Science.gov

Sample records for falls chemical landfill

  1. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill

    SciTech Connect

    Peel, M.C.; Wyndham, R.C.

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fbc) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl. Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns.

  2. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill.

    PubMed

    Peel, M C; Wyndham, R C

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 degrees C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59-68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  3. Superfund Record of Decision (EPA Region 1): Beacon Heights Landfill, Beacon Falls, Connecticut, September 1985. Final report

    SciTech Connect

    Not Available

    1984-09-23

    The Beacon Heights Landfill site is located two miles east of the intersection of Connecticut Routes 8 and 42 in Beacon Falls, Connecticut. From the 1920's until 1970 the site was known as Betkoski's Dump and consisted of approximately six acres on which active dumping occurred. According to records at the Connecticut Department of Environmental Protection (CT DEP), waste accepted at the dump included municipal refuse, rubber, plastics, and industrial chemicals and sludges. Landfill operations consisted primarily of open burning along with burial of noncombustibles. In 1970, the Betkoski property and adjacent properties totaling 83 acres were purchased by the Murtha Trucking Company, and the name was changed to Beacon Heights, Inc. Landfill. At this time, the landfill area was expanded to approximately 30 acres. Records of the CT DEP, including a 1973 report by the landfill engineer, listed rubber, plastics, oils, hydrocarbons, chemical liquids and sludges, and solvents as being disposed of at the landfill by the trucking company. The selected remedial action for this site are included.

  4. Landfills

    EPA Pesticide Factsheets

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  5. Simulation of ground-water flow in the vicinity of Hyde Park landfill, Niagara Falls, New York

    USGS Publications Warehouse

    Maslia, M.L.; Johnston, R.H.

    1982-01-01

    The Hyde Park landfill is a 15-acre chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low permeability glacial till, (2) a moderately permeable fractured rock aquifer--the Lockport Dolomite, and (3) a low permeability unit--the Rochester Shale. The site is bounded on three sides by ground-water drains; the Niagara River Gorge, the Niagara Power Project canal, and the power project conduits. A finite element model was used to simulate ground-water flow along an east-west section through the Hyde Park site (from the power project conduits to the Niagara Gorge). Steady-state conditions were simulated with an average annual recharge rate of 5 inches per year. The calibrated model simulated measured water levels within 5 feet in the glacial till and upper unit of the Lockport Dolomite and approximated the configuration of the water table. Based on simulation, ground-water flow near the Hyde Park site can be summarized as follows: 1. Specific discharge (Darcy velocity) ranges from about 0.01 to 0.1 foot per day in the upper unit of the Lockport Dolomite to less than 0.00001 foot per day in the Rochester Shale. Real velocities are highest in the upper unit of the Lockport, ranging from about 1.5 to 4.8 feet per day. 2. A ground-water divide exists east of the landfill, indicating that all ground water originating near or flowing beneath the landfill will flow toward and discharge in the gorge. 3. The zone of highest velocities (and presumably greatest potential for transporting chemical contaminants) includes the upper unit of the Lockport and part of the lower unit of the Lockport Dolomite between the landfill and the gorge. The time required for ground water to move from the landfill to the gorge in the Lockport Dolomite is estimated to be 5 to 7 years.

  6. Assessing mobility of household organic hazardous chemicals in landfill

    SciTech Connect

    Xie, R.; Zeiss, C.

    1995-11-01

    The principal components of these hazardous materials are motor oils, detergents, paints and pesticides. Occurrence of their ingredients in landfill leachate follows source release function that determines their discharge rate to groundwater. Five compounds were identified very mobile in the landfill based on mobility index calculations. They were phenolate for the motor oil group, ethylene oxide and thylene glycol from detergent group, and formaldehyde and methylethyl ketone (MEK) from the paint group. These five chemicals were used as tracing compounds for quantitative assessment of their emission to the groundwater. An analytical solution to a one dimensional convective-diffusion transport equation was used to model their transport in the landfill. The model into which the channeled flow was incorporated considered adsorption-desorption and degradation. Leachate from earlier stage of leaching had significantly higher concentrations of the tracing compounds in comparison to that produced later. Contaminant concentrations in leachate decreased with time and the decreases occurred in order of formaldehyde {ge} phenol > MEK {ge} ethylene glycol > ethylene oxide. Concentrations of phenol, formaldehyde, and ethylene glycol were less than 0.02 g/L, which is about 0.1% of initial concentration, after 11 weeks. It took 22 weeks for MEK to be reduced to the same concentration at a velocity of 6 pore volumes per year.

  7. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  8. Variations in the chemical properties of landfill leachate

    NASA Astrophysics Data System (ADS)

    Chu, L. M.; Cheung, K. C.; Wong, M. H.

    1994-01-01

    Landfill leachates were collected and their chemical properties analyzed once every two months over a ten-month period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The contents of solids, and inorganic and organic components fluctuated considerably with time. In general, the chemical properties of the two leachates correlated negatively ( P<0.05) with the amounts of rainfall prior to the sampling periods. However, magnesium and pH of the leachates remained relatively constant with respect to sampling time. The JB leachate contained higher average contents of solids and inorganic and organic matter than those of GDB with the exception of trace metals. Trace metals were present in the two leachates in trace quantities (<1.0 mg/liter). The concentrations of average ammoniacal nitrogen were 1040 and 549 mg/liter, while chemical oxygen demand (COD) values were 767 and 695 mg/liter for JB and GDB leachates, respectively. These results suggest that the leachates need further treatment before they can be discharged to the coastal waters.

  9. Superfund record of decision (EPA Region 5): Lauer 1 Sanitary Landfill (Boundary road), Menomonee Falls, WI, March 11, 1996

    SciTech Connect

    1996-06-01

    The Boundary Road Landfill (formerly known as the Lauer 1 Landfill) is located in the northeastern portion of the Village of Menomonee Falls. Construction of a new multi-layer soil cover system over the landfill; installation of leachate extraction measures in the northeastern portion of the site; installation of an active landfill gas extraction system; construction of a new leachate conveyance, likely a forcemain (pressure pipe), to transmit all extracted leachate from the site to the local sanitary sewer system; continued operation and maintenance of an existing slurry cut-off wall and leachate collection system, including conveyance of leachate from the collection system to the new forcemain; implementation of proper institutional controls; installation of new fencing and improvement of existing fencing to restrict site access; long-term monitoring of groundwater, surface water and landfill gas; supplementary studies of groundwater quality and internal landfill leachate elevations; and implementation of additional remedial actions found to be necessary under the additional studies of groundwater quality and internal leachate elevations.

  10. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... landfill do not exceed 500 ppm PCB and measures to prevent the migration of PCBs from the landfill. Bulk... shall be placed around the site to prevent unauthorized persons and animals from entering. (ii)...

  11. Health assessment for Beacon Heights Landfill site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD072122062. Addendum. Final report

    SciTech Connect

    Not Available

    1991-06-20

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. As noted in Human Exposure Pathways Section below, human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  12. Emissions of Toxic Release Inventory listed chemicals from MSW landfills and federal right to know programs

    SciTech Connect

    Lehman, A.T.

    1996-09-01

    The US Environmental Protection Agency (USEPA) is considering expanding the Toxic Release Inventory (TRI) to include releases from sanitary services including municipal solid waste (MSW) landfills. Information about release of TRI-listed chemicals from MSW landfills under federal community right to known laws is scattered throughout the literature and difficult for the general public to obtain. Reports prepared by the US Environmental Protection Agency (USEPA) considering TRI expansion to include MSW landfills recognized the quantity and diversity of toxic compounds, some carcinogenic, present in landfill gases and leachate. This two-part discussion summarizes existing literature on emissions of TRI-listed chemicals from landfills and examines the extent and limits of each agency`s program evaluating Environmental Health and Safety impacts of landfill emissions. In reviewing limited emissions data from landfills, EPA identified both known and suspected carcinogens (such) as benzene, carbon tetrachloride, and vinyl chloride. At least 12 pollutants such as benzene, chloroform, and ethylene dichloride contained in MSW landfill emissions have the potential to produce health effects other than cancer.

  13. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  14. Superfund Record of Decision (EPA Region 1): Beacon Heights Landfill site, Beacon Falls, CT. (First remedial action), September 1990. (Supplemental). Final report

    SciTech Connect

    Not Available

    1990-09-28

    The 34-acre Beacon Heights Landfill site is on the northwest corner of an 82-acre property in Beacon Falls, Connecticut. The ROD supplements the 1985 ROD by resolving those determinations left open in the 1985 ROD, including the manner and locations of leachate treatment/disposal; cleanup levels for soil deemed impracticable to cap in areas contiguous to the landfill; and the need for air pollution controls on the landfill gas vents. The primary contaminants of concern affecting the soil, ground water, surface water, and air are VOCs, including benzene, toluene, and xylene.

  15. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... connection between the site and standing or flowing surface water. The site shall have monitoring wells and... least fifty feet from the historical high water table. (4) Flood protection. (i) If the landfill site is below the 100-year floodwater elevation, the operator shall provide surface water diversion dikes around...

  16. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in 40 CFR part 136 as amended in 41 FR 52779 on December 1, 1976. (A) PCBs. (B) pH. (C) Specific... connection between the site and standing or flowing surface water. The site shall have monitoring wells and... least fifty feet from the historical high water table. (4) Flood protection. (i) If the landfill site is...

  17. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in 40 CFR part 136 as amended in 41 FR 52779 on December 1, 1976. (A) PCBs. (B) pH. (C) Specific... connection between the site and standing or flowing surface water. The site shall have monitoring wells and... least fifty feet from the historical high water table. (4) Flood protection. (i) If the landfill site is...

  18. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  19. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  20. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    SciTech Connect

    Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H.; Nyholm, N.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.

  1. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    EPA Science Inventory

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  2. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    EPA Science Inventory

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  3. Chemical Education Falls on Hard Times.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1981-01-01

    This article examines evidence that shows that the quality of education in many fields of engineering, including chemical engineering, is being endangered by severe and growing shortages of competent faculty. Shrinking graduate enrollment, budget cuts, and high industrial salaries are discussed as main causes. (ECO)

  4. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill

    USGS Publications Warehouse

    Baedecker, M.J.; Back, W.

    1979-01-01

    Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.

  5. Assessment of microbiological and chemical properties in a municipal landfill area.

    PubMed

    Frączek, Krzysztof J; Ropek, Dariusz R; Lenart-Boroń, Anna M

    2014-01-01

    This study aimed at determining the environmental hazards for soils posed by a large municipal landfilll. The concentrations of heavy metals and Policyclic Aromatic Hydrocarbons, as well as microbial composition (i.e., mesophilic bacteria, actinomycetes, molds, Salmonella, Staphylococcus, Clostridium perfringens) in four soils within and in the vicinity of the landfill were evaluated and compared to waste samples. Both chemical and microbiological analyses revealed only limited contamination of surrounding areas. Although the increased alkalinity of soils was detected, the concentrations of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) did not exceed the admissible values. All examined microbial groups were abundant in soil and waste. The highest microbial cell numbers were observed in warm summer and spring months. Although the site south of the landfill shows no trace of microbial contamination, pathogenic bacteria were found north of the landfill. This may suggest that there are other, more effective, transmission routes of bacteria than groundwater flow.

  6. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate

    SciTech Connect

    Baun, A.; Kloeft, L.; Bjerg, P.L.; Nyholm, N.

    1999-09-01

    A method for assessment of toxicity of nonvolatile organic chemicals contaminants in groundwater polluted with landfill leachate has been evaluated. The biotests utilized were composed of an algal growth inhibition test (Selenastrum capricornutum), a daphnia immobilization test (Daphnia magna), and a bacterial genotoxicity test (umuC, Salmonella typhimurium). The feasibility of the selected biotests was investigated for a series of groundwater samples collected along pollution gradients downstreams of two landfills in Jutland, Denmark. Two different approaches were used, direct toxicity testing of whole groundwater samples, and toxicity testing of concentrates obtained by solid-phase extraction. Direct testing of whole groundwater samples produced toxic responses, but the complex sample matrix masked the toxicity of the organic chemical contaminants of interest. Solid-phase extraction was used successfully as an on-site method that eliminated ion toxicity and produced biotest responses that reflected the toxicity of the nonvolatile organic chemical contaminants in the groundwater.

  7. Health assessment for Beacon Heights Landfill National Priorities List (NPL) Site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD001145671. Final report

    SciTech Connect

    Not Available

    1989-01-26

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. Human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  8. Physico-chemical and biological characterization of urban municipal landfill leachate.

    PubMed

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate.

  9. Characterization of landfill leachates by molecular size distribution, biodegradability, and inert chemical oxygen demand.

    PubMed

    Amaral, Míriam C S; Ferreira, Cynthia F A; Lange, Liséte Celina; Aquino, Sérgio F

    2009-05-01

    This work presents results from a detailed characterization of landfill leachates of different ages from a landfill in a major Brazilian city. This characterization consists of determining the molecular size distribution and the inert chemical oxygen demand (COD) and the biodegradability of both aerobic and anaerobic processes. Results show that leachate with a high COD concentration leachate has low biodegradability. A significant fraction of the COD is not characterized as protein, carbohydrate, or lipids, which reinforces the hypothesis that the remaining fraction was present in all leachate fractions (less than 1 kDa; between 1 and 10 kDa; between 10 and 100 kDa; and greater than 100 kDa) and is refractory. These results suggest that leachates with such characteristics require treatment systems that use physical-chemical processes as a pre- or post-treatment step to biological processes.

  10. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.

    PubMed

    Matejczyk, Marek; Płaza, Grażyna A; Nałęcz-Jawecki, Grzegorz; Ulfig, Krzysztof; Markowska-Szczupak, Agata

    2011-02-01

    The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L⁻¹. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox(®), Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora. No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect. The chemical, ecotoxicological and microbiological

  11. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India.

    PubMed

    Ghosh, Pooja; Gupta, Asmita; Thakur, Indu Shekhar

    2015-06-01

    In the present study, landfill leachate of three landfill sites of Delhi, India, was toxico-chemically analyzed for human risk assessment. Raw leachate samples were collected from the municipal solid waste (MSW) landfills of Delhi lacking liner systems. Samples were characterized with relatively low concentrations of heavy metals while the organic component exceeded the upper permissible limit by up to 158 times. Qualitative analysis showed the presence of numerous xenobiotics belonging to the group of halogenated aliphatic and aromatic compounds, polycyclic aromatic hydrocarbons (PAHs), phthalate esters, and other emerging contaminants. Quantitative analysis of PAHs showed that the benzo(a)pyrene-toxic equivalence quotient (BaP-TEQ) ranged from 41.22 to 285.557 ng L(-1). The human risk assessment methodology employed to evaluate the potential adverse effects of PAHs showed that the cancer risk level was lower than the designated acceptable risk of 10(-6). However, significant cytotoxic and genotoxic effects of leachates on HepG2 cell line was observed with MTT EC50 value ranging from 11.58 to 20.44 % and statistically significant DNA damage. Thus, although the leachates contained low concentrations of PAHs with proven carcinogenic potential, but the mixture of contaminants present in leachates are toxic enough to cause synergistic or additive cytotoxicity and genotoxicity and affect human health.

  12. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate.

    PubMed

    Oygard, Joar Karsten; Måge, Amund; Gjengedal, Elin; Svane, Tore

    2005-01-01

    Landfill leachates sampled during and after an accidental landfill fire were analysed and the levels of selected metals and chemical compounds compared to those occurring in the leachate under normal conditions. The fire at the landfill site was put out by excavation and cooling by use of water. The investigation during the fire and fire fight revealed a moderate increase in the level of nitrogen and also in pH and conductivity. Heavy metals and COD in the leachate showed considerably increased levels. In general, the determined variables appeared to normalise within one week after the fire was extinguished. It can be concluded that landfill fires extinguished by excavation may lead to elevated leachate levels of especially COD and heavy metals, but that this is only a short-term effect.

  13. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  14. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Analysis of microbiological and chemical quality of poultry meat in the vicinity of the Mbeubeuss landfill in Malika (Senegal).

    PubMed

    Missohou, Ayao; Mbodj, Malick; Zanga, Donatien; Niang, Seydou; Sylla, Kkalifa Serigne Babacar; Seydi, Malang; Cissé, Oumar; Seck, Salimata Wone

    2011-06-01

    A total of 100 samples of poultry meat were collected in poultry farms in the vicinity of the Mbeubeuss landfill in the Niayes (Senegal) for microbiological and chemical analysis. Fifty-four (54) samples were collected in farms located less than 1 km from the landfill and 46 samples were collected in farms located a bit further (more than 1 km from the landfill). Microbiological quality was determined using techniques recommended by Association Française de Normalisation (AFNOR). Lead and cadmium concentration in poultry meat was measured by flame spectrometry while total mercury was determined by atomic absorption spectrometry. Three percent (3%) of the samples' quality were unsatisfactory for E. coli, 1% for Staphylococci and 7% for Salmonella spp. Poor meat quality was found either in farms located less than 1 km of the landfill or in farms located at more than 1 km of the landfill. Except for Salmonella, only meat samples from poultry receiving drinking water from well showed unsatisfactory microbiological quality. The samples were free of cadmium and lead but were contaminated by mercury. Sixty-eight percent (68%) of the samples contained mercury with a high contamination level (>0.011 mg/kg) in 20% of the samples. No significant difference was found between the farms that were nearest to and further away from the landfill while the source of drinking water seemed to be the main cause of contamination of poultry meat by mercury.

  16. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    SciTech Connect

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-05-15

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: {yields} We study the toxicity of leachate from a non-hazardous industrial waste landfill. {yields} We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. {yields} Risk models suggest toxic effects due to ammonia and inorganic constituents. {yields} In vitro assays show that leachate inhibits cell proliferation at low doses. {yields} Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  17. Chemical and mineralogical characterization of blast-furnace sludge from an abandoned landfill.

    PubMed

    Mansfeldt, Tim; Dohrmann, Reiner

    2004-11-15

    Blast-furnace sludge is generated during the production of pig iron and is disposed of in the environment in large surface landfills. We investigated blast-furnace sludge samples of an abandoned landfill in order to determine its chemical and mineralogical nature and to evaluate some environmental hazards that may arise from this industrial waste. The mineralogical inventory, which was quantified by Rietveld refinement of XRD analyses using the fundamental-parameter approach, revealed that blast-furnace sludge is dominated by X-ray amorphous substances (with a mean of 590 g kg(-1)) including coke and (hydr)oxides of Fe, Si, Al, Zn, and Pb. Calcite (CaCO3) (136 g kg(-1)), dolomite (Ca,Mg[CO3]2) (14 g kg(-1)), quartz (SiO2) (55 g kg(-1)), kaolinite (Al2[OH]4Si2O5) (40 g kg(-1)), graphite (C) (27 g kg(-1)), and chemically not specified layered double hydroxides (28 g kg(-1)) were identified in almost all samples. Iron is present as magnetite (Fe3O4) (34 g kg(-1)), hematite (Fe2O3) (38 g kg(-1)), wuestite (FeO) (20 g kg(-1)) and alpha-iron (Fe0) (6 g kg(-1)). Chemically, blast-furnace sludge is dominated by C (190 g kg(-1)) and Fe (158 g kg(-1)) reflecting the process of pig-iron production. On the basis of total contents, environmentally problematic metals (including As) are Zn (32.6 g kg(-1)), Pb (10.3 g kg(-1)), Cd (81 mg kg(-1)), and As (129 mg kg(-1)). As the forested landfill is used by residents for leisure activities, the exposure assessment by pathway oral uptake of blast-furnace sludge particles by humans has to be critically evaluated, particularly as significant proportions of metals are acid-soluble. However, under the prevailing slightly alkaline pH values of the sludge (pH 7.6-9.2), the solubility of the metals is very low as indicated by low pore water concentrations. Currently, groundwater monitoring should be focused mainly on F- since the F- concentrations in the pore water of blast-furnace sludge are at high level (2.65-24.1 mg of F- L(-1)).

  18. Falls

    MedlinePlus

    A fall can change your life. If you're elderly, it can lead to disability and a loss of independence. If your bones are fragile from osteoporosis, you could break a bone, often a hip. But aging alone doesn't make people fall. Diabetes and heart disease affect balance. So do ...

  19. Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering.

    PubMed

    Zule, Janja; Cernec, Franc; Likon, Marko

    2007-12-01

    Waste paper mill sludges originating from different effluent treatment and de-inking installations are complex mixtures of inorganic and organic particles. Due to their favourable physico-chemical, and microbiological characteristics, they may be conveniently reused for different purposes as such or after appropriate pretreatment. Sludges from the Slovenian paper industry were extensively tested for their chemical, stability and sealing properties. During the biodegradability tests, evolutions of greenhouse gases CO2, CH4 and H2S as well as the concentrations of released volatile organic acids, such as acetic, propionic, butyric, lactic and glycollic acids as the typical degradation products of organic materials, were measured. Some other important parameters of water leachates such as pH, redox potential, content of starch and leachable ions were also evaluated. The results indicate that most of them can be efficiently applied as alternative hydraulic barrier layers for landfill construction and covering instead of the more expensive clay due to their good geomechanical properties, chemical inertness and microbiological stability. Such replacement brings about considerable economical and ecological benefits as the waste is reprocessed as secondary raw material.

  20. Slips, trips and falls at a chemical manufacturing company.

    PubMed

    Swaen, G; Burns, C J; Collins, J J; Bodner, K M; Dizor, J F; Craun, B A; Bonner, E M

    2014-03-01

    Slips, trips and falls (STF) are a major cause of workplace injury. To examine risk factors for STF at a large US chemical manufacturing company. We conducted a case-control study of occupational STF. Cases were identified from company injury records between 1 April 2009 and 1 May 2011. Four controls per case were randomly selected from all active company workers employed during the same time. Data were collected through a questionnaire and from company medical examinations. Logistic regression was used to calculate odds ratio (OR) and 95% confidence intervals (95% CI) for personal, environmental and health-related risk factors for STF. There were 74 cases and 309 controls. The response rate was 65% for the cases and 68% for the controls. Most STF were unrelated to production activities. When examining all factors in a logistic regression model, increased OR were observed for increased body mass index (OR = 1.44, 95% CI: 1.03-2.02), having arthritis (OR = 2.11, 95% CI: 1.01-4.37), lack of exercise (OR = 2.25, 95% CI: 1.01-5.05), carrying materials (OR = 3.01, 95% CI: 1.41-6.43) and being female (OR = 2.46, 95% CI: 1.17-5.19). Reduced risk of STF was observed for never having smoked (OR = 0.48, 95% CI: 0.24-0.95), long service (OR = 0.53, 95% CI: 0.34-0.81) and persons working over 8h a day (OR = 0.42, 95% CI: 0.20-0.88). Risk factors for STF in a large US chemical company are similar to those reported from other workplaces, but we found that staying fit and healthy is important for reducing risk.

  1. Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate.

    PubMed

    Cotman, Magda; Gotvajn, Andreja Zgajnar

    2010-06-15

    Our work was focused on investigation of different treatment procedures for the removal of toxic fractions from a landfill leachate, because sometimes the existing treatment in biological sequencing batch reactor (SBR) is not efficient enough, leading to a hazardous environmental impact of the present persistent and toxic compounds. The efficiency of the procedures used was monitored by chemical analyses and two toxicity tests (activated sludge and Vibrio fischeri). The existing SBR (HRT=1.9 days) removed 46-78% of COD and 96-73% of NH(4)(+)-N. Experiments were conducted with three landfill leachate samples expressing significant difference in concentrations of pollutants and with low BOD(5)/COD ratio (0.06/0.01/0.03). The applied methods were air stripping, adsorption to activated carbon and zeolite clinoptilolite and Fenton oxidation. Air stripping at pH 11 was a viable treatment option for the removal of ammonia nitrogen (up to 94%) and reduction of toxicity to microorganisms. In the adsorption experiments in batch system with different concentration of PAC the most effective was the highest addition (50.0gL(-1)) where 63-92% of COD was removed followed by significant reduction in toxicity to V. fischeri. In the column experiments with clinoptilolite 45/93/100% of NH(4)(+)-N as well as 25/32/39% of COD removal was attained. The removal efficiency for metals followed the sequence Cr>Zn>Cd>Ni. The procedure with zeolite was the second most efficient one regarding reduction of toxicity to both organisms. Fenton oxidation at molar ratio Fe(2+):H(2)O(2)=1.0:10.0 assured 70-85% removal of COD but it only slightly reduced the toxicity.

  2. Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis.

    PubMed

    Morozesk, Mariana; Bonomo, Marina Marques; Souza, Iara da Costa; Rocha, Lívia Dorsch; Duarte, Ian Drumond; Martins, Ian Oliveira; Dobbss, Leonardo Barros; Carneiro, Maria Tereza Weitzel Dias; Fernandes, Marisa Narciso; Matsumoto, Silvia Tamie

    2017-10-01

    Biological process treatment of landfill leachate produces a significant amount of sludge, characterized by high levels of organic matter from which humic acids are known to activate several enzymes of energy metabolism, stimulating plant growth. This study aimed to characterize humic acids extracted from landfill sludge and assess the effects on plants exposed to different concentrations (0.5, 1, 2 and 4 mM C L(-1)) by chemical and biological analysis, to elucidate the influence of such organic material and minimize potential risks of using sludge in natura. Landfill humic acids showed high carbon and nitrogen levels, which may represent an important source of nutrients for plants. Biochemical analysis demonstrated an increase of enzyme activity, especially H(+)-ATPase in 2 mM C L(-1) landfill humic acid. Additionally, cytogenetic alterations were observed in meristematic and F1 cells, through nuclear abnormalities and micronuclei. Multivariate statistical analysis provided integration of physical, chemical and biological data. Despite all the nutritional benefits of humic acids and their activation of plant antioxidant systems, the observed biological effects showed concerning levels of mutagenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. IN SITU BIOREMEDIATION IN A LANDFILL: LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    In recent years the conversion of landfills to landfill bioreactors has received increased attention owing to potential economic and waste treatment benefits. The U.S. EPA has entered into a Cooperative Research and Development Agreement (CRADA), with Waste Management Inc., testi...

  4. IN SITU BIOREMEDIATION IN A LANDFILL: LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    In recent years the conversion of landfills to landfill bioreactors has received increased attention owing to potential economic and waste treatment benefits. The U.S. EPA has entered into a Cooperative Research and Development Agreement (CRADA), with Waste Management Inc., testi...

  5. Bacterial Population Development and Chemical Characteristics of Refuse Decomposition in a Simulated Sanitary Landfill

    PubMed Central

    Barlaz, M. A.; Schaefer, D. M.; Ham, R. K.

    1989-01-01

    Population development of key groups of bacteria involved in municipal refuse conversion to methane was measured from the time of initial incubation through the onset of methane production. Hemicellulolytic bacteria, cellulolytic bacteria, hydrogen-producing acetogens, and acetate- and H2-plus-CO2-utilizing methanogens were enumerated by the most-probable-number technique with media containing oat spelt xylan, ball-milled cellulose, butyrate, acetate, and H2 plus CO2, respectively. Refuse decomposition was monitored in multiple replicate laboratory-scale sanitary landfills. A laboratory-scale landfill was dismantled weekly for microbial and chemical analysis. Leachate was neutralized and recycled to ensure methanogenesis. The methane concentration of the sampled containers increased to 64% by day 69, at which time the maximum methane production rate, 929 liters of CH4 per dry kg-year, was measured. Population increases of 2, 4, 5, 5, and 6 orders of magnitude were measured between fresh refuse and the methane production phase for the hemicellulolytic bacteria, cellulolytic bacteria, butyrate-catabolizing acetogens, and acetate- and H2-CO2-utilizing methanogens, respectively. The cellulolytic bacteria and acetogens increased more slowly than the methanogens and only after the onset of methane production. The initial decrease in the pH of the refuse ecosystem from 7.5 to 5.7 was attributed to the accumulation of acidic end products of sugar fermentation, to the low acid-consuming activity of the acetogenic and methanogenic bacteria, and to levels of oxygen and nitrate in the fresh refuse sufficient for oxidation of only 8% of the sugars to carbon dioxide and water. Cellulose and hemicellulose decomposition was most rapid after establishment of the methanogenic and acetogenic populations and a reduction in the initial accumulation of carboxylic acids. A total of 72% of these carbohydrates were degraded in the container sampled after 111 days. Initially acetate

  6. ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL

    SciTech Connect

    Young, S.G.; Creech, M.N.

    2003-02-27

    During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

  7. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  8. Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia.

    PubMed

    Kawai, M; Purwanti, I F; Nagao, N; Slamet, A; Hermana, J; Toda, T

    2012-11-15

    Seasonal variations in the physical and chemical characteristics of leachate taken from Benowo landfill in Indonesia, including factors likely to inhibit anaerobic digestion, were investigated to determine the impacts on the stability of anaerobic treatment. To evaluate the biodegradability of the leachate, a continuous experiment was conducted by changing the organic loading rate (OLR). Chemical oxygen demand (COD) ranged between 2621 and 16,832 mg L(-1), and COD in the dry season was twice the level in the rainy season owing to reduced rainwater input and significant evaporation. COD, pH, and the concentrations of ammonium ion, and metals in the leachate were within acceptable ranges for decomposition by anaerobic digestion. However, the Na(+) and Cl(-) in the leachate are high enough to inhibit anaerobic digestion. From chemical investigation of leachate at six monitoring wells in Benowo, food waste accumulation and seawater intrusion might cause high salinity in the leachate. In the continuous experiment, COD removal efficiency was maintained at 40% regardless of OLR, suggesting that at least 40% of the leachate contained biodegradable substances. Based on these results, issues surrounding the biological treatment of saline and refractory substances in landfill leachate were discussed. It is suggested that high salinity and refractory substances in the leachate are common issues during the leachate treatment by anaerobic digestion as the implications for similar landfills in other countries around the world. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  10. Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014

    SciTech Connect

    Mitchell, Michael Marquand; Little, Bonnie Colleen

    2015-03-01

    The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid waste was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.

  11. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates.

    PubMed

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer

    2013-06-01

    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  12. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.

    PubMed

    Brandstätter, Christian; Laner, David; Prantl, Roman; Fellner, Johann

    2014-12-01

    Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed. This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables. The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills. Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies. Copyright © 2014 Elsevier Ltd

  13. Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill

    USGS Publications Warehouse

    Chen, Lixia; Nanny, Mark A.; Knappe, Detlef R. U.; Wagner, Travis B.; Ratasuk, Nopawan

    2004-01-01

    Newsprint samples collected from 12−16 ft (top layer (TNP)), 20−24 ft (middle layer (MNP)), and 32−36 ft (bottom layer (BNP)) below the surface of the Norman Landfill (NLF) were characterized by infrared (IR) spectroscopy, cross-polarization, magic-angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) spectroscopy, and tetramethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The extent of NLF newsprint degradation was evaluated by comparing the chemical composition of NLF newsprint to that of fresh newsprint (FNP) and newsprint degraded in the laboratory under methanogenic conditions (DNP). The O-alkyl/alkyl, cellulose/lignin, and lignin/resin acid ratios showed that BNP was the most degraded, and that all three NLF newsprint samples were more degraded than DNP. 13C NMR and TMAH thermochemolysis data demonstrated selective enrichment of lignin over cellulose, and TMAH thermochemolysis further exhibited selective enrichment of resin acids over lignin. In addition, the crystallinity of cellulose in NLF newsprint samples was significantly lower relative to that of FNP and DNP as shown by 13C NMR spectra. The yield of lignin monomers from TMAH thermochemolysis suggested that hydroxyl groups were removed from the propyl side chain of lignin during the anaerobic decomposition of newsprint in the NLF. Moreover, the vanillyl acid/aldehyde ratio, which successfully describes aerobic lignin degradation, was not a good indicator of the anaerobic degradation of lignin on the basis of the TMAH data. The toluene sorption capacity increased as the degree of newsprint degradation increased or as the O-alkyl/alkyl ratio of newsprint decreased. The results of this study further verified that the sorbent O-alkyl/alkyl ratio is useful for predicting sorption capacities of natural organic materials for hydrophobic organic contaminants.

  14. IN SITU BIOREMEDIATION IN A LANDFILL: HOLDING TIME STUDY OF LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    Processing and analyzing solid waste samples from large and costly sampling events in a timely manner is often difficult. As part of a Cooperative Research and Development Agreement (CRADA), the U.S. EPA and Waste Management Inc. (WMI) are investigating the conversion of landfill...

  15. Advanced physico-chemical treatment experiences on young municipal landfill leachates

    SciTech Connect

    Ozturk, Izzet; Altinbas, Mahmut; Koyuncu, Ismail; Arikan, Osman; Gomec-Yangin, Cigdem

    2003-07-01

    In this study, Membrane Filtration (UF+RO), Struvite (MAP) precipitation and ammonia stripping alternatives were studied on biologically pre-treated Landfill Leachate. The results indicated that the system including the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and Membrane Reactors (UF+RO) has been offered as an appropriate treatment alternative for young landfill leachates. This system provided high removals of COD, colour and conductivity (>98-99%). For ammonia removal, struvite precipitation was applied at the stoichiometric ratio (Mg:NH{sub 4}:PO{sub 4}=1:1:1) to anaerobically pre-treated raw landfill leachate effluent having an influent ammonium concentration of 2240 mg/l. Maximum ammonium nitrogen removal was observed as 85% at pH of 9.2. In ammonia stripping following 2 h of aeration, the removal was 72% at pH=12 while the removals were around 20% at pH=10 and pH=11. When membrane reactor, and struvite precipitation or ammonia stripping was applied to anaerobically pre-treated effluents, the results indicated that each system could be used as an appropriate post-treatment option for young landfill leachates. In economic aspect, ammonia stripping was found as the cheapest alternative with high ammonium removal. However, when both high COD and ammonium removals were to be achieved membrane technology such as UF+RO (SW) could be considered as the most appropriate system due to the fact that COD removal could be obtained very low by ammonia stripping.

  16. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  17. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  18. Cleaner Landfills

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  19. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    PubMed

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present.

  20. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30 °C at pH 6.0 using 20 g/L dose in 120 min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20 g/L dose, also in 120 min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Modelling gas generation for landfill.

    PubMed

    Chakma, Sumedha; Mathur, Shashi

    2016-09-27

    A methodology was developed to predict the optimum long-term spatial and temporal generation of landfill gases such as methane, carbon dioxide, ammonia, and hydrogen sulphide on post-closure landfill. The model incorporated the chemical and the biochemical processes responsible for the degradation of the municipal solid waste. The developed model also takes into account the effects of heterogeneity with different layers as observed at the site of landfills' morphology. The important parameters for gas generation due to biodegradation such as temperature, pH, and moisture content were incorporated. The maximum and the minimum generations of methane and hydrogen sulphide were observed. The rate of gas generation was found almost same throughout the depth after 30 years of landfill closure. The proposed model would be very useful for landfill engineering in the mining landfill gas and proper design for landfill gas management systems.

  2. Landfill Methane

    USDA-ARS?s Scientific Manuscript database

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  3. Adaptive sampling strategy support for the unlined chromic acid pit, chemical waste landfill, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Johnson, R.L.

    1993-11-01

    Adaptive sampling programs offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the real-time data generated by an adaptive sampling program. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system (SitePlanner{trademark} ) for data fusion, management, and display and combined Bayesian/geostatistical methods (PLUME) for contamination-extent estimation and sample location selection. This approach is applied in a retrospective study of a subsurface chromium plume at Sandia National Laboratories` chemical waste landfill. Retrospective analyses suggest the potential for characterization cost savings on the order of 60% through a reduction in the number of sampling programs, total number of soil boreholes, and number of samples analyzed from each borehole.

  4. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource.

    PubMed

    Li, Yu-Long; Wang, Jin; Yue, Zheng-Bo; Tao, Wei; Yang, Hai-Bin; Zhou, Yue-Fei; Chen, Tian-Hu

    2017-03-06

    Biological treatment played an important role in the treatment of landfill leachate. In the current study, acid mine drainage (AMD) was used as a source of sulfate to strengthen the anaerobic treatment of landfill leachate. Effects of chemical oxygen demand (COD) and SO4(2-) mass concentration ratio on the decomposition of organic matter, methane production and sulfate reduction were investigated and the microbial community was analyzed using the high throughout methods. Results showed that high removal efficiency of COD, methane production and heavy metal removal was achieved when the initial COD/SO4(2-) ratio (based on mass) was set at 3.0. The relative abundance of anaerobic hydrogen-producing bacteria (Candidatus Cloacamonas) in the experimental group with the addition of AMD was significantly increased compared to the control. Abundance of hydrogenotrophic methanogens of Methanosarcina and Methanomassiliicoccus was increased. Results confirmed that AMD could be used as sulfate resource to strengthen the biological treatment of landfill leachate.

  5. A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill.

    PubMed

    Kim, Youngkyu; Yang, GoSu

    2002-10-01

    The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively.

  6. Utilization of landfill gas

    SciTech Connect

    Golden, T. )

    1990-01-01

    Landfill gas is produced by the anaerobic decay of organic matter present in municipal solid waste. Raw landfill gas is composed primarily of carbon dioxide (45 vol percent) and methane (55 vol percent) with part-per-million levels of numerous chemical impurities. The U.S. Department of Energy estimates that over 200 billion cubic feet of methane are generated in landfills every year. To address this potential energy source the author's company has developed a landfill gas treatment system (LFGTS) as an economic means of producing high BTU gas. The LFGTS, presented in this paper, consists of three major processing steps: raw gas collection and compression, trace impurity removal and destruction by temperature swing adsorption, and carbon dioxide removal by pressure swing adsorption to produce pipeline quality methane.

  7. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    PubMed

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  8. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.

  9. Assessing Endocrine Disrupting Chemicals In Landfills, Solid Waste Sites and Wastewater

    EPA Pesticide Factsheets

    EPA researchers are assessing waste water effluents to measure their effects on ecosystems and aquatic animals while also developing innovative solutions to reduce concentrations of potential endocrine disrupting chemicals.

  10. Chemical quality of landfill leachate in treatment ponds and migration of leachate in the surficial aquifer, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Barr, G.L.

    1984-01-01

    The Pinellas County leachate treatment and disposal site encompasses about 8 acres within the 220 acres of the county 's Bridgeway Acres landfill. The site has a high water table and is subject to inundation due to tidal flooding and major storms. Fresh leachate is pumped from V-shaped trenches an average of about 3.8 hours per day. The pumping rate ranges from 150 to 500 gallons per minute. The leachate is aerated for about 2 days in a lined basin, then transferred by gravity to a stabilization pond where it is permitted to infiltrate into the surficial aquifer. Two chemical constituents, ammonia nitrogen and potassium, were used as indicators of migration of the leachate in the aquifer. No apparent nitrification occurred within the treatment system. Leachate has migrated from about 75 to 80 feet along the upper 5 feet of the aquifer during the period of study. Vertical migration was about 4 feet beneath the bottom of the pond into the aquifer. (USGS)

  11. The dependence of the methylation of mercury on the landfill stabilization process and implications for the landfill management.

    PubMed

    Chai, Xiaoli; Hao, Yongxia; Li, Zhonggen; Zhu, Wei; Zhao, Wentao

    2015-01-01

    Mercury species and other chemical characteristics of the leachate from anaerobic and semi-aerobic landfills were analyzed to investigate the factors that control mercury methylation during the landfill stabilization process. At the early landfill stage, the total mercury (THg) and the monomethyl mercury (MMHg) released rapidly and significantly, the THg concentration of the semi-aerobic landfill leachate was obviously higher than that of the anaerobic landfill leachate, while compared with the semi-aerobic landfill, the MMHg concentration in the anaerobic landfill was higher. As the landfill time increased, both of THg and MMHg concentration decreased quickly, the THg concentration in the anaerobic landfill was much higher than that in semi-aerobic landfill, while the MMHg concentration in the anaerobic landfill was lower than that in the semi-aerobic landfill. Generally, the concentrations of dimethyl mercury (DMHg) in the anaerobic landfill leachate were slightly higher than in the semi-aerobic landfill leachate during the stabilization process. A significant positive correlation was found between the DMHg concentrations and the pH value in anaerobic landfill leachate, but this correlation was opposite in the semi-aerobic landfill. The oxidative-reductive potential (ORP) condition was found to be the controlling factor of the methylation process during the early stage. However, the chemical characteristics, especially the TOC concentration, appeared to be the dominant factor affecting the methylation process as the landfill time increased.

  12. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.

    PubMed

    Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin

    2017-01-01

    UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O3) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV254 absorbance (ΔUV254) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV254 = 0.011ΔCOD; ozonation: ΔUV254 = 0.016ΔCOD). A greater ΔUV254/ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance.

  13. Chemical denudation rates in the Bayelva Catchment, Svalbard, in the Fall of 2000

    NASA Astrophysics Data System (ADS)

    Krawczyk, Wiesława Ewa; Lefauconnier, Bernard; Pettersson, Lars-Evan

    The runoff of the Bayelva River discharging Austre and Vestre Brøggerbreen, Brøggerhalvøya, NW Spitsbergen (79°N 12°E) has been recorded since 1989, the longest glacier hydrological time series in Svalbard. Estimates of chemical denudation rates in the basin have been amplified by addition of data from the Fall of 2000, a season not normally considered in denudation research in Arctic basins. In the Fall of 2000 chemical denudation rates were: 11.6 t km -2 or 4.6 m 3 km -2 or 203 Σ + meq m -2; this was approximately 38% of the denudation estimated for the complete year. The runoff in Bayelva in 2000 was 27.16 × 10 6 m 3, the lowest value recorded for the period 1989-2001. The 2000 cation denudation rate 574 Σ + meq m -2 a -1 is 22% and 15% greater than rates published for 1991 and 1992, respectively, by [Earth Surf. Process. Landforms 25 (2000) 1447]. This indicates that extrapolations of data obtained only for the part of the hydrologically active period may lead to substantial underestimates. Chemical denudation rates in the Bayelva basin indicate that Austre Brøggerbreen and Vestre Brøggerbreen are not completely cold-based as has been reported earlier. The polythermal structure of both glaciers is also supported by the occurrence of subglacial outflows found in 2000. Hysteresis effects in SpC= f( Q) relationships and chemical composition also indicate the existence of distributed drainage systems within both glaciers. Dividing the cation denudation rate (Σ + meq m -2) by specific annual runoff (m) provides a new chemical weathering intensity index, expressed as Σ + meq m -3 or μeq/l, enabling comparisons between basins with different runoff regimes. The estimated sequestration of CO 2 during chemical weathering of carbonate and silicate rocks in the Fall of 2000 was 768-826 kg C km -2, and for the complete year was 2865 kg C km -2. From other pools of organic carbon (bacteria, algae, fungi) detected in polar catchments it cannot be assumed that all

  14. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  15. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1982-01-01

    An analysis is presented of the physical characteristics and photochemical aftereffects of the 1908 Tunguska explosive cometary meteor, whose physical manifestations are consistent with a five million ton object's entry into the earth's atmosphere at 40 km/sec. Aerodynamic calculations indicate that the shock waves emanating from the falling meteor could have generated up to 30 million tons of nitric oxide in the stratosphere and mesosphere. A fully interactive one-dimensional chemical-kinetics model of atmospheric trace constituents is used to estimate the photochemical consequences of such a large NO injection. The 35-45% hemispherical ozone depletion predicted by the model is in keeping with the 30 + or - 15% ozone variation reported for the first year after the Tunguska fall. Attention is also given to the optical anomalies which followed the event for indications of NO(x)-O(x) chemiluminescent emissions, NO2 solar absorption, and meteoric dust turbidity, along with possible climate changes due to the nearly one million tons of pulverized dust deposited in the mesosphere and stratosphere by the meteor.

  16. Evaluation of the chemical composition and correlation between the calculated and measured odour concentration of odorous gases from a landfill in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wu, Chuandong; Liu, Jiemin; Zhao, Peng; Li, Wenhui; Yan, Luchun; Piringer, Martin; Schauberger, Günther

    2017-09-01

    Odorous gases emitted from landfills have always been a public concern, but studies evaluating the odour contribution and the correlation between the odour concentrations are limited. The objectives of this study were to assess the odour contribution and to correlate the measured odour concentration COD with the calculated odour concentration SOAV, which was calculated as sum of individual odour activity value (OAV). Odorous air samples from a landfill in Beijing were collected seasonally and measured by both gas chromatography and an olfactometer. Different from previous studies, we measured the odour threshold of 51 detected compounds using a uniform methodology to minimize the imprecision of citing odour threshold from disparate literature. The odour threshold is used to convert the individual chemical concentration into the OAV, which is used as a surrogate of the odour concentration. Evaluation of the OAV revealed that hydrogen sulfide (65.9%), dimethyl sulfide (14.4%) and trimethylamine (8.6%) contributed the most to the odour at the landfill. Moreover, the correlation between the calculated odour concentration SOAV and the measured odour concentration COD resulted in a linear regression equation of COD = 6.28 SOAV (r = 0.914, n = 24, p < 0.01). Based on the scaling factor K = 6.28, the average ratio of calculated odour concentration to measured odour concentration could be improved from less than 0.2 to 1.1. By the calibration of the calculated odour concentration SOAV, it is possible to use continuous measurements of chemical concentrations to derive odour concentration for this site for monitoring purposes.

  17. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  18. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  19. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  20. Superfund explanation of significant difference for the record of decision (EPA Region 1): Beacon Heights Landfill, Beacon Falls, CT, September 9, 1998

    SciTech Connect

    1999-03-01

    EPA issued a ROD on September 23, 1985 (PB86-134004), documenting the selected remedial actions for the Site. EPA issued the Supplemental ROD on September 28, 1990 (PB91-921418). The Supplemental ROD included an evaluation of alternatives for treatment and disposal of the leachate collected from the Site. These alternatives consisted of: treatment at the Beacon Falls Publicly Owned Treatment Works (POTW), treatment at the Naugatuck POTW, trucking the leachate off Site for treatment, and treatment on Site. As a direct result of events that developed after the completion of the ROD and the Supplemental ROD, decisions were made to change the selected location for leachate treatment, to modify the RCRA cap design, and to require the construction of compensatory wetlands.

  1. Results of chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.

    2005-01-01

    Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.

  2. An Integrated Approach Combining Chemical Analysis and an In Vivo Bioassay to Assess the Estrogenic Potency of a Municipal Solid Waste Landfill Leachate in Qingdao

    PubMed Central

    Gong, Yufeng; Tian, Hua; Wang, Lijia; Yu, Suping; Ru, Shaoguo

    2014-01-01

    Various adverse effects related to landfill leachate have made leachates an important issue in past decades, and it has been demonstrated that landfill leachate is an important source of environmental estrogens. In this study, we employed chemical analysis of some already evaluated estrogenic substances, in combination with a bioassay using several specific biomarkers (e.g., plasma vitellogenin and sex steroids, enzyme activity of gonad gamma-glutamyl transpeptidase, and gonadosomatic index) to evaluate the estrogenic activities in outlets from different stages of the leachate treatment process. The results indicated that 5 environmental estrogens (4-t-octylphenol, bisphenol A, di-ethyl phthalate, di-n-butyl phthalate, and diethylhexyl phthalate) were detected by a gas chromatography-mass spectrometry, and the concentrations in leachate samples were 6153 ng/L, 3642 ng/L, 2139 ng/L, 5900 ng/L, and 9422 ng/L, respectively. Leachate (1∶200 diluted) induced the synthesis of plasma vitellogenin and led to decreased enzyme activity of gonad gamma-glutamyl transpeptidase and gonadosomatic index in male goldfish (Carassius auratus) after a 28-day exposure, while increased circulating 17β-estradiol level was also observed in males exposed to treated effluent. Although the target EEs were partially removed with removal rates varying from 87.2% to 99.77% by the “membrane bioreactor+reverse osmosis+aeration zeolite biofilter” treatment process, the treated effluent is still estrogenic to fish. The method combined chemical techniques with the responses of test organisms allowing us to identify the group of estrogen-like chemicals so that we were able to evaluate the overall estrogenic effects of a complex mixture, avoiding false negative assessments. PMID:24743634

  3. An integrated approach combining chemical analysis and an in vivo bioassay to assess the estrogenic potency of a municipal solid waste landfill leachate in Qingdao.

    PubMed

    Gong, Yufeng; Tian, Hua; Wang, Lijia; Yu, Suping; Ru, Shaoguo

    2014-01-01

    Various adverse effects related to landfill leachate have made leachates an important issue in past decades, and it has been demonstrated that landfill leachate is an important source of environmental estrogens. In this study, we employed chemical analysis of some already evaluated estrogenic substances, in combination with a bioassay using several specific biomarkers (e.g., plasma vitellogenin and sex steroids, enzyme activity of gonad gamma-glutamyl transpeptidase, and gonadosomatic index) to evaluate the estrogenic activities in outlets from different stages of the leachate treatment process. The results indicated that 5 environmental estrogens (4-t-octylphenol, bisphenol A, di-ethyl phthalate, di-n-butyl phthalate, and diethylhexyl phthalate) were detected by a gas chromatography-mass spectrometry, and the concentrations in leachate samples were 6153 ng/L, 3642 ng/L, 2139 ng/L, 5900 ng/L, and 9422 ng/L, respectively. Leachate (1∶200 diluted) induced the synthesis of plasma vitellogenin and led to decreased enzyme activity of gonad gamma-glutamyl transpeptidase and gonadosomatic index in male goldfish (Carassius auratus) after a 28-day exposure, while increased circulating 17β-estradiol level was also observed in males exposed to treated effluent. Although the target EEs were partially removed with removal rates varying from 87.2% to 99.77% by the "membrane bioreactor+reverse osmosis+aeration zeolite biofilter" treatment process, the treated effluent is still estrogenic to fish. The method combined chemical techniques with the responses of test organisms allowing us to identify the group of estrogen-like chemicals so that we were able to evaluate the overall estrogenic effects of a complex mixture, avoiding false negative assessments.

  4. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  5. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  6. Shallow groundwater hydrochemistry assessment of engineered landfill and dumpsite

    NASA Astrophysics Data System (ADS)

    Zawawi, Mohd Hafiz; Kamaruddin, Mohamad Anuar; Ramli, Mohd Zakwan; Hossain, Md Shabbir

    2017-04-01

    In this paper, hydrochemistry analysis was performed at two different landfill site that is Matang and Beriah landfills, to evaluate the environmental risks associated with leachate flowing into groundwater resources. Selected parameters considered were heavy metal and physico-chemical properties of the groundwater samples. Analysis for Matang Landfill shows that the pollutant species seem to accumulate within MT1 that were located at the southeast of the landfill site. The pollutant species have tendency to migrate and disperse toward the southeast side of the landfill site which are MT 1, MT4 AND MT5. Meanwhile, the analysis for Beriah Landfill site shows that the contaminant tends to migrate to the south west direction of the landfill where AP6 and AP7 show the highest concentration of Heavy Metals, Cl-, Mg2+ and Ca2. The concentration of heavy metal is higher in Beriah Landfill as compared to Matang Landfill which was due to the type of landfill itself, where Matang Landfill operates as sanitary landfill meanwhile Beriah Landfil function as a dumpsite or uncontrolled landfill.

  7. Integration of multi-channel piezometry and electrical tomography to better define chemical heterogeneity in a landfill leachate plume within a sand aquifer.

    PubMed

    Acworth, R I; Jorstad, L B

    2006-02-10

    The Hanai-Bruggeman effective medium theory is used to relate bulk electrical conductivity, measured by surface and cross-borehole images, to fluid electrical conductivity, surface conductance, porosity and the geometry factor, in a medium- to fine-grained sand deposit. The change in bulk EC is caused by the presence of a landfill leachate plume. Repeated electrical images over a period of 16 months indicate that various segments of the plume are moving. The chemical constituents of the leachate plume have been determined by sampling from a bundled piezometer located in the electrical image field. Very close agreement is demonstrated between the fluid EC anomaly and the presence of elevated bulk EC indicating that the electrical images can be used to map the plume geometry and to monitor the movement of the plume segments.

  8. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  9. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea.

    PubMed

    Kalenitchenko, Dimitri; Le Bris, Nadine; Dadaglio, Laetitia; Peru, Erwan; Besserer, Arnaud; Galand, Pierre E

    2017-10-06

    Wood-fall ecosystems host chemosynthetic bacteria that use hydrogen sulfide as an electron donor. The production of hydrogen sulfide from decaying wood in the deep-sea has long been suspected to rely on the activity of wood-boring bivalves, Xylophaga spp. However, recent mesocosm experiments have shown hydrogen sulfide production in the absence of wood borers. Here, we combined in situ chemical measurements, amplicon sequencing and metagenomics to test whether the presence of Xylophaga spp.-affected hydrogen sulfide production and wood microbial community assemblages. During a short-term experiment conducted in a deep-sea canyon, we found that wood-fall microbial communities could produce hydrogen sulfide in the absence of Xylophaga spp. The presence of wood borers had a strong impact on the microbial community composition on the wood surface but not in the wood centre, where communities were observed to be homogeneous among different samples. When wood borers were excluded, the wood centre community did not have the genetic potential to degrade cellulose or hemicellulose but could use shorter carbohydrates such as sucrose. We conclude that wood centre communities produce fermentation products that can be used by the sulfate-reducing bacteria detected near the wood surface. We thus demonstrate that microorganisms alone could establish the chemical basis essential for the recruitment of chemolithotrophic organisms in deep-sea wood falls.The ISME Journal advance online publication, 6 October 2017; doi:10.1038/ismej.2017.163.

  10. Sustainable treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  11. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates.

    PubMed

    Ntampou, X; Zouboulis, A I; Samaras, P

    2006-02-01

    An integrated technique consisted of ozonation and coagulation/flocculation processes was studied, aiming to provide an efficient method for the treatment of stabilized/biologically pre-treated leachates, in order to reduce the organic pollutants' content to concentration values lower than the corresponding limits, imposed by the legislation. Leachates were collected from a municipal landfill site; samples containing around 1000 mg l(-1) COD and BOD(5)/COD ratio about 0.17 were treated by using two different processes or combinations between them, i.e. ozonation, coagulation-flocculation, ozonation followed by coagulation/flocculation and coagulation/flocculation followed by ozonation. The application of single ozonation resulted to the efficient removal of color and organic loading, due to the respective oxidation, induced by ozonation; however, COD values lower than 200 mg l(-1) could be only achieved after prolonged reaction times and for high ozone production rates. The coagulation of leachate samples was studied by the addition of ferric chloride or poly-aluminum chloride agents at various dosages. Maximum COD removal rates (up to 72%) were achieved by the addition of 7 mM Fe, or of 11 mM Al respectively. However, final COD values higher than 200 mg l(-1) were obtained indicating the requirement of an additional treatment step. Pre-ozonation followed by coagulation/flocculation was not found to be an efficient treatment approach for this aim, but coagulation/flocculation followed by ozonation, was proved to be an efficient process for the reduction of COD to lower than 180 mg l(-1).

  12. Landfill Gas Effects on Evapotranspirative Landfill Covers

    NASA Astrophysics Data System (ADS)

    Plummer, M. A.; Mattson, E.; Ankeny, M.; Kelsey, J.

    2005-05-01

    The performance of an evapotranspirative landfill cover can be adversely affected by transport of landfill gases to the plant root zone. Healthy plant communities are critical to the success and effectiveness of these vegetated landfill covers. Poor vegetative cover can result in reduced transpiration, increased percolation, and increased erosion regardless of the thickness of the cover. Visual inspections of landfill covers indicate that vegetation-free areas are not uncommon at municipal waste landfills. Data from soil profiles beneath these areas suggest that anaerobic conditions in the plant-rooting zone are controlling plant distribution. On the same landfill, aerobic conditions exist at similar depths beneath well-vegetated areas. The movement of methane and carbon dioxide, generated by degradation of organic wastes, into the overlying soil cover displaces oxygen in the root zone. Monitoring data from landfills in semi-arid areas indicate that barometric pumping can result in hours of anaerobic conditions in the root zone. Microbial consumption of oxygen in the root zone reduces the amount of oxygen available for plant root respiration but consumption of oxygen and methane also produce water as a reaction byproduct. This biogenic water production can be on the order of centimeters of water per year which, while increasing water availability, also has a negative feedback on transport of landfill gases through the cover. Accounting for these processes can improve evapotranspirative landfill cover design at other sites.

  13. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  14. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    SciTech Connect

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  15. Landfill Gas Energy

    EPA Pesticide Factsheets

    This guide describes how local governments and communities can achieve energy, environmental, health, and economic benefits by using landfill gas (LFG) recovered from municipal solid waste landfills as a source of renewable energy.

  16. Landfill Gas Energy

    EPA Pesticide Factsheets

    This guide describes how local governments and communities can achieve energy, environmental, health, and economic benefits by using landfill gas (LFG) recovered from municipal solid waste landfills as a source of renewable energy.

  17. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  18. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  19. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    SciTech Connect

    Wyrwas, R. B.

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  20. Degradability of Chlorinated Solvents in Landfill Environment

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and

  1. Assessment of water quality of Sembilang River receiving effluent from controlled municipal solid waste (MSW) landfill in Selangor

    NASA Astrophysics Data System (ADS)

    Tengku Ibrahim, T. N. B.; Othman, F.; Mahmood, N. Z.

    2017-06-01

    Most of the landfills in Malaysia are situated near to the main river basin that supplies almost 90% of water requirement. This includes landfills in Selangor where a total of 20 landfill sites are situated in 5 main river basins and the highest number of operating landfills (three) are at the Selangor River Basin (Jeram, Bukit Tagar and Kuang Inert landfills). This situation has caused wide concern over the water safety, even the leachate has been treated. The leachate itself still contains contaminants that are difficult to treat. The main objective of this study is to investigate the effect on water quality of Sembilang River that receives effluent from the nearby landfill. In this study, we analyzed samples of water from ten sampling stations starting from the upstream to downstream of Sembilang River. The water quality was evaluated by the Water Quality Index (WQI) depending on in-situ and laboratory analysis. 11 water quality variables are selected for the quality assessment; temperature, pH, turbidity, salinity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total suspended solid, ammoniacal nitrogen, phosphate and nitrate. The result indicated that, when the effluent mixed with the river water, the water quality decreased gradually and was found to be lower at a few stations. The water quality of Sembilang River falls under Class III of Water Quality Index with ranges between 68.03 to 43.46 mg/L. It is revealed that the present scenario of water quality of Sembilang River is due to the effect of effluent from the landfill.

  2. Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis.

    PubMed

    Calabrese, E J; Baldwin, L A

    2000-01-01

    This paper compares the historical developments of chemical and radiation hormesis from their respective inceptions in the late 1880's for chemical hormesis and early 1900's for radiation hormesis to the mid 1930's to 1940 during which both hypotheses rose to some prominence but then became marginalized within the scientific community. This analysis documents that there were marked differences in their respective temporal developments, and the direction and maturity of research. In general, the formulation of the chemical hormesis hypothesis displayed an earlier, more-extensive and more sophisticated development than the radiation hormesis hypothesis. It was able to attract prestigious researchers with international reputations from leading institutions, to be the subject of numerous dissertations, to have its findings published in leading journals, and to have its concepts incorporated into leading microbiological texts. While both areas became the object of criticism from leading scientists, the intensity of the challenge was greatest for chemical hormesis due to its more visible association with the medical practice of homeopathy. Despite the presence of legitimate and flawed criticism, the most significant limitations of both chemical and radiation hormesis and their respective ultimate undoing were due to their: (1) lack of development of a coherent dose-response theory using data of low dose stimulation from both the chemical and radiation domains; (2) difficulty in replication of low dose stimulatory responses without an adequate study design especially with respect to an appropriate number and properly spaced doses below the toxic threshold; (3) modest degree of stimulation even under optimal conditions which was difficult to distinguish from normal variation; and (4) lack of appreciation of the practical and/or commercial applications of the concepts of low dose stimulation.

  3. Wartime rat control, rodent ecology, and the rise and fall of chemical rodenticides.

    PubMed

    Keiner, Christine

    2005-09-01

    The story of how World War II stimulated the development of DDT, and the ensuing postwar dependence on such chemical insecticides, is well known. However, less recognition has been given to the wartime efforts to synthesize new rodenticides to fight rat-borne epidemics. Baltimore, Maryland served as the site for field tests of the powerful new compound alpha naphthyl thiourea (ANTU) from 1942-1946. This experimental campaign sparked debates over the efficacy of controlling rats via chemical warfare instead of environmental sanitation, which led to the ironic conclusion that urban rat control demanded an ecological, rather than technological, approach.

  4. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhan; Lu, Wenjing; Li, Dong; Wang, Hongtao

    2014-05-01

    The temporal variation of trace component emissions from the working surface of a landfill in Beijing was investigated. Specific days in a year were selected as representatives for all four seasons. Different chemical species were quantified in all four seasons with the following average concentrations: spring: 41 compounds, 2482.6 μg m-3; summer: 59 compounds, 4512.6 μg m-3; fall: 66 compounds, 2438.4 μg m-3; and winter: 54 compounds, 2901 μg m-3. The detected compounds included sulfur compounds, oxygenated compounds, aromatics, hydrocarbons, halogenated compounds, and terpenes. Oxygenated compounds were the most abundant compound in most samples. Isobutane, ethyl alcohol, limonene, butane, toluene, and trichlorofluoromethane were recognized as the most abundant compounds on the working surface throughout the year. This study would bring new light in assessing the particle pollution in urban areas and the effect of trace components on landfill odor.

  5. Landfill bioreactor design and operation

    SciTech Connect

    Reinhart, D.R.; Townsend, T.

    1998-12-31

    Landfill Bioreactor Design and Operation covers the history and background of landfill technology, research studies of actual bioreactor landfills, expected leachate and gas yields, specific design criteria, operation guidelines, and reuse of landfill sites to avoid having to establish new sites. For anyone looking for an alternative to large, wasteful landfill sites, this book provides a practical alternative to the problem.

  6. Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange.

    PubMed

    Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H

    2017-11-01

    The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl3) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl3, 8% - PACl), C2 (74% - FeCl3, 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  8. Chemical Composition of Aquatic Dissolved Organic Matter in Five Boreal Forest Catchments Sampled in Spring and Fall Seasons

    SciTech Connect

    Schumacher,M.; Christl, I.; Vogt, R.; Barmettler, K.; Jacobsen, C.; Kretzschmar, R.

    2006-01-01

    The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.

  9. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    PubMed

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  10. Municipal solid waste landfills harbor distinct microbiomes

    USGS Publications Warehouse

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  11. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  12. Innovative and effective landfill treatment

    SciTech Connect

    Butler, P.B.; Karmazyn, J.; Scrivner, N.C.

    1996-12-31

    An innovative and effective metals treatment technology was developed for a Superfund site landfill. The new landfill technology reduced the remedial cost of that operable unit from $34 million (MM) to $12 MM. In 1993, EPA issued a Record of Decision (ROD) for a Superfund site in Newport, Delaware. Among other remedies, deep-soil mixing was specified for a 16-acre landfill. New information on waste volumes developed in the remedial design phase increased the cost of the remedy from $14 MM to $34 MM. An alternative treatment technology was developed to immobilize the metal contaminants with no increase in volume. EPA was included early in the development to ensure the proposal would be focused on issues critical to its review and acceptance. EPA accepted this technology and issued an Explanation of Significant Differences decision. the new remedy is estimated to cost $12 MM. The constituents of concern at the site are primarily metals: barium, lead, zinc, and cadmium. A treatment technology was developed which employed straight-forward chemical precipitation: sulfate addition for barium and sulfide addition for lead, zinc, and cadmium. The combined effect of numerous competing chemical equilibrium effects was modeled with the Environmental Simulation Program (ESP), a state-of-the-art equilibrium simulation program from OLI Systems, Inc. Due to the potential effects of acid rain, limestone was added to the treatment plan.

  13. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  14. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  15. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Environmental Isotope Characteristics of Landfill Leachates and Gases

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  18. Mining landfills for recyclables

    SciTech Connect

    Spencer, R.

    1991-02-01

    The New York State Energy Research and Development Authority (NYSERDA) and the Department of Environmental Conservation (DEC) began a landfill reclamation experiment in Edinburgh, NY, a rural community in the Adirondack Park. According to NYSERDA's Fact Sheet about the project, landfill reclamation is a process of excavating a landfill using conventional surface mining technology to recover metals, glass, plastics and combustibles, soils, and the land resource itself. The recovered site can then be either upgraded into a state-of-the-art landfill, if appropriate, closed or redeveloped for some other suitable purpose. As an energy-related public benefit corporation, NYSERDA is particularly interested in the potential energy value of combustible material reclaimed from landfills. With an energy content of over 11 million BTUs per ton, this translates to the energy equivalent of 275 million barrels of oil.

  19. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, ans; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  20. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems.

    PubMed

    Su, Yao; Zhang, Xuan; Xia, Fang-Fang; Zhang, Qi-Qi; Kong, Jiao-Yan; Wang, Jing; He, Ruo

    2014-05-01

    Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14-15 years) compared to the other two sites (∼6-11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm(-2)d(-1), respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

  1. Report: management problems of solid waste landfills in Kuwait.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2002-08-01

    This paper evaluates current operational practices in municipal solid waste landfills in Kuwait to provide existing knowledge on uncontrolled landfilling and associated problems of solid waste disposal in developing countries. The current landfilling practices are safe neither for humans nor for the environment. The landfill sites receive all kinds of wastes such as food wastes, oil products, debris, dead animals, agricultural wastes, chemical wastes, wastewater and sewage sludge. The wastes are dumped, spread and compacted in an uncontrolled manner and cover material is not applied regularly. Dust created within the landfill site and gas emissions cause a public nuisance. The characteristics of leachate formed indicate high organic content and presence of heavy metals, salts and nutrients. There are no provisions for leachate or landfill gas collection at the landfill sites. Recommendations for adjustment in landfill operation have been made in recognition of the transition period that is experienced in proceeding from the past and present to the future management of landfills in Kuwait to safeguard the public health and protect the environment.

  2. Assessment of the environmental impact of landfill sites with open combustion located in arid regions by combined chemical and ecotoxicological studies.

    PubMed

    Wichmann, H; Kolb, M; Jopke, P; Schmidt, C; Alawi, M; Bahadir, M

    2006-12-01

    Two different waste disposal sites in Jordan were investigated in order to determine the environmental situation in context with waste disposal techniques. One landfill, located at Marka/Amman, had been closed about 25 years ago and covered with soil. Here, the waste had been actively open combusted and openings in the cover, still emitting smoke, indicated that waste was still smoldering inside the landfill's body. The second disposal site close to Ekeeder/Irbid is still operated. On this ground, the solid waste is not intentionally burned, although spontaneous fires frequently come up. Samples of waste, soil, and entrained dust were collected and analyzed. From the solid samples, respectively, their eluates, sum parameters, ecotoxicological effects as well as contents of elements/heavy metals and organic pollutants (PAH, PCDD/F) were determined. In general, the Ekeeder-samples were low-contaminated. The investigation of the Marka-samples showed higher contamination of the site's center, clearly being influenced by combustion processes. A significant contamination of the landfill's vicinity by its emissions could not be derived from the analytical data. Ecotoxicological investigations, applying a bio-test battery, revealed correlations with the sum parameters but not with the trace pollutants. Thus, the Marka-samples with the highest measured values of sum parameters caused adverse effects on three different test species, whereas other samples from Marka and Ekeeder had small or no effects. The results of these investigations depict the influence of different disposal techniques on the contamination situation of a landfill and they shall contribute to assess the conditions of other disposal sites in (semi)arid regions.

  3. Public Infrastructure Disparities and the Microbiological and Chemical Safety of Drinking and Surface Water Supplies in a Community Bordering a Landfill

    PubMed Central

    Heaney, Christopher D.; Wing, Steve; Wilson, Sacoby M.; Campbell, Robert L.; Caldwell, David; Hopkins, Barbara; O’Shea, Shannon; Yeatts, Karin

    2015-01-01

    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = −1106, −93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services. PMID:23858663

  4. Public infrastructure disparities and the microbiological and chemical safety of drinking and surface water supplies in a community bordering a landfill.

    PubMed

    Heaney, Christopher D; Wing, Steve; Wilson, Sacoby M; Campbell, Robert L; Caldwell, David; Hopkins, Barbara; O'Shea, Shannon; Yeatts, Karin

    2013-06-01

    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = -1106, -93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services.

  5. Nitrogen Removal from Landfill Leachate by Microalgae

    PubMed Central

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  6. Hydrogeology of a landfill, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    The Pinellas County landfill site is on a flat, coastal area characterized by a high water table is subject to tidal flooding. Altitudes within the study area range from 8 to 12 feet above sea level. Three geohydrologic units underlie the landfill site: a surficial aquifer about 19 feet thick composed of sand and shells; a confining bed about 35 feet thick composed of marl and clay; and the Floridan aquifer composed of limestone. The rate of lateral movement of ground water away from the site is about 1.2 feet per year; however, the rate of movement along the boundary of the landfill cells is about 20 feet per year. Vertical movement through the confining layer is about 0.005 foot per year. Landfill operations have not altered surface-water quality. Leachate migration downward into the Floridan aquifer is not indicated, but data do indicate leachate is migrating from the oldest section of the landfill site through the surficial aquifer. Peaks in concentration of selected chemical parameters and flow-rate analysis of water from trenches indicate the possibility of slug-flow leachate. (USGS)

  7. Nitrogen Removal from Landfill Leachate by Microalgae.

    PubMed

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃(-) removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  8. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  9. Landfill gas recovery

    SciTech Connect

    MacDonald, A.

    1991-08-01

    This facility describes a project that began four years ago as an effort to control odor, but has since grown into the Northeast's largest landfill gas-to-electricity power project. A series of wells and miles of pipe snaking beneath the ground channel gas to the power plant. When operating at capacity, the Northeast Landfill Power Project in Rhode Island can produce 12.3 megawatts of electricity for sale enough to power about 17,500 households. Landfill gas (LFG) is produced naturally as organic solid waste decomposes. Typically, LFG consists of methane (50 to 55 percent), carbon dioxide (45 to 50 percent),a nd small amounts of nitrogen, oxygen and various trace elements. Left uncontrolled, LFG will migrate out of a landfill and into the atmosphere, creating odor, safety and environmental problems.

  10. Bondad Landfill NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  11. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  12. Lancaster Landfill Solar Facility

    SciTech Connect

    Pacheco, Orlando

    2014-06-12

    The Town of Lancaster constructed a 500KWH Solar Array on our landfill parcel, that using other financial mechanisms in the deregulated Massachusetts Electric Market would allow the Town to obtain free electricity.

  13. Life-cycle assessment of municipal solid waste landfill

    SciTech Connect

    Coulon, R.; Barlaz, M.A.; Ham, R.T.

    1995-12-31

    The Environmental Industries Association Research Foundation (EIA), in conjunction with Ecobalance and researchers from the Universities of Wisconsin and North Carolina State, are carrying out a comprehensive Life Cycle Assessment (LCA) of landfills. LCA is increasingly used in shaping national and international waste management policies. Little work has been done on sanitary landfills and thus their comparison with other waste management alternatives has not been properly evaluated. The main reasons are that: (1) the internal biological, physical and chemical decomposition processes are not fully understood, (2) these processes occur over a long period of time, (3) the need for modeling landfills has only recently become appreciated, and (4) existing models often deal with partial aspects of a landfill`s environmental impacts (e.g., greenhouse gases) and therefore can not be used in a comprehensive evaluation like LCA.

  14. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  15. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  16. Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery

    SciTech Connect

    Bogner, J.E.

    1986-01-01

    Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

  17. Water-quality data for landfills, Hillsborough County, Florida, January 1974-October 1977

    USGS Publications Warehouse

    Fernandez, Mario; Hallbourg, Robin R.

    1978-01-01

    Periodic water-quality data were collected at four landfills in Hillsborough County from January 1974 through October 1977. Water samples were analyzed for nitrogen and phosphorous species, cations, trace metals, chloride, specific conductance, chemical oxygen demand, biological oxygen demand, and coliforms. Select ground-water samples were analyzed for herbicide and pesticide. Results of chemical and bacteriological analysis form four landfills are presented as basic data. Geologic logs and well descriptions are presented for wells drilled at the landfills after January 1974.

  18. A case study: Environmental benefit plan for Blydenburgh Landfill

    SciTech Connect

    Hansen, J.M.; Druback, G.W.

    1995-12-31

    The Town of Islip, New York, encompasses 285 square kilometers (110 square miles) along the southern shore of Suffolk County, Long Island. The Town relied upon Blydenburgh Landfill for the disposal of its estimated 290 kilotonnes per year (320,000 tons per year) of municipal solid waste (MSW) without having to contract for off-Long Island hauling and disposal. In 1983, the Long Island Landfill Law was enacted and effectively banned landfilling of raw garbage on most of Long Island after December 18, 1990. The act precluded the economic development of new landfill capacity for the Town. Blydenburgh Landfill was projected to reach capacity in early 1987 and close. To conserve landfill capacity for residential use, the Town prohibited commercial haulers from the landfill in the fall of 1986. In response, the Mobro barge departed Long Island City on March 22, 1987 loaded with commercial MSW that was no longer accepted at the Blydenburgh site. Negative publicity surrounded the Mobro barge and the continuing need to provide for waste disposal. In response, the New York State Department of Environmental Conservation (NYSDEC) and the Town`s Resource Recovery Agency entered into an Order on Consent on May 12, 1987. This allowed for continued operations and a vertical MSW {open_quotes}piggyback{close_quotes} expansion on top of a closed and capped portion of the existing 181,000 square meter (44.8 acre) landfill mound. In addition, the Order on Consent permitted construction of a separate 12,000 square meter (3.0 acre) ash residue vertical piggyback expansion adjacent to the MSW piggyback expansion. Both expansions were designed for and constructed on top of existing landfilled MSW.

  19. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes.

  20. Numerical simulation of landfill gas pressure distribution in landfills.

    PubMed

    Xi, Yonghui; Xiong, Hao

    2013-11-01

    Landfill gas emissions are recognized as one of the three major concerns in municipal solid waste landfills. There are many factors that affect the generation of landfill gas when the landfill is capped. In this article, a model has been developed based on the theory of porous media flow. The model could predict the pressure distribution of landfill gas in landfill, coupling the effect of landfill settlement. According to the simulation analysis of landfill, it was found that: (a) the landfill gas pressure would reach a peak after 1.5 years, then begin to decline, and the rate of decay would slow down after 10 years; (b) the influence radius of the gas wells is limited; (c) the peak value of landfill gas pressure is larger, it appears later and the rate of decay is slower when the landfill settlement is considered in the model; (d) the calculation of excess gas pressure in landfill under different negative pressures of the extraction well is compared between this model and another model, and the results show that the relative pressure distribution form and range are almost the same.

  1. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  2. Migrating landfill gas proves challenging

    SciTech Connect

    Dobrowolski, J.G.; Dellinger, A.S.

    1994-12-01

    Located in the San Fernando Valley at the foothills of the San Gabriel mountains, the 41-acre Sheldon-Arleta Landfill originated as one of many gravel pits in the area and was operated by CalMat as a gravel quarry pit from the mid 1950s until 1962. In 1967, methane gas was detected in the residential dwellings located across from the landfill along Sharp Street. Three landfill gas wells were installed at the north corner of the landfill to control off-site migration of landfill gas. Landfill gas, through diffusion, saturates soil pores below and around the landfill. Groundwater serves as an effective barrier to landfill gas migration. Thus a rising water table mobilizes landfill gas from soil pores. Where that gas cannot be effectively collected, off-site migration will occur. The solution to ensuring public safety is to collect landfill gas on-site before it escapes the influence of gas collection wells. This may require complete reevaluation of an existing landfill gas collection system and potential renovation to collect greater quantities of land-fill gas. Cost-effective implementation of this strategy calls for two gas collection systems: one for collection of methane-rich landfill gas for electrical generation and resource recovery, and the other to control off-site migration of landfill gas through on-site combustion. Installation/upgrades of the foregoing solutions are long-term options. For the short-term immediate mitigation of high landfill gas migration, installation of a passive vent system was necessary with the option of active extraction. However, one must recognize that the public is ultimately better served by controlling landfill gas on-site before it approaches dangerous off-site levels.

  3. Method for treating landfill leachate

    SciTech Connect

    Singhvi, S.S.

    1993-08-24

    A method is described for removing contaminants from leachate of a landfill which produces landfill gas, comprising the steps of: (a) combusting the landfill gas to produce combustion products; (b) heating the leachate with said combustion products; (c) removing contaminants from the leachate by gas stripping; and (d) reducing the pH of the leachate with said combustion products.

  4. Baghdad Municipal Solid Waste Landfill

    DTIC Science & Technology

    2006-10-19

    SOLID WASTE LANDFILL SIGIR PA... Solid Waste Landfill 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Municipal Solid Waste Landfill , Baghdad, Iraq (Report Number SIGIR-PA-06-067) We are providing this project assessment report for your information

  5. Application of environmental isotopes to characterize landfill gases and leachate

    SciTech Connect

    Liu, C.L.; Hackley, K.C. ); Baker, J. . Environmental Labs.)

    1992-01-01

    Environmental isotopes have been used to help characterize landfill gases and leachate for the purpose of identifying leachate and/or gas contamination in surrounding monitoring wells. Carbon isotopes (C-13/C-12 and C-14), hydrogen isotopes (H-3 and H-2/H-1) and oxygen isotopes (O-18/O-16) were used to characterize methane, carbon dioxide and leachate produced from two municipal landfills in northeastern Illinois. The isotopic results from the landfill-derived gases and leachate are compared to isotopic compositions of groundwater and gases from nearby monitoring wells. C-14 activity of landfill CH[sub 4] is high compared to CH[sub 4] normally found in subsurface sediments. For this study C-14 activities of the landfill methane range from 129--140 PMC. The C-14 of the dissolved inorganic carbon (DIC) of the leachate samples also have relatively high activities, ranging from 126--141 PMC. The [delta]C-13 and [delta]D values for CH[sub 4] from the landfills fall within a range of values representative of microbial methane produced by acetate-fermentation. The [delta]C-13 of the CO[sub 2] and the DIC are very positive, ranging from 8--14[per thousand] for CO[sub 2] and 13--22[per thousand] for DIC. The [delta]O-18 values of the leachates are similar to current meteoric water values, however, two of the leachate samples are significantly enriched in deuterium by approximately 65[per thousand]. Tritium values of the leachate water are generally higher than expected. For one landfill the tritium activity ranges from 227--338 TU, for the second landfill the tritium activity is approximately 1,300 TU. Compared to tritium levels in normal groundwater, these higher tritium values in the leachates indicate that this isotope has the potential to be an effective tracer for detecting leachate migration.

  6. Environmental isotope characteristics of landfill leachates and gases

    SciTech Connect

    Hackley, K.C.; Liu, C.L.; Coleman, D.D.

    1996-09-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The {delta}{sup 13}C of the CO{sub 2} in landfills is significantly enriched in {sup 13}C, with values as high as +20{per_thousand} reported. The {delta}{sup 13} C and {delta}D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The {delta}D of landfill leachate is strongly enriched in deuterium, by approximately 30{per_thousand} to nearly 60{per_thousand} relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, {sup 14}C and {sup 3}H, are significantly elevated in both landfill leachate and methane. The {sup 14}C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased {sup 14}C content of atmospheric CO{sub 2} caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  7. Public health assessment for sanitary landfill (A/K/A Cardington Road Landfill), Dayton, Montgomery County, Ohio, Region 5. Cerclis No. OHD093895787. Final report

    SciTech Connect

    Not Available

    1994-05-16

    The Sanitary Landfill Site (also known as the Cardington Road Landfill Site) is within the municipal limits of the City of Moraine, approximately one mile south of the city of Dayton, in Montgomery County, Ohio. A broad spectrum of commercial, industrial, and municipal wastes were placed in the landfill. The Sanitary Landfill is a public health hazard because of the explosive levels of methane present in soil samples at the site. Methane was present in on-site and off-site soil gas samples and on-site vents at levels posing a risk of explosion or fire. There is also a potential for people to be exposed to toluene in ambient air and chemicals in soil gas. In addition, on-site and off-site soil gas contained high concentrations of volatile organic compounds. Exposure directly to chemicals in soil gas is not likely, however, chemicals may migrate into buildings bordering the landfill.

  8. Superfund Record of Decision (EPA Region 2): Port Washington Landfill, Nassau County, NY. (First Remedial Action), September 1989. Final report

    SciTech Connect

    Not Available

    1989-09-30

    The Port Washington Landfill site is on the eastern portion of Manhasset Neck, Nassau County, Long Island, New York. The 139-acre municipally owned site consists of two landfilled areas separated by a vacant area. The Record of Decision addresses the 53-acre inactive landfill on the western portion of the site, which is the suspected source of methane gas thought to cause furnace explosions in residences neighboring the landfill during 1979 through 1981. From 1974 to 1983 the landfill operator accepted incinerator residue, residential and commercial refuse, and construction rubble for disposal. Because extensive air monitoring, performed in 1981, revealed high methane levels in several areas residences, a venting system was installed to prevent subsurface gases from migrating west of the landfill and to destroy hazardous chemicals commonly detected in sanitary landfill gas. The selected remedial action for the site includes capping the landfill; rehabilitating the existing gas collection system and installing additional vacuum extraction vents; ground water pumping and treatment.

  9. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  10. Colloids in the vicinity of landfills

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Fruhstorfer, P.; Klein, T.; Niessner, R.

    2003-04-01

    Waste disposals without adequate landfill liner system are a source of contaminants and colloids. In order to assess the effects of the presence of colloids on the transport of heavy metal ions, the colloids at three landfill sites were characterized with regard to their chemical and mineralogical composition, their size distribution, and the concentration of heavy metal ions associated to the colloids. It can be shown that the pattern of the colloids inside and outside of the landfill is different in all examined parameters, e.g. inside of the disposal we find organic colloids and salt particles, whereas the groundwater downstream of the disposal contains mainly iron-colloids and carbonatic particles. Therefore a direct transfer of colloids from the landfill to the aquifer seems unlikely. Changes of the hydrochemical (mainly redox) and hydrodynamic conditions contribute to this behaviour. The association of heavy metal ions to colloids shows an interesting pattern: High concentrations are present in solution and associated to smaller (< 10 nm) and larger (> 1 μm) colloids, whereas the colloids in between show only small concentrations. This finding has some impact on the assessment of colloidal transport processes, since it suggests, that the more mobile colloids do not carry high concentrations of heavy metal ions.

  11. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  12. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  13. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  14. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  15. Results of the Chemical and Isotopic Analyses of Sediment and Ground Water from Alluvium of the Canadian River Near a Closed Municipal Landfill, Norman, Oklahoma, Part 2

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.

    2008-01-01

    Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.

  16. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  17. Mathematical modelling of landfill gas migration in MSW sanitary landfills.

    PubMed

    Martín, S; Marañón, E; Sastre, H

    2001-10-01

    The laws that govern the displacement of landfill gas in a sanitary landfill are analysed. Subsequently, a 2-D finite difference flow model of a fluid in a steady state in a porous medium with infinite sources of landfill gas is proposed. The fact that landfill gas is continuously generated throughout the entire mass of the landfill differentiates this model from others extensively described in the literature and used in a variety of different applications, such as oil recovery, groundwater flow, etc. Preliminary results are then presented of the application of the model. Finally, the results obtained employing data from the literature and experimental assays carried out at the La Zoreda sanitary landfill (Asturias, Spain) are discussed and future lines of research are proposed.

  18. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  19. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  20. Bioassays for the evaluation of landfill leachate toxicity.

    PubMed

    Thomas, David John Lawrence; Tyrrel, Sean Ferguson; Smith, Richard; Farrow, Steve

    2009-01-01

    This article reviews the application of bioassays for assessing the toxicity hazard posed by landfill leachate discharged to an aquatic environment. Landfill leachate is a complex mixture of chemicals; thus it is difficult to assess the risk posed to aquatic wildlife using standard chemical identification techniques, such as gas chromatography-mass spectroscopy (GC-MS). From this review it is clear that toxicity testing, using species that represent the different trophic levels, is a superior way to predict the risk posed by discharge than chemical analysis. Previous studies assessed leachate toxicity using bacteria, algae, plants, invertebrates, fish, and genotoxicity. Studies showed that leachate exhibits a wide range of toxicities to the species tested. Ammonia, alkalinity, heavy metals, and recalcitrant organics were identified to be the cause of adverse responses from the test organisms. Concentrations of these chemicals were found to depend upon the types of waste landfilled. As part of this review, Slooff analysis was applied to published results to calculate the sensitivity of test species. It was concluded that Lemna minor and Thamnocephalus platyurus were the most sensitive tests and, Vibrio fischeri (Microtox) was the least sensitive test available. Little is known about the sensitivity of each species to the different types of waste that might have been landfilled. A battery of tests needed for a more accurate assessment of landfill leachate is proposed. Some of the more common tests have been replaced by more sensitive tests that produce more relevant results for the industry and regulators.

  1. Assessment of groundwater contamination by landfill leachate: a case in México.

    PubMed

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  2. Claymax landfill cap

    SciTech Connect

    Selby, C.L.

    1989-12-15

    A commercial product called Claymax'' consisting of one-quarter inch of bentonite clay between two geotextile sheets is a candidate landfill cap to replace kaolin caps. A permeability apparatus incorporating a 20 foot water head was operated for 56 days to estimate a Claymax permeability of 2 {times} 10{sup {minus}9} cm/sec compared with 10{sup {minus}8}, the EPA max for a burial site cap. 1 fig.

  3. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  4. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  5. The utilization of sepiolite in landfill liners.

    PubMed

    Güney, Y; Ozdemir, H V

    2005-05-01

    In this study, sepiolite and natural soil-added sepiolite mixtures were studied to find out whether they can be used as compacted landfill liner, as they are an economic alternative to the other compacted day liners or not. Geotechnical and physico-chemical properties of sepiolite and sepiolite mixtures, containing 25% and 50% natural soil by weight, and compacted at water contents ranging from 35% to 60%, were determined by hydraulic conductivity, leachate analysis, unconfined compression strength, consolidation, volumetric shrinkage and swelling tests. The test results showed that the compacted natural soil-added sepiolite mixtures exhibit lower permeability and swelling properties, and higher compressive strength than pure sepiolite. The overall evaluation of the results has revealed that the natural soil-added sepiolite showed good promise and it can be used as a landfill barrier due to its high capacity of contaminant adsorption.

  6. An energy perspective on landfill gas

    SciTech Connect

    Hutchinson, P.J. )

    1993-01-01

    Globally, one billion metric tons of organic waste in the form of municipal solid waste are placed into solid-waste containment facilities every year. Complete biodegradation of this waste can generate approximately 2.8x10[sup 11] m[sup 3] (9.9 trillion cubic feet (Tcf) or 1.98x10[sup 8] metric tons) of biogas. Biogas consists of approximately equal proportions of methane and carbon dioxide; thus a year's worth of waste can potentially generate 1.4x10[sup 11] m[sup 3] (5 Tcf or 9.9x10[sup 7] metric tons) of methane. If we assume that landfill-biogas generation began only 20 years ago and has proceeded at a steady rate, then we can estimate that it can contribute 5x10[sup 10] m[sup 3] (1.8 Tcf or 36x10[sup 6] metric tons) of methane to the global atmospheric budget every year. Landfill gas is difficult to recover and use. Exploitation of biogas includes use as a raw product for heat energy, dehydration to produce electric generator fuel, refinement for commercial transportation, and use as a chemical feedstock. Controlled-reactor landfills, called [open quotes]biofills,[close quotes] are designed for optimum methane generation to ensure a steady and consistent rate of gas generation. Biofill mechanisms used to improve gas production include physical and chemical modifications to the modern landfill design. These methods can reduce the gas-generation time from 80 years to 5 years, can reduce the waste mass, and can reduce negative effects on the environment. 134 refs., 4 figs., 4 tabs.

  7. Demonstration of landfill gas-enhancement techniques in landfill simulators

    SciTech Connect

    Walsh, J.; Vogt, G.; DiPuccio; Kinman, R.; Rickabaugh, J.

    1982-09-01

    Sixteen landfill test cells (lysimeters) were constructed, each to hold approximately 0.80 m/sup 3/ (1 yd/sup 3/) of shredded refuse. The lysimeters were located above ground on a concrete slab in an enclosed, temperature-controlled room. The purpose of the project was to evaluate environmental variables that have been proposed to enhance methane production. The four variables investigated were accelerated moisture addition, leachate recirculation, pH control/buffer addition, and nutrient addition. Domestic municipal refuse was shredded to a particle size of 38 to 64 mm, mixed with dry chemical additives in selected cells, and compacted. The dry chemical additives included ammonium phosphate (added as nutrient) and calcium carbonate (added as buffer). Variable quantities of infiltration water were added tp different cells each month to identify the gas-enhancement value of accelerated moisture addition. Leachate removed each month was recirculated into selected lysimeters to identify the value of this technique in the sense of adding moisture and retaining nutrients. Results indicate that significant amounts of methane were generated in the majority of the test cells. Methane production was greatest in the leachate-recycle cells, and low in most nonrecycle cells, regardless of variables such as buffer addition, nutrient addition, or high infiltration. No significant differences in methane generation were observed between the recycle cells with either nutrient or buffer additives. After 2 years, methane levels were lower than the expected range of 40 to 60%.

  8. Landfill Gas Energy Project Data and Landfill Technical Data

    EPA Pesticide Factsheets

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  9. Purification of organic contaminants in seepage water of a landfill by UV/ozone technique

    NASA Astrophysics Data System (ADS)

    Vollmuth, S.; Wenzel, A.; Niessner, Reinhard

    1995-10-01

    Seepage water of landfills, where toxic waste is deposited, has high concentrations of chlorinated phenols (CP), polychlorinated biphenyls (PCB), and polycyclic aromatic hydrocarbons (PAH). The concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) are usually found at ppq-level. Typical purification methods based on physical techniques produce highly contaminated residues, which have to be removed by combustion or deposition in a landfill. An alternative way is to destruct these contaminants by biological and chemical treatment. The behavior of the trace contaminants during UV/ozone treatment is described. Results show no significant effect for PCB and PCDD/PCDF. The CP and PAH were mostly reduced by UV/ozone treatment to a degradation ratio greater than 90%. An influence of the pH value on the UV/ozone treatment of seepage water could not be detected. A further experiment showed the degradability of PCDD/PCDF in pure water solution. To reach better results for the degradation of organic trace contaminants the seepage water first can be treated with biological methods. Thus the high TOC-concentration of 3 g/l is reduced to 50 - 70%. A combination of biological and oxidative techniques diminishes the treatment costs and better exploitation of the oxidants is reached. Because of high light absorbance of the seepage water between 200 nm and 300 nm we developed a falling-film- photo-reactor to ensure, that every volume of the solution is exposed to UV-radiation.

  10. Purification of organic contaminants in seepage water of a landfill by UV/ozone-technique

    SciTech Connect

    Vollmuth, S.; Wenzel, A.; Niessner, R.

    1995-12-31

    Seepage water of landfills, where toxic waste is deposited, has a high concentrations of chlorinated phenols (CP), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). The concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) are usually found at ppq-level. Typical purification methods based on physical techniques produce highly contaminated residues, which have to be removed by combustion or depositing in a landfill. An alternative way is to destruct these contaminants by biological and chemical treatment. The behavior of the trace contaminants during UV/Ozone treatment is described. Results show no significant effect for PCB and PCDD/PCDF. The CP and PAH were mostly reduced by UV/ozone treatment to a degradation ratio greater than 90%. An influence of the pH value on the UV/ozone treatment of seepage water could not be detected. A further experiment showed the desirability of PCDD/PCDF in pure water solution. To reach better results for the degradation of organic trace contaminants the seepage water first can be treated with biological methods. Thus the high TOC-concentration of 3 g/l is reduced to 50--70%. A combination of biological and oxidative techniques diminishes the treatment costs and better exploitation of the oxidants is reached. Because of the high light absorbance of the seepage water between 200 nm and 300 nm the authors developed a falling-film-photo-reactor to ensure, that every volume part of the solution will be expose to UV-radiation.

  11. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan.

    PubMed

    Al-Jundi, J; Al-Tarazi, E

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36microSva(-1) in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91microSva(-1). The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70microSva(-1). Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn=2.52 and Ba=1.33; old landfill site: Cr=1.88, Zn=3.64, and Ba=1.26; and recent landfill site: Cr=1.57, Zn=2.19, and Ba=1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste.

  12. Landfill gas management in Canada

    SciTech Connect

    David, A.

    1997-12-31

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada`s commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10{sup 15} Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring.

  13. Landfill gas production from large landfill simulators. Final report

    SciTech Connect

    Jones, L.W.; Larson, R.J.; Malone, P.G.

    1984-08-01

    Two sizes of landfill simulators or test cells; one set containing approximately 320 kg wet weight of municipal solid wastes (MSW) and the other set containing 2555 kg wet weight of MSW were used to measure the amount and composition of gases produced from MSW under typical landfill conditions. The relative amounts and gas compositions follow those reported by other investigators. This study demonstrates that the conditions present in the average MSW landfill are not ideal for maximum production of methane; but large quantities of methane can, nevertheless, be produced over the active decomposition period of landfilled MSW. Further studies on the effects of environmental and microbial nutritional factors on methane production in landfilled MSW are recommended.

  14. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  15. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  16. Leachate evaporation using landfill gas

    SciTech Connect

    White, T.M.; Grace, V.M.; Freivald, W.

    1996-05-01

    This paper describes a century-old technology with a new twist of using landfill gas as a fuel in an evaporation system. The system is designed to help landfills reduce the cost of leachate disposal while also destroying VOC emissions in an enclosed flare.

  17. Changing face of the landfill

    SciTech Connect

    1995-10-01

    Integrated approach at Oregon landfill diverts wood and yard trimmings, while turning methane into power for 1,800 homes. Opened in the 1940`s as an open burn dump, Coffin Butte has evolved over the years into a sophisticated waste management facility incorporating ambitious recovery programs. While some of this change has been driven by regulatory demands, many of Valley Landfill`s innovations have come in response to market opportunities. Valley Landfill`s Processing and Recovery Center (PRC) is located a half mile down the road from the landfill site. Opened in 1990, the facility recycles urban wood waste, yard trimmings and street sweepings. The heart of this operation is a 500 hp horizontal feed, fixed-hammer grinder. Although this machine is typically used only for wood grinding, PRC was able to adapt it to handle both wood and yard trimmings by installing special feed roll assembly to compress green waste passing over the infeed belt. The facility handles approximately 40,000 cubic yards of loose green material and produces 15,000 to 18,000 yards of compost. The finished product is run through a trommel with a 5/8 inch mesh screen. Most of the compost is sold in bulk to area garden centers. A portion is processed through a 3/8 inch shaker screen and sold to a local company for use in bagged soil products. Valley Landfill is a partner in an ambitious project to generate electricity from landfill biogas.

  18. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  19. Fall Frosting

    NASA Image and Video Library

    2013-10-16

    Richardson Crater is home to this sea of sand dunes. It was fall in the Southern hemisphere when NASA MRO acquired this image of the dunes frosted with the first bit of carbon dioxide ice condensed from the atmosphere.

  20. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, L.; Lewicki, S.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the New Jersey Meadowlands Commission (NJMC) Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ and operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory brings hands-on scientific experiences to the ˜25,000 students and ˜15,000 visitors that come to our site from the NY/NJ region each year.

  1. Ecological risk assessment of the impact of a landfill associated with karst terrain

    SciTech Connect

    Farmer, J.J.; Bailey, F.C.; Hollyday, E.F.; Byle, T.D.

    1995-12-31

    An ecological risk assessment is underway on an active sanitary landfill in Bedford County, Tennessee. The overall objective is to determine the probability of risk from landfill-associated toxicants to both the aquatic ecological communities and to human health through drinking water contamination. During the problem formulation phase, an EPA Rapid Bioassessment (Protocol I) of streams around the landfill indicated a lower diversity and abundance of benthic macroinvertebrates in streams adjacent to the landfill compared to reference streams. During the analysis phase, water chemistry analyses were conducted on samples from 176 sites around the landfill, including seeps and springs, and the direction of movement of ground water under the site was determined by potentiometric mapping. Water flowing into Anderton Branch from landfill-associated tributaries, seeps and springs showed elevated specific conductance and elevated levels of chloride, manganese, iron, and nickel. GC-FID analysis indicated the presence of unidentified organic compounds in a small seep adjacent to the landfill. From these data it was concluded that there is potential for exposure of aquatic ecological communities and drinking water supplies to landfill-associated chemicals. In order to more thoroughly characterize ecological and human health risk associated with the landfill, more intensive analyses are underway, including quantitative seasonal macroinvertebrate biomonitoring, laboratory toxicity tests with Daphnia magna using water from selected monitoring sites, and monitoring of drinking water wells.

  2. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  3. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  4. Impact of changes in barometric pressure on landfill methane emission

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla; McDermitt, Dayle

    2014-07-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska, USA. Our results show that landfill methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, a phenomenon called barometric pumping. There was up to a 35-fold variation in day-to-day methane emissions due to changes in barometric pressure. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at our landfill site. From our results, it is clear that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions from landfills based on such measurements could yield uncertainties, ranging from 28.8% underestimation to 32.3% overestimation. Our results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may apply to the study of methane emissions from wetlands, peatlands, lakes, and other environmental contexts where emissions are from porous media or ebullition. Other implications from the present study for hazard gas monitoring programs are also discussed.

  5. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  6. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  7. Photostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  8. Phytostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  9. [Accidental falls].

    PubMed

    Inokuchi, Koichi

    2013-06-01

    Falls are common cause of injuries among elderly people, and fractures are the most serious consequence of falls. For seniors, hip fractures are the second major cause of bedridden. The feature and acute care of head injury, spinal cord injury, vertebrae fracture, and hip fracture are described. Just had fracture fixation, the patient can not go back to the original ADL. In order not to become bedridden, both medication and physical examination are important based on the new disease concept of locomotive syndrome. To do so, requires hospital and clinic cooperation. Sufficient cooperation is not currently possible, and spread of liaison service is essential.

  10. Release and conversion of ammonia in bioreactor landfill simulators.

    PubMed

    Lubberding, Henk J; Valencia, Roberto; Salazar, Rosemarie S; Lens, Piet N L

    2012-03-01

    Bioreactor landfills are an improvement to normal sanitary landfills, because the waste is stabilised faster and the landfill gas is produced in a shorter period of time in a controlled way, thus enabling CH(4) based energy generation. However, it is still difficult to reach, within 30 years, a safe status of the landfill due to high NH(4)(+) levels (up to 3 g/L) in the leachate and NH(4)(+) is extremely important when defining the closure of landfill sites, due to its potential to pollute aquatic environments and the atmosphere. The effect of environmental conditions (temperature, fresh versus old waste) on the release of NH(4)(+) was assessed in experiments with bench (1 L) and pilot scale (800 L) reactors. The NH(4)(+) release was compared to the release of Cl(-) and BOD in the liquid phase. The different release mechanisms (physical, chemical, biological) of NH(4)(+) and Cl(-) release from the solid into the liquid phase are discussed. The NH(4)(+) level in the liquid phase of the pilot scale reactors starts decreasing after 100 days, which contrasts real-scale observations, where the NH(4)(+) level increases or remains constant. Based on the absence of oxygen in the simulators, the detectable levels of hydrazin and the presence of Anammox bacteria, it is likely that Anammox is involved in the conversion of NH(4)(+) into N(2). Nitrogen release was shown to be governed by physical and biological mechanisms and Anammox bacteria are serious candidates for the nitrogen removal process in bioreactor landfills. These results, combined with carbon removal and improved hydraulics, will accelerate the achievement of environmental sustainability in the landfilling of municipal solid waste. Copyright © 2010. Published by Elsevier Ltd.

  11. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, L.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in astronomical activities is one of the main goals of the New Jersey Meadowlands Commission Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ, operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of the International Year of Astronomy 2009 (IYA2009) to the ˜25,000 students and ˜15,000 visitors that visit our site from the NY/NJ region each year.

  12. Impact of Changes in Barometric Pressure on Landfill Methane Emission

    NASA Astrophysics Data System (ADS)

    McDermitt, Dayle; Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla

    2013-04-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska USA. Methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission. Emission rates were systematically higher in December than during the summer period. Higher methane emission rates were associated with changes in barometric pressure that were larger in magnitude and longer in duration in winter than in summer, and with lower mean temperatures, which appeared to reduce methane oxidation rates. Sharp changes in barometric pressure caused up to 35-fold variation in day-to-day methane emissions. Power spectrum and ogive analysis showed that continuous measurements over a period of at least 10 days were needed in order to capture 90% of total variance in the methane emission time series at our site. Our results suggest that point-in-time methane emission rate measurements taken at monthly or even longer time intervals using techniques such as the tracer plume method, the mass balance method, or the closed-chamber method may be subject to large variations because of the strong dependence of methane emissions on changes in barometric pressure. Estimates of long-term integrated methane emissions from landfills based on such measurements will inevitably yield large uncertainties. Our results demonstrate the value of continuous measurements for quantifying total annual methane emission from a landfill.

  13. Modeling impact of small Kansas landfills on underlying aquifers

    USGS Publications Warehouse

    Sophocleous, M.; Stadnyk, N.G.; Stotts, M.

    1996-01-01

    Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

  14. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  15. Characterization of thermal properties of municipal solid waste landfills.

    PubMed

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Landfill Gas Energy Benefits Calculator

    EPA Pesticide Factsheets

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  17. Landfill gas project. Final report

    SciTech Connect

    1983-01-01

    The methane gas recovered from the landfill is used for space heating and water heating for the Florence-Lauderdale Humane Shelter 600 feet from the well head. The project to date and future development are described briefly. (MHR)

  18. Sanitary landfill groundwater monitoring report

    SciTech Connect

    Not Available

    1993-02-01

    The Sanitary Landfill at the Savannah River Site (SRS) is composed of the original 32-acre landfill, plus expansion areas to the north and south that added 16 and 22 acres, respectively, to the facility. The landfill is subject to the requirements of the Resource Conservation and Recovery Act and currently operates under South Carolina Department of Health and Environmental Control (SCDHEC) Domestic Waste Permit 87A. Fifty-seven wells of the LFW series monitor the groundwater quality in Steed Pond Aquifer (formerly Aquifer Zone I/IIC[sub 2]) (Water Table) beneath the Sanitary Landfill. These wells are sampled quarterly for certain indicator parameters, inorganics, metals, radionuclides, volatile organics, and other constituents as part of the SRS Groundwater Monitoring Program and to comply with the SCDHEC domestic waste permit. This report reviews the 1992 activities of the SRS Groundwater Monitoring Program.

  19. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  20. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  1. Students fall for Fall Meeting

    NASA Astrophysics Data System (ADS)

    Smedley, Kara

    2012-02-01

    From Boston to Beijing, thousands of students traveled to San Francisco for the 2011 AGU Fall Meeting. Of those who participated, 183 students were able to attend thanks to AGU's student travel grant program, which assists students with travel costs and seeks to enrich the meeting through ethnic and gender diversity. Students at Fall Meeting enjoyed a variety of programs and activities designed to help them better network with their peers, learn about new fields, and disseminate their research to the interested public. More than 800 students attended AGU's first annual student mixer, sharing drinks and ideas with fellow student members and future colleagues as well as forging new friendships and intellectual relationships.

  2. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1977-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse , incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer hydraulic conductivity 190 to 500 ft/d. The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the entire thickness of the aquifer beneath both landfills, but hydrologic boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 1,400 feet wide at the landfill and narrows to 500 feet near its terminus 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/liter sodium, 110 mg/liter potassium, 565 mg/liter calcium, 100 mg/liter magnesium, 2,700 mg/liter bicarbonate, and 1,300 mg/liter chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Woodard-USGS)

  3. Public health assessment for petitioned public health assessment, Old Douglas County Landfill (a/k/a Douglas County/Cedar Mountain Landfill), Douglasville, Douglas County, Georgia, Region 4: CERCLIS Number GAD984279232. Final report

    SciTech Connect

    1998-12-11

    The Old Douglas County Landfill in Douglasville, Georgia, operated from 1973 until 1987 as a municipal waste landfill. Existing landfill records specify that household wastes were received, however, industrial wastes are suspected to have been disposed at this landfill. The Agency for Toxic Substances and Disease Registry (ATSDR) concludes that private well water near the landfill is safe to drink. The surface water from Gothard`s Creek and the settling ponds on the landfill do not have chemicals present at levels of public health concern. The settling ponds on the landfill and parts of Gothard`s Creek contain elevated levels of lead, manganese, and iron in the sediment that are not harmfull to humans under typical exposure conditions. The soil located on- and off-site also had elevated levels of lead, manganese, and iron, however, these metals do not pose a threat to human health under typical exposure conditions. Currently, human contact with contaminants in soil, sediment, and surface water associated with Old Douglas County Landfill is not expected to result in adverse health effects. ATSDR determined that the methane monitoring locations and frequency at the landfill are inadequate to fully evaluate conditions at the perimeter of the landfill or near adjacent houses.

  4. Ultrasound assisted biogas production from landfill leachate

    SciTech Connect

    Oz, Nilgün Ayman Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  5. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  6. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  7. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  8. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  9. Methodology for monitoring air pollutants on industrial landfill sites

    SciTech Connect

    Hijazi, N.H.; Chai, R.; Nacson, S.

    1982-01-01

    A strategy is outlined to study volatile pollutants from an industrial landfill site with unknown contents. A realtime mobile mass spectrometer system was adapted to achieve the requirements for monitoring the pollutants in a step-wise fashion. (1) In situ sampling and analysis, i.e. a realtime on site monitoring of pollutants. (2) Selective monitoring of chemical classes based on the chemical functional groups. (3) Speciation of the individual chemical compounds within each chemical class. (4) Quantitation of the detected individual chemicals. 3 figures.

  10. Variation in organic matter characteristics of landfill leachates in different stabilisation stages.

    PubMed

    Gupta, Abhinav; Zhao, Renzun; Novak, John T; Goldsmith, C Douglas

    2014-12-01

    This study investigates the effect of landfill age on landfill leachate characteristics; two aspects are focused here. One is ultraviolet absorbance at 254 nm (UV(254)) property, as the discharge of landfill leachates to publically owned treatment works can cause interference with UV(254) disinfection. The other is biorefractory organic nitrogen in leachates, as it can contribute to effluent nitrogen making it difficult to meet stringent effluent nitrogen regulations. To study variation in UV(254)-absorbing organic carbon and organic nitrogen, leachate samples ranging from cells with ages 2 to 30 y from a large landfill in Kentucky, were collected and fractionated on a basis of their molecular weight and chemical nature into humic acids, fulvic acids and a hydrophilic fraction. The effectiveness of long term landfilling and membrane treatment for organic matter and organic nitrogen removal was examined. Humic materials, which were the major UV(254)-absorbing substances, were mainly >1 kDa and they degraded significantly with landfill age. The hydrophilic organic fraction, which was the major contributor to organic nitrogen, was mainly <1 kDa and it became increasingly recalcitrant with landfill age. This study provides insight into the characteristics of the different leachate fractions with landfilling age that might aid the design of on-site leachate treatment techniques.

  11. Leachate recirculation at the Nanticoke sanitary landfill using a bioreactor trench. Final report

    SciTech Connect

    Pagano, J.J.; Scrudato, R.J.; Sumner, G.M.

    1998-02-01

    A one-year landfill leachate recirculation demonstration project was conducted in a 20-acre cell at the Broome County, NY, Nanticoke Landfill using a retrofit bioreactor trench design concept to introduce landfill leachate to the surrounding refuse mass. Over the course of the project, 1.1 million gallons of landfill leachate were distributed through the bioreactor trench, substantially increasing the moisture content (approaching 70%) of the surrounding municipal solid waste. Experimental results also indicate that the bioreactor trench functioned as an in-situ anaerobic bioreactor, effectively treating landfill leachate retained within the trench due to decreasing refuse permeability and enhanced leachate hydraulic retention time. A significant and steady decline was noted in landfill leachate chemical oxygen demand (COD), volatile fatty acid (VFA), and total organic carbon (TOC), suggesting that the rapid biological stabilization of the refuse within the 20-acre demonstration area was influenced by the bioreactor trench. Characterization of the resulting landfill gas indicated that optimum methane:carbon dioxide ratios were measured in all experimental gas wells and in the bioreactor trench. No apparent enhancement of landfill gas production was noted in promixity to the bioreactor trench.

  12. Characterization of fine fraction mined from two Finnish landfills.

    PubMed

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2016-01-01

    A fine fraction (FF) was mined from two Finnish municipal solid waste (MSW) landfills in Kuopio (1- to 10-year-old, referred as new landfill) and Lohja (24- to 40-year-old, referred as old landfill) in order to characterize FF. In Kuopio the FF (<20mm) was on average 45±7% of the content of landfill and in Lohja 58±11%. Sieving showed that 86.5±5.7% of the FF was smaller than 11.2mm and the fraction resembled soil. The total solids (TS) content was 46-82%, being lower in the bottom layers compared to the middle layers. The organic matter content (measured as volatile solids, VS) and the biochemical methane potential (BMP) of FF were lower in the old landfill (VS/TS 12.8±7.1% and BMP 5.8±3.4 m(3)CH4/t TS) than in the new landfill (VS/TS 21.3±4.3% and BMP 14.4±9.9 m(3)CH4/t TS), and both were lower compared with fresh MSW. In the Kuopio landfill materials were also mechanically sieved in the full scale plant in two size fraction <30 mm (VS/TS 31.1% and 32.9 m(3)CH4/t TS) and 30-70 mm (VS/TS 50.8% and BMP 78.5m(3)CH4/t TS). The nitrogen (3.5±2.0 g/kg TS), phosphorus (<1.0-1.5 g/kg TS) and soluble chemical oxygen demand (COD) (2.77±1.77 kg/t TS) contents were low in all samples. Since FF is major fraction of the content of landfill, the characterization of FF is important to find possible methods for using or disposing FF mined from landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Methane emissions from MBT landfills.

    PubMed

    Heyer, K-U; Hupe, K; Stegmann, R

    2013-09-01

    Within the scope of an investigation for the German Federal Environment Agency ("Umweltbundesamt"), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18-24 m(3)CH(4)/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH(4)/(m(2)h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000-135,000 t CO(2-eq.)/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied

  14. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  15. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  16. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect

    Hibbard, C.S.

    1999-07-01

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  17. Town of Edinburg landfill reclamation demonstration project

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  18. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  19. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  20. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  1. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  2. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  3. Landfill mining: Giving garbage a second chance

    SciTech Connect

    Cobb, C.C.; Ruckstuhl, K. )

    1988-08-01

    Some communities face the problems of lack of landfill space and lack of landfill cover dirt. In some cases, existing landfills may be mined to reclaim dirt for use as cover material and to recover space for reuse. Such mining also has the potential of recovering recyclables and incinerator fuels. Machinery to reclaim refuse deposits, and their heterogeneous composted ingredients, was successfully tested at two Florida landfills in June 1987. One of the Florida mining tests, at the Collier County landfill near the city of Naples, had goals of demonstrating an economical mechanical system to separate the depository's ingredients into usable or redisposable components, and to see if the method could enable the county to avoid the expenses associated with permanent closure of a full landfill. This paper describes the history of the Collier County landfill, the equipment and feasibility test, economics, the monitoring of odors, landfill gas, and heavy metals, and results of the test.

  4. Landfill mining for resource recovery

    SciTech Connect

    Reith, C.C.

    1997-12-31

    Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.

  5. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    PubMed

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-04

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass.

  7. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  8. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  9. Mining landfills for space and fuel

    SciTech Connect

    Flosdorf, H.W.; Alexieff, S.

    1993-03-01

    Lancaster County, Pennsylvania`s experiments with landfill reclamation are helping the county remain self-sufficient in managing its solid waste stream. Landfill mining is proving to be a worthwhile approach to extending landfill life and obtaining fuel for the county`s waste-to-energy plant.

  10. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  11. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  12. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  13. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  14. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  15. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  16. Geosynthetics conquer the landfill law

    SciTech Connect

    Derian, L.; Gharios, K.M. . Solid Waste Management Div.); Kavazanjian, E. Jr.; Snow, M.S. )

    1993-12-01

    Los Angeles' last operating landfill is undergoing a 4 million m[sup 3] expansion using innovative materials in the liner system to overcome difficult site conditions. The design represents the first approved alternative in California -- and perhaps in the nation -- to the Resource Conservation and Recovery Act's Subtitle D regulations for liner systems. This article examines the regulatory journey that led to approval and the liner's design and construction. Steep slopes at Los Angeles' only operating municipal solid-waste landfill (MSW) forced designers to use an innovative geosynthetic liner and leachate collection system. Its use sets a precedent for alternatives to the prescriptive regulations for liner systems present in Subtitle D of the Resource and Conservation Recovery Act (RCRA). To provide uninterrupted service at the landfill, design and construction proceeded concurrently with regulatory approval.

  17. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  18. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  19. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.

  20. Case study of landfill reclamation at a Florida landfill site.

    PubMed

    Jain, Pradeep; Townsend, Timothy G; Johnson, Patrick

    2013-01-01

    A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers' landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Landfill Liners and Covers: Properties and Application to Army Landfills.

    DTIC Science & Technology

    1984-06-01

    sands and gravels were used for cover material. Several moni- toring points placed through and around the landfill defined the area of groundwater ... pollution . 2 1H. Dratfield and L. Mavtone, personal communication. 53 0 O GAS VENT 2’ FINAL COVER TREATMENT NEW- LAGOON W LT WAT _ LEACHATE COLLECTION

  2. Health effects of residence near hazardous waste landfill sites: a review of epidemiologic literature.

    PubMed Central

    Vrijheid, M

    2000-01-01

    This review evaluates current epidemiologic literature on health effects in relation to residence near landfill sites. Increases in risk of adverse health effects (low birth weight, birth defects, certain types of cancers) have been reported near individual landfill sites and in some multisite studies, and although biases and confounding factors cannot be excluded as explanations for these findings, they may indicate real risks associated with residence near certain landfill sites. A general weakness in the reviewed studies is the lack of direct exposure measurement. An increased prevalence of self-reported health symptoms such as fatigue, sleepiness, and headaches among residents near waste sites has consistently been reported in more than 10 of the reviewed papers. It is difficult to conclude whether these symptoms are an effect of direct toxicologic action of chemicals present in waste sites, an effect of stress and fears related to the waste site, or an effect of reporting bias. Although a substantial number of studies have been conducted, risks to health from landfill sites are hard to quantify. There is insufficient exposure information and effects of low-level environmental exposure in the general population are by their nature difficult to establish. More interdisciplinary research can improve levels of knowledge on risks to human health of waste disposal in landfill sites. Research needs include epidemiologic and toxicologic studies on individual chemicals and chemical mixtures, well-designed single- and multisite landfill studies, development of biomarkers, and research on risk perception and sociologic determinants of ill health. PMID:10698726

  3. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  4. Missing Halocarbon Source? Data from a Recent New England Landfill Field Campaign

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Prinn, R.

    2005-12-01

    Anthropogenic emissions of long-lived halocarbons, namely chlorofluorocarbons (CFCs), hydrofluorocarbons (HCFCs), methyl chloroform (CH3CCl3), and carbon tetrachloride (CCl4) represent the largest source of atmospheric chlorine. All of these gases with the exception of the HCFCs are banned under the Montreal Protocol from being produced within the US or imported into the US. Several recent studies indicate that lingering emissions of these compounds are occurring around urban areas in the US. One possible source for these emissions is leakage from landfills. Landfill emissions are not currently considered explicitly in the published industry based global estimations of emissions for these gases. Previous studies have been done in the UK and suggested that this leakage may be significant (on the order of 1 Gg/year in the UK) in comparison with industry emissions estimates, but no measurement based estimates of Montreal Protocol gas emissions from US landfills have been previously reported. To further investigate this idea, flask samples were taken during the winter of 2004 at two Eastern Massachusetts landfills and during the summer of 2004 at four landfills in southwestern Britain. These studies showed more data was needed to create clear regression relationships between the landfill parameters (waste composition, landfill age, and total trash volume) and halocarbon gas emissions of CFC-12, CFC-11, CFC-113, and CH3CCl3. In a movement towards creating the necessary database of measurements, an intensive Fall 2005 landfill measurement campaign was conducted in New England. The results from this campaign will be presented, analyzed and compared to our results from the above two 2004 investigations.

  5. Case studies in alternative landfill design

    SciTech Connect

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  6. Landfill reclamation attracts attention and questions

    SciTech Connect

    Aquino, J.T.

    1994-12-01

    Landfill mining or reclamation has fit neatly into the recycling/reuse mindset. In heralding the first California landfill reclamation project at the Caspar Landfill municipal solid waste (MSW) site in May 1994, a California state official described it as ''win-win. Nobody loses''. Speaking at a session at the annual meeting of the Solid Waste Management Association of North America (SWANA), held August 2--6, 1994, Joanne R. Guerriero, senior project engineer, Malcolm Pirnie, Inc. (White Plains, NY), said landfill reclamation--the excavation of a landfill using conventional mining technology to recover and reuse resources--can: extend the life of existing landfill sites and reduce the need for siting new landfills; decrease the area requiring closure; remediate an environmental concern by removing a contaminant source; reclaim marketable recyclables; and capture energy through waste combustion.

  7. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    PubMed

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  8. Landfill gas makes cheap fuel

    SciTech Connect

    Makansi, J.

    1984-08-01

    According to a recent study by the American Gas Assn (AGA), the amount of energy recovered from landfill gas has grown by nearly 800% over the last five years. There are nearly 30 active sites recovering energy across the US--mostly in California and the Northeast--and, based on one optimistic estimate, there are close to 3500 potential sites. Reasons for recovering landfill gas are numerous. One, communities are attracted by the additional revenue a successful landfill-gas recovery project brings; the gas can be sold to a naturalgas supplier, it can be burned in gas turbines or gas engines to generate electricity for sale to the local utility, and it can be used to generate steam for use at a nearby industrial or institutional site. Recovering methane helps reduce the odors produced from decomposing garbage which can be disturbing to people living in the vicinity of the landfill. It also helps reduce the chance of explosions--methane trapped beneath the surface can build up to dangerous levels.

  9. Biotechnology comes to landfill sites

    SciTech Connect

    Not Available

    1981-05-19

    The GLC's Aveley site in Essex is being managed for the production and collection of methane. Commercial tapping of methane for delivery to local firms is planned. It is estimated that Britain's 2.5 million cubic metres of landfill sites could contain methane reserves worth around number20M.

  10. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  11. Emissions from the Bena Landfill

    NASA Astrophysics Data System (ADS)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  12. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels

  13. Fall Protection Introduction, #33462

    SciTech Connect

    Chochoms, Michael

    2016-06-23

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  14. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  15. Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces

    NASA Astrophysics Data System (ADS)

    Lucernoni, Federico; Tapparo, Federica; Capelli, Laura; Sironi, Selena

    2016-11-01

    Emission factors are fundamental tools for air quality management. Odour Emission Factors (OEFs) can be developed in analogy with the emission factors defined for other chemical compounds, which relate the quantity of a pollutant released to the atmosphere to a given associated activity. Landfills typically represent a common source of odour complaint; for this reason, the development of specific OEFs allowing the estimation of odour emissions from this kind of source would be of great interest both for the landfill design and management. This study proposes an up-to-date methodology for the development of an OEF for the estimation of odour emissions from landfills, thereby focusing on the odour emissions related to the emissions of landfill gas (LFG) from the exhausted landfill surface. The proposed approach is an "indirect" approach based on the quantification of the LFG emissions from methane concentration measurements carried out on an Italian landfill. The Odour Emission Rate (OER) is then obtained by multiplying the emitted gas flow rate by the LFG odour concentration. The odour concentration of the LFG emitted through the landfill surface was estimated by means of an ad hoc correlation investigated between methane concentration and odour concentration. The OEF for the estimation of odour emissions from landfill surfaces was computed, considering the landfill surface as the activity index, as the product between the mean specific LFG flux emitted through the surface resulting from the experimental campaigns, equal to 0.39 l/m2/h, and its odour concentration, which was estimated to be equal to 105‧000 eq. ouE/m3, thus giving an OEF of 0.011 ouE/m2/s. This value, which is considerably lower than those published in previous works, should be considered as an improved estimation based on the most recent developments of the research in the field of odour sampling on surface sources.

  16. Airborne emissions of mercury from municipal solid waste. II: potential losses of airborne mercury before landfill.

    PubMed

    Southworth, George R; Lindberg, Steve E; Bogle, Mary Anna; Zhang, Hong; Kuiken, Todd; Price, Jack; Reinhart, Debra; Sfeir, Hala

    2005-07-01

    Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg(o)) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg(o) to the air if it is initially present or formed by chemical reduction of Hg(II) to Hg(o) within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (approximately 100 mg/hr) and from dumpsters in the field (approximately 30 mg/hr for 1000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg(o) signals, indicating that much of the Hg was already present in a metallic (Hg(o)) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(o), the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg(o) at 10 to >100 microg/hr and continued to act as near constant sources for several days.

  17. Ultrasound assisted biogas production from landfill leachate.

    PubMed

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p<0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sedimentation and Occurrence and Trends of Selected Nutrients, Other Chemical Constituents, and Diatoms in Bottom Sediment, Fall River Lake, Southeast Kansas, 1948-2006

    USGS Publications Warehouse

    Juracek, Kyle E.

    2008-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, diatoms, and the radionuclide cesium-137 in the bottom sediment of Fall River Lake, southeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1948 through 2006 in the original conservation pool of the reservoir was 470 million cubic feet and 18.8 billion pounds, respectively. The estimated sediment volume occupied about 36 percent of the original conservation-pool, water-storage capacity of the reservoir. Mean annual net sediment deposition since 1948 in the original conservation pool of the reservoir was estimated to be 324 million pounds per year. Mean annual net sediment yield from the Fall River Lake Basin was estimated to be 585,000 pounds per square mile per year. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Fall River Lake were estimated to be 648,000 pounds per year and 267,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Fall River Lake Basin were 1,170 pounds per square mile per year and 480 pounds per square mile per year, respectively. Throughout the history of Fall River Lake, total nitrogen and total phosphorus concentrations in the deposited sediment were relatively uniform. Trace element concentrations in the bottom sediment of Fall River Lake generally were uniform over time. Arsenic, chromium, nickel, and zinc concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects

  19. Response signatures of four biological indicators to an iron and steel industrial landfill

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Simon, Thomas P.; Simon, Thomas P.

    2003-01-01

    Industrial landfills greatly modify surrounding areas by affecting chemical, physical, and biological integrity. Few data quantifying contaminant levels near landfills in sediments or in the organisms living near landfills exist. We examined several indicators of the aquatic community to determine whether a relationship existed between proximity to an industrial landfill and a decrease in biological integrity. The purpose was to determine patterns in community compositions and concentrations of contaminants in organisms and to assess the effects of contaminants on several trophic levels in the Grand Calumet Lagoons and adjacent ponds. In most aquatic systems, it is difficult to establish causal relationships between contaminants and ecosystem health due to the many ecological factors that can influence the responses of organisms and communities to particular stressors.

  20. Pharmaceuticals and other contaminants of emerging concern in landfill leachate of the United States

    USGS Publications Warehouse

    Kolpin, Dana W.; Masoner, Jason R.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2015-01-01

    Landfills are commonly the final respository for a heterogeneous mixture of waste from residential, commercial, and industrial sources. The use of landfills as a means of waste disposal will likely increase as the global population increases and nations develop. Thus, landfills receiving such waste have the potential to produce leachate containing numerous organic chemicals including contaminants of emerging concern (CECs) such as pharmaceuticals, personal care products, and hormones. This leachate is often discharged to pathways that lead directly (e.g. groundwater, streams) or indirectly (e.g. wastewater treament plants) to the environment. Limited research, however, has been conducted regarding the characterisation of landfill leachate for CECs.To provide the first national-scale assessment of CECs in landfill leachate across the United States, fresh leachate samples (i.e. prior to onsite treatment) from 19 landfills in 16 states were collected in 2011 and analysed for 202 CECs [1]. The targeted CECs were selected for analysis because they were expected to be persistent in the environment; are used, excreted, or disposed of in substantial quantities; may have human or environmental health effects; or are potential indicators of environmentally relevant classes of chemicals or source materials.

  1. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

  2. Phthalate release in leachate from municipal landfills of central Poland

    PubMed Central

    Wowkonowicz, Paweł; Kijeńska, Marta

    2017-01-01

    Phthalate diesters (PAEs) are used as plasticizer additives to polymer chains to make the material more flexible and malleable. PAEs are bonded physically, not chemically, to the polymeric matrix and can migrate to and leach from the product surface, posing a serious danger to the environment and human health. There have been a number of studies on PAE concentrations in landfill leachate conducted in the EU and around the world, though few in Poland. In the present study, the leachate of five municipal landfills was analyzed for the presence of PAEs. Raw leachate was sampled four times over the period of one year in 2015/16. It was the first large study on this subject in Poland. PAEs were detected in the leachate samples on all of the landfills, thereby indicating that PAEs are ubiquitous environmental contaminants. The following PAEs were detected in at least one sample: Di(2-ethylhexyl) phthalate (DEHP), Diethyl phthalate (DEP), Dimethyl phthalate (DMP), Di-n-butyl phthalate (DBP), Di-isobutylphthalate (DIBP). Out of all ten PAEs, DEHP was the most predominant, with concentrations up to 73.9 μg/L. DEHP was present in 65% of analyzed samples (in 100% of samples in spring, 80% in winter, and 40% in summer and autumn). In only 25% of all samples DEHP was below the acceptable UE limit for surface water (1.3 μg/L), while 75% was from 1.7 to 56 times higher than that value. On the two largest landfills DEHP concentrations were observed during samples from all four seasons, including on a landfill which has been remediated and closed for the last 5 years. PMID:28358912

  3. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  4. Surface emission of landfill gas from solid waste landfill

    NASA Astrophysics Data System (ADS)

    Park, Jin-Won; Shin, Ho-Chul

    The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m 3 m -2 h -1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to -100 mm H 2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.

  5. Landfill reclamation feasibility study for the Montauk Landfill, town of East Hampton, New York. Final report

    SciTech Connect

    1998-01-01

    A landfill reclamation feasibility study was performed at Montauk Landfill in East Hampton, Long Island, New York. The purpose of the study was to determine whether landfill reclamation is a technically and economically feasible alternative to conventional landfill closure via capping. The technical feasibility of landfill reclamation at the site was determined from a field investigation in which the waste from different periods in the landfill`s history was characterized, the percent of reusable and recyclable materials determined, environmental hazards assessed, and throughput rates determined. Potential markets and/or uses for reclaimed materials were identified and estimates for the re-disposal of the residual waste were obtained from waste-to-energy facilities and offsite landfills.

  6. Landfill reduction experience in The Netherlands

    SciTech Connect

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  7. Metal and organic matter contents in a combined household and industrial landfill.

    PubMed

    Ostman, M; Wahlberg, O; Gren, S; Mårtensson, A

    2006-01-01

    A combined household/industrial landfill in a humid and cold temperate climate was characterised with respect to its chemical composition. Cores taken at three randomly chosen sites on the landfill and at different depths at each site were analysed. Carbon, nitrogen and pH were measured by standard laboratory methods. The chemical elements analysed included metals and the non-metals B, P and S. pH ranged between 8.0 and 8.5. The total carbon content was in the interval 4.5-26.9% and the total nitrogen content in the interval 0.05-0.48%. The C/N ratio was high, indicating that there was not enough nitrogen available to ensure the stabilisation of carbon. The metal contents varied substantially. The water and carbon contents were related to each other as well as to the metal content, which increased with the content of water. Based on the results obtained regarding the chemical composition of the landfill, it is evident that the landfill consists of two layers. This indicates that the landfill body might have different levels of chemical development, due to water content, and different long-term leachability in the future.

  8. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    PubMed

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (<40 cm), predicting composite NMOC flux (as hexane-C) to within a factor of 10× for 13 out of 15 measurements. However, for thick covers (⩾40 cm) the ratio method overestimated NMOC emissions by ⩾10× for 8 out of 10 measurements. Alternative models were explored incorporating other chemical properties into the ratio method. A molecular weight squared (MW)(2)-modified ratio equation was shown to best address the tendency of the current ratio method to overestimate NMOC fluxes for thick covers. While these analyses were only performed using NMOC fluxes

  9. Seismic evaluation of municipal solid waste landfill

    SciTech Connect

    Hovind, C.; Slyh, R.

    1995-12-31

    With the promulgation of the Resource Conservation and Recovery (RCRA) Subtitle D, landfills situated within seismic impact zones must be evaluated for seismic hazards to demonstrate that the containment structures of the landfill can resist the maximum horizontal acceleration in lithified earth materials (bedrock) for the site. If a landfill is sited on saturated soils, it must also be evaluated for liquefaction and lateral spreading. In 1994, EMCON evaluated the seismic hazard for a landfill located along the Columbia River in southwestern Washington. The landfill was founded on dredge fill over natural alluvial deposits. Laboratory testing and state-of-the-art engineering analyses indicated that the sand unit below the landfill had a high potential for liquefaction. The seismic hazard evaluation for the site included a site-specific seismic response analysis, a liquefaction potential analysis, and seismic stability and deformation analysis. The seismic response analysis was conducted for nonliquefied, partially liquefied, and fully liquefied foundation soil conditions. Results are described.

  10. Application of the CERCLA municipal landfill presumptive remedy to military landfills (interim guidance). Fact sheet

    SciTech Connect

    1996-04-01

    This directive highlights a step-by-step approach to determining when a specific military landfill is an appropriate site for application of the containment presumptive remedy. It identifies the characteristics of municipal landfills that are relevant to the applicability of the presumptive remedy, addresses characteristics specific to military landfills, outlines an approach to determining whether the presumptive remedy applies to a given military landfill, and discusses Administrative Record documentation requirements.

  11. EVALUATION PLAN FOR TWO LARGE-SCALE LANDFILL BIOREACTOR TECHNOLOGIES

    EPA Science Inventory

    Abstract - Waste Management, Inc., is operating two long-term bioreactor studies at the Outer Loop Landfill in Louisville, KY, including facultative landfill bioreactor and staged aerobic-anaerobic landfill bioreactor demonstrations. A Quality Assurance Project Plan (QAPP) was p...

  12. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  13. Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays.

    PubMed

    Bortolotto, Tiago; Bertoldo, Jean Borges; da Silveira, Fernanda Zanette; Defaveri, Tamires Manganelli; Silvano, Jacira; Pich, Claus Tröger

    2009-09-01

    Landfill leachates are liquid effluents with elevated concentrations of chemical compounds that can cause serious environmental pollution. In the south of the state of Santa Catarina, Brazil, a sanitary landfill was installed that employs a system of anaerobic/facultative lagoons for the treatment of its leachate. The present work examined the toxic and genotoxic potential of untreated and treated landfill leachates using bioassays. The chemical, toxic, genotoxic and mutagenic properties of the untreated leachate and the treated leachate were determined. Examination of the chemical properties showed a marked decrease in parameters after treatment, as well as in toxicity towards all the organisms tested. The results of the comet assay demonstrated that both leachates showed genotoxicity in all of the organisms tested, indicating the persistence of genotoxic substances even after treatment. A significant decrease in micronucleated cells was detected in Geophagus brasiliensis exposed to the treated leachate compared to untreated.

  14. The decay of wood in landfills in contrasting climates in Australia

    SciTech Connect

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-15

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples

  15. Plants scrub landfill leachate clean

    SciTech Connect

    Not Available

    1980-09-01

    Leachate from the sanitary landfill in Barre, Mass., is collected in a series of holding lagoons. There, aquatic plants such as duckweed biodegrade and purify the wastewater. The plants saturate the leachate with oxygen, which speeds up aerobic oxidation by bacteria. The leachate is moved progressively through the series of lagoons, and the contents of the final lagoon are emptied into a trout pond. (3 photos)

  16. Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography - with correlation to ionic strength measured in screens

    NASA Astrophysics Data System (ADS)

    Maurya, P. K.; Rønde, V. K.; Fiandaca, G.; Balbarini, N.; Auken, E.; Bjerg, P. L.; Christiansen, A. V.

    2017-03-01

    Leaching of organic and inorganic contamination from landfills is a serious environmental problem as surface water and aquifers are affected. In order to assess these risks and investigate the migration of leachate from the landfill, 2D and large scale 3D electrical resistivity tomography were used at a heavily contaminated landfill in Grindsted, Denmark. The inverted 2D profiles describe both the variations along the groundwater flow as well as the plume extension across the flow directions. The 3D inversion model shows the variability in the low resistivity anomaly pattern corresponding to differences in the ionic strength of the landfill leachate. Chemical data from boreholes agree well with the observations indicating a leachate plume which gradually sinks and increases in size while migrating from the landfill in the groundwater flow direction. Overall results show that the resistivity method has been very successful in delineating the landfill leachate plume and that good correlation exists between the resistivity model and leachate ionic strength.

  17. Nondestructive test to track pollutant transport into landfill liners

    NASA Astrophysics Data System (ADS)

    Bezzar, A.; Ghomari, F.

    2009-03-01

    Over the last decade, waste disposal has become a particularly sensitive issue in Algeria. New legislation concerning landfill liner design has been adopted. Traditional methods of landfill liner characterization involve soil sampling and chemical analysis, which are costly, destructive and time-consuming. New techniques are currently being investigated that aim to provide nondestructive liner characterisation. This paper details technical aspects associated with electrical conductivity measurements within landfill liners and presents experimental work to show the direct application of electrical techniques to track ionic movement through a sand bentonite liner under chemically induced flow. Samples of sand bentonite were mixed and compacted with NaCl electrolytes at different concentrations. The electrical conductivities of compacted specimens were measured with a two-electrode cell. The effects of frequency and electrolyte concentration on the conductivity measurement were explored. The relationship between the soil electrical conductivity and the NaCl electrolyte concentration in interstitial pore fluid was determined. The conductivity measurements were used to quantify the pore fluid concentration and effective diffusion coefficient of sand bentonite liners. It is concluded here that the electrical conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid, and that this approach could therefore be used to track ionic movement through liners during diffusion.

  18. Nitrogen management in bioreactor landfills

    SciTech Connect

    Price, G. Alexander; Barlaz, Morton A.; Hater, Gary R

    2003-07-01

    One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO{sub 3}-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH{sub 4}{sup +} by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.

  19. Appointment in Sonzay: Landfill gas fueled vehicles

    SciTech Connect

    Balbo, M.E.

    1997-05-01

    The SITA Group (Paris, France) an international waste management company, wanted to research and develop a means to economically and environmentally reuse the inherent value of its landfill gas. As the owner of more than 100 landfills in France alone--both hazardous and non-hazardous--SITA felt that it had a responsibility to research innovative gas treatment and/or reuse options, particularly as public scrutiny of landfill management practices was on the rise. In a successful pilot program initiated by SITA, landfill gas was reused as biofuel for vehicles in a way that was economically viable and environmentally sound.

  20. Turbines produce energy from L. A. landfill

    SciTech Connect

    Carry, C.W.; Stahl, J.F.; Maguin, S.R.; Friess, P.L.

    1984-06-01

    This article describes one of the Nation's most sophisticated resource recovery projects which began operating in February at the Puente Hills Landfill Methane Energy Station as part of the County Sanitation Districts of Los Angeles County. The project is currently generating 2.8 megawatts of power which would serve the electrical needs of approximately 5600 homes. Future plans for the landfill energy project include generating enough electricity for more than 50,000 homes. Unlike other methane recovery projects that use diesel or gasoline power reciprocating engines, the Puente Hills Landfill Methane Energy Station drives its electrical generators with gas turbines. This is a first for power generation at a landfill site.

  1. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    SciTech Connect

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  2. Landfill leachate-induced toxicity in mice.

    PubMed

    Bakare, A A; Mosuro, A A; Osibanjo, O

    2003-10-01

    Microbial, plant and studies in aquatic animals have shown that landfill leachate is toxic. However, more information about its effects in terrestrial animals is required. As a part of ongoing research into the toxic effects of landfill leachate in Nigeria, we evaluated the acute effects of raw and simulated leachates from Abadina, Orita-Aperin and Oworonsoki dump sites, all in Southwest Nigeria, in mice. Raw leachates were obtained directly from the dumps while the simulated leachates were obtained from the solid wastes in the laboratory by using the ASTM method. The samples were designated Abadina raw leachate (ARL), Orita-Aperin raw leachate (OARL) and Oworonsoki raw leachate (OWRL); and Abadina simulated leachate (ASL), Orita-Aperin simulated leachate (OASL) and Oworonsoki simulated leachate (OWSL). Their physico-chemical properties were determined in accordance with standard analytical methods. Young male mice (12-15 wk) weighing 24-31 g were exposed to 1%, 5%, 10%, 25%, 50% and 100% concentrations of each test samples for 5 consecutive days and were observed for a period of 96 h for toxic response. Mortality recorded at different times for each sample at the various concentrations was mostly within the last 48 h of the exposure period. The LC50 obtained are 100% for both ARL and OARL, and 50% for OWRL; and 83.50% and 50% for ASL and OWSL, respectively. It was indeterminate for OASL. Apart from this, other toxic effects like weight loss, sluggishness, loss of hair and reduced food intake were observed. The investigated samples were ranked as OWRL > OWSL > ASL > OARL > ARL > OASL. The observed effects were due to the toxic constituents present in the leachate samples. This suggests that the mixtures have the potential to cause harmful effect to public health and our environment through seepage into ground or surface water.

  3. Characterization and toxicological evaluation of leachate from closed sanitary landfill.

    PubMed

    Emenike, Chijioke U; Fauziah, Shahul H; Agamuthu, P

    2012-09-01

    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.

  4. Emerging contaminants at a closed and an operating landfill in Oklahoma

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  5. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  6. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    PubMed

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  7. Granite fracturing and incipient pollution beneath a recent landfill facility as detected by geoelectrical surveys

    NASA Astrophysics Data System (ADS)

    Mota, R.; Monteiro Santos, F. A.; Mateus, A.; Marques, F. O.; Gonçalves, M. A.; Figueiras, J.; Amaral, H.

    2004-12-01

    A resistivity survey using Wenner array was carried out in June 2000 in a granite region of Northern Portugal, where an active landfill is operating since 1998, to detect the possible spread of contamination. This survey was complemented with a self-potential (SP) survey, a dipole-dipole (DD) array profile and azimuthal Vertical Electrical Sounding arrays (VES). The location of these profiles was highly constrained by the available space in the landfill facility and by the available geological data, mainly fracturing. Significant groundwater circulation was detected, which is characterized by a low resistivity zone (<400 Ω m), with a fairly well defined configuration. Chemical analysis of water samples collected in boreholes inside the landfill facility and on springs around it confirmed the presence of water contamination. The presence of a very well delimited anomaly with low resistivity (<200 Ω m) just beneath the leachate collector system strongly suggests that the groundwater contamination is due to a landfill leak. Results of azimuthal VES are consistent with the structural data obtained outside the landfill, revealing that the strikes of the prevailing fracture systems inside the landfill are generally NW-SE to NNE-SSW, which seems to facilitate the downward propagation of contaminants.

  8. Geohydrology and ground-water quality at the Pueblo Depot activity landfill near Pueblo, Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.; Ortiz, Roderick F.

    1990-01-01

    Groundwater samples were collected from the shallow unconfined aquifer at the Pueblo Depot Activity (Colorado) landfill and downstream from the landfill. The Pueblo Depot Activity is a U.S. Department of the Army facility in southeastern Colorado about 15 miles east of Pueblo, Colorado. The land-fill is underlain by upland alluvial terrace deposits that overlie a thick and almost impermeable shale. Saturated thickness of the aquifer generally is from 5 to 10 feet. Groundwater flow at the landfill is to the south-southeast toward the Arkansas River valley. Though not hydraulically connected to the upland terrace deposits, the alluvium underlying the Arkansas River valley may be recharged by groundwater that is discharged from seeps at the contact of the upland terrace deposits and the Pierre Shale. The water is classified as a mixed-cation mixed-anion type water that has concentrations of dissolved solids of 710 to 1,810 mg/L. Dissolved-solids concentrations increase downgradient. Chemical analysis, done to determine possible contamination of the groundwater, indicated that concentrations of trichloroethylene ranged from 5.2 to 2,900 microg/L and of trans-1,2-dichloroethylene ranged from 5 to 720 microg/L. The areal distribution of these volatile organic compounds indicate that there possibly are two sources of contamination of groundwater at the landfill, one upgradient from the landfill and the other within the landfill. Analysis of water samples from wells and seeps offsite and downgradient from the landfill did not indicate either contaminant in groundwater from the alluvial aquifer underlying the Arkansas River valley. (USGS)

  9. Assessing the market opportunities of landfill mining.

    PubMed

    van der Zee, D J; Achterkamp, M C; de Visser, B J

    2004-01-01

    Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction. Consequently, market size for companies operating landfills shrinks. Among the companies facing the problem is the Dutch company Essent. Given the expected market conditions, it looks for alternative business opportunities. Landfill mining, i.e., the recycling of existing landfills, is considered one of them. Proceeds of landfill mining are related to, for example, recycled materials available for re-use, regained land, and possibilities for a more efficient operation of a landfill. The market for landfill mining is of a considerable size--there are about 3800 landfills located in the Netherlands. Given market size the company faces the dilemma of how to explore this market, i.e., select the most profitable landfills in a fast and efficient way. No existing methods or tools could be found to do so. Therefore, to answer to the problem posed, we propose a step-wise research method for market exploration. The basic idea behind the method is to provide an adequate, cost-saving and timely answer by relying on a series of quick scans. Relevant aspects of a mining project concern the proceeds of regained land and recyclables, the costs of the mining operation and the associated business and environmental risks. The method has been tested for its practical use in a pilot study. The pilot study addressed 147 landfills located in the Dutch Province of Noord-Brabant. The study made clear how method application resulted in the selection of a limited number of high potential landfills in a few weeks, involving minimal research costs.

  10. Heat management strategies for MSW landfills.

    PubMed

    Yeşiller, Nazli; Hanson, James L; Kopp, Kevin B; Yee, Emma H

    2016-10-01

    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness

  11. Hanford Site Solid Waste Landfill permit application

    SciTech Connect

    Not Available

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs.

  12. Emergency landfill gas control at the Milwaukee County Landfill

    SciTech Connect

    Michels, M.S.; Boone, D.A.

    1996-11-01

    In October 1994, up to 55 percent methane concentrations by volume were found below 76th Street in Franklin, Wisconsin. Numerous utilities exist below 76th Street which service homes located only 100 feet east. The Milwaukee County Landfill, located immediately west of 76th Street, was the source of methane gas. With winter weather conditions approaching, Milwaukee County was concerned that landfill gas (LFG) could migrate along utilities or in sandy soil and enter basements of adjacent homes. The County declared an emergency to immediately release funds and authorized a design/build contract to remedy the gas migration. CDM Engineers and Constructors, Inc. was selected for the project. The Milwaukee County Department of Public Works, Environmental Services Division led the project team. Numerous activities occurred simultaneously, including: (1) Public Relations, (2) Notification to Wisconsin DNR, (3) Design and Permitting, (4) Ordering the Flare, (5) Installing Methane Detectors in 29 Basements. Public relations included public forums with local residences, monthly newsletters, meetings with the ski hill operator, television interviews, local newspaper interviews, briefing the County Alderman and City of Franklin officials. Cooperation from Wisconsin DNR provided a 10-day turnaround for approval of the design. A perimeter active gas collection and flare system was employed to mitigate LFG. The system included eight gas extraction wells drilled to the base of the landfill and one horizontal trench (approximately 40 feet long). Extraction wells and trench were connected together with a buried 6-inch HDPE header pipe. Condensate is collected in a 550-gallon double-walled steel tank.

  13. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B.

    1998-08-01

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  14. Use of a digital model to evaluate hydrogeologic controls on groundwater flow in a fractured rock aquifer at Niagara Falls, New York, U.S.A.

    USGS Publications Warehouse

    Maslia, M.L.; Johnston, R.H.

    1984-01-01

    The Hyde Park landfill is a 15-acre (6.1 ha) chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low-permeability glacial till and lacustrine deposits; (2) a moderately permeable fractured rock aquifer - the Lockport Dolomite; and (3) a low-permeability unit - the Rochester Shale. The site is bounded on three sides by groundwater drains; the Niagara River gorge, the Niagara Power Project canal, and the Niagara Power Project buried conduits. The mechanism by which groundwater moves through fractured rocks underlying a hazardous waste site was investigated using a digital simulation approach. Three hypotheses were tested related to flow in the fractured rocks underlying Hyde Park landfill. For this purpose we used a Galerkin finite-element approximation to solve a saturated-unsaturated flow equation. A primary focus was to investigate anisotropy in the Lockport Dolomite, that is the effectiveness of horizontal (bedding) joints vs. vertical joints as water-transmitting openings. Three hydrogeologic scenarios were set up - each with prescribed limits on the hydrologic parameters. Scenario 1 specified strongly anisotropic conditions in the Lockport Dolomite (horizontal hydraulic conductivity along bedding joints exceeds vertical conductivity by 2-3 orders of magnitude), uniform areal recharge (5 in. yr.-1 or 12.7 cm yr.-1) except at the landfill where there is no recharge, and no flow through the base of the Rochester Shale. Scenario 2 also specified strongly anisotropic conditions in the Lockport; however, areal recharge was 6 in. yr.-1 (15.2 cm yr.-1) except at the landfill where the recharge was 2 in. yr.-1 (5.1 cm yr.-1), and outflow from the Rochester occurred. Scenario 3 specified isotropic conditions (that is, permeability along horizontal and vertical joints is the same in the Lockport Dolomite), recharge rates were the same as in scenario 2 and outflow through Rochester occurred. Scenario 2

  15. Use of a digital model to evaluate hydrogeologic controls on groundwater flow in a fractured rock aquifer at Niagara Falls, New York, U.S.A.

    NASA Astrophysics Data System (ADS)

    Maslia, Morris L.; Johnston, Richard H.

    1984-12-01

    The Hyde Park landfill is a 15-acre (6.1 ha) chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low-permeability glacial till and lacustrine deposits; (2) a moderately permeable fractured rock aquifer — the Lockport Dolomite; and (3) a low-permeability unit — the Rochester Shale. The site is bounded on three sides by groundwater drains; the Niagara River gorge, the Niagara Power Project canal, and the Niagara Power Project buried conduits. The mechanism by which groundwater moves through fractured rocks underlying a hazardous waste site was investigated using a digital simulation approach. Three hypotheses were tested related to flow in the fractured rocks underlying Hyde Park landfill. For this purpose we used a Galerkin finite-element approximation to solve a saturated-unsaturated flow equation. A primary focus was to investigate anisotropy in the Lockport Dolomite, that is the effectiveness of horizontal (bedding) joints vs. vertical joints as water-transmitting openings. Three hydrogeologic scenarios were set up — each with prescribed limits on the hydrologic parameters. Scenario 1 specified strongly anisotropic conditions in the Lockport Dolomite (horizontal hydraulic conductivity along bedding joints exceeds vertical conductivity by 2-3 orders of magnitude), uniform areal recharge (5 in. yr. -1 or 12.7 cm yr. -1) except at the landfill where there is no recharge, and no flow through the base of the Rochester Shale. Scenario 2 also specified strongly anisotropic conditions in the Lockport; however, areal recharge was 6 in. yr. -1 (15.2 cm yr. -1) except at the landfill where the recharge was 2 in. yr. -1 (5.1 cm yr. -1), and outflow from the Rochester occurred. Scenario 3 specified isotropic conditions (that is, permeability along horizontal and vertical joints is the same in the Lockport Dolomite), recharge rates were the same as in scenario 2 and outflow through Rochester occurred

  16. Superfund Record of Decision (EPA Region 2): Forest Glen Subdivision, Niagara Falls, NY. (First remedial action), December 1989

    SciTech Connect

    Not Available

    1989-12-29

    The Forest Glen Subdivision site consists of 21 acres of developed residential properties and undeveloped land in Niagara Fall, Niagara County, New York. Land in the area surrounding the Forest Glen subdivision is used for residential and industrial purposes, including a mobile home park, small shopping mall, and the CECOS Landfill. Chemical companies reportedly disposed of wastes onsite from the early 1950s to the early 1970s. Sampling by EPA's Field Investigation Team revealed the presence of high concentrations of unknown and tentatively identified compounds (TICs) in August 1987, and further soil sampling was conducted to identify the TICs. EPA has executed interim measures to stabilize site conditions including collecting, staging, and securing drums in areas north and east of the subdivision and temporarily covering visibily contaminated soil with concrete. The remedial activity is the first of two planned operable units and addresses resident relocation only. A subsequent operable unit will address the remediation of site contamination once the relocation is complete.

  17. Effects of landfill leaching on water quality and biology of a nearby stream, South Cairo, Greene County, New York

    USGS Publications Warehouse

    Ehlke, Theodore A.

    1979-01-01

    A 1-kilometer stream reach receiving leachate-enriched water from a small municipal landfill in Greene County, N.Y., was studied from 1971-75 to document streamflow rates and chemical quality of the stream and ground water. The distribution of benthic invertebrates and microorganisms in the stream above the landfill was markedly different from that below it; the difference is attributed to the inflow of leachate. The Trichoptera, Ephemeroptera, and Nematomorpha have been eliminated from the reach adjacent to and below the landfill and have been replaced by large numbers of Tendipedidae and Niadidae. Certain chemical constituents, especially iron and manganese, were extremely concentrated in the ground water immediately beneath the streambed. The elevated concentrations of these and other metals may be the direct cause of the abrupt faunal shift. Algae were replaced by large masses of the iron bacterium Leptothrix in the stream reach below the landfill. (Kosco-USGS)

  18. Cannock landfill gas powering a small tubular solid oxide fuel cell — a case study

    NASA Astrophysics Data System (ADS)

    Staniforth, J.; Kendall, K.

    Cannock landfill gas — mainly a mixture of methane and carbon dioxide — can successfully power a small tubular solid oxide fuel cell. Initial experiments showed a relatively rapid falling off in power due to poisoning with hydrogen sulphide. A simple de-sulphurisation system alleviated this problem. Even greater performance was achieved by the pre-addition of air to help in the reforming of the gas, giving little loss of power over the lifetime of the experiment.

  19. Photochemical destruction of cyanide in landfill leachate

    SciTech Connect

    Kim, B.R.; Podsiadlik, D.H.; Hartlund, J.L.; Gaines, W.A.; Kalis, E.M.

    1998-11-01

    The Allen Park Clay Mine Landfill, owned by Ford, produces a leachate that occasionally contains cyanide at levels marginally below the discharge limit. The form of the cyanide in the leachate was found to be iron-cyanide complexes that resist oxidation by a conventional treatment method, alkaline oxidation. Furthermore, the leachate also was found to contain a relatively large amount of organics which would exert additional demand for oxidizing agents (e.g., chlorine). A study was performed to determine what treatment technology could be employed in the event treatment becomes necessary because of potential changes in the leachate characteristics and/or discharge limits. In this study, among several chemical oxidation methods, ultraviolet (UV) irradiation with or without ozone was investigated as a treatment option. The following are the primary findings: (1) UV irradiation alone was effective for removing the iron-cyanide complex in both the leachate and the clean water; (2) the demand for UV or ozone by chemical oxygen demand was relatively low for this leachate; (3) ozone alone was not effective for removing the iron-cyanide complex; and (4) UV irradiation alone and UV irradiation with ozone resulted in the same removal for total cyanide in clean-water experiments, but the UV irradiation alone left some free cyanide whereas the UV irradiation with ozone did not.

  20. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  1. Quantifying capital goods for waste landfilling.

    PubMed

    Brogaard, Line K; Stentsøe, Steen; Willumsen, Hans Christian; Christensen, Thomas H

    2013-06-01

    Materials and energy used for construction of a hill-type landfill of 4 million m(3) were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation. The construction of the landfill is only a significant contributor to the impact of resource depletion owing to the high use of gravel and steel.

  2. Municipal waste landfill permitting in Pennsylvania

    SciTech Connect

    Mentzer, G.F.

    1996-11-01

    The Commonwealth of Pennsylvania has 50 permitted municipal waste landfills (MWL) with calculated capacities ranging from 0.5 to 25.3 million tons. The most common size for our landfills is in the range of 3 to 5 million tons, with three landfills exceeding the 20+ million ton capacity. Future expansion projects will increase a few landfills to in excess of 35+ million tons. Exact VOC emission numbers are not available since not all landfills have or are required to report their emissions to the Pennsylvania air emissions database. However, estimates from several of our larger facilities indicates the uncontrolled VOC emissions are in the range of 250 to 350 TPY with a possible high of 580 TPY. Although the numbers are not exact, it does point out the fact that landfills are a major source of VOC emissions. With the advent of the Environmental Protection Agency`s (EPA) proposed New Source Performance Standards (Subpart WWW) and emissions guidance (Subpart Cc), the EPA declared that the MWL are a source of air pollution. Following the release of these proposed regulations, the Department of Environmental Protection, Bureau of Air Quality began in mid 1994 the task of permitting landfills. Through the use of customized forms G(A) and G(B), the Department made in 1995 its first attempt to identify and quantify emissions from its landfills. The process of quantifying and verifying emission estimates is still on going. To date, the Department is in various stages of permitting eight MWL.

  3. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  4. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  5. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  6. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  7. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  8. Fall Enrollment Report. 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    This report summarizes and analyzes fall enrollment in Iowa's community colleges. Each year, Iowa's 15 community colleges submit data on enrollment on the 10th business day of the fall semester. Some highlights from this report include: (1) Fall 2014 enrollment was 93,772 students--a decline of 0.49 percent from last fall; (2) Enrollment continues…

  9. Chemical studies of H chondrites. II - Weathering effects in the Victoria Land, Antarctic population and comparison of two Antarctic populations with non-Antarctic falls

    NASA Astrophysics Data System (ADS)

    Dennison, J. E.; Lipschutz, M. E.

    1987-03-01

    The authors report RNAA data for 14 siderophile, lithophile and chalcophile volatile/mobile trace elements in interior portions of 45 different H4-6 chondrites (49 samples) from Victoria Land, Antarctica and 5 H5 chondrites from the Yamato Mts., Antarctica. Relative to H5 chondrites of weathering types A and B, all elements are depleted (10 at statistically significant levels) in extensively weathered (types B/C and C) samples. Chondrites of weathering types A and B seem compositionally uncompromised and as useful as contemporary falls for trace-element studies. When data distributions for these 14 trace elements in non-Antarctic H chondrite falls and unpaired samples from Victoria Land and from the Yamato Mts. (Queen Maud Land) are compared statistically, numerous significant differences are apparent. These and other differences give ample cause to doubt that the various sample populations derive from the same parent population. The observed differences do no reflect weathering, chance or other trivial causes: a preterrestrial source must be responsible.

  10. Hydrogeology and ground-water-quality conditions at the Emporia- Lyon County Landfill, eastern Kansas, 1988

    USGS Publications Warehouse

    Myers, N.C.; Bigsby, P.R.

    1990-01-01

    Hydrogeology and water-quality conditions at the Emporia-Lyon County Landfill, eastern Kansas, were investigated from April 1988 through April 1989. Potentiometric-surface maps indicated groundwater movement from the northeast and northwest towards the landfill and then south through the landfill to the Cottonwood River. The maps indicate that during periods of low groundwater levels, groundwater flows northward in the north-west part of the landfill, which may have been induced by water withdrawal from wells north of the landfill or by water ponded in waste lagoons south and west of the landfill. Chemical analysis of water samples from monitoring wells upgradient and downgradient of the landfill indicate calcium bicarbonate to be the dominant water type. No inorganic or organic chemical concentrations exceeded Kansas or Federal primary drinking-water standards. Kansas secondary drinking-water standards were equaled or exceeded, however, in water from some or all wells for total hardness, dissolved solids, iron, and manganese. Water from one upgradient well contained larger concentrations of dissolved oxygen and nitrate, and smaller concentrations of bicarbonate, alkalinity, ammonia, arsenic, iron, and manganese as compared to all other monitoring wells. Results of this investigation indicate that groundwater quality downgradient of well MW-2 has increased concentrations of some inorganic and organic compounds. Due to the industrial nature of the area and the changing directions of groundwater flow, it is not clear what the source of these compounds might be. Long-term monitoring, additional wells, and access to nearby waste lagoons and waste-lagoon monitoring wells would help define the sources of increased inorganic and organic compounds. (USGS)

  11. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  12. Methane landfill gas. an 80's reality

    SciTech Connect

    Not Available

    1980-08-01

    According to a recent American Gas Association report, enough methane could be extracted from America's city dumps during the 1980's to supply to 2.1 million homes annually. But to do so, federal and state policies limiting the size of dumps must be contended with. Recovery plants cost $10-$50 million. The economic breakeven point is a landfill that handles 300,000-500,000 tons/yr of refuse, based on a recovery rate of 3 million Btu of pipeline-quality gas from each ton of refuse. The economics of landfill gas recovery involve low transportation costs, since landfills are generally near urban areas where end users are located. Nationally, economic and indirect benefits would result in landfill gas having a value of over $10/million Btu to the U.S. Unfortunately, regulatory barriers exist despite a precedent of 13 active landfill methane recovery plants in operation at present in California, New Jersey, and New York.

  13. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  14. Environmental Assessment: Addressing Expanded Herbicide Applications and the Relocation of Dry Chemical Testing at Niagra Falls Air Reserve Station, New York

    DTIC Science & Technology

    2011-07-01

    Spent material that might escape from the bag would be collected, and the spent dry chemical would be turned in to Civil Engineering and disposed...dry chemical testing would be contained and collected. Disposal of spent material would be collected and turned into Civil Engineering for off...the discharge of dredge and fill material into waters of the United States. Section 404 permits are issued by the U.S. Army Corps of Engineers

  15. Delineating landfill leachate discharge to an arsenic contaminated waterway.

    PubMed

    Ford, Robert G; Acree, Steven D; Lien, Bob K; Scheckel, Kirk G; Luxton, Todd P; Ross, Randall R; Williams, Aaron G; Clark, Patrick

    2011-11-01

    Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arsenic contamination in a pond abutting a closed landfill. Subsurface hydrology and ground-water chemistry were evaluated in the aquifer between the landfill and the pond during the period 2005-2009 employing a network of wells to delineate the spatial and temporal variability in subsurface conditions. These observations were compared with concurrent measures of ground-water seepage and surface water chemistry within a shallow cove that had a historical visual record of hydrous ferric oxide precipitation along with elevated arsenic concentrations in shallow sediments. Barium, presumably derived from materials disposed in the landfill, served as an indicator of leachate-impacted ground water discharging into the cove. Evaluation of the spatial distributions of seepage flux and the concentrations of barium, calcium, and ammonium-nitrogen indicated that the identified plume primarily discharged into the central portion of the cove. Comparison of the spatial distribution of chemical signatures at depth within the water column demonstrated that direct discharge of leachate-impacted ground water was the source of highest arsenic concentrations observed within the cove. These observations demonstrate that restoration of the impacted surface water body will necessitate control of leachate-impacted ground water that continues to discharge into the cove. Published by Elsevier Ltd.

  16. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  17. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L; Schwab, Eric A

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L(-1) to mg L(-1). Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L(-1)), BPA (6 380 000 ng L(-1)), and phenol (1 550 000 ng L(-1)), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  18. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process.

    PubMed

    Zhu, Guocheng; Wang, Chuang; Dong, Xingwei

    2017-06-01

    Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.

  19. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  20. Inferred performance of surface hydraulic barriers from landfill operational data

    SciTech Connect

    Gross, B.A.; Bonaparte, R.; Othman, M.A.

    1997-12-31

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  1. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  2. A Study of Leachate Generated from Construction and Demolition Landfills,

    DTIC Science & Technology

    2007-11-02

    solid waste (MSW) landfills and hazardous waste landfills. Regulators felt that since C&D landfills did not accept large quantities of hazardous waste...Construction and demolition (C&D) waste landfills have largely been ignored because they have been viewed as innocuous in comparison to municipal

  3. Superfund Record of Decision (EPA Region 5): Industrial Excess Landfill site, Uniontown, Ohio (first remedial action), September 1987. Final report

    SciTech Connect

    Not Available

    1987-09-30

    The Industrial Excess Landfill (IEL) is a 30-acre closed sanitary landfill located in Uniontown, Stark County, Ohio. Over 400 residential homes, located within a 0.5 mile radius of the landfill, rely entirely on individual or private well supplies for drinking water. Prior to 1961, the landfill property may have been utilized as a coal mine and later for mining sand and gravel. Gradually, the mining/excavation pit was converted into a landfill which received a variety of wastes. Between 1964 and 1968, the site was used to store fly ash, masonry rubble, paper and lumber scrap. From 1968 to 1980, IEL accepted municipal, commercial, industrial, and chemical wastes of substantially undetermined and unknown composition, primarily from the nearby rubber industry. Large quantities of chemical and liquid waste were dumped onto the ground either from 55-gallon drums or from tanker trucks. In January of 1972, the Stark County Board of Health (SCBH) ordered the dumping of chemical wastes stopped. In 1980, due to public concern and facility volume limitations, the landfill was ordered to close.

  4. Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Burlakovs, Juris; Kriipsalu, Mait; Hogland, Marika; Hogland, William

    2017-06-01

    Landfill mining is an alternative technology that merges the ideas of material recycling and sustainable waste management. This paper reports a case study to estimate the value of landfilled materials and their respective market opportunities, based on a full-scale landfill mining project in Estonia. During the project, a dump site (Kudjape, Estonia) was excavated with the main objectives of extracting soil-like final cover material with the function of methane degradation. In total, about 57,777 m(3) of waste was processed, particularly the uppermost 10-year layer of waste. Manual sorting was performed in four test pits to determine the detailed composition of wastes. 11,610 kg of waste was screened on site, resulting in fine (<40 mm) and coarse (>40 mm) fractions with the share of 54% and 46%, respectively. Some portion of the fine fraction was sieved further to obtain a very fine grained fraction of <10 mm and analyzed for its potential for metals recovery. The average chemical composition of the <10 mm soil-like fraction suggests that it offers opportunities for metal (Cr, Cu, Ni, Pb, and Zn) extraction and recovery. The findings from this study highlight the importance of implementing best available site-specific technologies for on-site separation up to 10 mm grain size, and the importance of developing and implementing innovative extraction methods for materials recovery from soil-like fractions.

  5. The Fall and Fall of Gary Hart.

    ERIC Educational Resources Information Center

    Rowland, Robert C.

    The fall of Gary Hart, brought about because of his indiscretions during the 1988 presidential campaign, should not be treated exclusively as a consequence of Hart's moral failings. Rather, the fall of Hart can be traced to a complex of factors including bad judgment, the near total control that the press exercises over the political agenda, and…

  6. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    USGS Publications Warehouse

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.

  7. Public health assessment for Spickler Landfill, Spencer, Marathon County, Wisconsin, Region 5. Cerclis No. WID980902969. Final report

    SciTech Connect

    Not Available

    1994-04-19

    Spickler Landfill is a former landfill located in the southwestern corner of Marathon County, Wisconsin, three miles northwest of the City of Marshfield. Spickler Landfill posed a public health hazard in the past because people who worked on the site or lived nearby probably inhaled asbestos dust particles when waste materials were received at the site. After the site stopped receiving waste the site posed an indeterminate public health hazard because inhalation of asbestos around the site may have continued because poor site maintenance, an inadequate landfill cap, and on-site excavations permitted asbestos-based waste material to come to the surface. Currently the Spickler Landfill poses no public health hazard. Groundwater is contaminated around the site from chemicals in the landfill, but contamination has not reached any nearby private wells. Methane landfill gas is being produced at the site and has been found at explosive levels in some monitoring locations immediately adjacent to the site. Leachate seeped to the surface at one location and flows away from the site. This seep provides a potential surface water pathway for contaminants to be carried from the site.

  8. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  9. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers?

    PubMed

    Gebert, Julia; Röwer, Inga Ute; Scharff, Heijo; Roncato, Camila D L; Cabral, Alexandre R

    2011-05-01

    A method is proposed to estimate CH(4) oxidation efficiency in landfill covers, biowindows or biofilters from soil gas profile data. The approach assumes that the shift in the ratio of CO(2) to CH(4) in the gas profile, compared to the ratio in the raw landfill gas, is a result of the oxidation process and thus allows the calculation of the cumulative share of CH(4) oxidized up to a particular depth. The approach was validated using mass balance data from two independent laboratory column experiments. Values corresponded well over a wide range of oxidation efficiencies from less than 10% to nearly total oxidation. An incubation experiment on 40 samples from the cover soil of an old landfill showed that the share of CO(2) from respiration falls below 10% of the total CO(2) production when the methane oxidation capacity is 3.8 μg CH(4)g(dw)(-1)h(-1) or higher, a rate that is often exceeded in landfill covers and biofilters. The method is mainly suitable in settings where the CO(2) concentrations are not significantly influenced by processes such as respiration or where CH(4) loadings and oxidation rates are high enough so that CO(2) generated from CH(4) oxidation outweighs other sources of CO(2). The latter can be expected for most biofilters, biowindows and biocovers on landfills. This simple method constitutes an inexpensive complementary tool for studies that require an estimation of the CH(4) oxidation efficiency values in methane oxidation systems, such as landfill biocovers and biowindows. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  11. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  12. Proceedings from the GRCDA 9th international landfill gas symposium

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on methane recovery from sanitary landfills. Topics considered at the conference included hazardous wastes, gaseous wastes, emission, pollution regulations, landfill testing, ambient air monitoring, landfill gas control, methane collection system operation and maintenance, estimating landfill gas yields, the production of high BTU gas, medium BTU gas, the pressure swing MDEA process, landfill gas power conversion, and methane fuel cells.

  13. Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco)

    NASA Astrophysics Data System (ADS)

    Chofqi, Amina; Younsi, Abedelkader; Lhadi, El Kbir; Mania, Jacky; Mudry, Jacques; Veron, Alain

    2004-06-01

    The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10-15 m) in the Cenomanian rock (calcareous-marl), which is characterised by an important permeability from cracks. The soil is sand-clay characterized by a weak coefficient of retention. The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer. To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l -1, chemical oxygen demand = 1000 mg l -1, iron = 23 000 μg l -1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm -1 in electric conductivity, 1620 and 1000 mg l -1 respectively in chlorides and sulfate ( SO42-), 15-25 μg l -1 in cadmium, and 60-100 μg l -1 in chromium. These concentrations widely exceed the standard values for potable water. Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a

  14. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  15. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS ...

    EPA Pesticide Factsheets

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation and Liability Act, Superfund Amendments and Reauthorization Act, and the Resource Conservation and Recovery Act. The document provides procedures and a set of tools for evaluating LFG emissions to ambient air, subsurface vapor migration due to landfill gas pressure gradients, and subsurface vapor intrusion into buildings. The air pathway analysis is used to evaluate the inhalation risks of offsite receptors as well as the hazards of both onsite and offsite methane explosions and landfill fires. information

  16. Computer optimization of landfill-cover design

    SciTech Connect

    Massmann, J.W.; Moore, C.A.

    1982-12-01

    A finite difference computer program to aid optimizing landfill-cover design was developed. The program was used to compare the methane yield from sand-covred and clay-covered landfills equipped with methane-recovery systems. The results of this comparison indicate a clay cover can restrict air inflow into the landfill system, thus preventing oxygen poisoning of the methane-producing organisms. The practice of monitoring methane-to-air ratios in the pipelines of the recovery system in order to warn of oxygen infiltration into the fill material was shown to be ineffective in some situations. More-reliable methods to forewarn of oxygen poisoning are suggested.

  17. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity.

    PubMed

    Pablos, M V; Martini, F; Fernández, C; Babín, M M; Herraez, I; Miranda, J; Martínez, J; Carbonell, G; San-Segundo, L; García-Hortigüela, P; Tarazona, J V

    2011-08-01

    Leachates from municipal solid waste (MSW) landfills may contain a huge diversity of contaminants; these wastewaters should be considered as potentially hazardous complex mixtures, representing a potential environmental risk for surface and groundwater. Current MSW landfill wastes regulatory approaches deem exclusively on the physicochemical characterization and does not contemplate the ecotoxicological assessment of landfill leachates. However, the presence of highly toxic substances in consumer products requires reconsideration on the need of more specific ecotoxicological assessments. The main aim of this study was to evaluate the toxicity of different MSW landfill leachates using a battery of toxicity tests including acute toxicity tests with Daphnia magna and the anuran Xenopus laevis and the in vitro toxicity test with the fish cell line RTG-2. The additional objective was to study the possible correlation between physicochemical properties and the toxicity results obtained for untreated landfill leachates. The results showed that the proposed test battery was effective for the ecotoxicological characterization of MSW landfill leachates. A moderate to strong correlation between the measured physicochemical parameters and the calculated toxicity units was detected for all toxicity assays. Correlation factors of 0.85, 0.86 and 0.55 for Daphnia, Xenopus and RTG-2 tests, respectively, were found. The discriminant analysis showed that certain physicochemical parameters could be used for an initial categorization of the potential aquatic acute toxicity of leachates; this finding may facilitate leachates management as the physicochemical characterization is currently the most common or even only monitoring method employed in a large majority of landfills. Ammonia, alkalinity and chemical oxygen demand (COD), together with chloride, allowed a proper categorization of leachates toxicity for up to 75% of tested samples, with a small percentage of false negatives

  18. Site Characterization of Landfill using Soil gas, Hydrochemical and Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Park, S.; Son, J.; Oh, I.

    2005-12-01

    To identify the effect of landfill waste for groundwater and unsaturated soil environment, the expedited site assessment, soil gas, geophysical prospecting, and in-situ chemical analysis of contaminants and indicators of pollution were executed. The aquifer of the study area is mainly composed of 8 to 10 m sandy sediment overlying Jurassic granite. The active sampling method was addressed to investigate the distribution of soil gas at the study area. The spatial distribution of soil gas at the depth of 80-100cm showed the boundary of buried waste and the biodegradation processes and the degree of waste decomposition. The CO2 and CH4 concentration across the disposed direction increased by the intensive decomposition of waste and this indicated the methanogenic condition of unsaturated zone of landfill. The geophysical survey at the municipal landfill was executed to delineate the size and extent of soil and groundwater contamination. The electromagnetic (EM), magnetic, and resistivity method were used for site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contamination. The magnetic anomalies showed the boundary of landfill which was not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of hydrogeochemical survey carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey. The monitoring of electrical resistivity survey showed the leakage of leachate from landfill and this results well coincided with the groundwater chemistry. From the research results for groundwater quality, it was considered that the groundwater contamination by leachate from landfill is controlled by groundwater flow

  19. Meteorite Falls in Morocco

    NASA Astrophysics Data System (ADS)

    Chennaoui Aoudjehane, H.

    2016-08-01

    The number of meteorite falls reported in Morocco since 2000 is highest than any other place compared to the other countries in the world, that call into question the efficiency of the randomly meteorite falls on Earth.

  20. Falls after stroke.

    PubMed

    Batchelor, Frances A; Mackintosh, Shylie F; Said, Catherine M; Hill, Keith D

    2012-08-01

    Falls are common at all stages after stroke, occurring in the acute, rehabilitative, and chronic phases. Consequences of falls include death or serious injury, minor injuries, functional limitations, reduced mobility and activity, and fear of falling. These consequences can have implications for independence and quality of life after stroke. The high frequency of falls may be due to a combination of existing falls risk factors prior to the stroke as well as impairments from the stroke, such as decreased strength and balance, hemineglect, perceptual problems, and visual problems. This paper reviews the magnitude of the problem of falls in people with stroke, highlights risk factors, and summarizes the limited randomized controlled trial evidence on falls prevention in this population. There is a need for further high quality research investigating the effectiveness of interventions to reduce falls and injury in people with stroke from onset through to the chronic stage. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  1. Municipal Landfilling Practice And Its Impact On Groundwater Resources In And Around Urban Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Howard, K. W. F.; Eyles, N.; Livingstone, S.

    1996-01-01

    The hazardous contents of municipal landfills are rarely documented and problems are usually not recognised until landfill leachate pollutes a well or surface-water body. By this time, the groundwater is often extensively contaminated with little opportunity for redress. Recent studies in southern Ontario have adopted a pro-active stance to this issue. The location, size, design and geologic setting of almost 1,200 active and inactive landfills have been documented; in addition, a contaminant-source audit has been performed for a representative region of urban Toronto, where 82 landfills sites are contained in an area of 700 km2. Groundwater flow modeling reveals that at half the sites groundwater travel time to major urban streams and Lake Ontario is less than 10 years, suggesting that chemically conservative chemicals released at these sites would have a rapid impact on surface-water quality. The sites are as large as 99 ha, and waste thickness normally ranges from 3-30 m. In the audited area, the sites contain an estimated 4.6×107 tons of material, consisting primarily of domestic waste, incinerator ashes, and construction and commercial debris; some sites are believed, however, to have received liquid waste from industrial sources. The chemical audit indicates that more than 1.3 million tons, or approximately 2.9 percent of the landfill waste, will enter the landfill leachate. About 99 percent of the leachable mass is composed of calcium, magnesium, sodium, nitrogen (as ammonia, nitrate, and nitrite), chloride, sulphate, and bicarbonate. However, the real potential damage must be measured by the degree of environmental degradation that would ensue if the leachate is released to the subsurface. Ignoring the possible effects of chemical biodegradation and volatilization within the aquifer, calculations indicate that 17 of the 39 leachate components investigated are individually capable of contaminating at least 2×1012 liters of water in excess of Provincial

  2. Water-quality data from a landfill, Pinellas County, Florida, May 1975-October 1977

    USGS Publications Warehouse

    Fernandez, Mario

    1979-01-01

    Beginning in May 1975, surface- and ground-water samples were collected periodically to obtain certain background water-quality conditions at a landfill site in Pinellas County, Florida. Landfill operation began in November 1975, and water analysis continued to October 1977. Specific conductance and pH were determined in the field. Samples were collected for laboratory determination of selected nitrogen and phosphorus species, sodium, potassium, calcium, magnesium, trace metals, chloride, pH, specific conductance, chemical and biochemical oxygen demands, specific pesticides, and herbicides and coliforms. The collected data are presented. (Woodard-USGS)

  3. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect

    Hakonson, T.E.

    1994-03-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  4. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  5. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    SciTech Connect

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and Mountain Home Air Force Base. The data include well and spring locations, well-construction and water level information, and chemical analyses of water from each well and spring inventoried. Groundwater in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate and nitrogen exceed national public drinking-water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking-water limit in a water sample from one well. 5 refs., 4 figs., 6 tabs.

  6. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.

    2015-01-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  7. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L

    2016-04-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study. Published 2015 SETAC. This article is a US Government work and as such

  8. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), pH, electrical conductivity and SO4(2)-. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  9. Disaster Debris Recovery Database - Landfills

    EPA Pesticide Factsheets

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  10. First Aid: Falls

    MedlinePlus

    ... Your 1- to 2-Year-Old First Aid: Falls KidsHealth > For Parents > First Aid: Falls Print A A A en español Folleto de instructiones: Caídas (Falls) With all the running, climbing, and exploring kids ...

  11. Falls risk assessment.

    PubMed

    Gallacher, Rose

    2017-02-22

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The CPD article outlined the causes and consequences of falls for older patients. It discussed the falls risk assessment tools, and falls prevention measures.

  12. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  13. Fall Prevention: Simple Tips to Prevent Falls

    MedlinePlus

    ... of falls by improving strength, balance, coordination and flexibility. If you avoid physical activity because you're ... custom exercise program aimed at improving your balance, flexibility, muscle strength and gait. Consider changing your footwear ...

  14. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  15. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    NASA Astrophysics Data System (ADS)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  16. Transmission electron microscopy investigation of colloids and particles from landfill leachates.

    PubMed

    Matura, Marek; Ettler, Vojtech; Klementová, Mariana

    2012-05-01

    Leachates collected at two (active and closed) municipal solid waste (MSW) landfills were examined for colloids and particles by transmission electron microscopy, energy dispersive spectrometry, selected area electron diffraction and for the chemical compositions of the filtrates after the filtration to 0.1 µm and ultrafiltration to 1 kDa (~ 1 nm). Six groups of colloids/particles in the range 5 nm to 5 µm were determined (in decreasing order of abundance): carbonates, phyllosilicates (clay minerals and micas), quartz, Fe-oxides, organics and others (salts, phosphates). Inorganic colloids/particles in leachates from the active landfill predominantly consist of calcite (CaCO(3)) and minor clay minerals and quartz (SiO(2)). The colloids/particles in the leachates from the closed landfill consist of all the observed groups with dominant phyllosilicates. Whereas calcite, Fe-oxides and phosphates can precipitate directly from the leachates, phyllosilicates and quartz are more probably either derived from the waste or formed by erosion of the geological environment of the landfill. Low amounts of organic colloids/particles were observed, indicating the predominance of organic molecules in the 'truly dissolved' fraction (fulvic compounds). Especially newly formed calcite colloids forming particles of 500 nm and stacking in larger aggregates can bind trace inorganic contaminants (metals/metalloids) and immobilize them in landfill environments.

  17. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  18. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    PubMed Central

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-01-01

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate. PMID:28009808

  19. Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids.

    PubMed

    Gallen, C; Drage, D; Kaserzon, S; Baduel, C; Gallen, M; Banks, A; Broomhall, S; Mueller, J F

    2016-07-15

    The levels of perfluroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDDs) were studied in Australian landfill leachate and biosolids. Leachate was collected from 13 landfill sites and biosolids were collected from 16 wastewater treatment plants (WWTPs), across Australia. Perfluorohexanoate (PFHxA) (12-5700ng/L) was the most abundant investigated persistent, bioaccumulative and toxic (PBT) chemical in leachate. With one exception, mean concentrations of PFASs were higher in leachate of operating landfills compared to closed landfills. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane isomers (HBCDDs) were detected typically at operating landfills in comparatively lower concentrations than the PFASs. Decabromodiphenyl ether (BDE-209) (<0.4-2300ng/g) and perfluoroctanesulfonate (PFOS) (

  20. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  1. Landfill surface runoff and its effect on water quality on river Yamuna.

    PubMed

    Zafar, M; Alappat, B J

    2004-01-01

    During 2000, the estimated quantity of solid waste generated in Delhi, India was more than 9000 tones per day. This is one of the biggest sources of environmental degradation in capital city of India. Since 1950's over 12 large landfill have been packed with all kinds of nonbiodegradable and toxic waste of Delhi. The area covered is at least 1% (14.83 square kilometer) of total Delhi's area. All the landfill sites except Tilak Nagar, Hastal, and Chattarpur are located very closely (0.5-6 km) to the river Yamuna. It contributes the pollution to river Yamuna in a significant way in a form of surface runoff from landfill site especially in rainy season. The chemical analysis of leachate produced by these landfill sites and corresponding river section (at five river points) has been performed for 16 selected parameter (Temperature, Odor, pH, Turbidity, Conductivity, COD, Total Solids, Sulphide, Chloride, Nitrate, Iron) in the first stage and for 8 parameters (pH, Conductivity, COD, Total Solids, Chloride, Nitrate, Iron) in second stage. The study was conducted between August to October, 2000 (rainy season). It is clear from the study that the river water quality is affected by the presence of landfill surface runoff. Its impact can be seen in the region where the drains are meeting the river. This is one of the causes of river pollution apart from other major municipal and industrial sources.

  2. Statistical comparison of leachate from hazardous, codisposal, and municipal solid waste landfills

    SciTech Connect

    Gibbons, R.D.; Dolan, D.G.; May, H.; O'Leary, K.; O'Hara, R.

    1999-09-30

    There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the US EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste stream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.

  3. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology.

    PubMed

    Lim, Chi Kim; Seow, Ta Wee; Neoh, Chin Hong; Md Nor, Muhamad Hanif; Ibrahim, Zaharah; Ware, Ismail; Mat Sarip, Siti Hajar

    2016-12-01

    Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.

  4. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    NASA Astrophysics Data System (ADS)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  5. Geohydrology and ground-water geochemistry at a sub-arctic landfill, Fairbanks, Alaska

    USGS Publications Warehouse

    Downey, J.S.

    1990-01-01

    The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. (USGS)

  6. Modeling the final phase of landfill gas generation from long-term observations.

    PubMed

    Tintner, Johannes; Kühleitner, Manfred; Binner, Erwin; Brunner, Norbert; Smidt, Ena

    2012-06-01

    For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240-1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log-normal distribution curve to gather the maximum gas generation potential. According to the log-normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO(2) balances in waste management and some information to which extent landfills serve as carbon sink.

  7. Modelling flow to leachate wells in landfills

    SciTech Connect

    Al-Thani, A.A.; Beaven, R.P.; White, J.K

    2004-07-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  8. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  9. Experience with landfill gas monitoring and assessment

    SciTech Connect

    Jenness, S.R.; Wilcox, G.J.

    1998-12-31

    Landfills have recently come under additional environmental scrutiny for their potential as air emission sources. This paper discusses an air monitoring program that was performed in 1997 for the landfill located at US Army Fort Dix, New Jersey. Results of the program are presented as well as conclusions that were drawn from the sampling data and the sampling techniques employed. The Fort Dix Landfill air monitoring program consisted of quarterly measurements of gas vent (more than 50) flow rates. Flow rates were measured twice per day (morning and afternoon) with vane anemometers in order to assess diurnal effects. Measurements of ambient pressure and temperature were also taken for correlation with the gas vent flow rates. Additional gas sampling was performed on selected vents at the landfill to ascertain fixed gases (methane, carbon dioxide, oxygen, and nitrogen) content, total non-methane organic compounds (NMOC), hydrogen sulfide (H{sub 2}S) content, mercury content, and over sixty individual volatile organic compounds (VOCs).

  10. Hydrologic Evaluation of Landfill Performance (HELP) Model

    EPA Pesticide Factsheets

    The program models rainfall, runoff, infiltration, and other water pathways to estimate how much water builds up above each landfill liner. It can incorporate data on vegetation, soil types, geosynthetic materials, initial moisture conditions, slopes, etc.

  11. Modelling flow to leachate wells in landfills.

    PubMed

    Al-Thani, A A; Beaven, R P; White, J K

    2004-01-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  12. Instrumentation of dredge spoil for landfill construction

    SciTech Connect

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  13. Landfill mining: Developing a comprehensive assessment method.

    PubMed

    Hermann, Robert; Wolfsberger, Tanja; Pomberger, Roland; Sarc, Renato

    2016-11-01

    In Austria, the first basic technological and economic examinations of mass-waste landfills with the purpose to recover secondary raw materials have been carried out by the 'LAMIS - Landfill Mining Österreich' pilot project. A main focus of its research, and the subject of this article, is the first conceptual design of a comprehensive assessment method for landfill mining plans, including not only monetary factors (like costs and proceeds) but also non-monetary ones, such as the concerns of adjoining owners or the environmental impact. Detailed reviews of references, the identification of influences and system boundaries to be included in planning landfill mining, several expert workshops and talks with landfill operators have been performed followed by a division of the whole assessment method into preliminary and main assessment. Preliminary assessment is carried out with a questionnaire to rate juridical feasibility, the risk and the expenditure of a landfill mining project. The results of this questionnaire are compiled in a portfolio chart that is used to recommend, or not, further assessment. If a detailed main assessment is recommended, defined economic criteria are rated by net present value calculations, while ecological and socio-economic criteria are examined in a utility analysis and then transferred into a utility-net present value chart. If this chart does not support making a definite statement on the feasibility of the project, the results must be further examined in a cost-effectiveness analysis. Here, the benefit of the particular landfill mining project per capital unit (utility-net present value ratio) is determined to make a final distinct statement on the general benefit of a landfill mining project.

  14. The mixed waste landfill integrated demonstration

    SciTech Connect

    Burford, T.D.; Williams, C.V.

    1994-05-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites.

  15. Understanding landfill gas generation and migration

    SciTech Connect

    Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

    1988-01-01

    Landfill gas research in the US Department of Energy (DOE) from Municipal Waste (EMW) Program is focusing on two major areas of investigation: (1) Landfill gas migration processes; and (2) Landfill gas generation. With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site with clay cover and a semiarid site with sand cover--have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that: (1) concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; (2) based on average methane gradients in soil gas and a simple diffusion model, up to 10E5 g methane m/sup /minus /2/ yr/sup /minus/1/ are vented through the cover materials at the humid site (area of 17 ht); and (3) during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM).

  16. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  17. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates.

    PubMed

    Lu, Mu-Chen; Chen, Yao Yin; Chiou, Mei-Rung; Chen, Men Yu; Fan, Huan-Jung

    2016-09-01

    Landfill leachates might contain pharmaceuticals due to the expired or unwanted drugs were disposed of at landfills. These pharmaceuticals might pose a threat to soil and groundwater. Therefore, this study investigated the distributions of pharmaceutical residues and toxicities among four typical municipal landfill leachates. Twenty six pharmaceuticals were investigated in this study and fifteen of them were found in all samples from four leachates. In addition, ampicillin and methylenedioxymethamphetamine (MDMA) were detected in urban landfills (A1 and A2) but were not in rural and suburb landfills (B and C). On the other hand, some compounds were much more abundant in suburb/rural landfill leachates than those in urban landfills including diclofenac, gemfibrozil and amphetamine. Landfill leachate treatment plants could not remove most of the pharmaceuticals effectively. Landfill leachates without proper treatments would have significant adverse health impacts on human and aquatic life.

  18. Immobility and falls.

    PubMed

    Mahoney, J E

    1998-11-01

    Immobility is a common problem for hospitalized older adults. Excessive bed rest results in multiple adverse physiologic consequences and may contribute to functional decline and increased risk for falls in the hospital setting. About 2% of hospitalized older adults fall during hospitalization. Risk factors for in-hospital falls includes cognitive impairment, mobility impairment, specific diagnoses, multiple comorbidities, and psychotropic medications. Appropriate actions to prevent immobility and falls include increasing exercise and activity levels, improving the hospital environment, and decreasing the use of psychotropic medications. Bed alarms and increased supervision for high-risk patients also may help prevent falls.

  19. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect

    Dever, S.A. . E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. . E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. . E-mail: r.stuetz@unsw.edu.au

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  20. Review Article: Persistent organic pollutants and landfills - a review of past experiences and future challenges.

    PubMed

    Weber, Roland; Watson, Alan; Forter, Martin; Oliaei, Fardin

    2011-01-01

    The landfilling and dumping of persistent organic pollutants (POPs) and other persistent hazardous compounds, such as polychlorinated biphenyls (PCBs), hexachlorocyclohaxane (HCH), polybrominated diphenylether (PBDEs) or perfluorooctane sulfonic acid (PFOS) can have significant adverse environmental consequences. This paper reviews past experiences with such disposal practices and highlights their unsustainability due to the risks of contamination of ecosystems, the food chain, together with ground and drinking water supplies. The use and associated disposal of POPs have been occurring for over 50 years. Concurrent with the phase-out of some of the most hazardous chemicals, the production of new POPs, such as brominated and fluorinated compounds has increased since the 1990s. These latter compounds are commonly used in a wide range of consumer goods, and as consumer products reach the end of their useful lives, ultimately enter waste recycling and disposal systems, in particular at municipal landfills. Because of their very slow, or lack of degradability, POPs will persist in landfills for many decades and possibly centuries. Over these extended time periods engineered landfill systems and their liners are likely to degrade, thus posing a contemporary and future risk of releasing large contaminant loads to the environment. This review highlights the necessity for alternative disposal methods for POP wastes, including destruction or complete removal from potential environmental release. In addition to such end of pipe solutions a policy change in the use pattern of persistent toxic chemicals is inevitable. In addition, inventories for the location and quantity of POPs in landfills, together with an assessment of their threat to ecosystems, drinking water and food resources are identified as key measures to facilitate appropriate management of risks. Finally the challenges of POP wastes in transition/developing countries, the risk of increased leaching of POPs from

  1. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  2. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site's B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  3. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  4. Hazardous materials in Fresh Kills landfill

    SciTech Connect

    Hirschhorn, J.S.

    1997-12-31

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  5. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00.

  6. Air toxics speciation of landfill gas

    SciTech Connect

    Potas, T.A.

    1998-12-31

    USEPA`s AP-42, emission factor reference manual lists 27 hazardous air pollutants that have been determined to be present in gas generated at landfills. Different AP-42 values are given for some air toxic compounds generated from municipal solid waste, industrial waste, and hazardous waste. This paper compares data compiled from five landfill gas sampling projects in parts per million with the AP-42 data. The sampling took place at landfills containing municipal solid waste and non-hazardous industrial waste. Sampling was performed according to the Tier 2 testing procedures for total non-methane organic compound concentrations described in the New Source Performance Standards Subpart WWW for Municipal Solid Waste Landfills. The speciation analysis was conducted by EPA Method TO-14. The list of TO-14 compounds for the speciation analysis was extended to include, at a minimum, all 27 AP-42 listed hazardous air pollutant compounds. The landfills included sites from across the country. The paper describes data quality and the effect of landfill age on some individual air toxic concentrations. The author also comments on the agreement between the total non-methane organic compound concentration and the total molecular weight equivalent concentration of the individual compound concentrations. In general, the concentration values were similar for the AP-42 compounds, although several AP-42 compounds were not detected.

  7. Estimation of municipal solid waste landfill settlement

    SciTech Connect

    Ling, H.I.; Leshchinsky, D.; Mohri, Yoshiyuki; Kawabata, Toshinori

    1998-01-01

    The municipal solid waste landfill suffers from large postclosure settlement that occurs over an extended period of time. A large differential settlement may impair foundations, utilities, and other associated facilities constructed on top of a landfill. It may also lead to breakage of the geomembrane and damage of the cover system in a modern municipal solid waste landfill. The waste material exhibits heterogeneous engineering properties that vary over locations and time within a landfill. These factors, combined with the fact that a landfill is not fully saturated, render a traditional soil mechanics approach less attractive for settlement prediction. An empirical approach of expressing settlement rate using logarithmic and power relationships is commonly used in conjunction with an observational procedure. In this paper, validity of these functions is reexamined based on published settlement results from three landfill sites. A hyperbolic function is proposed as an improved tool to simulate the settlement-time relationships, as well as to detect final settlement. The relationships between the parameters of these empirical functions and water content are examined.

  8. A statistical model for landfill surface emissions.

    PubMed

    Héroux, Martin; Guy, Christophe; Millette, Denis

    2010-02-01

    Landfill operators require a rapid, simple, low-cost, and accurate method for estimation of landfill methane surface emissions over time. Several methods have been developed to obtain instantaneous field measurements of landfill methane surface emissions. This paper provides a methodology for interpolating instantaneous measurements over time, taking variations in meteorological conditions into account. The goal of this study was to determine the effects of three factors on landfill methane surface emissions: air temperature, pressure gradient between waste and atmosphere, and soil moisture content of the cover material. On the basis of a statistical three-factor and two-level full factorial design, field measurements of methane emissions were conducted at the City of Montreal landfill site during the summer of 2004. Three areas were measured: test area 1 (4800 m2), test area 2 (1400 m2), and test area 3 (1000 m2). Analyses of variance were performed on the data. They showed a significant statistical effect of the three factors and the interaction between temperature and soil moisture content on methane emissions. Analysis also led to the development of a multifactor correlation, which can be explained by the underlying processes of diffusive and advective flow and biological oxidation. This correlation was used to estimate total emissions of the three test areas for July and August 2004. The approach was validated using a second dataset for another area adjacent to the landfill.

  9. Nitrous oxide emissions from a municipal landfill.

    PubMed

    Rinne, Janne; Pihlatie, Mari; Lohila, Annalea; Thum, Tea; Aurela, Mika; Tuovinen, Juha-Pekka; Laurila, Tuomas; Vesala, Timo

    2005-10-15

    The first measurements of nitrous oxide (N20) emissions from a landfill by the eddy covariance method are reported. These measurements were compared to enclosure emission measurements conducted at the same site. The average emissions from the municipal landfill of the Helsinki Metropolitan Area were 2.7 mg N m(-2) h(-1) and 6.0 mg N m(-2) h(-1) measured bythe eddy covariance and the enclosure methods, respectively. The N20 emissions from the landfill are about 1 order of magnitude higher than the highest emissions reported from Northern European agricultural soils, and 2 orders of magnitude higher than the highest emissions reported from boreal forest soils. Due to the small area of landfills as compared to other land-use classes, the total N20 emissions from landfills are estimated to be of minor importance for the total emissions from Finland. Expressed as a greenhouse warming potential (GWP100), the N2O emissions make up about 3% of the total GWP100 emission of the landfill. The emissions measured by the two systems were generally of similar magnitude, with enclosure measurements showing a high small-scale spatial variation.

  10. Landfill reclamation feasibility study for the Springs-Fireplace Road Landfill, town of East Hampton, New York. Final report

    SciTech Connect

    1998-01-01

    A landfill reclamation feasibility study was performed at the Springs-Fireplace Road Landfill in East Hampton, Long Island, New York. The purpose of the study was to determine whether landfill reclamation at the Springs-Fireplaces Road Landfill is a technically and economically feasible alternative to conventional landfill closure via capping. The technical feasibility of landfill reclamation at the site was determined from a field investigation in which the waste from different periods in the landfill`s history was characterized, the percent of reusable and recyclable materials determined, environmental hazards assessed, and throughput rates determined. Potential markets and/or uses for reclaimed materials were identified and estimates for the re-disposal of the residual waste were obtained from waste-to-energy facilities and offsite landfills.

  11. EPA proposes new standards for municipal solid waste disposal landfills

    SciTech Connect

    Not Available

    1988-10-01

    The US Environmental Protection Agency on August 24 took its first major regulatory action to control the disposal of municipal garbage. In this effort, the agency proposed standards to upgrade the condition and help ensure the safety of municipal landfills used to dispose of solid waste. Under the proposal, states would use the standards to ensure protection of the environment from the operation of the landfills. In addition, landfill operators would be required to set up groundwater-monitoring systems and clean up contamination at operating landfills as well as close down within five years landfills located in unstable areas; landfills in some restricted areas would require special controls.

  12. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    PubMed

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  13. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    PubMed Central

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  14. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  15. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  16. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    NASA Astrophysics Data System (ADS)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  17. Landfills potential source for cores -- computer model analyzes landfills for on-site recycling operations

    Treesearch

    Philip A. Araman; R.J. Bush; E.B. Hager; A.L. Hammett

    1999-01-01

    Are you having trouble finding enough used pallet cores? Do you have trouble finding more than one reliable source of used pallet parts? Have you ever considered your local landfill as a "source?" In 1995, more pallets ended up in landfills that at pallet recovery-repair companies. Virginia Tech and the U.S. Forest Service have developed a business plan...

  18. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    PubMed

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  19. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    SciTech Connect

    Odusanya, David O.; Okonkwo, Jonathan O. Botha, Ben

    2009-01-15

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high

  20. The decay of wood in landfills in contrasting climates in Australia.

    PubMed

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  1. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the

  2. Minority Enrollment Trends, Catonsville Community College: Fall 84-Fall 88.

    ERIC Educational Resources Information Center

    Catonsville Community Coll., MD. Office of Institutional Research.

    The enrollment of minority students at Catonsville Community College (CCC) generally followed the same pattern of decline and growth as the student population as a whole between fall 1984 and fall 1989. Minority enrollments increased by 1.5% from fall 1984 to fall 1985, decreased by 12.2% in fall 1986, increased by 5.8% in fall 1987, and increased…

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  4. Town of Edinburg landfill reclamation demonstration project. Final report

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  5. Tracing landfill gas migration using chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Archbold, M.; Elliot, T. E.; Redeker, K.; Boshoff, G.

    2003-04-01

    Typical landfill gas (LFG) compositions include a wide range of trace-level Volatile Organic Compounds (VOCs). The most mobile VOCs are chlorofluorocarbons (CFCs), and their presence around landfills may reflect the initial flushing out of VOCs during the early aerobic stage when landfills are most active reaching high temperatures, driving off VOCs, and injecting LFG into the surrounding environment. CFCs are aerobically stable and therefore, may prove a useful means of characterising the environmental impact of landfill gas in the unsaturated zone around landfills. Moreover, as a possible pathfinder environmental tracer of LFG impacts in the environment, any subsequent changes in the CFCs concentrations after injection potentially reflect natural attenuation (NA) processes, which can also affect other VOCs. Thus tracing the CFCs around a landfill may provide an analogue indicator/proxy for other VOCs transport and fate. To assess the feasibility of using chlorofluorocarbons (CFC-11, CFC-12, CFC-113) as proxy tracers, it is imperative to characterise the effects of possible NA processes on both CFC abundances and their overall systematics. In this research, anaerobic biodegradation microcosm studies, which mimic the unsaturated zone of a LFG plume, are conducted using methanogenic soil samples. Results are discussed in terms of the potential effects on CFCs signatures due to anaerobic biodegradation in the unsaturated zone and will also explore ways of characterising NA processes by identifying the effects of diffusion on transport processes, and degradation products of CFCs. The discussion will also include how stable carbon isotopic signatures may be used to enhance our assessments of biodegradation of CFCs in the unsaturated zone around landfills.

  6. Direct Continuous Measurements of Methane Emissions from a Landfill: Method, Station and Latest Results

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. K.

    2014-12-01

    Solar-powered automated flux station was deployed continuously inside the Bluff Road Landfill (Lincoln, NE) for the period of over4 years starting June 2010. Landfill methane emissions were measured using the eddy covariance method, reporting hourly emission rates. The data shown in this presentation are from the period of June to December 2010 when no gas recovery was in operation. The continuous measurements of hourly emission rates allowed a number of important analyses of the key factors affecting landfill methane emissions at different time scales. In particular, the results show that landfill methane emissions strongly depended on changes in barometric pressure. Rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, resulting in up to a 35-fold variation in day-to-day methane emissions. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at the site.From these results, it is apparent that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions based on such measurements could yield uncertainties, ranging from 28% underestimation to 32% overestimation.The results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may also apply to the wetlands, peatlands, lakes, and other environments where emissions are from porous media or ebullition.

  7. Meteorite falls in Africa

    NASA Astrophysics Data System (ADS)

    Khiri, Fouad; Ibhi, Abderrahmane; Saint-Gerant, Thierry; Medjkane, Mohand; Ouknine, Lahcen

    2017-10-01

    The study of meteorites provides insight into the earliest history of our solar system. From 1800, about the year meteorites were first recognized as objects falling from the sky, until December 2014, 158 observed meteorite falls were recorded in Africa. Their collected mass ranges from 1.4 g to 175 kg with the 1-10 kg cases predominant. The average rate of African falls is low with only one fall recovery per 1.35-year time interval (or 0.023 per year per million km2). This African collection is dominated by ordinary chondrites (78%) just like in the worldwide falls. The seventeen achondrites include three Martian meteorite falls (Nakhla of Egypt, Tissint of Morocco and Zagami of Nigeria). Observed Iron meteorite falls are relatively rare and represent only 5%. The falls' rate in Africa is variable in time and in space. The number of falls continues to grow since 1860, 80% of which were recovered during the period between 1910 and 2014. Most of these documented meteorite falls have been recovered from North-Western Africa, Eastern Africa and Southern Africa. They are concentrated in countries which have a large surface area and a large population with a uniform distribution. Other factors are also favorable for observing and collecting meteorite falls across the African territory, such as: a genuine meteorite education, a semi-arid to arid climate (clear sky throughout the year most of the time), croplands or sparse grasslands and possible access to the fall location with a low percentage of forest cover and dense road network.

  8. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-02-27

    Essential facts Falls are the most frequent adverse event reported in hospitals, usually affecting older patients. Every year, more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wales, equivalent to more than 600 a day, according to the Royal College of Physicians (RCP). But research shows that when nurses, doctors and therapists work together, falls can be reduced by 20-30%.

  9. Hydrogeology and ground-water-quality conditions at the Linn County landfill, eastern Kansas, 1988-89

    SciTech Connect

    Falwell, R.; Bigsby, P.R.; Myers, N.C. )

    1991-01-01

    An investigation of the hydrogeology and groundwater quality conditions near the Linn County Landfill, eastern Kansas was conducted from July 1988 through June 1989. The landfill is located in an unreclaimed coal strip-mine area near Prescott. Analysis of water levels from nine temporary wells and from strip-mine ponds indicated that groundwater flows southwest through the present landfill. A county road west of the landfill acts as a barrier to shallow westerly groundwater flow. Seasonal variations in the direction of groundwater flow may occur. Water samples from monitoring wells and a strip-mine pond were analyzed for inorganic and organic compounds. Iron, manganese, and dissolved-organic-carbon concentrations were good indicators of the presence of landfill leachate in the groundwater. Benzene, carbon tetrachloride, 1,1-dichloroethane, and 1,1,1-trichloroethane were also detected. None of the inorganic or organic compounds detected exceeded Kansas primary drinking-water standards. Chemical concentrations and water levels in some nested wells indicate there is a hydraulic connection between the strip-mine spoil material and the underlying limestone. Leachate-contaminated groundwater has the potential to migrate southwest corner of the landfill through either strip-mine spoil material or through the underlying Pawnee Limestone.

  10. The Patient Who Falls

    PubMed Central

    Tinetti, Mary E.; Kumar, Chandrika

    2013-01-01

    Falls are common health events that cause discomfort and disability for older adults and stress for caregivers. Using the case of an older man who has experienced multiple falls and a hip fracture, this article, which focuses on community-living older adults, addresses the consequences and etiology of falls; summarizes the evidence on predisposing factors and effective interventions; and discusses how to translate this evidence into patient care. Previous falls; strength, gait, and balance impairments; and medications are the strongest risk factors for falling. Effective single interventions include exercise and physical therapy, cataract surgery, and medication reduction. Evidence suggests that the most effective strategy for reducing the rate of falling in community-living older adults may be intervening on multiple risk factors. Vitamin D has the strongest clinical trial evidence of benefit for preventing fractures among older men at risk. Issues involved in incorporating these evidence-based fall prevention interventions into outpatient practice are discussed, as are the trade-offs inherent in managing older patients at risk of falling. While challenges and barriers exist, fall prevention strategies can be incorporated into clinical practice. PMID:20085954

  11. Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites.

    PubMed

    Masi, S; Caniani, D; Grieco, E; Lioi, D S; Mancini, I M

    2014-03-01

    The present study addresses the theme of recycling potential of old open dumpsites by using landfill mining. Attention is focused on the possible reuse of the residual finer fraction (<4 mm), which constitutes more than 60% of the total mined material, sampled in the old open dumpsite of Lavello (Southern Italy). We propose a protocol of analysis of the landfill material that links chemical analyses and environmental bioassays. This protocol is used to evaluate the compatibility of the residual matrix for the disposal in temporary storages and the formation of "bio-soils" to be used in geo-environmental applications, such as the construction of barrier layers of landfills, or in environmental remediation activities. Attention is mainly focused on the presence of heavy metals and on the possible interaction with test organisms. Chemical analyses of the residual matrix and leaching tests showed that the concentration of heavy metals is always below the legislation limits. Biological acute tests (with Lepidum sativum, Vicia faba and Lactuca sativa) do not emphasize adverse effects to the growth of the plant species, except the bioassay with V. faba, which showed a dose-response effect. The new developed chronic bioassay test with Spartium junceum showed a good adaptation to stress conditions induced by the presence of the mined landfill material. In conclusion, the conducted experimental activities demonstrated the suitability of the material to be used for different purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of landfill characteristics on leachate organic matter properties and coagulation treatability.

    PubMed

    Comstock, Sarah E H; Boyer, Treavor H; Graf, Katherine C; Townsend, Timothy G

    2010-11-01

    This work spans landfill characteristics, leachate organic matter properties, and coagulation chemistry to provide new insights into the physical-chemical treatability of stabilized landfill leachate. Furthermore, leachate organic matter is viewed in terms of dissolved organic matter (DOM) present in the natural environment, and coagulation chemistry is evaluated based on previous leachate and water treatment coagulation studies. Stabilized leachate was collected from four landfills for a total of seven leachate samples, and samples were coagulated using ferric chloride, ferric sulfate, and aluminum sulfate. Landfill characteristics, such as age, leachate recirculation, and cover material, influenced properties of DOM present in the leachate, as measured by specific ultraviolet (UV) absorbance at 254 nm (SUVA254) and fluorescence excitation-emission matrices. The coagulation performance of the metal salts was ferric sulfate>aluminum sulfate>ferric chloride, and DOM removal followed the trend of color>UV254>dissolved organic carbon>chemical oxygen demand (COD). Finally, a strong association was found between increasing SUVA254 and increasing DOM removal for coagulation of both leachate and natural surface water. Thus, SUVA254 is expected to be a better predictor of leachate treatability, in particular DOM removal, than the traditionally used ratio of biochemical oxygen demand to COD. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  14. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  15. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  16. Pilot-scale experiment on anaerobic bioreactor landfills in China

    SciTech Connect

    Jiang, Jianguo Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-07-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m{sup 3} leachate and 0.1 m{sup 3} tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  17. Possible Fengyun-1C debris fall

    NASA Astrophysics Data System (ADS)

    Golebiewska, J.; Nowak, M.; Muszyński, A.; Wnuk, E.

    2017-05-01

    A fall of small objects took place on 27th April 2012 in Wargowo village near Oborniki, about 25 km NW from Poznań (Poland). There was only one eye-witness of the fall, who found two separate pieces (ca. 2.7 cm and ca. 2 cm), with several small additional fragments. After microscopic observations and chemical analysis a meteoritic origin of these objects was excluded. They are identified as space debris, therefore man-made. The most probable source of the observed fall was space debris 35127 Fengyun 1C DEB, created during destruction of the Chinese weather satellite Fengyun-1C (FY-1C).

  18. Radiological survey of the former Shpack Landfill, Norton, Massachusetts

    SciTech Connect

    Not Available

    1984-05-01

    The distribution of contamination on the Shpack Landfill site is spotty and uneven, both horizontally and vertically. Although some hotspots exceed the Formerly Utilized Sites Remedial Action Program (FUSRAP) criteria (see Appendix B), average concentrations of soil contamination are below the residual limits requiring remedial action. Removal of the hotspots only would generate approximately 390 m/sup 3/ (400 yd/sup 3/) of low-level radioactive waste. However, because of the relative physical and chemical stability of the radioactive contamination, such an effort could be deferred without harmful effect to individuals, the public or the natural environment. The site is also widely contaminated with chemical pollutants that might eventually require remedial action pursuant to several state and federal environmental statutes. The timing and nature of these possible environmental improvements could easily negate the need for a separate remedial action to clean up the radioactive contamination.

  19. EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  20. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  1. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  2. Using landfill gas for energy: Projects that pay

    SciTech Connect

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  3. Landfills as a biorefinery to produce biomass and capture biogas.

    PubMed

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills.

  4. Artificial sweeteners as potential tracers of municipal landfill leachate.

    PubMed

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

  5. Martial recycling from renewable landfill and associated risks: A review.

    PubMed

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction.

  6. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  7. EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  8. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  9. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  10. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  11. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  12. Environmental assessment of Ammässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE).

    PubMed

    Niskanen, Antti; Manfredi, Simone; Christensen, Thomas H; Anderson, Reetta

    2009-08-01

    The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized.

  13. Ecotoxicological diagnosis of a sealed municipal landfill.

    PubMed

    Hernández, A J; Bartolomé, C; Pérez-Leblic, M I; Rodríguez, J; Alvarez, J; Pastor, J

    2012-03-01

    Assessing the environmental impact of a soil-topped landfill requires an accurate ecotoxicological diagnosis. This paper describes various diagnostic protocols for this purpose and their application to a real case: the urban solid waste (USW) municipal landfill of Getafe (Madrid, Spain). After their initial sealing with soil from the surroundings about 20 years ago, most USW landfills in the autonomous community of Madrid have continued to receive waste. This has hindered precise assessment of their impact on their environment and affected ecosystems. The procedure proposed here overcomes this problem by assessing the situation in edaphic, aquatic and ecological terms. The present study focused on the most influential soil variables (viz. salinity due largely to the presence of anions, and heavy metals and organic compounds). These variables were also determined in surface waters of the wetland most strongly affected by leachates running down landfill slopes. Determinations included the characterization of plant communities and microbial biodiversity. The study was supplemented with a bioassay under controlled conditions in pots containing soil contaminated with variable concentrations of Zn (as ZnCl(2)) intended to assess ecochemical actions in a population of Bromus rubens, which grows profusely in the landfill. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  15. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  16. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  17. MAP precipitation from landfill leachate and seawater bittern waste.

    PubMed

    Li, X Z; Zhao, Q L

    2002-09-01

    The leachates generated at Hong Kong landfill sites contain high strength of ammonium-nitrogen (NH4+-N) over 3,000 mg l(-1) and are generally inhibitive to most biological treatment processes. To remove the NH4+-N from the landfill leachates and also recover the nitrogen as a struvite fertilizer, a lab-scale study was performed to investigate the feasibility of NH4+-N removal and struvite crystallization using different magnesium sources. Three combinations of chemicals, MgCl2 x 6H2O+Na2HPO4 x 12H2O, MgO+H3PO4 and MgSO4 x 7H2O+Ca(H2PO4) x H2O, were first used at different molar ratios to precipitate NH4+-N from the leachate. The experimental results indicated that NH4+-N was removed by 92%, 36% and 70% respectively at pH 9.0 and a molar ratio of Mg:N:P=1:1:1. Two synthetic seawater bitten wastes containing Mg2+ at 9,220 mg l(-1) and 24,900 mg l(-1) respectively were then used as a magnesium source, while 85% H3PO4 chemical was used as a phosphorus source. The results revealed that NH4+-N was removed by 80% and 72% respectively, while a molar ratio of Mg:N:P=1:1:1 was applied. In the final stage of experiments, the magnesium-ammonium-phosphate (MAP) precipitates were examined by SEM, EDS and XRD. The SEM micrographs of the MAP precipitates showed a typical morphology of elongated tubular and short prismatic crystals. The EDS and XRD results indicated that the chemical composition of the MAP precipitates depended on the chemicals used and experimental conditions. The study confirmed that the recovery of NH4+-N from landfill leachate and seawater bitten wastes could be effectively achieved by MAP precipitation to obtain struvite crystals with a composition of 5.1%N, 10.3%Mg and 16.5%P.

  18. ESTIMATE OF METHANE EMISSIONS FROM U.S. LANDFILLS

    EPA Science Inventory

    The report describes the development of a statistical regression model used for estimating methane (CH4) emissions, which relates landfill gas (LFG) flow rates to waste-in-place data from 105 landfills with LFG recovery projects. (NOTE: CH4 flow rates from landfills with LFG reco...

  19. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  20. ESTIMATE OF METHANE EMISSIONS FROM U.S. LANDFILLS

    EPA Science Inventory

    The report describes the development of a statistical regression model used for estimating methane (CH4) emissions, which relates landfill gas (LFG) flow rates to waste-in-place data from 105 landfills with LFG recovery projects. (NOTE: CH4 flow rates from landfills with LFG reco...

  1. Quantifying landfill biogas production potential in the U.S.

    USDA-ARS?s Scientific Manuscript database

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  2. Learning From Falling

    ERIC Educational Resources Information Center

    Joh, Amy, S.; Adolph, Karen, E.

    2006-01-01

    Walkers fall frequently, especially during infancy. Children (15, 21, 27, 33, and 39 month-olds) and adults were tested in a novel foam pit paradigm to examine age-related changes in the relationship between falling and prospective control of locomotion. In trial 1, participants walked and fell into a deformable foam pit marked with distinct…

  3. Engineering Enrollments, Fall 1984.

    ERIC Educational Resources Information Center

    Ellis, R. A.

    1985-01-01

    Provides: (1) graduate and undergraduate enrollment data for 1984, including enrollment by curriculum and by institution; (2) a 10-year summary (fall 1975 to fall 1984); and (3) women and selected minorities in undergraduate engineering (1983-84). These and other enrollment data as well as enrollment trends are discussed. (JN)

  4. Fall Leaf Portraits

    ERIC Educational Resources Information Center

    O'Hara, Cristina

    2012-01-01

    In this article, the author describes how students can create a stunning as well as economical mosaic utilizing fall's brilliantly colored leaves, preserved at their peak in color. Start by choosing a beautiful fall day to take students on a nature walk to collect a variety of leaves in different shapes, sizes, and colors. Focus on collecting a…

  5. Experiments in Free Fall

    ERIC Educational Resources Information Center

    Art, Albert

    2006-01-01

    A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…

  6. Liability for falls.

    PubMed

    Fiesta, J

    1998-03-01

    Reengineering of roles, inexperienced personnel and poor communications among departments has led to an increase in patient falls--a major source of liability. While health care facilities are not liable for all falls, they are expected to take precautions based on patients' deficits.

  7. Experiments in Free Fall

    ERIC Educational Resources Information Center

    Art, Albert

    2006-01-01

    A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…

  8. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-01-04

    Falls are the most frequent adverse event reported in hospitals, usually affecting older patients. Every year, more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wales, equivalent to more than 600 per day, according to the Royal College of Physicians (RCP).

  9. Preventing falls in hospital.

    PubMed

    Pearce, Lynne

    2017-01-31

    Essential facts Falls are the most frequently reported adverse events in hospitals, especially among older patients. According to the Royal College of Physicians (RCP) more than 240,000 falls are reported in acute hospitals and mental health trusts in England and Wale.

  10. Reducing landfill gas emissions and energy costs

    SciTech Connect

    Dailey, A.

    1998-12-31

    Landfill gas (LFG) is collected from the White Street Municipal Sanitary Landfill in Greensboro, North Carolina. This gas is transported by a three mile pipeline to Cone Mill`s White Oak Plant where it is burned in a retrofitted boiler to generate process and heating steam. The operation started in December, 1996 and by early 1997 sufficient gas was available to generate 30,000 lb/hr of 350 psig saturated steam on a continuous basis. Since then, the project has increased the capacity of the LFG production by one-third to just under 2 million standard cubic feet per day (MMSCFD) with the addition of new collection wells as areas of the landfill are closed.

  11. Fall prevention conceptual framework.

    PubMed

    Abraham, Sam

    2011-01-01

    Falls can have lasting psychological and physical consequences, particularly fractures and slow-healing processes, and patients may also lose confidence in walking. Injuries from falls lead to functional decline, institutionalization, higher health care costs, and decreased quality of life. The process related to the problem of patient falls in the hospital, using the nursing model developed by the theorist, Ida Jean Orlando, is explained in this article. The useful tool that provides guidance to marketers in this endeavor is Maslow's hierarchy of needs. During acute illness, individuals are greatly in need of satisfying their physiological needs. If these needs are not met, patients leave the hospital lacking a positive experience. Initial fall risk assessment is critical to plan intervention and individualize care plan. Interventions depend on the severity of fall risk factors.

  12. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  13. Degradation of landfill gas constituents in soil

    SciTech Connect

    Kjeldsen, P.; Dalager, A.; Broholm, K.

    1996-11-01

    Landfill gas (LFG) contains high concentrations of methane which contributes to the greenhouse effect. LFG also contains aromatic hydrocarbons and chlorinated aliphatics which by emission to ambient air can be a local health threat. In addition, chlorinated aliphatics may also influence the earths ozone layer. The objectives of the study were to investigate the degradation of landfill gas constituents in LFG affected soils, and to evaluate the importance of the degradation processes to the emission. High methane oxidation potentials were found in laboratory experiments at 25{degrees}C. The degradation seemed to follow a zero order reaction kinetics, and was 3-4 times slower at 10{degrees}C as compared to 25{degrees}C. Also high degradation rates for benzene and toluene were observed. In soils sampled away from the landfill where almost no LFG contamination had been observed, longer lag phases and lower degradation rates of the two aromatic hydrocarbons were observed. Slow cometabolic degradation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) was observed when methane was present in the batch experiments. The rates were much lower than the rates for the aromatic hydrocarbons. In the field at Skellingsted Landfill, Denmark high methane emissions were observed in an area just outside the landfill area, probably as a result of the clay landfill covering, which has led to significant lateral migration of LFG. Indications of active methane oxidation in the field were observed by measuring soil gas profiles. By comparison of the results obtained in the laboratory with the field results it is shown, that degradation processes may have a significant effect on the emission of all the compounds studied. However the subject needs much more attention.

  14. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  15. Upper Ottawa street landfill site health study

    SciTech Connect

    Hertzman, C.; Hayes, M.; Singer, J.; Highland, J.

    1987-11-01

    This report describes the design and conduct of two sequential historical prospective morbidity surveys of workers and residents from the Upper Ottawa Street Landfill Site in Hamilton, Ontario. The workers study was carried out first and was a hypothesis-generating study. Workers and controls were administered a health questionnaire, which was followed by an assessment of recall bias through medical chart abstraction. Multiple criteria were used to identify health problems associated with landfill site exposure. Those problems with highest credibility included clusters of respiratory, skin, narcotic, and mood disorders. These formed the hypothesis base in the subsequent health study of residents living adjacent to the landfill site. In that study, the association between mood, narcotic, skin, and respiratory conditions with landfill site exposure was confirmed using the following criteria: strength of association; consistency with the workers study; risk gradient by duration of residence and proximity to the landfill; absence of evidence that less healthy people moved to the area; specificity; and the absence of recall bias. The validity of these associations were reduced by three principal problems: the high refusal rate among the control population; socioeconomic status differences between the study groups; and the fact that the conditions found in excess were imprecisely defined and potentially interchangeable with other conditions. Offsetting these problems were the multiple criteria used to assess each hypothesis, which were applied according to present rules. Evidence is presented that supports the hypothesis that vapors, fumes, or particulate matter emanating from the landfill site, as well as direct skin exposure, may have lead to the health problems found in excess.

  16. Geoenvironmental weathering/deterioration of landfilled MSWI-BA glass.

    PubMed

    Wei, Yunmei; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Zhao, Chun; Peng, Xuya; Gao, Junmin

    2014-08-15

    Municipal solid waste incineration bottom ash (MSWI-BA) glass serves as a matrix of assorted bottom ash (BA) compounds. Deterioration of the BA glass phases is quite important as they regulate the distribution of a series of toxic elements. This paper studied landfilled MSWI-BA samples from the mineralogical and geochemical viewpoint to understand the deterioration behavior of the BA glass phases as well as mechanisms involved. Bulk analysis by PXRD as well as micro-scale analysis by optical microscopy and SEM/EDX was conducted for such purposes. The results revealed that dissolution of the BA glass phases has resulted in a deterioration layer of 10(0)-10(2)μm thickness after years of disposal. This rapid weathering process is highly relevant to the specific glass characteristics and solution pH. The BA glass phases with more embedded compounds and cracks/fissures tend to be more vulnerable. Moreover, the generally alkaline pH in ash deposit favors a rapid disruption of the glass phase. The weathering products are mainly gel phases (including Al-Si gel, Ca-Al-Si gel, Fe-Al-Si gel etc.) with iron oxide/hydroxide as accessory products. Breakdown of the BA glass phases triggers chemical evolution of the embedded compounds. Based on all the findings above, a model is proposed to illustrate a general evolution trend for the landfilled MSWI-BA glass phases.

  17. Surface-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Powers, Christopher J.; Wilson, Joanna; Haeni, F.P.; Johnson, C.D.

    1999-01-01

    A surface-geophysical investigation of the former landfill area at the University of Connecticut in Storrs, Conn. was conducted as part of a preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. Geophysical data were used to help determine the dominant direction of fracture strike; subsurface structure of the landfill; locations of possible leachate plumes, fracture zones or conductive lithologic layers; and the location and number of chemical waste-disposal pits. Azimuthal square-array direct-current (dc) resistivity, two-dimensional (2D) dc-resistivity, inductive terrain conductivity, and ground-penetrating radar (GPR) were the methods used to characterize the landfill area.The dominant strike direction of bedrock fractures interpreted from azimuthal square-array resistivity data is north, ranging from 285 to 30 degrees east of True North. These results complement local geologic maps that identify bedrock foliation and fractures that strike approximately north-south and dip 30 to 40 degrees west.The subsurface structure of the landfill was imaged with 2D dc-resistivity profiling data, which were used to interpret a landfill thickness of 10 to 15 meters. Orientation of the landfill trash disposal trenches were detected by azimuthal square-array resistivity soundings; the dimension and the orientation of the trenches were verified by aerial photographs.Inductive terrain conductivity and 2D dc-resistivity profiling detected conductive anomalies that were interpreted as possible leachate plumes near two surface-water discharge areas. The conductive anomaly to the north of the landfill is interpreted to be a shallow leachate plume and dissipates to almost background levels 45 meters north of the landfill. The anomaly to the southwest is interpreted to extend vertically through the overburden and into the shallow bedrock and laterally along the intermittent drainage to Eagleville Brook, terminating 140 meters

  18. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  19. Landfill gas boosted to pipeline quality

    SciTech Connect

    Not Available

    1984-03-01

    The world's largest landfill recovery facility, located on Staten Island, went on stream in 1982 and is expected to produce 1.3 billion CF/yr of pipeline gas. Containing 45% carbon dioxide, the gas is compressed and cooled in stages to meet the requirements of the Selexol purification plant. Two 1120-kW (1500-hp) Copper Bessemer GMVS-8C integral gas engine-compressors, fueled by the landfill gas, provide the compression needed from the wells to the final solvent-contact stage.

  20. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L.; Trocciola, J.C.; Spiegel, R.J.

    1996-12-31

    The paper discusses operating a 200-kW phosphoric acid fuel cell using landfill gas (LFG) in Groton, Connecticut. The project is intended to demonstrate the viability of installing, operating, and maintaining a fuel cell operating on LFG at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit (GPU) operation, test modifications to simplify the design, and demonstrate the reliability of the system. The operation of the fuel cell on LFG presents an opportunity to use a waste gas that is harmful to the environment to generate electricity more cleanly and efficiently than other methods currently used.

  1. Spatio-temporal variation of landfill gas in pilot-scale semi-aerobic and anaerobic landfills over 5years.

    PubMed

    Wu, Xiaohui; Yue, Bo; Huang, Qifei; Wang, Qi; Lin, Ye; Zhang, Wei; Yan, Zhuoyi

    2017-04-01

    Variation of CH4, CO2, and O2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5years. The results showed that most of the municipal solid waste became basically stable after 5years of landfill disposal. In the upper and middle layer, the concentration of CH4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH4 and CO2 in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill, which inhibited effective landfill gas generation. Copyright © 2016. Published by Elsevier B.V.

  2. Designing systems for landfill gas migration control in Minnesota

    SciTech Connect

    Cannon, J.

    1996-11-01

    Camp, Dresser & McKee (CDM) has designed or is in the process of designing several landfill gas migration control systems in Minnesota. The systems are for both active and closed municipal solid waste landfills. The sites have a variety of covers, including geomembranes, clay caps, and non-engineered soil covers. The control system types include small perimeter systems, full-site systems and phased systems for active sites. Figure 1 shows the locations of the systems CDM is working on in Minnesota. This paper focuses on four sites: Oak Grove Landfill, Hopkins Landfill, Washington County Landfill, and Elk River Landfill. Table 1 provides an outline of the individual site characteristics. The first three sites are closed landfills. The Oak Grove Landfill system was designed and constructed for a group of industries responsible for closure and remedial action. The Hopkins and Washington County landfills are under the control of the Minnesota Pollution Control Agency (MPCA). The MPCA enacted a remedial action program at closed landfills, taking over responsibility for long-term liability under the terms of legally binding agreements negotiated with the site owners. The Elk River Landfill is an active, privately-owned facility. The migration problems and solutions developed for these four landfills are generally descriptive of all the landfills CDM is working on in Minnesota. All landfills have unique characteristics requiring site-specific solutions. CDM, after designing a number of migration control systems in Minnesota, is able to provide a generalized description of design options for specific types of sites. This paper discussions design options used to address different cover types, aesthetic needs, and waste depths, and includes a discussion of design needs for cold climates. A brief case history of the Oak Grove Landfill is included.

  3. Hydrogeology and water quality near a solid- and hazardous-waste landfill, Northwood, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Breen, K.J.

    1989-01-01

    Hydrogeology and water quality of ground water and selected streams were evaluated near a landfill in northwestern Ohio. The landfill is used for codisposal of solid and hazardous waste. Water-level and geologic data were collected from 36 wells and 3 surface-water sites during the period November 1983 to November 1985. Water-quality samples were collected from 18 wells and 3 surface-water sites this during this same period. The primary aquifers in the area are the Greenfield Dolomite and underlying Lockport Dolomite of Silurian age. These bedrock carbonates are overlain by two clay tills of Wisconsin age. The tills are capped by a glacial lake clay. The tills generally are saturated, but do not yield sufficient water to be considered an aquifer. Two wells in the study area yield water, in part, from discontinuous deposits of outwash sand and gravel at the lower till-bedrock interface. Regional ground-water flow is from southwest to northeast; local flow is influenced by a ground-water mound centered under the northernmost cells of the landfill. Water levels in wells penetrating refuse within the landfill and the presence of leachate seeps indicate that the refuse is saturated. Head relations among the landfill, till, and dolomite aquifer indicate a vertical component of flow downward from the landfill to the dolomite aquifer. Water levels near the landfill fluctuate as much as 14 feet per year, in contrast to fluctuations of less than 3 feet per year in wells upgradient landfill. Ground waters from wells completed in the dolomite aquifer and glacial till were found to have major-iron concentrations controlled, in large part, by reaction with calcite, dolomite, and other minerals in the aquifer. Only minor departures from equilibrium mineral saturation were noted for ground water, except in wells affected by cement/grout contamination. Molal ratios of calcuim:magnesium in ground water suggest a similar chemical evolution of waters throughout the dolomite aquifer in

  4. 149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; CLOSE-UP OF MAIN CANAL GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; OVERALL WEST VIEW FROM CANAL SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; VIEW OF MAIN HEADGATES, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; HEADGATES AT INLET, SOUTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; PROFILE VIEW, SOUTH. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; CLOSE-UP OF OUTLET SIDE OF GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; CLOSE-UP OF MAIN HEADGATES, RADIAL GATES INSIDE, SOUTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. Municipal landfill leachates: a significant source for new and emerging pollutants.

    PubMed

    Eggen, Trine; Moeder, Monika; Arukwe, Augustine

    2010-10-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram (microg) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  12. Predicting the compressibility behaviour of tire shred samples for landfill applications.

    PubMed

    Warith, M A; Rao, Sudhakar M

    2006-01-01

    Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.

  13. Techniques for modeling hazardous air pollutant emissions from landfills

    SciTech Connect

    Lang, R.J.; Vigil, S.A.; Melcer, H.

    1998-12-31

    The Environmental Protection Agency`s Landfill Air Estimation Model (LAEEM), combined with either the AP-42 or CAA landfill emission factors, provide a basis to predict air emissions, including hazardous air pollutants (HAPs), from municipal solid waste landfills. This paper presents alternative approaches for estimating HAP emissions from landfills. These approaches include analytical solutions and estimation techniques that account for convection, diffusion, and biodegradation of HAPs. Results from the modeling of a prototypical landfill are used as the basis for discussion with respect to LAEEM results

  14. [Odor pollution from landfill sites and its control: a review].

    PubMed

    Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu

    2010-03-01

    Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.

  15. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  16. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-12

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  17. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    EPA Science Inventory

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstration
    of municipal waste landfills being operated as bioreact...

  18. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    EPA Science Inventory

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstration
    of municipal waste landfills being operated as bioreact...

  19. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  20. Geohydrology and quality of shallow ground water at and near the Old Laurel County and GC Singleton Landfills, Laurel County, Kentucky

    USGS Publications Warehouse

    Parnell, J.M.

    1993-01-01

    Between 1969 and 1983, solid and hazardous waste was deposited at the Old Laurel County and G.C. Singleton Landfills that were developed on a bench created by strip mining for coal. Water-level data from eight monitoring wells indicate that the general direction of groundwater flow in the shallow aquifer is toward Slate Lick, which is at a lower altitude than the landfills. Analyses of water samples from these wells indicate that the water quality near the landfills is similar to that expected in coal strip-mined areas. The pH of groundwater ranged from 4.6 to 6.2 and indicates acidic conditions. Elevated values of specific conductance in groundwater near the landfills may indicate the effects of landfill leachate or acid-mine drainage. The groundwater samples also contained high concentrations of dissolved constituents commonly associated with acid-mine drainage such as aluminum, iron, manganese, sulfate, and zinc. A relatively high concentration of fluoride, 4.5 mg/L, in water from one well may be related to landfill leachate. Except for 3,4-dichloro-benzoic acid, organic constituents were not detected in the groundwater samples. However, because of the widespread use of chemicals containing 3,4-dichloro-benzoic acid, the source of this constituent in the shallow aquifer system near the landfills cannot be determined.

  1. Flooding of municipal solid waste landfills--an environmental hazard?

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2009-06-01

    Municipal solid waste (MSW) landfills pose a long-lasting risk for humans and the environment. While landfill emissions under regular operating conditions are well investigated, landfill behaviour and associated emissions in case of flooding are widely unknown, although damages have been documented. This paper aims at developing a methodology for determining the proportion of MSW landfills endangered by flooding, and at evaluating the impact flooded landfills might have on the environment during a flood event. The risk of flooding of MSW landfills is assessed by using information about flood risk zones. Out of 1064 landfills investigated in Austria, 312 sites or about 30% are located in or next to areas flooded on average once in 200 years. Around 5% of these landfills are equipped with flood protection facilities. Material inventories of 147 landfill sites endangered by flooding are established, and potential emissions during a flood event are estimated by assuming the worst case of complete landfill leaching and erosion. The environmental relevance of emissions during flooding is discussed on the basis of a case study in the western part of Austria. Although environmental hazards need to be assessed on a site- and event-specific basis, the results indicate that flooded MSW landfills represent in general small environmental risks for the period of flooding. The longer term consequences of flooding are discussed in a next paper.

  2. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  3. Three-stage aged refuse biofilter for the treatment of landfill leachate.

    PubMed

    Li, Hongjiang; Zhao, Youcai; Shi, Lei; Gu, Yingying

    2009-01-01

    A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofilter can be divided into three stages and can manage 50 m3 landfill leachate per day. The physical, chemical, and biological characteristics of AR were analyzed for evaluating the AR biofilter as leachate treatment host. The results revealed that over 87.8%-96.2% of COD and 96.9%-99.4% of ammonia nitrogen were removed by the three-stage AR biofilter when the influent leachate COD and ammonia nitrogen concentration were in the range 5478-10842 mg/L and 811-1582 mg/L, respectively. The final effluent was inodorous and pale yellow with COD and ammonia nitrogen below 267-1020 mg/L and 6-45 mg/L, respectively. The three-stage AR biofilter had efficient nitrification but relative poor denitrification capacity with a total nitrogen (TN) removal of 58%-73%. The external temperature of AR biofilter did not influence the total ammonia nitrogen removal significantly. It was concluded that the scale-up AR biofilter can work very well and can be a promising technology for the treatment of landfill leachate.

  4. Application of tire chips to reduce the temperature of secondary geomembranes in municipal solid waste landfills.

    PubMed

    Hoor, Azadeh; Rowe, R Kerry

    2012-05-01

    Heat generated by the biodegradation of waste and other chemical processes in a landfill can potentially affect the long-term performance of landfill liner system, in particular that of a high-density polyethylene geomembrane. In a double liner system, the difference in leachate exposure and temperature might improve the long-term performance of the secondary geomembrane compared to that of the primary geomembrane. However, in some cases, the temperature is likely to be high enough to substantially reduce the service-life of the secondary geomembrane. This study explores the possible effectiveness of using tire chips as thermal insulation between primary and secondary liners to reduce the temperature of secondary geomembranes as compared to traditional soil materials. Heat and contaminant migration analyses are performed for cases with no insulation and for cases in which a layer of soil or tire chips has been used as thermal insulation between the primary and secondary liners. The effect of insulation on prolonging the service-life of a secondary geomembrane and, consequently, on contaminant transport through a liner system is examined for the case of a volatile organic compound (dichloromethane) found in landfill leachate. The study suggests that the use of tire chips warrants consideration, however there are other practical issues that require consideration in the detailed design and construction of landfill liners. Issues such as finite service-life, low working temperature, excessive settlement, ability to generate internal heat, leaching of tire chips and limitations in performing electrical resistivity leak detection tests are identified.

  5. Impact of landfill leachate on the groundwater quality: A case study in Egypt.

    PubMed

    Abd El-Salam, Magda M; I Abu-Zuid, Gaber

    2015-07-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  6. Ecotoxicological impact of MSW landfills: assessment of teratogenic effects by means of an adapted FETAX assay.

    PubMed

    de Lapuente, J; González-Linares, J; Pique, E; Borràs, M

    2014-01-01

    The introduction of chemical products into the environment can cause long-term effects on the ecosystems. Increasing efforts are being made to determine the extent of contamination in particularly affected areas using diverse methods to assess the ecotoxicological impact. We used a modified Frog Embrio Toxicity Assay-Xenopus method to determine the extent of toxicological load in different sample soils obtained near three municipal solid waste landfills in Catalonia (Spain). The results show that the Garraf landfill facility produces more embryotoxic damage to the surroundings, than the others ones: Can Mata landfill and Montferrer-Castellbó landfill. The aim of this work is to demonstrate how different management of complex sources of contamination as the controlled dumping sites can modulate the presence of toxics in the environment and their effects and through this, help determine the safer way to treat these wastes. To this effect some conceptual modifications have been made on the established American Society for Testing and Materials protocol. The validity of the new model, both as to model of calculation as to protocol, has been demonstrated in three different sites with complex sources of contamination.

  7. Use of zeolitised coal fly ash for landfill leachate treatment: a pilot plant study.

    PubMed

    Luna, Y; Otal, E; Vilches, L F; Vale, J; Querol, X; Fernández Pereira, C

    2007-01-01

    Treatment of municipal solid waste (MSW) landfill leachate generally results in low percentages of nutrient removal due to the high concentration and accumulation of refractory compounds. For this reason, individual physical, chemical and biological processes have been used for the treatment of raw landfill leachate and sometimes for the mixture of domestic wastewater and landfill leachate. In this work, the possibility of treating landfill leachate was tested in a bench-scale pilot plant by a two-step method combining adsorption and coagulation-flocculation. Zeolite synthesized from coal fly ash, a by-product of coal-fired power stations, was used in this study both as a decantation aid reagent and as an adsorbent of COD and NH4-N. The coagulation-flocculation step was performed by the use of aluminium sulphate and a polyelectrolyte (ACTIPOL A-401). The leachate was collected directly from a storage unit of the organic fraction of MSW, before it was composted. For this reason the raw leachate was diluted before treatment. The sludge was recirculated to enhance the removal efficiency of nutrients as well as to optimize flocculant saving and to decrease sludge production. The results showed that it is possible to remove 43%, 53% and 82% of COD, NH4-N, and suspended solids, respectively. Therefore, this method may be an alternative for ammonium removal, as well as a suitable pre- or post-treatment step, in combination with other processes in order to meet regulatory limits.

  8. Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy.

    PubMed

    Lenz, Sabine; Böhm, Katharina; Ottner, Reinhold; Huber-Humer, Marion

    2016-09-01

    Controlling and monitoring of emissions from municipal solid waste (MSW) landfills is important to reduce environmental damage and health risks. Therefore, simple and meaningful monitoring tools are required. This paper presents how Fourier Transform Infrared (FT-IR) Spectroscopy can be used to monitor leachate from various landfill sites. The composition of percolated leachate provides information about reactivity or stability of organic matter in landfills. Chemical compounds of investigated leachate are depicted by distinct spectral pattern. Partial least squares regression (PLS-R) models, a multivariate analysis tool, were developed based on infrared spectra to determine simultaneously conventional parameters such as ammonium, nitrate, sulfate, and dissolved organic carbon. The developed models are appropriate for application in waste management practice with respect to their excellent coefficients of determination, namely R(2)=0.99, 0.99, 0.98, and 0.98, their low errors of cross-validation and their high ratios of performance to deviation (RPD=9.3, 12.5, 6.5, 7.3). Thus, FT-IR spectroscopy turned out to be a reliable, time-saving tool to determine four parameters relevant for landfill aftercare monitoring by one single easy adaptable measurement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    PubMed Central

    Abd El-Salam, Magda M.; I. Abu-Zuid, Gaber

    2014-01-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  10. Landfill gas energy recovery: Turning a liability into an asset

    SciTech Connect

    Nichols, M.

    1996-08-01

    Until the past decade, landfill gas (LFG) was viewed as a nuisance at best and a hazard at worst. Today, municipalities and private-sector solid waste management companies are findings ways to put landfill gas to productive use. Landfill gas energy recovery eliminates detrimental air emissions; prevents landfill methane from contributing to global climate change; stops methane from migrating off-site and becoming a safety hazard or odor problem; and provides local utilities, industry, and consumers with a competitive, local source of power. In other words, LFG-to-energy facilities provide a unique form of recycling--solid waste is hauled to the landfill as refuse and returned to the consumer in the form of energy. US EPA`s Landfill Methane Outreach Program (LMOP) and new EPA regulations for control of landfill gas emissions work together to encourage greater use of LFT at many facilities across the US.

  11. Health assessment for Pigeon Point Landfill Site (New Castle City Landfill), New Castle, Delaware, Region 3. CERCLIS No. DED980494603. Preliminary report

    SciTech Connect

    Not Available

    1988-05-11

    The Pigeon Point Landfill 180-acre site includes a former municipal landfill that reportedly received industrial wastes during the period from 1968 to 1985. Initial sampling of groundwater and leachate revealed inorganic and organic chemicals at levels of health concern; however, per anecdotal information received from EPA, subsequent sampling has not confirmed initial sampling results. Only the original sampling data were available for this health assessment and since the data are questionable, they are not reported here. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater and leachate. However, information available on the site at present is of questionable validity. Additional information on contaminants released, populations potentially exposed, and environmental pathways through which the contaminants can reach these populations is needed.

  12. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  13. Implementing landfill surfaces methane monitoring for the municipal solid waste landfill NSPS/EG

    SciTech Connect

    Huitric, R.; Banaji, J.

    1996-11-01

    The United States Environmental Protection Agency`s (USEPA) Municipal Solid Waste Landfill New Source Performance Standard (NSPS) and Emission Guidelines (EG) implements a landfill surface methane performance standard to verify emissions control effectiveness. The standard requires that periodic measures of surface gases along a predesignated route be less than 500 ppm methane at any point. During rule proposal, SWANA`s Landfill Gas Management Division (LFGMD) had advocated a performance standard as a more economic and effective alternative to the very prescriptive requirements first proposed by the USEPA in 1991. However, LFGMD recommended an averaged rather than a point source measure of the surface gases. Under the final NSPS rule, the landfill surface gas must be tested along the landfill`s perimeter and along interior routes each quarter. The interior routes must be aligned such that no route portion is more than 30 meters from any other portion. Exemptions are allowed for hazardous areas. A portable methane detector meeting USEPA`s Method 21 requirements is used to continuously sample air pumped from a probe or wand placed between 5 and 10 centimeters of the ground surface as a technician walks along a route. This paper addresses various implementation issues and discusses the development of possible monitoring alternatives, as allowed by the rule.

  14. Soil contamination in landfills: a case study of a landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  15. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  16. Editors' Fall Picks

    ERIC Educational Resources Information Center

    Hoffert, Barbara; Heilbrun, Margaret; Kuzyk, Raya; Kim, Ann; McCormack, Heather; Katterjohn, Anna; Burns, Ann; Williams, Wilda

    2008-01-01

    From the fall's cascade of great new books, "Library Journal's" editors select their favorites--a dark rendition of Afghan life, a look at the "self-esteem trap," a celebration of Brooklyn activism, and much more.

  17. Seneca Falls. Classroom Focus.

    ERIC Educational Resources Information Center

    Balantic, Jeannette; Libresco, Andrea S.

    1995-01-01

    Presents a secondary school lesson based on the Seneca Falls Declaration of Sentiments. Provides lesson objectives and step-by-step instructional procedures. Includes quoted sections of the Declaration of Sentiments. (CFR)

  18. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  19. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  20. EPA Facility Registry Service (FRS): LANDFILL

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of non-hazardous waste sites that link to the Landfill dataset. The Landfill dataset provides detailed operating statistics, geographic locations, and facility information for waste processing and disposal operations in the United States, compiled by the Waste Business Journal, Directory of Non-Hazardous Waste Sites (Date Published: November 5th, 2007). FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated sites that link to the Landfill dataset once the Landfill data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs