavement's continued existence, suggests that even abandoned pavement within urban matrices could grow to improve water quality. This possibility raises many new questions, and maybe later new options.

  19. Circulation (Organs). MicroSIFT Courseware Evaluation.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: Micro Power and Light Company, Keystone Park, Suite 1108, 13773 N. Central Expressway, Dallas, TX 75243. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981. VERSION: Apple II. COST: $29.95. ABILITY LEVEL: Grades 5-12.…

  20. 40 CFR Table 2 to Subpart Ppppp of... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.9324(a) i. Collecting the combustion temperature data according to § 63.9306(c);ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature...

  1. 40 CFR Table 2 to Subpart Ppppp of... - Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.9324(a) i. Collecting the combustion temperature data according to § 63.9306(c);ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature...

  2. 40 CFR Table 2 to Subpart Ppppp of... - Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.9324(a) i. Collecting the combustion temperature data according to § 63.9306(c);ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature...

  3. 40 CFR Table 2 to Subpart Ppppp of... - Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.9324(a) i. Collecting the combustion temperature data according to § 63.9306(c);ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature...

  4. 40 CFR Table 2 to Subpart Ppppp of... - Operating Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.9324(a) i. Collecting the combustion temperature data according to § 63.9306(c);ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature...

  5. DRDC Toronto Guidelines for Compensation of Subjects Participating in Research Studies

    DTIC Science & Technology

    2008-09-01

    research subject, it is increasingly likely to amount to an undue incentive for participation.” The Tri-Council Policy statement also describes in... spirometry equipment 0 Tilt table restrictive posture 1 Wrist actigraphy 0 Use of active heating or cooling vests to prevent the fall or rise of core

  6. The Facts Are on the Table: Analyzing the Geometry of Coin Collisions

    ERIC Educational Resources Information Center

    Theilmann, Florian

    2014-01-01

    In a typical high school course, the complex physics of collisions is broken up into the dichotomy of perfectly elastic versus completely inelastic collisions. Real-life collisions, however, generally fall between these two extremes. An accurate treatment is still possible, as demonstrated in an investigation of coin collisions. Simple…

  7. Some Cognitive Developmental Characteristics of Social Diversity Education.

    ERIC Educational Resources Information Center

    Adams, Maurianne; Zhou, Yu-hui A.

    This paper, on a 1988-89 study of 219 undergraduates, addresses issues of cognitive development, learning style, and attitudes toward social diversity and social justice. A parallel study was conducted in spring/fall 1989 with subsequent changes noted. The table of contents presents the following sections: (1) "Background and Educational Context";…

  8. Odell Lake. MicroSIFT Courseware Evaluation.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: MECC Publications, 2520 Broadway Drive, St. Paul, MN 55113. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981, revised February 1, 1982. VERSION: 4.3. COST: Varied; sold in package of several programs on a disk at $30…

  9. Tables and equations for estimating volumes of trees in the Susitna River Basin, Alaska.

    Treesearch

    Frederic R. Larson; Kenneth C. Winterberger

    1988-01-01

    Scribner board-foot, merchantable cubic-foot, and total cubic-foot volume equations were derived from fall, buck, and scale data for 441 trees at 78 locations in the Susitna River basin, Alaska. Tree species included white and black spruce, paper birch, black cottonwood, and quaking aspen.

  10. Characteristics of Illinois Public Community College Faculty Based on Their Primary Teaching Assignments.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    Data on the characteristics of full- and part-time faculty at Illinois public community colleges are presented and analyzed in terms of the faculty members' primary teaching assignments for fall 1990. Tables provide statistics on numbers of faculty at each institution disaggregated by gender; age ranges; ethnic/racial classification; employment…

  11. Characterization of Vertical Impact Device Acceleration Pulses Using Parametric Assessment: Phase II Accelerated Free-Fall

    DTIC Science & Technology

    2016-04-30

    support contractor , Infoscitex, conducted a series of tests to identify the performance capabilities of the Vertical Impact Device (VID). The VID is a...C. Table 3. AFD Evaluation with Red IMPAC Programmer: Data Summary Showing Means and Standard Deviations Test Cell Drop Ht . (in) Mean Peak

  12. Terrestrial Responses to Variability in the Southern Westerlies Inferred from Deep Holocene Peat Archives

    NASA Astrophysics Data System (ADS)

    Hughes, P. D. M.; Mauquoy, D.; van Bellen, S.; Roland, T. P.; Loader, N.; Street-Perrott, F. A.; Daley, T.

    2017-12-01

    The deep ombrotrophic peat bogs of Chile are located throughout the latitudes dominated by the southern westerly wind belt. The domed surfaces of these peatlands make them sensitive to variability in summer atmospheric moisture balance and the near-continuous accumulation of deep peat strata throughout the Holocene to the present day means that these sites provide undisturbed archives of palaeoclimatic change. We have reconstructed late-Holocene bog water table depths - which can be related to changes in the regional balance of precipitation to evaporation (P-E) - from a suite of peat bogs located in three areas of Tierra del Feugo, Chile, under the main path of the SWWB. Water-table depths were reconstructed from sub-fossil testate amoebae assemblages using a conventional transfer function to infer past water-table depths, based on taxonomic classification of tests but also an innovative trait-based transfer function to infer the same parameter. Water table reconstructions derived from the two methods were consistent within sites. They show that mire water tables have been relatively stable in the last 2000 years across Tierra del Feugo. Higher water table levels, most probably indicating increased effective precipitation, were found between c. 1400 and 900 cal. BP., whereas a consistent drying trend was reconstructed across the region in the most recent peat strata. This shift may represent a pronounced regional decrease in precipitation and/or a change to warmer conditions linked to strengthening of the SWWB. However, other factors such as recent thinning of the ozone layer over Tierra del Fuego could have contributed to recent shifts in some testate amoebae species.

  13. Physiological and morphological effects of high water tables on early growth of giant reed ( Arundo donax), elephant grass ( Pennisetum purpureum), energycane and sugarcane ( Saccharum spp.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennewein, Stephen Peter

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed ( Arundo donax), elephant grass ( Pennisetum Purpureum), energycane ( Saccharum spp.), and sugarcane ( Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the watermore » table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and energycane. Aerenchyma presence and volume increased under higher water tables with elephant grass having the greatest aerenchyma production. Because of the high yields and stalk populations in energycane and elephant grass for all crop stages seen in this study, these two genotypes show potential for bioenergy production in the EAA, but field trials are recommended to confirm this.« less

  14. Evaluation of the ground-water resources of parts of Lancaster and Berks Counties, Pennsylvania

    USGS Publications Warehouse

    Gerhart, J.M.; Lazorchick, G.J.

    1984-01-01

    Secondary openings in bedrock are the avenues for virtually all ground-water flow in a 626-sqare-mile area in Lancaster and Berks Counties, Pennsylvania. The number, size, and interconnection of secondary openings are functions of lithology, depth, and topography. Ground water actively circulates to depths of 150 to 300 feet below land surface. Total average annual ground-water recharge for the area is 388 million gallons per day, most of which discharges to streams from local, unconfined flow systems. A digital ground-water flow model was developed to simulate unconfined flow under several different recharge and withdrawal scenarios. On the basis of lithologic and hydrologic differences, the modeled area was sub-divided into 22 hydrogeologic units. A finite-difference grid with rectangular blocks, each 2,015 by 2,332 feet, was used. The model was calibrated under steady-state and transient conditions. The steady-state calibration was used to determine hydraulic conductivities and stream leakage coefficients and the transient calibration was used to determine specific yields. The 22 hydrogeologic units fall into four general lithologies: Carbonate rocks, metamorphic rocks, Paleozoic sedimentary rocks, and Triassic sedimentary rocks. Average hydraulic conductivity ranges from about 8.8 feet per day in carbonate units to about .5 feet per day in metamorphic units. The Stonehenge Formation (limestone) has the greatest average hydraulic conductivity--85.2 feet per day in carbonate units to about 0.11 feet per day in the greatest gaining-strem leakage coefficient--16.81 feet per day. Specific yield ranges from 0.06 to 0.09 in carbonate units, and is 0.02 to 0.015, and 0.012 in metamorphic, Paleozoic sedimentary, and Triassic sedimentary units, respectively. Transient simulations were made to determine the effects of four different combinations of natural and artificial stresses. Natural aquifer conditions (no ground-water withdrawals) and actual aquifer conditions (current ground-water withdrawals) were simulated for two years under normal seasonal and hypothetical drought (60-percent reduction in winter-spring recharge) conditions. In October, 6 months after the hypothetical drought, simulated declines in water-table altitude due to the drought occurred everywhere and ranged from a median of 3.6 feet in carbonate units to 8.7 feet in carbonate units. Simulated base flows for five major streams were reduced by 33 to 51 percent during the hypothetical drought. Also in October, maximum simulated declines in water-table altitude due to ground-water withdrawls ranged from 33 feet in carbonate units to 79 feet in Triassic sedimentary units. Simulated base flows for five major streams were reduced by the amount of ground water withdrawn. Finally, again in October, maximum simulated declines in water-table altitude due to the combination of hypothetical drought and ground-water withdrawls ranged from 38 feet in carbonate units to 109 feet in Triassic sedimentary units. Due to aquifer dewatering, simulated declines were as much as 24 feet greater than the sum of the separate simulated declines that were caused by hypothetical drought and ground-water withdrawals. Some of the greatest simulated declines were in well fields, operated by three municipalities that experienced water-supply problems during the 1980-81 drought.

  15. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    PubMed

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species.

  16. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth

    PubMed Central

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the “Pampa del Tamarugal”, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species. PMID:27064665

  17. Nutrient transport and transformation beneath an infiltration basin

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.

  18. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover, a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04

  19. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1989-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.

  20. Microtopographic and Hydrological Controls over Respiratory Efflux and Late-Season Arctic Methane Emissions

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Zona, D.; Oechel, W. C.

    2014-12-01

    In recent years, Arctic peatlands have released approximately 35 Tg (3.5 x 1012g) of CH4 annually, corresponding to around 1/3 of the aggregate wetland CH4 fluxes and 16% of all natural emissions. As climate models increasingly suggest that current warming trends in the Arctic (4-8 °C higher annual surface air temperatures) will continue by century's end, carbon (C) cycling in these northern climes may be further amplified. Although much has been learned in recent decades, uncertainty remains in regard to the spatial and temporal extent of CO2 and CH4 emissions from these systems. Chamber based carbon flux measurements were gathered for three growing seasons from June 2007 to September 2013 in Barrow, Alaska to investigate the diurnal, weekly, and monthly patterns of CO2 and CH4 flux in the North American Arctic. For the 2007 and 2008 growing seasons, high temporal frequency auto-chambers (LI-8100A Automated Soil Flux System, LI-COR Biosciences) were used to gather over 18,000 individual flux measurements. From July to September 2013 an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research Inc.) was deployed in concert with this soil flux system to gather high temporal frequency soil CO2 and CH4 fluxes. Nearby eddy covariance towers provided auxiliary meteorological and environmental data, while weekly transects amassed further surficial hydrological measures (pH, thaw depth, water table). For earlier periods of data, respiratory fluxes were partitioned into five microtopographic classes (polygon rims and troughs, low centered basins, high ridges, and flat mesic terrain). Conversely, for the later periods of data covered chamber fluxes were partitioned into three 'habitat' types (High, Medium, Wet) based on corresponding aboveground average water table extent. Marked dissimilarities were noted across habitat types and microtopographic classes. In general more mesic, waterlogged regions released greater quantities of CO2 across the growing season, while intermediate (Medium) water table regimes dominated CH4 release in the fall. Additionally, temperature generally delimited CO2 release throughout the growing season, while CH4 release was strongly tied to thaw depth expansion. This large dataset thus greatly underscores the importance of microscale heterogeneity on C flux in the Arctic.

  1. A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil.

    PubMed

    Neto, Dagmar C; Chang, Hung K; van Genuchten, Martinus Th

    2016-01-01

    Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study. © 2015, National Ground Water Association.

  2. Wetland Resiliency: How does multi-year water table level decline and recovery influence carbon dioxide and methane fluxes?

    NASA Astrophysics Data System (ADS)

    Pugh, C.; Reed, D. E.; Desai, A. R.; Sulman, B. N.

    2016-12-01

    Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a drought-induced declining water table at a shrub wetland in northern Wisconsin coincided with increased ecosystem respiration (ER) and gross ecosystem productivity (GEP) (Sulman et al. 2009). Since then, however, the average water table level at this site has begun to increase, thus allowing a unique opportunity to explore how wetland carbon storage is impacted by water table recovery. With the addition of three more years of eddy covariance observations post recovery and new methane flux observations, we found that water table level no longer had a significant correlation with GEP, ER, or methane flux. Air temperature, however, had a strong correlation with all three. Average methane flux stayed relatively constant under 14 °C, before increasing an order of magnitude from 3.7 nmol m-2 s-1 in April to 36 nmol m-2 s-1 in July. These results suggest that, over decadal timescales, temperature, rather than water level, is a stronger limiting factor for both aerobic and anaerobic respiration in shrub fen wetlands. Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a drought-induced declining water table at a shrub wetland in northern Wisconsin coincided with increased ecosystem respiration (ER) and gross ecosystem productivity (GEP) (Sulman et al. 2009). Since then, however, the average water table level at this site has begun to increase, thus allowing a unique opportunity to explore how wetland carbon storage is impacted by water table recovery. With the addition of three more years of eddy covariance observations post recovery and new methane flux observations, we found that water table level no longer had a significant correlation with GEP, ER, or methane flux. Air temperature, however, had a strong correlation with all three. Average methane flux stayed relatively constant under 14 °C, before increasing an order of magnitude from 3.7 nmol m-2 s-1 in April to 36 nmol m-2 s-1 in July. These results suggest that, over decadal timescales, temperature, rather than water level, is a stronger limiting factor for both aerobic and anaerobic respiration in shrub fen wetlands.

  3. Water-table and potentiometric-surface altitudes of the upper glacial, Magothy, and Lloyd aquifers on Long Island, New York, in March-April 2000, with a summary of hydrogeologic conditions

    USGS Publications Warehouse

    Busciolano, Ronald J.

    2002-01-01

    The three main water-bearing units on Long Island, New York--the upper glacial aquifer (water table) and the underlying Magothy and Lloyd aquifers--are the sole source of water supply for more than 3 million people. Water-table and potentiometric-surface altitudes were contoured from water-level measurements made at 394 observation, public-supply, and industrial-supply wells during March-April 2000. In general, water-level altitudes in the upper glacial, Magothy, and Lloyd aquifers were lower throughout most parts of Long Island than those measured during March-April 1997. Changes in altitude during this period ranged from an increase of about 6 feet in the Magothy aquifer in southwestern Nassau County to a decrease of more than 8 feet in the upper glacial aquifer in eastern Suffolk County.

  4. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    USGS Publications Warehouse

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  5. A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Wang, Dan; Wang, Heng; Wang, Jun-Zhi; Zhang, Hong; Zhang, Zhi-Yuan; Zhao, Ke-Yu

    2018-01-01

    The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.

  6. Groundwater influence on soil moisture memory and land-atmosphere interactions over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martinez-de la Torre, Alberto; Miguez-Macho, Gonzalo

    2017-04-01

    We investigate the memory introduced in soil moisture fields by groundwater long timescales of variation in the semi-arid regions of the Iberian Peninsula with the LEAFHYDRO soil-vegetation-hydrology model, which includes a dynamic water table fully coupled to soil moisture and river flow via 2-way fluxes. We select a 10-year period (1989-1998) with transitions from wet to dry to again wet long lasting conditions and we carry out simulations at 2.5 km spatial resolution forced by ERA-Interim and a high-resolution precipitation analysis over Spain and Portugal. The model produces a realistic water table that we validate with hundreds of water table depth observation time series (ranging from 4 to 10 years) over the Iberian Peninsula. Modeled river flow is also compared to observations. Over shallow water table regions, results highlight the groundwater buffering effect on soil moisture fields over dry spells and long-term droughts, as well as the slow recovery of pre-drought soil wetness once climatic conditions turn wetter. Groundwater sustains river flow during dry summer periods. The longer lasting wet conditions in the soil when groundwater is considered increase summer evapotranspiration, that is mostly water-limited. Our results suggest that groundwater interaction with soil moisture should be considered for climate seasonal forecasting and climate studies in general over water-limited regions where shallow water tables are significantly present and connected to land surface hydrology.

  7. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the 'recharge mound' is less distinct than might be found in an aquifer composed of finer materials. However, water levels recorded from piezometers in and around the wetland do show a higher water table than periods when the wetland was dry. The largest increases in water level occur between the wetland channel and Skunk Creek. The results of this study demonstrate that artificially recharged wetlands can be useful in recharging underlying aquifers and increasing water levels in these aquifers.

  8. US EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  9. Ground-water resources of the North Beach Peninsula, Pacific County, Washington

    USGS Publications Warehouse

    Tracy, James V.

    1977-01-01

    The anticipated water demand of 425 million gallons per year for the North Brach Peninsula, Pacific County, Wash., can be met by properly developing the ground-water supplies of the area 's water-table aquifer. Of the approximately 77 inches of annual precipitation on the peninsula, an estimated 23 inches is lost to evapotranspiration, and approximately 36 inches is discharged by the water-table aquifer into the ocean and bay. The remaining water either runs off the surface or is leaked to a deeper aquifer that ultimately discharges to the ocean. At least 12 inches of the water that discharges naturally through the aquifer is available for additional development. This quantity of water is approximately equivalent to 860,000 gallons per day. Wells spaced at least 1,000 feet apart along the major axis of the peninsula and pumped at average rates of no more than 80 gallons per minute could ensure that water-level declines do not exceed 6 feet near the wells and 1 foot at the shoreline, thereby preventing seawater intrusion. Lowering of the water table may be beneficial in reducing waterlogging problems, but care must be taken not to lower the levels near cranberry bogs, which require a shallow water table. Treatment of the otherwise good quality water for iron may be required, as about 75 percent of the well water sampled from the aquifer had iron concentrations in excess of limits recommended by the U.S. Environmental Protection Agency. (Woodard-USGS)

  10. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  11. Investigation of remote sensing to detect near-surface groundwater on irrigated lands

    NASA Technical Reports Server (NTRS)

    Ryland, D. W.; Schmer, F. A.; Moore, D. G.

    1975-01-01

    The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.

  12. Mapping water table depth using geophysical and environmental variables.

    PubMed

    Buchanan, S; Triantafilis, J

    2009-01-01

    Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.

  13. The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone.

    PubMed

    Chi, Zeyong; Xie, Xianjun; Pi, Kunfu; Wang, Yanxin; Li, Junxia; Qian, Kun

    2018-05-08

    Given the long-term potential risk of arsenic (As)-contaminated agricultural soil to public health, the redistribution of iron (Fe) and immobilization of As within the unsaturation zone during irrigation and consequent water table fluctuations were studied via a column experiment and corresponding geochemical modeling. Experimental results show that As and Fe accumulated significantly at the top of the column during irrigation. A tremendous increase in As and Fe accumulation rates exists after water table recovery. It was deduced that Fe(II) and As(III) were oxidized directly by O 2 at the period of low water table. But the production of hydroxyl radical (OH) was promoted at the period of high water table due to the oxidation of adsorbed Fe(II). The generated OH further accelerate the oxidation of Fe(II) and As(III). Moreover, the combination of As and Fe is more stronger at the top of the column due to the transformation of combined states of As from surface complexation into surface precipitation with the growth of Fe(III) minerals. This study details the processes and mechanisms of As and Fe immobilization within the unsaturation zone during different irrigation periods and accordingly provides some insights to mitigate As accumulation in topsoil. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. 40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...

  15. 40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...

  16. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use of water-efficient plumbing fixtures. Multilateral development agencies have identified some developing country cities as demonstrated sites for urban water conservation.

  17. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Treesearch

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  18. Potential groundwater contribution to Amazon evapotranspiration

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2010-07-01

    Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia). The water table can potentially sustain a capillary flux of >2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  19. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  20. Geothermal direct use in the United States update: 1990-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.J.; Lund, J.W.; Culver, G.G.

    1995-02-01

    Geothermal energy is estimated to currently supply approximately 13,885 TJ/yr (13,180 x 10{sup 9} BTU/yr) of heat energy through direct heat applications in the United States. Table 1 summarizes the U.S. geothermal direct heat uses. It should be noted that Table 1 does not contain enhanced oil recovery, which was included in the 1990 update report. In the oil fields of the upper midwest (Montana, North Dakota and Wyoming), thermal waters are not being injected at higher temperatures than the oil producing zones. This means that there is no benefit to reducing oil viscosity, which would have increased production rates;more » therefore, resulting in this use being deleted from direct uses in the table. In the 1990 report two geothermal district heating systems were listed as under construction, Mammoth Lakes and Bridgeport, these systems have not been built although exploratory wells have been drilled. They are not included in the current summary of direct uses. There have been no new geothermal district heating systems started; however, San Bernardino and Klamath Falls have expanded their systems. Annual energy use of direct heat applications reported for both the 1990 and 1994 updates are shown. All of the categories experienced some increase in use, however the largest growth has been in geothermal heat pumps. From 1985 to 1990 the highest growth rate in geothermal heat pumps occurred, then tapered off some from 1990 to 1994. In the other five categories there has been a steady growth with the largest occurring in space heating, greenhouses and industrial plants. Greenhouse development has been significant in New Mexico and Utah and a new onion and garlic dehydration plant was built in Nevada.« less

  1. Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds.

    PubMed

    Wilkes, G; Edge, T A; Gannon, V P J; Jokinen, C; Lyautey, E; Neumann, N F; Ruecker, N; Scott, A; Sunohara, M; Topp, E; Lapen, D R

    2011-11-15

    Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥ 2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼ 14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼ 27 mm (62 percentile). During higher water temperatures (>∼ 14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥ 2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥ 2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Mehran, A.; Ralph, M.; Cannon, F.; Lettenmaier, D. P.

    2017-12-01

    A body of work over the last decade or so has demonstrated that most major floods along the U.S. West Coast are attributable to Atmospheric Rivers (ARs). Antecedent hydrological conditions play an important part in the natural links between precipitation and floods, and this is especially the case in the Pacific Coastal region where precipitation is strongly winter-dominant, and many potentially flood-inducing events occur relatively early in the wet season. The Russian River Basin has these characteristics, the result of which is mostly dry soils at the onset of the fall precipitation season. There is therefore a tradeoff in terms of flood potential between the strength of AR events, and the time history of previous precipitation that has begun to wet soils and raise local water tables. In order to examine flood responses associated with varying precursor hydrological conditions, we first constructed a data set of AR events that were coincident with Peaks Over Threshold (POT) extreme discharge events at selected USGS stream gauges throughout the Russian River basin. We investigated the role of antecedent soil moisture and water table conditions on historical AR flooding, initially using an exploratory data analysis approach. We then implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) over the entire basin and conducted modeling experiments for each of the POT events under climatological and extreme antecedent conditions. We reconstructed climatological soil moisture by assimilating in situ observations into long-term soil moisture simulations from the UCLA Western U.S. Drought Monitoring System. We explore an envelope of frequency distributions of floods given a range of AR-related extreme precipitation and various initial hydrologic conditions, which eventually should have implications for flood management decision-making.

  3. Study of hydro-saline characteristics of soils a palm grove in basin of Ouargla (Northern Algerian Sahara)

    NASA Astrophysics Data System (ADS)

    Rezagui, D.; Bouhoun, M. Daddi; Boutoutaou, D.; Djaghoubi, A.

    2016-07-01

    Saharan soils are often faced with several problems of development, taking account the hydro-edaphic constraints, mainly of hydric types by water table, mechanical by gypso-calcareous crusts and saline by irrigation waters and upwelling of water table. Our work consists in doing a soil characterization of a palm grove in Ouargla in order to study the constraints hydro-halomorphes. The results show that irrigation water by two plies of Senonian and Mioplcène had a high salinity with a value of 2.83 and 5.10 dS.m-1 respectively. The conduct of irrigation is traditional random of submersion type. The palm grove has a poor drainage with a level of water table 156.67±15.71 cm and salinity of 31.37±34.04 dS.m-1. The drains are open type and their maintenance is not regular. This situation of management of irrigation-drainage promotes the upwelling of water table and the waterlogging in soils. The study of soil profiles shows the existence of mechanical obstruction of gypso-calcareous crusts which limit the entrenchment of the date palms and the leaching of salts. Soil salinity is excessive in profiles with a range of 8.98 ± 4.58 dS.m-1. This accumulation of salts is due to the dynamic ascending and descending of salts respectively under the effect of upwelling of water table and leaching by irrigation. The salinization, the upwelling of water table and the presence of gypso-calcareous crusts recorded in Ouargla testify to a degradation hydro-halomorphe and mechanic of soil which constitute the major constraints in the management of system irrigation-drainage and sustainable agricultural development of the palm groves of the basin of Ouargla. Some hydro-agricultural planning are necessary to apply in the oasis to improve the hydro-mechanical properties of soils in order to reduce their degradation.

  4. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; ...

    2015-11-12

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  5. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; ...

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  6. Reduction of diuretics and analysis of water and muscle volumes to prevent falls and fall-related fractures in older adults.

    PubMed

    Okada, Kosuke; Okada, Masahiro; Kamada, Nanao; Yamaguchi, Yumiko; Kakehashi, Masayuki; Sasaki, Hidemi; Katoh, Shigeko; Morita, Katsuya

    2017-02-01

    In an attempt to decrease the incidence of falls and fall-related fractures at a special geriatric nursing home, we endeavored to reduce diuretic doses, and examined the relationship between the effectiveness of this approach with the body compositions and activities of daily living of the study cohort. We enrolled 93 participants living in the community, 60 residents of an intermediate geriatric nursing home and 50 residents of the 100-bed Kandayama Yasuragien special geriatric nursing home. We recorded body composition using a multifrequency bioelectrical impedance analyzer. Daily loop diuretic and other diuretic regimens of those in the special geriatric nursing home were reduced or replaced with "NY-mode" diuretic therapy, namely, spironolactone 12.5 mg orally once on alternate days. The incidence of falls fell from 53 in 2011 to 29 in 2012, and there were no fall-related proximal femoral fractures for 3 years after the introduction of NY-mode diuretic therapy. We also found statistically significant differences in muscle and intracellular water volumes in our elderly participants: those with higher care requirements or lower levels of independence had lower muscle or water volumes. We found that reducing or replacing daily diuretics with NY-mode therapy appeared to reduce the incidence of falls and fall-related proximal femoral fracture, likely by preserving intracellular and extracellular body water volumes. Low-dose spironolactone (12.5 mg on alternate days) appears to be an effective means of treating elderly individuals with chronic heart failure or other edematous states, while preventing falls and fall-related fractures. Geriatr Gerontol Int 2017; 17: 262-269. © 2016 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  7. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    USGS Publications Warehouse

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous solubility of O2 is not limiting, and oxidation of pyrite by O2 and Fe3+ accounts for most SO42- and Fe2+ observed in acidic ground water. However, in a system closed to O2, such as in the saturated zone, O2 solubility is limiting; hence, ferric oxidation of pyrite is a reasonable explanation for the observed elevated SO42- with increasing depth below the water table.

  8. Growth and nutrient status of black spruce seedlings as affected by water table depth

    Treesearch

    Miroslaw M. Czapowskyj; Robert V. Rourke; Walter J. Grant; Walter J. Grant

    1986-01-01

    The objective of this study was to determine the effect of different soil water table levels on growth, biomass production, and nutrient accumulation in black spruce seedlings growing under greenhouse conditions over three growing seasons after transplanting.

  9. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  10. 178. Photocopy of Photograph, Twin Falls Canal Company. C. R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    178. Photocopy of Photograph, Twin Falls Canal Company. C. R. Savage, Photographer, March, 1905. FIRST FULL WATER OVER MILNER DAM, TWIN FALLS COUNTY, MILNER, IDAHO; SOUTHWEST VIEW OF SPILLWAY GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. Lessons from Jerusalem.

    PubMed

    Daniell, Z

    1993-01-01

    The Gihon spring can no longer meet Jerusalem's water needs due to population growth. It provides just a small amount of water to an Arab community near Jerusalem called Silwan. 3 pipelines carry water to Jerusalem from coastal and mountain aquifers whose water tables are falling. A 4th pipeline is being built. Nevertheless, Jerusalem has been able to reduce water use, e.g. water use was lower in 1991 than in 1983, even though its population grew 25%. An engineer from the Department of Water attributed the reduced water use to conservation. The 1987 drought reduced the water in one of the city's main water sources, the Sea of Galilee, to very low levels. City authorities first responded by physically improving the water system, e.g., repairing system blow out valves and reducing water pressure where it was more than 60 m pressure. Next, the department distributed pamphlets on how to adjust household toilets to use less water per flush. The schools replaced all toilets with the new dual system. The city advertised water conservation in newspapers and buses. The department clamped down on industries and businesses using a disproportionate 23% of all water. In 1987. these efforts reduced water consumption 8-10%. A temporary law banned irrigation during the day when evaporation is greatest. The city charged residents more money for water used for gardening. Some residents have switched from grass laws to less thirsty local vegetation. The newness and efficiency of Jerusalem's pumping system and the commitment to replacing leaky pipes also contributes to the city's success. Jerusalem loses only about 10% of its water to leaks while other cities lose 40-60% of its water to leaks. Currently, the department partially subsidizes water-saving kits to be distributed to all households at a cost less than $4. 20% of households now use these kits. The department hopes to add another 40% of households. This holy city could be a water conservation model for all people.

  12. Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate)

    DTIC Science & Technology

    2013-10-01

    measurements for cellulose and PMMA thin- films . ..13  v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele

  13. 46 CFR 180.200 - Survival craft-general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in Table 180.200(c). Table 180.200(c) Route Survival craft requirements Oceans (a) cold water 1—100...(b). Coastwise (a) wood vsls in cold water. (i) 67% IBA—§ 180.204(a)(1). (ii) w/subdivision—100% LF... 20 miles from a harbor of safe refuge) (a) wood vsls in cold water.(i) 67% IBA—§ 180.205(a)(1). (ii...

  14. U.S. EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS (ROCKY GAP, MD)

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  15. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    NASA Astrophysics Data System (ADS)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS-Institut du Végétal, mainly wheat and maize) is a poorly permeable medium loamy over clay soil, with possible local shallow water tables, slopes around 3% and mild and rainy winter while summer is cool and wet (temperate, oceanic climate). GSA allowed us to interpret the results from the multivariate Monte-Carlo uncertainty analysis and gain insights on the management and placement of the buffer systems.

  16. Tafilalet OASIS System: Water Resources Management and Investigation by GIS and Groundwater Flow Model

    NASA Astrophysics Data System (ADS)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2014-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.

  17. A high-resolution land model coupled with groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.

    2017-12-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.

  18. A national network of hydrological benchmarks

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    We are engaged in great national programs of water control and development. An expanding population demands ever-increasing supplies of the natural resources which are to be found in or upon the landscape soil, water, minerals, food, timber, and fiber. By his works, by his extractions, man's mark upon his environment becomes ever deeper, his effects more indelible. We often read that water tables are falling, that floods are increasing, that springs go dry more often now than in grandfather's time, or that rivers are muddier than before. Such changes, if true, are troublesome but water is a fluctuating resource, responding over time to changes in the environment. A recurring question of our times, and one that we anticipate will be increasingly vexing to posterity, is to know how much of the change in our environment is caused by man and how much is natural. In trying to answer this question we immediately face the insurmountable fact that changes must be measured relative to some standard base or datum. What can we compare against?The most pervasive and probably the most important of the slow and subtle changes result directly or indirectly from variations in climate. Over a shorter or longer period of time, pulsations in precipitation and temperature change the amounts of water that are evaporated or transpired by the soil and vegetation, the amount of water that replenishes soil water, the quantity of water for recharge to ground water and for riverflow. Climatic variations also cause changes in the pattern of erosion, of which some spectacular consequences can be observed in the arid zones. Changes in climatic pattern, through their effects on the hydrologic cycle, on soil, and on vegetation, can produce results remarkably similar to those effected by the works of man.

  19. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  20. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature data according to... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  1. 40 CFR Table 1 to Subpart Pppp of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4567(a). i. Collecting the combustion temperature data according to... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  2. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  3. 40 CFR Table 1 to Subpart Pppp of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4567(a). i. Collecting the combustion temperature data according to... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  4. 40 CFR Table 1 to Subpart Pppp of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4567(a). i. Collecting the combustion temperature data according to... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  5. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  6. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature data according to... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  7. Completing College: A State-Level View of Student Attainment Rates (Signature Report No. 12a)

    ERIC Educational Resources Information Center

    Shapiro, Doug; Dundar, Afet; Wakhungu, Phoebe Khasiala; Yuan, Xin; Nathan, Angel; Hwang, Youngsik

    2017-01-01

    As a supplement to "Completing College: A National View of Student Attainment Rates--Fall 2010 Cohort" (https://nscresearchcenter.org/signaturereport12) (2016), this report focuses on six-year student success outcomes and college completion rates by state. Three sets of tables organized by institution type display the results, presenting…

  8. Montessori Infant and Toddler Programs: How Our Approach Meshes with Other Models

    ERIC Educational Resources Information Center

    Miller, Darla Ferris

    2011-01-01

    Today, Montessori infant & toddler programs around the country usually have a similar look and feel--low floor beds, floor space for movement, low shelves, natural materials, tiny wooden chairs and tables for eating, and not a highchair or swing in sight. But Montessori toddler programs seem to fall into two paradigms--one model seeming more…

  9. Health of the Disadvantaged. Chart Book-II.

    ERIC Educational Resources Information Center

    Health Resources Administration (DHHS/PHS), Hyattsville, MD.

    The tables and charts in this book act as resources for information on the health status of racial and ethnic minorities and the poor. The four minority groups referred to are blacks, Hispanic Americans, Native Americans, and Asian Americans. The poor are defined as those whose income falls below the poverty line specified by the Census Bureau.…

  10. Valley segments, stream reaches, and channel units [Chapter 2

    Treesearch

    Peter A. Bisson; David R. Montgomery; John M. Buffington

    2006-01-01

    Valley segments, stream reaches, and channel units are three hierarchically nested subdivisions of the drainage network (Frissell et al. 1986), falling in size between landscapes and watersheds (see Chapter 1) and individual point measurements made along the stream network (Table 2.1; also see Chapters 3 and 4). These three subdivisions compose the habitat for large,...

  11. Library Skills: What's There and How to Find It. MicroSIFT Courseware Evaluation.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: Micro Power and Light Company, Keystone Park, Suite 1108, 13773 N. Central Expressway, Dallas, TX 75243. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981. VERSION: Apple II. COST: $24.95. ABILITY LEVEL: Grades 4+.…

  12. Key Effectiveness Indicators (KEI Report): American River College Five-Year Profile, 1997-2002.

    ERIC Educational Resources Information Center

    Barr, Jim; Higgins, Jim; Grill, Cathie

    This document addresses the key effectiveness indicators for American River College between 1997-2002. The figures are presented in table and graph format and some figures shown present detailed enrollment numbers for fall, spring, and summer while in other figures terms are collapsed into one full academic year. Dramatic enrollment gains were…

  13. Water budgets for major streams in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Mullen, J.R.; Nady, Paul

    1985-01-01

    A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)

  14. Ground-water flow and ground- and surface-water interaction at McBaine Bottoms, Columbia, Missouri--2000-02

    USGS Publications Warehouse

    Smith, Brenda J.

    2003-01-01

    McBaine Bottoms southwest of Columbia, Missouri, is the site of 4,269 acres of the Eagle Bluffs Conservation Area operated by the Missouri Department of Conservation, about 130 acres of the city of Columbia wastewater-treat-ment wetlands, and the city of Columbia munici-pal-supply well field. The city of Columbia wastewater-treatment wetlands supply treated effluent to the Eagle Bluffs Conservation Area. The presence of a sustained ground-water high underlying the Eagle Bluffs Conservation Area has indicated that ground-water flow is toward the municipal well field that supplies drinking water to the city of Columbia. The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and the city of Columbia, measured the ground-water levels in about 88 monitoring wells and the surface-water elevation at 4 sites monthly during a 27-month period to determine the ground-water flow and the ground- and surface-water interaction at McBaine Bottoms. Lateral ground-water flow was dominated by the presence of a ground-water high that was beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression in the northern part of the study area. The ground-water high was present during all months of the study. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was toward the north toward the city of Columbia well field. The cone of depression was centered around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high beneath the Eagle Bluffs Conservation Area was present throughout the study period, the configuration of the high changed depending on hydrologic conditions. Generally in the spring, the height of the ground-water high began to decrease and hydraulic gradients around the high became more shallow than in the winter months. In early summer, the high was the least pronounced. During mid-sum-mer, the high became more pronounced, and it continued to become higher, increasing until it reached its maximum height in late fall or early winter. Fluctuations in the ground-water high were partially produced by the cycle of flooding of the Eagle Bluffs Conservation Area wetland pools in the fall and subsequent drainage so crops could be planted in many of the wetland pools. The cone of depression in the northern part of the study area generally extended from the base of the ground-water high in the northern part of the Eagle Bluffs Conservation Area throughout the rest of the study area. The depth of the cone primarily was affected by the altitude of the Missouri River and the quantity of water being pumped from the alluvial aquifer by the city of Columbia well field. Ground-water flow in the alluvial aquifer in McBaine Bottoms in the late 1960?s before the development of the city of Columbia well field and the Eagle Bluffs Conservation Area was from northwest to southeast approximately parallel to the Missouri River. The ground-water high beneath the Eagle Bluffs Conservation Area and the cone of depression around the city of Columbia well field were not present in water-level maps for 1968 and 1978. The Missouri River can be a source of recharge to the alluvial aquifer. Generally the altitude of the river in the northern part of the study area was higher than the water table in the aquifer. Ground-water flow in this area was from the river into the alluvial aquifer. In the southern part of the study area adjacent to the Eagle Bluffs Conservation Area, the Missouri River was lower than the water table in the alluvial aquifer, indicating that the river was receiving water from the alluvial aquifer beneath the Eagle Bluffs Conservation Area.

  15. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate with drought events in the testate amoeba record and the alkane abundance ratio record. These biogeochemical proxies can be used in paleohydrological studies of ombrotrophic bogs and provide a new and complimentary source of data from these underutilized paleoclimate archives.

  16. Nitrogen Inputs and Transformations in a Boreal Wetland: Hypotheses and Preliminary Results From the Alaska Peatland Experiment (APEX)

    NASA Astrophysics Data System (ADS)

    Millar, N.; O'Donnell, J. A.; Turetsky, M. R.

    2005-12-01

    High latitudes are expected to experience some of the most dramatic effects of climate change in the near future. This is already evident from existing permafrost and air temperature records in Alaska. Peatlands are a major component of boreal landscapes and store massive reservoirs of soil organic carbon (C) and nitrogen (N), yet the vulnerability of these organic matter stocks to climate change is poorly understood. While some field studies have focused on N cycling in bogs, little is known about N inputs and transformations within boreal fens. We recently initiated a large scale manipulation of soil temperature and water table in a moderately rich fen situated near the Bonanza Creek LTER site, outside Fairbanks, Alaska (the Alaska Peatland Experiment or APEX; www.apex.msu.edu). As part of this experiment, we hypothesized that water table height regulates microbial reduction - oxidation (redox) reactions in organic soils. This may alter the potential for nitrification and denitrification, and therefore, concentrations of ammonium (NH4+), and nitrate (NO3-), and fluxes of nitrous oxide (N2O) in fen ecosystems. Denitrification however, may be limited by low NO3- concentrations in this fen, which is dominated by a mix of herbaceous species, brown mosses, and Sphagnum. We also hypothesized that warming would increase N transformation rates by stimulating heterotrophic microbial activity, leading to variation in N mineralization rates and N availability. We established three water table plots (control, raised, lowered), each about 120 m2 in area. Water table levels at the lowered and raised plots were manipulated using drainage ditches and solar powered pumping techniques, respectively, and were kept at between 5-10 cm below and at 5 cm above the control plot. At 3 of the 6 sub plots within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. In the first season of measurements at the APEX, our initial results suggest that higher water table levels increase atmospheric N2O concentrations above the soil surface (400 ± 3 and 380 ± 7 ppbv, at raised and lowered water table level, respectively). We also measured lower dissolved N2O concentrations in soil water (37 and 4 ppbv at raised and lowered water table level, respectively at 100 cm depth). Here, we will present interactions between thermal and moisture regimes in the experimental fen in relation to N balance, by quantifying concentrations of various N species (e.g., NH4+, NO3-, N2O, TDN, DON, DIN) in the soil, water and atmosphere. This work will help define the role of N availability and N transformations in boreal peatland ecosystems in feedbacks to global climate change.

  17. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán

    2018-05-01

    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  18. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  19. Mineralogy of fine-grained alluvium from borehole U11g, expl. 1, northern Frenchman Flat area, Nevada Test Site

    USGS Publications Warehouse

    Jones, B.F.

    1982-01-01

    The mineralogy of matrix fines in alluvium from borehole Ullg, expl. 1, north of Frenchman Flat, Nevada Test Site, has been examined for evidence of past variations in water table elevation. Although greater abundance of zeolite and slightly more expanded basal spacings in smectite clays suggest effects of increased hydration of material up to 50 m above the present water table, these differences might also be related to provenance of environment of deposition. The relative uniformity of clay hydration properties in the 50 meters above the current water table suggest long-term stability near the present level. (USGS)

  20. The coastal oasis: ice age springs on emerged continental shelves

    NASA Astrophysics Data System (ADS)

    Faure, Hugues; Walter, Robert C.; Grant, Douglas R.

    2002-06-01

    As ice caps expanded during each of the last five glaciations, sea level fell at least 120 m below current levels, exposing continental shelves worldwide to create vast areas of new land. As a result of this exposure, the ecology, climate, pedology, and geology of global shorelines were dramatically transformed, which in turn altered the carbon cycle and biodynamics of this new landmass. In this paper, we focus on a little-known hydrogeological phenomenon that may have had profound influences on biodiversity, human evolution, and carbon storage during periods of severe climatic stress of the Pleistocene Ice Ages. We propose that freshwater springs appeared on emerged continental shelves because falling sea level not only drew down and steepened the coastal water table gradient, thus increasing the hydrostatic head on inland groundwater aquifers, but also removed up to 120 m of hydrostatic pressure on the shelf, further enhancing groundwater flow. We call this phenomenon the "coastal oasis", a model based on three well-established facts. (1) In all coastal areas of the world, continental aquifers discharge a continuous flow of fresh water to the oceans. (2) Many submarine sedimentary and morphological features, as well as seepages and flow of fresh water, are known on and below the shelves from petroleum explorations, deep-sea drilling programs, and mariners' observations. (3) Hydraulic principles (Darcy's law) predict increased groundwater flow at the coast when sea level drops because the piezometric head increases by the equivalent depth of sea-level lowering. Sea level is presently in a relatively high interglacial position. Direct observation and verification of our model is difficult and must rely on explorations of terrain that are now deeply submerged on continental shelves. For this reason, we draw parallels between our predicted model and simple, well-exposed terrestrial hydrological systems, such as present-day springs that appear on the exposed shores of lakes whose free-air water levels fell during periods of aridity. Such modern examples are seen in the Caspian Sea and Dead Sea, the Afar Depression, and the Sahara Desert. These modern analogues demonstrate the likelihood that underground water will be more abundant on emerged shelves during sea-level fall, causing springs, oases, and wetlands to appear. Our model creates an apparent paradox: in tropical and subtropical arid lands, such as most of Africa, sea-level fall during hyperarid glacial phases would produce abundant fresh water flow onto emerged continental shelves as the continental interior desiccated. Thus, emergent shoreline springs provided new habitats for terrestrial vegetation and animals displaced from the interior by increasingly arid conditions, shrinking ecosystems, and dwindling water supplies. Such a scenario would have had a profound influence on the vegetation that spreads naturally to colonize the emerged shelves during glacio-eustatic sea-level lowstands, as well as creating new habitats for terrestrial mammals, including early humans.

  1. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  2. Evaluation and analysis of current compaction methods for FDOT pipe trench backfills in areas of high water tables

    DOT National Transportation Integrated Search

    1999-01-01

    This research project was undertaken to examine the practicality and adequacy of the FDOT specifications regarding compaction methods for pipe trench backfills under high water table. Given the difficulty to determine density and to attain desired de...

  3. Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions

    USGS Publications Warehouse

    Moench, A.F.; Barlow, P.M.

    2000-01-01

    Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.

  4. Kasei Valles

    NASA Image and Video Library

    2015-10-14

    Kasei Valles is a valley system was likely carved by some combination of flowing water and lava. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. The flowing liquid is gone but the channels and "dry falls" remain. Since its formation, Kasei Valles has suffered impacts-resulting in craters-and has been mantled in dust, sand, and fine gravel as evidenced by the rippled textures. http://photojournal.jpl.nasa.gov/catalog/PIA20004

  5. 2. View of Potomac River at Great Falls looking upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Potomac River at Great Falls looking upstream from Observation Tower. The majestic character of this wild and untrammeled spot is vividly shown. Scanty flow is evidenced by light colored normal water line markings on rock formation. Washington Agueduct Dam is shown in upper portion. Maryland on right and Virginia on left. Natives quoted as saying the water was as low or lower than during the drought conditions of 1930. Mr. Horyduzak, Photographer, 1943. - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA

  6. A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Shik Han, Weon; Kim, Kue-Young; Suk, Heejun; Beom Jo, Si

    2018-07-01

    A generalized water table fluctuation model based on precipitation was developed using a statistical conceptualization of unsaturated infiltration fluxes. A gamma distribution function was adopted as a transfer function due to its versatility in representing recharge rates with temporally dispersed infiltration fluxes, and a Laplace transformation was used to obtain an analytical solution. To prove the general applicability of the model, convergences with previous water table fluctuation models were shown as special cases. For validation, a few hypothetical cases were developed, where the applicability of the model to a wide range of unsaturated zone conditions was confirmed. For further validation, the model was applied to water table level estimations of three monitoring wells with considerably thick unsaturated zones on Jeju Island. The results show that the developed model represented the pattern of hydrographs from the two monitoring wells fairly well. The lag times from precipitation to recharge estimated from the developed system transfer function were found to agree with those from a conventional cross-correlation analysis. The developed model has the potential to be adopted for the hydraulic characterization of both saturated and unsaturated zones by being calibrated to actual data when extraneous and exogenous causes of water table fluctuation are limited. In addition, as it provides reference estimates, the model can be adopted as a tool for surveilling groundwater resources under hydraulically stressed conditions.

  7. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.

    PubMed

    Sundh, I; Nilsson, M; Granberg, G; Svensson, B H

    1994-05-01

    The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.

  8. Aquifer geometry, lithology, and water levels in the Anza–Terwilliger area—2013, Riverside and San Diego Counties, California

    USGS Publications Warehouse

    Landon, Matthew K.; Morita, Andrew Y.; Nawikas, Joseph M.; Christensen, Allen H.; Faunt, Claudia C.; Langenheim, Victoria E.

    2015-11-24

    On the basis of data from 33 wells, water levels mostly declined between the fall of 2006 and the fall of 2013; the median decline was 5.1 feet during this period, for a median rate of decline of about 0.7 feet/year. Based on data from 40 wells, water-level changes between fall 2004 and fall 2013 were variable in magnitude and trend, but had a median decline of 2.4 feet and a median rate of decline of about 0.3 feet/ year. These differences in apparent rates of groundwater-level change highlight the value of ongoing water-level measurements to distinguish decadal, or longer term, trends in groundwater storage often associated with climatic variability and trends. Fifty-four long-term hydrographs indicated the sensitivity of groundwater levels to climatic conditions; they also showed a general decline in water levels across the study area since 1986 and, in some cases, dating back to the 1950s.

  9. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    DTIC Science & Technology

    2002-03-01

    groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium

  10. Regional coupling of unsaturated and saturated flow and transport modeling - implementation at an alpine foothill aquifer in Austria

    NASA Astrophysics Data System (ADS)

    Klammler, G.; Rock, G.; Kupfersberger, H.; Fank, J.

    2012-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. Since this is a diffuse pollution situation measures to change agricultural production have to be investigated at the aquifer scale. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). For the aquifer 'Westliches Leibnitzer Feld' we break down this task into 1d vertical movement of water and nitrate mass in the unsaturated zone and 2d horizontal flow of water and solutes in the saturated compartment. The aquifer is located within the Mur Valley about 20 km south of Graz and consists of early Holocene gravel with varying amounts of sand and some silt. The unsaturated flow and nitrate leaching package SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) is calibrated to the lysimeter data sets and further on applied to so called hydrotopes which are unique combinations of soil type and agricultural management. To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that generates sequences of crop rotations derived from municipal statistical data. To match the observed nitrate concentrations in groundwater with a saturated nitrate transport model it is of utmost importance to apply a realistic input distribution of nitrate mass in terms of spatial and temporal characteristics. A table is generated by running SIMWASER/STOTRASIM that consists of unsaturated water and nitrate fluxes for each 10 cm interval of every hydrotope vertical profile until the lowest observed groundwater table is reached. The fluctuation range of the phreatic surface is also discretized in 10 cm intervals and used as outflow boundary condition. By this procedure, the influence of the groundwater table on the water and nitrate mass leaving the unsaturated can be considered taken into account varying soil horizons. To cover saturated flow in the WLF aquifer a 2-dimensional transient horizontal flow and solute transport model is set up. A sequential coupling between the two models is implemented, i.e. a unidirectional transfer of recharge and nitrate mass outflow from the hydrotopes to the saturated compartment. For this purpose, a one-time assignment between the spatial discretization of the hydrotopes and the finite element mesh has to be set up. The resulting groundwater table computed for a given time step with the input from SIMWASER/STOTRASIM is then used to extract the corresponding water and nitrate mass values from the look-up table to be used for the consecutive time step. This process is being repeated until the end of the simulation period. Within this approach there is no direct feedback between the unsaturated and the saturated aquifer compartment, i.e. there is no simultaneous (within the same time step) update of the pressure head - unsaturated head relationship at the soil and the phreatic surface (like is shown e.g. in Walsum and Groedendijk, 2008). For the dominating coarse sand conditions of the WLF aquifer we believe that this simplification is not of further relevance. For higher soil moisture contents (i.e. almost full saturation near the groundwater table) the curve returns to specific retention within a short vertical distance. Thus, there might only be mutual impact between soil and phreatic surface conditions for shallow groundwater tables. However, it should be mentioned here that all other processes in the two compartments (including capillary rise due to clay rich soils and groundwater withdrawn by root plants or evaporation losses) are accordingly considered given the capabilities of the used models. If we impose the computed groundwater table elevation as the outflow condition of the hydrotope for the next time step we postulate that the associated water volume of the saturated storage change will lead to the same change of the phreatic surface in the hydrotope column. This is only valid if the storage characteristics of the affected unsaturated soil layers can be adequately described by the co-located porosity of the saturated model. Moreover, the current soil moisture content of the respective soil layers is not being considered by the implemented new outflow boundary condition. Thus, from the perspective of continuity of mass it might be more correct, to transfer the same water volume that led to the saturated change (rise and fall) of the groundwater table to the unsaturated hydrotope column and compute the adjusted outflow boundary position for use in the next time step. Due to the hydrogeological conditions in our application, for almost all hydrotopes we have the same soil type (i.e. coarse sand) in the range of groundwater table fluctuations and thus, we expect no further impact of transferring the groundwater table from the saturated computation to the unsaturated domain. Summarizing, for the hydrogeologic conditions of our test site and the scope of the problem to be solved the sequential coupling between 1d unsaturated vertical and 2d saturated horizontal simulation of water movement and solute transport is regarded as an appropriate conceptual and numerical approach. Due to the extensive look-up table containing unsaturated water and nitrate fluxes for each hydrotope at a vertical resolution of 10 cm no further feedback processes between the unsaturated and saturated subsurface compartment need to be considered. Feichtinger, F. (1998). STOTRASIM - Ein Modell zur Simulation der Stickstoffdynamik in der ungesättigten Zone eines Ackerstandortes. Schriftenreihe des Bundesamtes für Wasserwirtschaft, Bd. 7, 14-41. Klammler, G., Rock, G., Fank, J. & H. Kupfersberger, H. (2011): Generating land use information to derive diffuse water and nitrate transfer as input for groundwater modelling at the aquifer scale, Proc of MODELCARE 2011 Models - Repository of Knowledge, Leipzig. Stenitzer, E. (1988). SIMWASER - Ein numerisches Modell zur Simulation des Bodenwasserhaushaltes und des Pflanzenertrages eines Standortes. Mitteilung Nr. 31, Bundesanstalt für Kulturtechnik und Bodenwasserhaushalt, A-3252 Petzenkirchen. Van Walsum, P.E.V. and P. Groedendilk (2008). Quasi steady-state simulation of the unsaturated zone in groundwater modeling of lowland regions. Vadose Zone J. 7:769-781 doi:10.2136/vzj2007.0146.

  11. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  12. Seasonal patterns in the soil water balance of a Spartina marsh site at North Inlet, South Carolina, USA

    USGS Publications Warehouse

    Gardner, L.R.; Reeves, H.W.

    2002-01-01

    Time series of ground-water head at a mid-marsh site near North Inlet, South Carolina, USA can be classified into five types of forcing signatures based on the dominant water flux governing water-level dynamics during a given time interval. The fluxes that can be recognized are recharge by tides and rain, evapotranspiration (ET), seepage into the near surface soil from below, and seepage across the soil surface to balance either ET losses or seepage influxes from below. Minimal estimates for each flux can be made by multiplying the head change induced by it by the measured specific yield of the soil. These flux estimates are provide minimal values because ET fluxes resulting from this method are about half as large as those estimated from calculated potential evapotranspiration (PET), which place an upper limit on the actual ET. As evapotranspiration is not moisture-limited at this regularly submerged site, the actual ET is probably nearly equal to PET. Thus, all of the other fluxes are probably twice as large as those given by this method. Application of this method shows that recharge by tides and rain only occurs during spring and summer when ET exceeds upward seepage from below and is thereby able to draw down the water table below the marsh surface occasionally. During fall and winter, seepage of fresh water from below is largely balanced by seepage out of the soil into overlying tidal water or into sheet flow during tidal exposure. The resulting reduction in soil water salinity may thereby enhance the growth of Spartina in the following spring. ?? 2002, The Society of Wetland Scientists.

  13. 4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  14. Cardiovascular Assessment of Falls in Older People

    PubMed Central

    Tan, Maw Pin; Kenny, Rose Anne

    2006-01-01

    Falls in older people can be caused by underlying cardiovascular disorders, either because of balance instability in persons with background gait and balance disorders, or because of amnesia for loss of consciousness during unwitnessed syncope. Pertinent investigations include a detailed history, 12-lead electrocardiography, lying and standing blood pressure, carotid sinus massage (CSM), head-up tilt, cardiac electrophysiological tests, and ambulatory blood pressure and heart rate monitoring, which includes external and internal cardiac monitoring. The presence of structural heart disease predicts an underlying cardiac cause. Conversely, the absence of either indicates that neurally mediated etiology is likely. CSM and tilt-table testing should be considered in patients with unexplained and recurrent falls. Holter monitoring over 24 hours has a low diagnostic yield. Early use of an implantable loop recorder may be more cost-effective. A dedicated investigation unit increases the likelihood of achieving positive diagnoses and significantly reduces hospital stay and health expenditure. PMID:18047258

  15. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  16. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  17. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  18. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  19. Denitrification and gas emissions from organic soils under different water-table and flooding management

    USDA-ARS?s Scientific Manuscript database

    Draining the Florida Everglades for agricultural use has led to land subsidence and increase phosphorus loads to the southern Everglades, environmental concerns which can be limited by controlling water table depth. The resulting anaerobic conditions in saturated soils may lead to increased denitrif...

  20. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  1. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    NASA Astrophysics Data System (ADS)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.

  2. Biomass production, forage quality, and cation uptake of Quail bush, four-wing saltbush, and seaside barley irrigated with moderately saline-sodic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauder, J.W.; Browning, L.S.; Phelps, S.D.

    2008-07-01

    The study reported here investigated capacity of Atriplex lentiformis (Torr.) S. Wats. (Quail bush), Atriplex X aptera A. Nels. (pro sp.) (Wytana four-wing saltbush), and Hordeum marinum Huds. (seaside barley) to produce biomass and crude protein and take up cations when irrigated with moderately saline-sodic water, in the presence of a shallow water table. Water tables were established at 0.38, 0.76, and 1.14m below the surface in sand-filled columns. The columns were then planted to the study species. Study plants were irrigated for 224 days; irrigation water was supplied every 7 days equal to water lost to evapotranspiration (ET) plusmore » 100mL (the volume of water removed in the most previous soil solution sampling). Water representing one of two irrigation sources was used: Powder River (PR) or coalbed natural gas (CBNG) wastewater. Biomass production did not differ significantly between water quality treatments but did differ significantly among species and water table depth within species. Averaged across water quality treatments, Hordeum marinum produced 79% more biomass than A. lentiformis and 122% more biomass than Atriplex X aptera, but contained only 11% crude protein compared to 16% crude protein in A. lentiformis and 14% crude protein in Atriplex X aptera. Atriplex spp. grown in columns with the water table at 0.38m depth produced more biomass, took up less calcium on a percentage basis, and took up more sodium on a percentage basis than when grown with the water table at a deeper depth. Uptake of cations by Atriplex lentiformis was approximately twice the uptake of cations by Atriplex X aptera and three times that of H. marinum. After 224 days of irrigation, crop growth, and cation uptake, followed by biomass harvest, EC and SAR of shallow groundwater in columns planted to A. lentiformis were less than EC and SAR of shallow ground water in columns planted to either of the other species.« less

  3. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  4. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.

  5. 40 CFR Table 3 to Subpart Qqqq of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4767(a) i. Collecting the combustion temperature data according to § 63.4768(c... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  6. 40 CFR Table 1 to Subpart Nnnn of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous compliance with the operating limit by . . . 1. thermal oxidizer a. the average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4167(a) i. collecting the combustion temperature data according to § 63.4168(c);ii. reducing the...

  7. 40 CFR Table 3 to Subpart Qqqq of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4767(a) i. Collecting the combustion temperature data according to § 63.4768(c... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  8. 40 CFR Table 1 to Subpart Nnnn of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuous compliance with the operating limit by . . . 1. thermal oxidizer a. the average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4167(a) i. collecting the combustion temperature data according to § 63.4168(c);ii. reducing the...

  9. 40 CFR Table 3 to Subpart Qqqq of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.4767(a) i. Collecting the combustion temperature data according to § 63.4768(c... combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a. The average temperature...

  10. Microcomputers in Florida Public Schools. Fall 1990. MIS Statistical Brief, Series 91-07B.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Bureau of Program Support Services.

    This summary of the use of microcomputers in Florida public schools during the 1990-91 school year indicates that the schools have reported a total of 131,367 microcomputers being used for student instruction, and 21,806 being used for administrative purposes. Four tables present data on the number of microcomputers in individual school districts…

  11. Employees in Postsecondary Institutions, Fall 2005 and Salaries of Full-Time Instructional Faculty, 2005-06. First Look. NCES 2007-150

    ERIC Educational Resources Information Center

    Knapp, Laura G.; Kelly-Reid, Janice E.; Whitmore, Roy W.; Miller, Elise

    2007-01-01

    This report presents information from the Winter 2005-06 Integrated Postsecondary Education Data System (IPEDS) web-based data collection. Tabulations represent data requested from all postsecondary institutions participating in Title IV federal student financial aid programs. The tables in this publication include data on the number of staff…

  12. Staff in Postsecondary Institutions, Fall 2002, and Salaries of Full-Time Instructional Faculty, 2002-03. E.D. Tabs. NCES 2005-167

    ERIC Educational Resources Information Center

    Knapp, Laura G.; Kelly-Reid, Janice E.; Whitmore, Roy W.; Wu, Shiying; Huh, Seungho; Levine, Burton; Broyles, Susan G.

    2004-01-01

    This report presents information from the Winter 2002-03 Integrated Postsecondary Education Data System (IPEDS) web-based data collection. Tabulations represent data requested from all postsecondary institutions participating in Title IV federal student financial aid programs. The tables in this publication include data on the number of staff…

  13. Grades in Selected First-Year Courses by ELT Status.

    ERIC Educational Resources Information Center

    Windham, Patricia

    This report presents tables of grades in selected first-year courses by entry-level placement test (ELT) status in Florida community colleges. The cohort used in this analysis consisted of the fall 1993 students with ELT scores as reported in the 1993-94 Student Data Base (SDB). Students who took an ELT were divided into those who passed and those…

  14. Survey of New Jersey Public School Districts Using Computers and Data Entry Equipment.

    ERIC Educational Resources Information Center

    Gaydos, Irvin A.

    The twelve tables in this study represent the results of a Fall 1975 survey of the 589 operating school districts in the State of New Jersey to determine the status of computer and data entry equipment utilization. Results show that the number of users of this equipment increased noticeably, primarily in administrative processing areas such as…

  15. 76 FR 36955 - West Los Angeles VA Medical Center Veterans Programs Enhancement Act of 1998; Master Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Brentwood School and MacArthur Field as part of the land use agreements for those spaces. A planned future..., the historic Rose Garden, will be completed in fall of 2011. This area, located just across the street from the Domiciliary, will include meditative gardens, tables for chess and checkers, and soothing...

  16. Labor Markets for New Science and Engineering Graduates in Private Industry. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Data are presented on labor market conditions for science and engineering graduates based on responses of 255 firms to mail and telephone surveys conducted in late fall of 1981. Highlights presented in table, chart, and text indicate: (1) definite and likely shortages were concentrated in the computer and engineering fields; (2) chemical,…

  17. Manual displacement of the uterus during Caesarean section.

    PubMed

    Kundra, P; Khanna, S; Habeebullah, S; Ravishankar, M

    2007-05-01

    Ninety ASA 1 and 2 pregnant women with term singleton pregnancies and no maternal and fetal complications, scheduled for elective or emergency Caesarean section, were randomly allocated to group LT (15 degrees left lateral table tilt, n = 45) and group MD (leftward manual displacement, n = 45). Subarachnoid block was established with a 25-gauge spinal needle at the L3-L4 interspace using 1.5 ml of 0.5% hyperbaric bupivacaine. A median sensory level of T6 was observed in both groups but the incidence of hypotension was markedly lower in group MD when compared to group LT (4.4% vs 40%; p < 0.001) with a significant reduction in mean (SD) ephedrine requirement (6 (0) vs 11.3 (4.9) mg; p < 0.001). The mean (SD) fall in systolic blood pressure was 28.8 (7.3) mmHg in group LT and 20 (12.7) mmHg in group MD. The time to maximum fall in systolic blood pressure was similar in both groups (4.5 min). We conclude that manual displacement of the uterus effectively reduces the incidence of hypotension and ephedrine requirements when compared to 15 degrees left lateral table tilt in parturients undergoing Caesarean section.

  18. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico

    USGS Publications Warehouse

    Welder, G.E.

    1983-01-01

    This report describes the geohydrology of the Roswell ground-water basin and shows the long-term hydrostatic-head changes in the aquifers. The Roswell ground-water basin consists of a carbonate artesian aquifer overlain by a leaky confining bed, which, in turn is overlain by an alluvial water-table aquifer. The water-table aquifer is hydraulically connected to the Pecos River. Ground-water pumpage from about 1,500 wells in the basin was about 378,000 acre-feet in 1978. Irrigation use on about 122,000 acres accounted for 95 percent of that pumpage.

  19. Water resources of Washington Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-06-13

    In 2010, about 34.55 million gallons per day (Mgal/d) of water were withdrawn in Washington Parish, including about 28.10 Mgal/d from groundwater sources and 6.44 Mgal/d from surface-water sources1 (table 1). Withdrawals for industrial use accounted for about 52 percent (17.80 Mgal/d) of the total water withdrawn (table 2). Other categories of use included public supply, rural domestic, irrigation, and livestock. Water-use data collected at 5-year intervals from 1960 to 2010 (fig. 2) indicated that water withdrawals peaked in 1975 at about 51.9 Mgal/d.

  20. Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment.

    PubMed

    Hladik, Michelle L; Bouwer, Edward J; Roberts, A Lynn

    2008-12-01

    Treated drinking water samples from 12 water utilities in the Midwestern United States were collected during Fall 2003 and Spring 2004 and were analyzed for selected neutral degradates of chloroacetamide herbicides, along with related compounds. Target analytes included 20 neutral chloroacetamide degradates, six ionic chloroacetamide degradates, four parent chloroacetamide herbicides, three triazine herbicides, and two neutral triazine degradates. In the fall samples, 17 of 20 neutral chloroacetamide degradates were detected in the finished drinking water, while 19 of 20 neutral chloroacetamide degradates were detected in the spring. Median concentrations for the neutral chloroacetamide degradates were approximately 2-60ng/L during both sampling periods. Concentrations measured in the fall samples of treated water were nearly the same as those measured in source waters, despite the variety of treatment trains employed. Significant removals (average of 40% for all compounds) were only found in the spring samples at those utilities that employed activated carbon.

Top