Science.gov

Sample records for falls chemical landfill

  1. Health assessment for Hooker Chemical (102nd Street Landfill), Niagara Falls, New York, Region 2. CERCLIS No. NYD980506810. Preliminary report

    SciTech Connect

    Not Available

    1989-06-01

    The 102nd Street Landfill is two sites that comprise 22 acres. Occidental Chemical Corporation (OCC) and its predecessor, the Oldbury Electrochemical Company, deposited approximately 23,500 tons of mixed organic solvents, organic and inorganic phosphates, and related chemicals. Included in the site are approximately 300 tons of hexachlorocyclohexane process cake, including lindane. In addition, brine sludge, fly ash, electrochemical cell parts and related equipment in unknown quantities were dumped at the site. On-site contamination of the 102nd Street Landfill includes soils contaminated with non-aqueous phase liquids on both portions of the Landfill. Off-site contamination, based on current studies, results from contaminated ground-water leaching into the Niagara River which causes contamination of the river water, sediments, and aquatic organisms, including fish. The 102nd Street Landfill continues to represent a potential public health threat.

  2. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill

    SciTech Connect

    Peel, M.C.; Wyndham, R.C.

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fbc) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl. Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns.

  3. Selection of clc, cba, and fcb Chlorobenzoate-Catabolic Genotypes from Groundwater and Surface Waters Adjacent to the Hyde Park, Niagara Falls, Chemical Landfill

    PubMed Central

    Peel, Michelle C.; Wyndham, R. Campbell

    1999-01-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32°C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59–68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  4. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill.

    PubMed

    Peel, M C; Wyndham, R C

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 degrees C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59-68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  5. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill.

    PubMed

    Peel, M C; Wyndham, R C

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 degrees C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59-68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  6. Superfund Record of Decision (EPA Region 1): Beacon Heights Landfill, Beacon Falls, Connecticut, September 1985. Final report

    SciTech Connect

    Not Available

    1984-09-23

    The Beacon Heights Landfill site is located two miles east of the intersection of Connecticut Routes 8 and 42 in Beacon Falls, Connecticut. From the 1920's until 1970 the site was known as Betkoski's Dump and consisted of approximately six acres on which active dumping occurred. According to records at the Connecticut Department of Environmental Protection (CT DEP), waste accepted at the dump included municipal refuse, rubber, plastics, and industrial chemicals and sludges. Landfill operations consisted primarily of open burning along with burial of noncombustibles. In 1970, the Betkoski property and adjacent properties totaling 83 acres were purchased by the Murtha Trucking Company, and the name was changed to Beacon Heights, Inc. Landfill. At this time, the landfill area was expanded to approximately 30 acres. Records of the CT DEP, including a 1973 report by the landfill engineer, listed rubber, plastics, oils, hydrocarbons, chemical liquids and sludges, and solvents as being disposed of at the landfill by the trucking company. The selected remedial action for this site are included.

  7. Health assessment for Lauer 1 Sanitary Landfill, Menomonee Falls, Wisconsin, Region 5. CERCLIS No. WID058735994. Preliminary report

    SciTech Connect

    Not Available

    1989-06-06

    The Lauer 1 Sanitary Landfill is listed on the National Priorities List. The site is located immediately east of Menomonee Falls, Wisconsin in the northeast corner of Waukesha County. From the 1950s to 1972, the privately-owned landfill accepted a variety of municipal and industrial wastes. Contaminants recovered from analysis of on-site leachate samples in 1982 consisted of the following chemicals and concentrations: benzene (750 micro grams/l), cyanide (98 micro grams/l), toluene (90 micro grams/l), and zinc (173 micro gram/l). Based on the available information, the site is considered to be of potential public health concern. The risk to human health caused by the possibility of exposure to hazardous substances is via contaminated groundwater, surface water, soil and air. Additional exposures may exist through the ingestion of contaminated plants and animals.

  8. Simulation of ground-water flow in the vicinity of Hyde Park landfill, Niagara Falls, New York

    USGS Publications Warehouse

    Maslia, M.L.; Johnston, R.H.

    1982-01-01

    The Hyde Park landfill is a 15-acre chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low permeability glacial till, (2) a moderately permeable fractured rock aquifer--the Lockport Dolomite, and (3) a low permeability unit--the Rochester Shale. The site is bounded on three sides by ground-water drains; the Niagara River Gorge, the Niagara Power Project canal, and the power project conduits. A finite element model was used to simulate ground-water flow along an east-west section through the Hyde Park site (from the power project conduits to the Niagara Gorge). Steady-state conditions were simulated with an average annual recharge rate of 5 inches per year. The calibrated model simulated measured water levels within 5 feet in the glacial till and upper unit of the Lockport Dolomite and approximated the configuration of the water table. Based on simulation, ground-water flow near the Hyde Park site can be summarized as follows: 1. Specific discharge (Darcy velocity) ranges from about 0.01 to 0.1 foot per day in the upper unit of the Lockport Dolomite to less than 0.00001 foot per day in the Rochester Shale. Real velocities are highest in the upper unit of the Lockport, ranging from about 1.5 to 4.8 feet per day. 2. A ground-water divide exists east of the landfill, indicating that all ground water originating near or flowing beneath the landfill will flow toward and discharge in the gorge. 3. The zone of highest velocities (and presumably greatest potential for transporting chemical contaminants) includes the upper unit of the Lockport and part of the lower unit of the Lockport Dolomite between the landfill and the gorge. The time required for ground water to move from the landfill to the gorge in the Lockport Dolomite is estimated to be 5 to 7 years.

  9. Chemical behavior of phthalates under abiotic conditions in landfills.

    PubMed

    Huang, Jingyu; Nkrumah, Philip N; Li, Yi; Appiah-Sefah, Gloria

    2013-01-01

    The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via

  10. Physical chemical treatment of leachate from landfill

    SciTech Connect

    Loizidou, M.; Vithoulkas, N.; Kapetanios, E. )

    1992-01-01

    The results of a bench-scale, chemical-physical treatment of sanitary leachate are reported. The use of lime in combination with ferrous sulfate and polyelectrolyte gave a 39% COD removal. The initial concentrations are in the range of 4,000-8,500 mgl{sup {minus}1} and the BOD/COD ratio 0.10-0.2, indicating the non-mgl{sup {minus}1}-biodegradability of the organic compounds present. By using alum with polyelectrolyte, a lower removal was achieved compared with that of a lime system, but still quite high being in the range of 31%. The organics removed from the leachate are of the highest reported in literature indicating the effectiveness of the chemical treatment.

  11. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. PMID:26347181

  12. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests.

  13. Health assessment for Beacon Heights Landfill site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD072122062. Addendum. Final report

    SciTech Connect

    Not Available

    1991-06-20

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. As noted in Human Exposure Pathways Section below, human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  14. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z. . Dept. of Civil and Structural Engineering); Zhao, Q.L. . School of Municipal and Environmental Engineering); Hao, X.D. . The Research Center of Ecological Economics and Environmental Technology)

    1999-01-01

    The landfill leachate in Hong Kong usually contains quite high NH[sub 4][sup +]-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH[sub 4][sup +]-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH[sub 4][sup +]-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH[sub 4][sup +]-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl[sub 2] [center dot] 6H[sub 2]O+Na[sub 2]HPO[sub 4] [center dot] 12H[sub 2]O, MgO + 85% H[sub 3]PO[sub 4], and Ca(H[sub 2]PO[sub 4])[sub 2] [center dot] H[sub 2]O + MgSO[sub 4] [center dot] 7H[sub 2]O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  15. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z.; Zhao, Q.L.; Hao, X.D.

    1999-11-01

    The landfill leachate in Hong Kong usually contains quite high NH{sub 4}{sup +}-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH{sub 4}{sup +}-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH{sub 4}{sup +}-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH{sub 4}{sup +}-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl{sub 2} {center_dot} 6H{sub 2}O+Na{sub 2}HPO{sub 4} {center_dot} 12H{sub 2}O, MgO + 85% H{sub 3}PO{sub 4}, and Ca(H{sub 2}PO{sub 4}){sub 2} {center_dot} H{sub 2}O + MgSO{sub 4} {center_dot} 7H{sub 2}O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  16. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals. PMID:16856738

  17. Superfund Record of Decision (EPA Region 1): Beacon Heights Landfill site, Beacon Falls, CT. (First remedial action), September 1990. (Supplemental). Final report

    SciTech Connect

    Not Available

    1990-09-28

    The 34-acre Beacon Heights Landfill site is on the northwest corner of an 82-acre property in Beacon Falls, Connecticut. The ROD supplements the 1985 ROD by resolving those determinations left open in the 1985 ROD, including the manner and locations of leachate treatment/disposal; cleanup levels for soil deemed impracticable to cap in areas contiguous to the landfill; and the need for air pollution controls on the landfill gas vents. The primary contaminants of concern affecting the soil, ground water, surface water, and air are VOCs, including benzene, toluene, and xylene.

  18. [Physical and chemical properties of land-filling pile and aged refuse in 5-year-old semi-aerobic and anaerobic landfills].

    PubMed

    Zhang, Wei; Yue, Bo; Huang, Qi-Fei; Huang, Ze-Chun; Zhang, Zeng-Qiang; Wang, Qi; Lin, Ye; Wang, Jin-An

    2010-03-01

    This paper studied the surface settlement, temperature, and gas production of land-filling pile, and the physical and chemical properties of aged refuse in 5-year-old semi-aerobic and anaerobic landfills. The pile's surface settlement and its volume reduction rate were significantly higher in semi-aerobic than in anaerobic landfill; and the treatment with leachate recycling brought larger uneven settlement than the treatment with water recycling. The temperature of anaerobic landfill pile (25.6 degrees C) was slightly higher than that of semi-aerobic landfill file (24.8 degrees C), but the difference was not significant. During land-filling period, the O2 concentration in semi-aerobic landfill pile was significantly higher than that in anaerobic one, while the CH4 concentration was in reverse. After 5 years land-filling, the contents of easily degradable organic matters in aged refuse, such as kitchen refuses and papers, decreased dramatically, while the contents of plastics, glasses, bricks, and woods increased. In addition, the contents of organic matters and nutrients in aged refuse were higher than those in typical southern China soils, and the concentrations of heavy metals except chromium in anaerobic landfill aged refuse were not beyond the grade three of Environmental Quality Standards for Soils (GB 15618-1995).

  19. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or...

  20. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or...

  1. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or...

  2. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or...

  3. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or...

  4. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  5. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    SciTech Connect

    Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H.; Nyholm, N.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.

  6. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    EPA Science Inventory

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  7. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill

    USGS Publications Warehouse

    Baedecker, M.J.; Back, W.

    1979-01-01

    Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.

  8. Health assessment for Beacon Heights Landfill National Priorities List (NPL) Site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD001145671. Final report

    SciTech Connect

    Not Available

    1989-01-26

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. Human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  9. Assessment of microbiological and chemical properties in a municipal landfill area.

    PubMed

    Frączek, Krzysztof J; Ropek, Dariusz R; Lenart-Boroń, Anna M

    2014-01-01

    This study aimed at determining the environmental hazards for soils posed by a large municipal landfilll. The concentrations of heavy metals and Policyclic Aromatic Hydrocarbons, as well as microbial composition (i.e., mesophilic bacteria, actinomycetes, molds, Salmonella, Staphylococcus, Clostridium perfringens) in four soils within and in the vicinity of the landfill were evaluated and compared to waste samples. Both chemical and microbiological analyses revealed only limited contamination of surrounding areas. Although the increased alkalinity of soils was detected, the concentrations of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) did not exceed the admissible values. All examined microbial groups were abundant in soil and waste. The highest microbial cell numbers were observed in warm summer and spring months. Although the site south of the landfill shows no trace of microbial contamination, pathogenic bacteria were found north of the landfill. This may suggest that there are other, more effective, transmission routes of bacteria than groundwater flow.

  10. [Contribution of several physico-chemical tracers to the study of groundwater contamination by landfill leachates].

    PubMed

    Khattabi, H; Mania, J; Aleya, L; Bouchaou, L; Mudry, J; Grisey, H

    2002-07-01

    This work deals with the estimation of the water content of several physico-chemical parameters in a landfill (Etueffont, Belfort, France), and their impact on the quality of the underground water. Samples were collected monthly from May 1998 to May 1999 with a vertical bottle, from the output of the landfill and from eight wells. The results showed high concentrations of most parameters in the well PZ30 and PZ3, situated near the landfill. The spatio-temporal distribution of the physico-chemical parameters (T, pH, EC, Eh, O2, Cl-, NO3-, SO4(2-), Na+, Ca2+, Mg2+, K+, Cu2+, Ni2+, Mn2+, Zn2+ and total iron) in the 8 wells was governed by geological, hydrogeogical, physical and chemical, and climatic factors. In addition, the concentrations of contaminants decreased in the last well (1 km from the landfill), indicating a purification and dilution effect. Nevertheless, we suspect short-term degradation of the groundwater in the Etueffont site.

  11. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate

    SciTech Connect

    Baun, A.; Kloeft, L.; Bjerg, P.L.; Nyholm, N.

    1999-09-01

    A method for assessment of toxicity of nonvolatile organic chemicals contaminants in groundwater polluted with landfill leachate has been evaluated. The biotests utilized were composed of an algal growth inhibition test (Selenastrum capricornutum), a daphnia immobilization test (Daphnia magna), and a bacterial genotoxicity test (umuC, Salmonella typhimurium). The feasibility of the selected biotests was investigated for a series of groundwater samples collected along pollution gradients downstreams of two landfills in Jutland, Denmark. Two different approaches were used, direct toxicity testing of whole groundwater samples, and toxicity testing of concentrates obtained by solid-phase extraction. Direct testing of whole groundwater samples produced toxic responses, but the complex sample matrix masked the toxicity of the organic chemical contaminants of interest. Solid-phase extraction was used successfully as an on-site method that eliminated ion toxicity and produced biotest responses that reflected the toxicity of the nonvolatile organic chemical contaminants in the groundwater.

  12. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India.

    PubMed

    Ghosh, Pooja; Gupta, Asmita; Thakur, Indu Shekhar

    2015-06-01

    In the present study, landfill leachate of three landfill sites of Delhi, India, was toxico-chemically analyzed for human risk assessment. Raw leachate samples were collected from the municipal solid waste (MSW) landfills of Delhi lacking liner systems. Samples were characterized with relatively low concentrations of heavy metals while the organic component exceeded the upper permissible limit by up to 158 times. Qualitative analysis showed the presence of numerous xenobiotics belonging to the group of halogenated aliphatic and aromatic compounds, polycyclic aromatic hydrocarbons (PAHs), phthalate esters, and other emerging contaminants. Quantitative analysis of PAHs showed that the benzo(a)pyrene-toxic equivalence quotient (BaP-TEQ) ranged from 41.22 to 285.557 ng L(-1). The human risk assessment methodology employed to evaluate the potential adverse effects of PAHs showed that the cancer risk level was lower than the designated acceptable risk of 10(-6). However, significant cytotoxic and genotoxic effects of leachates on HepG2 cell line was observed with MTT EC50 value ranging from 11.58 to 20.44 % and statistically significant DNA damage. Thus, although the leachates contained low concentrations of PAHs with proven carcinogenic potential, but the mixture of contaminants present in leachates are toxic enough to cause synergistic or additive cytotoxicity and genotoxicity and affect human health.

  13. Linking landfill hydrology and leachate chemical composition at a controlled municipal landfill (Kåstrup, Denmark) using state-space analysis.

    PubMed

    Poulsen, Tjalfe G; Moldrup, Per; Sørensen, Kirsten; Hansen, Jens Aa

    2002-10-01

    Leachate production and composition data for a municipal landfill measured over a 25-year period was used to investigate important processes and parameters. Long-term leachate production could be satisfactorily predicted from a simple top-layer landfill hydrology model while short-term predictions were less accurate, likely due to water storage in the waste. State-space and multiple regression modelling were used to identify relations between different parameters. State-space models proved most accurate in fitting measured data, likely because temporal correlation between measurements is accounted for unlike multiple regression. State-space modelling showed that temporal correlation in leachate production must be taken into account and confirmed that water storage inside the landfill is important. Temporal correlation is also important when predicting pH and chloride concentrations but less so for BOD5 and NH3/NH4+concentrations. Leachate flow did in general not have a strong impact upon leachate composition, small effects were observed for Cl-, and NH3/NH4+ concentrations. It was also observed that the mass load of nitrogen from the landfill was strongly dependent upon leachate nitrogen (ammonia/ammonium) concentrations and to a lesser degree upon leachate flow rates. This study introduces state-space modelling in solid waste management as a powerful tool to identify governing parameters for hydrological and bio-chemical processes.

  14. EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO

    SciTech Connect

    Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

    2003-02-27

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

  15. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate.

    PubMed

    Oygard, Joar Karsten; Måge, Amund; Gjengedal, Elin; Svane, Tore

    2005-01-01

    Landfill leachates sampled during and after an accidental landfill fire were analysed and the levels of selected metals and chemical compounds compared to those occurring in the leachate under normal conditions. The fire at the landfill site was put out by excavation and cooling by use of water. The investigation during the fire and fire fight revealed a moderate increase in the level of nitrogen and also in pH and conductivity. Heavy metals and COD in the leachate showed considerably increased levels. In general, the determined variables appeared to normalise within one week after the fire was extinguished. It can be concluded that landfill fires extinguished by excavation may lead to elevated leachate levels of especially COD and heavy metals, but that this is only a short-term effect. PMID:16009305

  16. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  17. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

  18. Chemical studies of H chondrites 11. Cosmogenic radionuclides in falls

    NASA Astrophysics Data System (ADS)

    Ferko, T. E.; Wang, M.-S.; Lipschutz, M. E.

    2002-10-01

    We measured the long-lived cosmogenic radionuclides 10Be, 26Al, and 36Cl in 47 H chondrite falls: 13 ``Cluster 1'' members, 9 ``Cluster 5'' members, and 25 random falls. From the date and time of fall, Clusters 1 and 5 were previously identified as possible coorbital meteoroid streams with distinctive thermal histories being confirmed by contents of volatile trace elements. Here, we use model data, including a three-radionuclide plot (10Bebulk/26Albulk versus 36Clmetal/26Albulk) and the multivariate statistical techniques of logistic regression and linear discriminant analysis to compare radionuclide levels and their utility to differentiate specific suites from other H chondrites. From our radionuclide results and from noble gas data from other workers, we identified 35 falls with simple irradiation histories and cosmic ray exposure ages >4 Ma. Eight others exhibit evidence for shorter (<=4 Ma) exposure, three of which had complex exposure histories (two having been reported by others previously); three others may have had such a history. In any event, the small proportion of H chondrite falls with complex exposure histories supports recent suggestions that they are not commonly encountered, as earlier workers suggested. Although cosmogenic radionuclides do not differentiate between Cluster 1 and a random set of H chondrites, H chondrites that lost 3He from solar heating are distinguishable from those with normal 3He levels.

  19. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    SciTech Connect

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-05-15

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: {yields} We study the toxicity of leachate from a non-hazardous industrial waste landfill. {yields} We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. {yields} Risk models suggest toxic effects due to ammonia and inorganic constituents. {yields} In vitro assays show that leachate inhibits cell proliferation at low doses. {yields} Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  20. Biological sampling methods and effects of exposure to municipal and chemical landfill leachate on aquatic organisms

    SciTech Connect

    Janisz, A.J.; Butterfield, W.S.

    1983-03-01

    Extensive biological sampling on five abandoned hazardous waste sites in New York, New Jersey, and Puerto Rico was undertaken during 1981 and 1982 to determine the impact of priority pollutants on aquatic fauna and, potentially, on human health. The selection criteria for sites, sampling equipment, problems in personnel protection, and sample handling procedures are presented. The effects of the hazardous waste sites were assessed using a wide range of fish and invertebrate species. Tissue specimens from eleven vertebrate and eight invertebrate species were analyzed. Forty samples of these tissue specimens were analyzed for all inorganic priority pollutant parameters; an additional 35 samples were analyzed for organic priority pollutants or an appropriate subset of them. High concentrations of polychlorinated biphenyls (PCBs) were found in aquatic organisms exposed to chemical landfill leachate; the results of the tissue analyses at other sites were negative.

  1. Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate.

    PubMed

    Cotman, Magda; Gotvajn, Andreja Zgajnar

    2010-06-15

    Our work was focused on investigation of different treatment procedures for the removal of toxic fractions from a landfill leachate, because sometimes the existing treatment in biological sequencing batch reactor (SBR) is not efficient enough, leading to a hazardous environmental impact of the present persistent and toxic compounds. The efficiency of the procedures used was monitored by chemical analyses and two toxicity tests (activated sludge and Vibrio fischeri). The existing SBR (HRT=1.9 days) removed 46-78% of COD and 96-73% of NH(4)(+)-N. Experiments were conducted with three landfill leachate samples expressing significant difference in concentrations of pollutants and with low BOD(5)/COD ratio (0.06/0.01/0.03). The applied methods were air stripping, adsorption to activated carbon and zeolite clinoptilolite and Fenton oxidation. Air stripping at pH 11 was a viable treatment option for the removal of ammonia nitrogen (up to 94%) and reduction of toxicity to microorganisms. In the adsorption experiments in batch system with different concentration of PAC the most effective was the highest addition (50.0gL(-1)) where 63-92% of COD was removed followed by significant reduction in toxicity to V. fischeri. In the column experiments with clinoptilolite 45/93/100% of NH(4)(+)-N as well as 25/32/39% of COD removal was attained. The removal efficiency for metals followed the sequence Cr>Zn>Cd>Ni. The procedure with zeolite was the second most efficient one regarding reduction of toxicity to both organisms. Fenton oxidation at molar ratio Fe(2+):H(2)O(2)=1.0:10.0 assured 70-85% removal of COD but it only slightly reduced the toxicity.

  2. IN SITU BIOREMEDIATION IN A LANDFILL: LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    In recent years the conversion of landfills to landfill bioreactors has received increased attention owing to potential economic and waste treatment benefits. The U.S. EPA has entered into a Cooperative Research and Development Agreement (CRADA), with Waste Management Inc., testi...

  3. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  4. ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL

    SciTech Connect

    Young, S.G.; Creech, M.N.

    2003-02-27

    During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

  5. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  6. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates.

    PubMed

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer

    2013-06-01

    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  7. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.

    PubMed

    Brandstätter, Christian; Laner, David; Prantl, Roman; Fellner, Johann

    2014-12-01

    Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed. This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables. The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills. Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies.

  8. IN SITU BIOREMEDIATION IN A LANDFILL: HOLDING TIME STUDY OF LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    Processing and analyzing solid waste samples from large and costly sampling events in a timely manner is often difficult. As part of a Cooperative Research and Development Agreement (CRADA), the U.S. EPA and Waste Management Inc. (WMI) are investigating the conversion of landfill...

  9. Advanced physico-chemical treatment experiences on young municipal landfill leachates

    SciTech Connect

    Ozturk, Izzet; Altinbas, Mahmut; Koyuncu, Ismail; Arikan, Osman; Gomec-Yangin, Cigdem

    2003-07-01

    In this study, Membrane Filtration (UF+RO), Struvite (MAP) precipitation and ammonia stripping alternatives were studied on biologically pre-treated Landfill Leachate. The results indicated that the system including the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and Membrane Reactors (UF+RO) has been offered as an appropriate treatment alternative for young landfill leachates. This system provided high removals of COD, colour and conductivity (>98-99%). For ammonia removal, struvite precipitation was applied at the stoichiometric ratio (Mg:NH{sub 4}:PO{sub 4}=1:1:1) to anaerobically pre-treated raw landfill leachate effluent having an influent ammonium concentration of 2240 mg/l. Maximum ammonium nitrogen removal was observed as 85% at pH of 9.2. In ammonia stripping following 2 h of aeration, the removal was 72% at pH=12 while the removals were around 20% at pH=10 and pH=11. When membrane reactor, and struvite precipitation or ammonia stripping was applied to anaerobically pre-treated effluents, the results indicated that each system could be used as an appropriate post-treatment option for young landfill leachates. In economic aspect, ammonia stripping was found as the cheapest alternative with high ammonium removal. However, when both high COD and ammonium removals were to be achieved membrane technology such as UF+RO (SW) could be considered as the most appropriate system due to the fact that COD removal could be obtained very low by ammonia stripping.

  10. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    PubMed

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  11. Physico-chemical processes for landfill leachate treatment: Experiments and mathematical models

    SciTech Connect

    Xing, W.; Ngo, H.H.; Kim, S.H.; Guo, W.S.; Hagare, P.

    2008-07-01

    In this study, the adsorption of synthetic landfill leachate onto four kinds of activated carbon has been investigated. From the equilibrium and kinetics experiments, it was observed that coal based PAC presented the highest organic pollutants removal efficiency (54%), followed by coal based GAC (50%), wood based GAC (33%) and wood based PAC (14%). The adsorption equilibrium of PAC and GAC was successfully predicted by Henry-Freundlich adsorption model whilst LDFA + Dual isotherm Kinetics model could describe well the batch adsorption kinetics. The flocculation and flocculation-adsorption experiments were also conducted. The results indicated that flocculation did not perform well on organics removal because of the dominance of low molecular weight organic compounds in synthetic landfill leachate. Consequently, flocculation as pretreatment to adsorption and a combination of flocculation-adsorption could not improve much the organic removal efficiency for the single adsorption process.

  12. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    PubMed

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present.

  13. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    PubMed

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. PMID:25499684

  14. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  15. Cleaner Landfills

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  16. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30 °C at pH 6.0 using 20 g/L dose in 120 min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20 g/L dose, also in 120 min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate.

  17. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    PubMed

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

  18. A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill.

    PubMed

    Kim, Youngkyu; Yang, GoSu

    2002-10-01

    The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively. PMID:12418726

  19. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability. PMID:27146535

  20. Chemical quality of landfill leachate in treatment ponds and migration of leachate in the surficial aquifer, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Barr, G.L.

    1984-01-01

    The Pinellas County leachate treatment and disposal site encompasses about 8 acres within the 220 acres of the county 's Bridgeway Acres landfill. The site has a high water table and is subject to inundation due to tidal flooding and major storms. Fresh leachate is pumped from V-shaped trenches an average of about 3.8 hours per day. The pumping rate ranges from 150 to 500 gallons per minute. The leachate is aerated for about 2 days in a lined basin, then transferred by gravity to a stabilization pond where it is permitted to infiltrate into the surficial aquifer. Two chemical constituents, ammonia nitrogen and potassium, were used as indicators of migration of the leachate in the aquifer. No apparent nitrification occurred within the treatment system. Leachate has migrated from about 75 to 80 feet along the upper 5 feet of the aquifer during the period of study. Vertical migration was about 4 feet beneath the bottom of the pond into the aquifer. (USGS)

  1. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates.

    PubMed

    Marttinen, S K; Kettunen, R H; Sormunen, K M; Soimasuo, R M; Rintala, J A

    2002-02-01

    Physical-chemical methods have been suggested for the treatment of low strength municipal landfill leachates. Therefore, applicability of nanofiltration and air stripping were screened in laboratory-scale for the removal of organic matter, ammonia, and toxicity from low strength leachates (NH4-N 74-220 mg/l, chemical oxygen demand (COD) 190-920 mg O2/l, EC50 = 2-17% for Raphidocelis subcapitata). Ozonation was studied as well, but with the emphasis on enhancing biodegradability of leachates. Nanofiltration (25 degrees C) removed 52-66% of COD and 27-50% of ammonia, the latter indicating that ammonia may in part have been present as ammonium salt complexes. Biological pretreatment enhanced the overall COD removal. Air stripping (24 h at pH 11) resulted in 89% and 64% ammonia removal at 20 and 6 degrees C, respectively, the stripping rate remaining below 10 mg N/l h. COD removals of 4-21% were obtained in stripping. Ozonation (20 degrees C) increased the concentration of rapidly biodegradable COD (RBCOD), but the proportion of RBCOD of total COD was still below 20% indicating poor biological treatability. The effect of the different treatments on leachate toxicity was assessed with the Daphnia acute toxicity test (Daphnia magna) and algal growth inhibition test (Raphidcocelis subcapitata). None of the methods was effective in toxicity removal. By way of comparison, treatment in a full-scale biological plant decreased leachate toxicity to half of the initial value. Although leachate toxicity significantly correlated with COD and ammonia in untreated and treated leachate, in some stripping and ozonation experiments toxicity was increased in spite of COD and ammonia removals.

  2. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control.

  3. Evidence for Chemical Variations with Shock Loading in L Chondrite Falls

    NASA Astrophysics Data System (ADS)

    Friedrich, J. M.; Bridges, J. C.; Lipschutz, M. E.

    2002-03-01

    We have analyzed 62 equilibrated L chondrite falls for 51 elements by ICPMS and RNAA. We use our data to identify statistically significant geochemical fractionations in the L chondrite parent(s) resulting from shock related heating episodes.

  4. Superfund explanation of significant difference for the record of decision (EPA Region 1): Beacon Heights Landfill, Beacon Falls, CT, September 9, 1998

    SciTech Connect

    1999-03-01

    EPA issued a ROD on September 23, 1985 (PB86-134004), documenting the selected remedial actions for the Site. EPA issued the Supplemental ROD on September 28, 1990 (PB91-921418). The Supplemental ROD included an evaluation of alternatives for treatment and disposal of the leachate collected from the Site. These alternatives consisted of: treatment at the Beacon Falls Publicly Owned Treatment Works (POTW), treatment at the Naugatuck POTW, trucking the leachate off Site for treatment, and treatment on Site. As a direct result of events that developed after the completion of the ROD and the Supplemental ROD, decisions were made to change the selected location for leachate treatment, to modify the RCRA cap design, and to require the construction of compensatory wetlands.

  5. Chemical and radiological characterization of fly and bottom ash landfill of the former sulfate pulp factory Plaški and its surroundings.

    PubMed

    Oreščanin, Višnja; Kollar, Robert; Buben, Kresimir; Mikelic, Ivanka Lovrencic; Kollar, Karlo; Kollar, Melkior; Medunic, Gordana

    2012-01-01

    The subject of this study was chemical and radiological characterization of the fly and bottom ash, by-product of the combustion of coal used as an energy source in the former sulfate pulp factory in Plaški. The research involves determination of the concentration of macro, micro and trace elements and activities of the radionuclides in: (i) ash from different positions of the landfill; (ii) soil samples in the zone of the influence of the landfill; (iii) control soil samples and (iv) sediment sample from the river Dretulja. Besides, in situ measurement of an effective dose rate above ash/soil was also determined. In relation with the control soil the average increase of the concentrations of the elements Ca, Cd, Hg, Ni, Se, Sr, Th and U in the samples taken from the fly and bottom ash landfill as well as soil samples within the radius of 300 m from the landfill was 38.3, 6.7, 9.9, 8.5, 9.4, 7.2, 3.6 and 5.7 times, respectively. In these samples, the concentrations of the above mentioned elements were in the following ranges: calcium from 7.94 to 19.7 %; cadmium from 0.33 to 1.66 mg/kg; mercury from 0.18 to 0.49 mg/kg; nickel from 260 to 1500 mg/kg; selenium from 2.7 to 21 mg/kg; strontium from 176 to 542 mg/kg; thorium from 8 to 55 mg/kg and uranium from 5.6 to 19.7 mg/kg. Compared to the world's average soil concentration, uranium and thorium values increased 3.7 and 1.7 times, respectively. The mean value of the total effective dose rate measured in the air at the height of 1 m for all samples of ash and soil under the influence of the landfill was 1.60 mSv/yr. Compared to the Croatian average (0.7015 mSv/yr), the determined mean value for the Plaški landfill is two times higher. However, compared to the local background (0.14 mSv/yr), the mean value of the total effective dose rate measured above the Plaški landfill is 11.4 times higher. In the samples of ash and contaminated soil regardless of the sampling location the activity concentrations of the

  6. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    PubMed

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (<1000 Da) in the biologically treated leachate were concluded. Since HOCs are competitively trapped by dissolved organic matters (DOM), the ultimate removal of HOCs from leachate is unreachable by activated carbon or BFC. It was also found that the biologically treated leachate effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  7. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  8. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  9. Results of chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.

    2005-01-01

    Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.

  10. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  11. An Integrated Approach Combining Chemical Analysis and an In Vivo Bioassay to Assess the Estrogenic Potency of a Municipal Solid Waste Landfill Leachate in Qingdao

    PubMed Central

    Gong, Yufeng; Tian, Hua; Wang, Lijia; Yu, Suping; Ru, Shaoguo

    2014-01-01

    Various adverse effects related to landfill leachate have made leachates an important issue in past decades, and it has been demonstrated that landfill leachate is an important source of environmental estrogens. In this study, we employed chemical analysis of some already evaluated estrogenic substances, in combination with a bioassay using several specific biomarkers (e.g., plasma vitellogenin and sex steroids, enzyme activity of gonad gamma-glutamyl transpeptidase, and gonadosomatic index) to evaluate the estrogenic activities in outlets from different stages of the leachate treatment process. The results indicated that 5 environmental estrogens (4-t-octylphenol, bisphenol A, di-ethyl phthalate, di-n-butyl phthalate, and diethylhexyl phthalate) were detected by a gas chromatography-mass spectrometry, and the concentrations in leachate samples were 6153 ng/L, 3642 ng/L, 2139 ng/L, 5900 ng/L, and 9422 ng/L, respectively. Leachate (1∶200 diluted) induced the synthesis of plasma vitellogenin and led to decreased enzyme activity of gonad gamma-glutamyl transpeptidase and gonadosomatic index in male goldfish (Carassius auratus) after a 28-day exposure, while increased circulating 17β-estradiol level was also observed in males exposed to treated effluent. Although the target EEs were partially removed with removal rates varying from 87.2% to 99.77% by the “membrane bioreactor+reverse osmosis+aeration zeolite biofilter” treatment process, the treated effluent is still estrogenic to fish. The method combined chemical techniques with the responses of test organisms allowing us to identify the group of estrogen-like chemicals so that we were able to evaluate the overall estrogenic effects of a complex mixture, avoiding false negative assessments. PMID:24743634

  12. Hazardous waste landfill leachate characteristics

    SciTech Connect

    Pavelka, C. ); Loehr, R.C. . Environmental and Water Resources Engineering Program); Haikola, B. )

    1993-01-01

    Leachate data from 18 commercial hazardous waste landfills or cells were evaluated to determine overall leachate characteristics and parameters that may affect leachate generation and characteristics. The landfills studied have a wide range of practices, none of which are necessarily representative of the most current landfill design, operating or closure practice in the United States. The leachate samples were from landfills that represented varying waste types, waste age, geographic locations and climate. The parameters evaluated included chemical properties, co-disposal of hazardous and municipal solid wastes, climatic conditions, and waste age in the landfills. The leachate samples had been analyzed for 62 volatiles, 107 semi-volatiles, 16 metals, 28 pesticides, herbicides and insecticides, and 17 other chemicals. The results indicate that: (a) the organics in the leachate with high concentrations had high solubilities and low octanol-water coefficients, (b) landfills in arid climates produced less leachate than those in temperate and sub-tropical climates, and (c) leachate production appeared to be related to use of a cap or cover.

  13. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  14. In situ denitrification in controlled landfill systems

    SciTech Connect

    Onay, T.T.; Pohland, F.G.

    1996-11-01

    The characteristics of leachate from landfill disposal sites vary according to the operational stage of the landfill. Leachates from old landfills are often rich in ammonia nitrogen due to the hydrolysis and fermentation of nitrogenous fractions of biodegradable refuse substrates. The relative concentration accumulating as stabilization progresses is also influenced by washout as leachate is collected and removed for external treatment. However, in landfills operated as bioreactors with leachate containment, collection and in situ recirculation to accelerate decomposition of readily available organic fractions of the refuse, leachate ammonia nitrogen concentrations may accumulate to much higher levels. High leachate ammonia nitrogen concentrations in landfill leachate have been reported, resulting in separate treatment challenges if direct discharge to either land or receiving waters is practiced. External treatment options for landfill leachate may involve complex physical-chemical and/or biological processes for removal of both high-strength organic and inorganic fractions, including nitrogen. Such separate leachate treatment systems are often costly and difficult to control on a continuum. Therefore, this study focused on the investigation of landfill ammonia nitrogen generation patterns, and the potential for its in situ attenuation and conversion in landfills constructed to permit sequential nitrification and denitrification using leachate recirculation. Accordingly, the landfill is constructed and operated as a controlled bioreactor system, with opportunity to convert ammonia to nitrate by nitrification and nitrate to nitrogen gas by denitrification. The results presented in this paper focus on in situ landfill denitrification of nitrified ammonia.

  15. Wartime rat control, rodent ecology, and the rise and fall of chemical rodenticides.

    PubMed

    Keiner, Christine

    2005-09-01

    The story of how World War II stimulated the development of DDT, and the ensuing postwar dependence on such chemical insecticides, is well known. However, less recognition has been given to the wartime efforts to synthesize new rodenticides to fight rat-borne epidemics. Baltimore, Maryland served as the site for field tests of the powerful new compound alpha naphthyl thiourea (ANTU) from 1942-1946. This experimental campaign sparked debates over the efficacy of controlling rats via chemical warfare instead of environmental sanitation, which led to the ironic conclusion that urban rat control demanded an ecological, rather than technological, approach. PMID:16087236

  16. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  17. Chemical Composition of Aquatic Dissolved Organic Matter in Five Boreal Forest Catchments Sampled in Spring and Fall Seasons

    SciTech Connect

    Schumacher,M.; Christl, I.; Vogt, R.; Barmettler, K.; Jacobsen, C.; Kretzschmar, R.

    2006-01-01

    The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.

  18. Geochemical processes in landfills

    NASA Astrophysics Data System (ADS)

    Förstner, Ulrich; Kersten, Michael; Wienberg, Reinhard

    The present review focusses on the qualitative long-term perspectives of processes and mechanisms controlling the interactions of critical pollutants with organic and inorganic substrates both in "reactor landfills" and in deposits, which already consist of rock-like material ("final storage quality"). The behavior of pollutants in landfills is determined by the chemistry of interstitial solutions, i.e. by pH and redox conditions, and concentration of inorganic and organic ligands; in "reactor landfills" these conditions are widely variable as a result of biochemical reactions, while "final storage quality" implies less variations of chemical interactions. In both alternatives, however, prediction of short- and long-term effects on groundwater quality should be based on the proportion of "active species" of compounds ("mobility concept"). Qualitative assessment of potentially mobile pollutants may involve a controlled significative intensivation of important parameters such as pH-values. Using sequential extraction rearrangements of specific solid "phases" can be evaluated prior to the actual remobilisation of the pollutant into the dissolved phase. From a geochemical point of view the "reactor landfill" is characterized by labile conditions during the initial aerobic and acid anaerobic phases, the former mainly due to uncontrolled interactions with organic solutes. On the other hand, final storage quality, which is defined by the composition of earth crust material, in most cases is not attained by simple incineration of municipal waste, i.e. by reduction of organic fractions only. There is, in particular, the problem of easily soluble minerals, such as chlorides. Nonetheless the type of inorganic residue deposits will increasingly receive prevalence as a method of final storage for municipal wastes in the future.

  19. Landfill leachate treatment using bacto-algal co-culture: An integrated approach using chemical analyses and toxicological assessment.

    PubMed

    Kumari, Moni; Ghosh, Pooja; Thakur, Indu Shekhar

    2016-06-01

    The present study aims to evaluate the feasibility of leachate treatment using a synergistic approach by microalgae and bacteria. Leachate from one of the landfill of Northern India showed the presence of various toxic organic contaminants like naphthalene, benzene, phenol and their derivatives, napthols, pesticides, epoxides, phthalates and halogenated organic compounds. ICP-AES analysis revealed high concentrations of Zn, Cr, Fe, Ni, and Pb beyond the maximum permissible limit of discharge. Bacto-algal co-culture was found to be the most efficient in removal of toxic organic contaminants and heavy metals. Further, detoxification efficiency of bacto-algal treatment was evaluated by Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity using hepatoma HepG2 cells. Reduction in toxicity was confirmed by an increase in LC50 by 1.9 fold and reduction in Olive Tail Moment by 40.6 fold after 10 days of treatment. Results of the study indicate bioremediation and detoxification potency of bacto-algal co-culture for leachate treatment.

  20. Landfill leachate treatment using bacto-algal co-culture: An integrated approach using chemical analyses and toxicological assessment.

    PubMed

    Kumari, Moni; Ghosh, Pooja; Thakur, Indu Shekhar

    2016-06-01

    The present study aims to evaluate the feasibility of leachate treatment using a synergistic approach by microalgae and bacteria. Leachate from one of the landfill of Northern India showed the presence of various toxic organic contaminants like naphthalene, benzene, phenol and their derivatives, napthols, pesticides, epoxides, phthalates and halogenated organic compounds. ICP-AES analysis revealed high concentrations of Zn, Cr, Fe, Ni, and Pb beyond the maximum permissible limit of discharge. Bacto-algal co-culture was found to be the most efficient in removal of toxic organic contaminants and heavy metals. Further, detoxification efficiency of bacto-algal treatment was evaluated by Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity using hepatoma HepG2 cells. Reduction in toxicity was confirmed by an increase in LC50 by 1.9 fold and reduction in Olive Tail Moment by 40.6 fold after 10 days of treatment. Results of the study indicate bioremediation and detoxification potency of bacto-algal co-culture for leachate treatment. PMID:26890189

  1. Chemical studies of L chondrites. VI: variations with petrographic type and shock-loading among equilibrated falls

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Bridges, John C.; Wang, Ming-Sheng; Lipschutz, Michael E.

    2004-07-01

    To study compositional trends associated with open and closed system metamorphism and/or shock-induced heating of the L4-6 chondrite parent(s), we used ICPMS and RNAA to quantify 51 trace elements in 48 chemically representative fall samples. With these data, we used graphic and two multivariate statistical methods for examining evidence for compositional differences with respect to petrographic type and degree of shock loading. Comparisons of mildly shocked (S1-S3) L5 and L6 suites (9 and 8 chondrites, respectively) yield no convincing statistical evidence for a difference in trace element content. Our multivariate comparisons show a difference on a model-dependent basis, but yield indeterminate results on a model-independent basis. Compositionally, suites of strongly shocked (S4-S6) and mildly shocked L4-6 chondrites (26 and 19 samples, respectively) can be distinguished at statistically significant levels on both model-dependent and -independent bases. In the strongly shocked suite, contents of refractory lithophiles are higher, and siderophiles and volatiles are lower than those of the mildly shocked suite at moderately ( p ≤ 0.05) to highly significant ( p ≤ 0.01) levels. Our studies suggest that chemical differences from vaporization and loss of volatiles along with metal/silicate partitioning are present from extended cooling of shock-heated bodies produced by intermittent impacts, especially the massive impact(s) that disrupted the L chondrite parent(s) ˜500 Ma ago.

  2. Sustainable treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  3. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    SciTech Connect

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  4. Landfill Gas Effects on Evapotranspirative Landfill Covers

    NASA Astrophysics Data System (ADS)

    Plummer, M. A.; Mattson, E.; Ankeny, M.; Kelsey, J.

    2005-05-01

    The performance of an evapotranspirative landfill cover can be adversely affected by transport of landfill gases to the plant root zone. Healthy plant communities are critical to the success and effectiveness of these vegetated landfill covers. Poor vegetative cover can result in reduced transpiration, increased percolation, and increased erosion regardless of the thickness of the cover. Visual inspections of landfill covers indicate that vegetation-free areas are not uncommon at municipal waste landfills. Data from soil profiles beneath these areas suggest that anaerobic conditions in the plant-rooting zone are controlling plant distribution. On the same landfill, aerobic conditions exist at similar depths beneath well-vegetated areas. The movement of methane and carbon dioxide, generated by degradation of organic wastes, into the overlying soil cover displaces oxygen in the root zone. Monitoring data from landfills in semi-arid areas indicate that barometric pumping can result in hours of anaerobic conditions in the root zone. Microbial consumption of oxygen in the root zone reduces the amount of oxygen available for plant root respiration but consumption of oxygen and methane also produce water as a reaction byproduct. This biogenic water production can be on the order of centimeters of water per year which, while increasing water availability, also has a negative feedback on transport of landfill gases through the cover. Accounting for these processes can improve evapotranspirative landfill cover design at other sites.

  5. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, ans; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  6. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  7. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhan; Lu, Wenjing; Li, Dong; Wang, Hongtao

    2014-05-01

    The temporal variation of trace component emissions from the working surface of a landfill in Beijing was investigated. Specific days in a year were selected as representatives for all four seasons. Different chemical species were quantified in all four seasons with the following average concentrations: spring: 41 compounds, 2482.6 μg m-3; summer: 59 compounds, 4512.6 μg m-3; fall: 66 compounds, 2438.4 μg m-3; and winter: 54 compounds, 2901 μg m-3. The detected compounds included sulfur compounds, oxygenated compounds, aromatics, hydrocarbons, halogenated compounds, and terpenes. Oxygenated compounds were the most abundant compound in most samples. Isobutane, ethyl alcohol, limonene, butane, toluene, and trichlorofluoromethane were recognized as the most abundant compounds on the working surface throughout the year. This study would bring new light in assessing the particle pollution in urban areas and the effect of trace components on landfill odor.

  8. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  9. Degradability of Chlorinated Solvents in Landfill Environment

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and

  10. Landfill capping: The Croton Point Landfill experience

    SciTech Connect

    Srinivasaraghaven, R.; Gavin, J.M.; Landi, A.M.; Ritchie, M.D.

    1996-12-31

    The Croton Point Landfill Capping involved the installation of an impermeable, geosynthetic cap and the attendant geotechnical cover soils over a 113 acre hazardous waste landfill in Croton-On-Hudson, New York. The remediation process - Remedial Investigation, Feasibility Study (RI/FS) Remedial Design and Remedial Construction lasted six years. This paper sets forth some of the insights and experiences gained during that process and provides some practical recommendations. In particular, the paper evaluates the Croton Landfill experience in regard to Health and Safety; Stormwater Control; erosion and sediment control; QA/QC; leachate treatment and disposal; and wildlife control.

  11. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    PubMed

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  12. Municipal solid waste landfills harbor distinct microbiomes

    USGS Publications Warehouse

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  13. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    PubMed

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  14. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  15. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  19. Environmental Isotope Characteristics of Landfill Leachates and Gases

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  20. Public Infrastructure Disparities and the Microbiological and Chemical Safety of Drinking and Surface Water Supplies in a Community Bordering a Landfill

    PubMed Central

    Heaney, Christopher D.; Wing, Steve; Wilson, Sacoby M.; Campbell, Robert L.; Caldwell, David; Hopkins, Barbara; O’Shea, Shannon; Yeatts, Karin

    2015-01-01

    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = −1106, −93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services. PMID:23858663

  1. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  2. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  3. Report: management problems of solid waste landfills in Kuwait.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2002-08-01

    This paper evaluates current operational practices in municipal solid waste landfills in Kuwait to provide existing knowledge on uncontrolled landfilling and associated problems of solid waste disposal in developing countries. The current landfilling practices are safe neither for humans nor for the environment. The landfill sites receive all kinds of wastes such as food wastes, oil products, debris, dead animals, agricultural wastes, chemical wastes, wastewater and sewage sludge. The wastes are dumped, spread and compacted in an uncontrolled manner and cover material is not applied regularly. Dust created within the landfill site and gas emissions cause a public nuisance. The characteristics of leachate formed indicate high organic content and presence of heavy metals, salts and nutrients. There are no provisions for leachate or landfill gas collection at the landfill sites. Recommendations for adjustment in landfill operation have been made in recognition of the transition period that is experienced in proceeding from the past and present to the future management of landfills in Kuwait to safeguard the public health and protect the environment.

  4. Investigating landfill leachate as a source of trace organic pollutants.

    PubMed

    Clarke, Bradley O; Anumol, Tarun; Barlaz, Morton; Snyder, Shane A

    2015-05-01

    Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination.

  5. Easy landfill gas profits

    SciTech Connect

    Schleifer, R.

    1988-03-01

    Landfill and digester gases can be valuable fuels. Engine-driven energy recovery systems are a common sight today at landfills and wastewater treatment plants. Yet the complaint is still heard: ''Waste'' gases are tough on engines. That can be true when impurities and variability in landfill or digester gas are not controlled. But with today's fuel-system technology, control is not difficult. Typically, custom-engineered fuel systems for alternate-fuel engine applications can include filters, scrubbers, separators, calorimeters, or other devices needed to deliver an acceptable gas to the engine. It's important that this system is designed only after a thorough gas analysis.

  6. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  7. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.

  8. Hydrogeology of a landfill, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario, Jr.

    1983-01-01

    The Pinellas County landfill site is on a flat, coastal area characterized by a high water table is subject to tidal flooding. Altitudes within the study area range from 8 to 12 feet above sea level. Three geohydrologic units underlie the landfill site: a surficial aquifer about 19 feet thick composed of sand and shells; a confining bed about 35 feet thick composed of marl and clay; and the Floridan aquifer composed of limestone. The rate of lateral movement of ground water away from the site is about 1.2 feet per year; however, the rate of movement along the boundary of the landfill cells is about 20 feet per year. Vertical movement through the confining layer is about 0.005 foot per year. Landfill operations have not altered surface-water quality. Leachate migration downward into the Floridan aquifer is not indicated, but data do indicate leachate is migrating from the oldest section of the landfill site through the surficial aquifer. Peaks in concentration of selected chemical parameters and flow-rate analysis of water from trenches indicate the possibility of slug-flow leachate. (USGS)

  9. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. PMID:22245736

  10. Preventing falls

    MedlinePlus

    Dalbaere K, Sherrington C, Lord SR. Falls prevention interventions. In: Marchus R, Feldman D, Depmster DW, Luckey M, Cauley JA, eds. Osteoporosis . 4th ed. Philadelphia, PA: Elsevier; 2013:chap 70. Rubenstein ...

  11. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  12. Water-quality data for landfills, Hillsborough County, Florida, January 1974-October 1977

    USGS Publications Warehouse

    Fernandez, Mario; Hallbourg, Robin R.

    1978-01-01

    Periodic water-quality data were collected at four landfills in Hillsborough County from January 1974 through October 1977. Water samples were analyzed for nitrogen and phosphorous species, cations, trace metals, chloride, specific conductance, chemical oxygen demand, biological oxygen demand, and coliforms. Select ground-water samples were analyzed for herbicide and pesticide. Results of chemical and bacteriological analysis form four landfills are presented as basic data. Geologic logs and well descriptions are presented for wells drilled at the landfills after January 1974.

  13. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  14. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  15. Results of the Chemical and Isotopic Analyses of Sediment and Ground Water from Alluvium of the Canadian River Near a Closed Municipal Landfill, Norman, Oklahoma, Part 2

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.

    2008-01-01

    Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.

  16. Computer Modeling of Saltstone Landfills by Intera Environmental Consultants

    SciTech Connect

    Albenesius, E.L.

    2001-08-09

    This report summaries the computer modeling studies and how the results of these studies were used to estimate contaminant releases to the groundwater. These modeling studies were used to improve saltstone landfill designs and are the basis for the current reference design. With the reference landfill design, EPA Drinking Water Standards can be met for all chemicals and radionuclides contained in Savannah River Plant waste salts.

  17. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  18. Attenuation of landfill leachate at two uncontrolled landfills

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Kwon, Hyung-Pyo; Yoon, Hee-Sung; Lee, Seong-Sun; Kim, Jong-Ho; Park, Joung-Ku; Kim, Chang-Gyun

    2006-12-01

    Attenuation characteristics of landfill leachate were examined for two uncontrolled landfills in Korea. The two landfills containing municipal wastes without appropriate bottom liner and leachate treatment system have different landfill age, waste volume, and most importantly different hydrogeologic settings. One landfill (Cheonan landfill) is situated in an open flat area while the other (Wonju landfill) is located in a valley. Variations of various parameters including dissolved organic carbon (DOC), dissolved oxygen (DO), alkalinity, pH, electrical conductivity (EC), redox potential (ORP), ammonia (NH3), nitrate (NO{3/-}), sulfate (SO{4/2-}), and chloride (Cl-) were examined along groundwater flow path. All these parameters were analyzed every month for a year. In the interior of the landfills, typical anaerobic conditions revealed by low DO and NO3 concentrations, negative ORP values, high NH3, alkalinity, and Cl- concentrations were observed. Generally, higher levels of contaminants (DOC, NH3, and Cl-) were detected in the dry season while they were greatly lowered in the wet season. Significantly, large decrease of Cl- concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are different and they were largely dependent on permeability of surface and subsurface layers. The intermediately permeable surface of the landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the ground waters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into down gradient area. In the Wonju landfill, there are three

  19. Falling Sticks and Falling Balls

    NASA Astrophysics Data System (ADS)

    Bacon, M. E.; Harpst, Michael R.; Nakazawa, Ryohei

    2002-09-01

    The behavior of a falling stick, pivoted at one end, and a ball released from the same height as the end of the stick, is investigated theoretically and experimentally. The study is made possible through the use of the computer to perform the numerical computations and analysis of the experimental data. The study provides undergraduates with an opportunity to carry out a relatively simple project with interesting results.

  20. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  1. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  2. Mathematical modelling of landfill gas migration in MSW sanitary landfills.

    PubMed

    Martín, S; Marañón, E; Sastre, H

    2001-10-01

    The laws that govern the displacement of landfill gas in a sanitary landfill are analysed. Subsequently, a 2-D finite difference flow model of a fluid in a steady state in a porous medium with infinite sources of landfill gas is proposed. The fact that landfill gas is continuously generated throughout the entire mass of the landfill differentiates this model from others extensively described in the literature and used in a variety of different applications, such as oil recovery, groundwater flow, etc. Preliminary results are then presented of the application of the model. Finally, the results obtained employing data from the literature and experimental assays carried out at the La Zoreda sanitary landfill (Asturias, Spain) are discussed and future lines of research are proposed.

  3. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  4. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  5. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  6. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d‑1, with CH4 efflux values ranging from 0-922 mg m‑2 d‑1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  7. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  8. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  9. Assessment of groundwater contamination by landfill leachate: a case in México.

    PubMed

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  10. An energy perspective on landfill gas

    SciTech Connect

    Hutchinson, P.J. )

    1993-01-01

    Globally, one billion metric tons of organic waste in the form of municipal solid waste are placed into solid-waste containment facilities every year. Complete biodegradation of this waste can generate approximately 2.8x10[sup 11] m[sup 3] (9.9 trillion cubic feet (Tcf) or 1.98x10[sup 8] metric tons) of biogas. Biogas consists of approximately equal proportions of methane and carbon dioxide; thus a year's worth of waste can potentially generate 1.4x10[sup 11] m[sup 3] (5 Tcf or 9.9x10[sup 7] metric tons) of methane. If we assume that landfill-biogas generation began only 20 years ago and has proceeded at a steady rate, then we can estimate that it can contribute 5x10[sup 10] m[sup 3] (1.8 Tcf or 36x10[sup 6] metric tons) of methane to the global atmospheric budget every year. Landfill gas is difficult to recover and use. Exploitation of biogas includes use as a raw product for heat energy, dehydration to produce electric generator fuel, refinement for commercial transportation, and use as a chemical feedstock. Controlled-reactor landfills, called [open quotes]biofills,[close quotes] are designed for optimum methane generation to ensure a steady and consistent rate of gas generation. Biofill mechanisms used to improve gas production include physical and chemical modifications to the modern landfill design. These methods can reduce the gas-generation time from 80 years to 5 years, can reduce the waste mass, and can reduce negative effects on the environment. 134 refs., 4 figs., 4 tabs.

  11. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  12. Landfill gas management in Canada

    SciTech Connect

    David, A.

    1997-12-31

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada`s commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10{sup 15} Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring.

  13. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan.

    PubMed

    Al-Jundi, J; Al-Tarazi, E

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36microSva(-1) in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91microSva(-1). The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70microSva(-1). Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn=2.52 and Ba=1.33; old landfill site: Cr=1.88, Zn=3.64, and Ba=1.26; and recent landfill site: Cr=1.57, Zn=2.19, and Ba=1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste.

  14. Changing face of the landfill

    SciTech Connect

    1995-10-01

    Integrated approach at Oregon landfill diverts wood and yard trimmings, while turning methane into power for 1,800 homes. Opened in the 1940`s as an open burn dump, Coffin Butte has evolved over the years into a sophisticated waste management facility incorporating ambitious recovery programs. While some of this change has been driven by regulatory demands, many of Valley Landfill`s innovations have come in response to market opportunities. Valley Landfill`s Processing and Recovery Center (PRC) is located a half mile down the road from the landfill site. Opened in 1990, the facility recycles urban wood waste, yard trimmings and street sweepings. The heart of this operation is a 500 hp horizontal feed, fixed-hammer grinder. Although this machine is typically used only for wood grinding, PRC was able to adapt it to handle both wood and yard trimmings by installing special feed roll assembly to compress green waste passing over the infeed belt. The facility handles approximately 40,000 cubic yards of loose green material and produces 15,000 to 18,000 yards of compost. The finished product is run through a trommel with a 5/8 inch mesh screen. Most of the compost is sold in bulk to area garden centers. A portion is processed through a 3/8 inch shaker screen and sold to a local company for use in bagged soil products. Valley Landfill is a partner in an ambitious project to generate electricity from landfill biogas.

  15. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  16. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.

  17. Behavior of engineered nanoparticles in landfill leachate.

    PubMed

    Bolyard, Stephanie C; Reinhart, Debra R; Santra, Swadeshmukul

    2013-08-01

    This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.

  18. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  19. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  20. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  1. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors.

  2. Impact of changes in barometric pressure on landfill methane emission

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla; McDermitt, Dayle

    2014-07-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska, USA. Our results show that landfill methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, a phenomenon called barometric pumping. There was up to a 35-fold variation in day-to-day methane emissions due to changes in barometric pressure. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at our landfill site. From our results, it is clear that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions from landfills based on such measurements could yield uncertainties, ranging from 28.8% underestimation to 32.3% overestimation. Our results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may apply to the study of methane emissions from wetlands, peatlands, lakes, and other environmental contexts where emissions are from porous media or ebullition. Other implications from the present study for hazard gas monitoring programs are also discussed.

  3. Ecological risk assessment of the impact of a landfill associated with karst terrain

    SciTech Connect

    Farmer, J.J.; Bailey, F.C.; Hollyday, E.F.; Byle, T.D.

    1995-12-31

    An ecological risk assessment is underway on an active sanitary landfill in Bedford County, Tennessee. The overall objective is to determine the probability of risk from landfill-associated toxicants to both the aquatic ecological communities and to human health through drinking water contamination. During the problem formulation phase, an EPA Rapid Bioassessment (Protocol I) of streams around the landfill indicated a lower diversity and abundance of benthic macroinvertebrates in streams adjacent to the landfill compared to reference streams. During the analysis phase, water chemistry analyses were conducted on samples from 176 sites around the landfill, including seeps and springs, and the direction of movement of ground water under the site was determined by potentiometric mapping. Water flowing into Anderton Branch from landfill-associated tributaries, seeps and springs showed elevated specific conductance and elevated levels of chloride, manganese, iron, and nickel. GC-FID analysis indicated the presence of unidentified organic compounds in a small seep adjacent to the landfill. From these data it was concluded that there is potential for exposure of aquatic ecological communities and drinking water supplies to landfill-associated chemicals. In order to more thoroughly characterize ecological and human health risk associated with the landfill, more intensive analyses are underway, including quantitative seasonal macroinvertebrate biomonitoring, laboratory toxicity tests with Daphnia magna using water from selected monitoring sites, and monitoring of drinking water wells.

  4. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  5. Sedimentation and Occurrence and Trends of Selected Nutrients, Other Chemical Constituents, and Diatoms in Bottom Sediment, Fall River Lake, Southeast Kansas, 1948-2006

    USGS Publications Warehouse

    Juracek, Kyle E.

    2008-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, diatoms, and the radionuclide cesium-137 in the bottom sediment of Fall River Lake, southeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1948 through 2006 in the original conservation pool of the reservoir was 470 million cubic feet and 18.8 billion pounds, respectively. The estimated sediment volume occupied about 36 percent of the original conservation-pool, water-storage capacity of the reservoir. Mean annual net sediment deposition since 1948 in the original conservation pool of the reservoir was estimated to be 324 million pounds per year. Mean annual net sediment yield from the Fall River Lake Basin was estimated to be 585,000 pounds per square mile per year. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Fall River Lake were estimated to be 648,000 pounds per year and 267,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Fall River Lake Basin were 1,170 pounds per square mile per year and 480 pounds per square mile per year, respectively. Throughout the history of Fall River Lake, total nitrogen and total phosphorus concentrations in the deposited sediment were relatively uniform. Trace element concentrations in the bottom sediment of Fall River Lake generally were uniform over time. Arsenic, chromium, nickel, and zinc concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects

  6. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  7. Case study of landfill reclamation at a Florida landfill site.

    PubMed

    Jain, Pradeep; Townsend, Timothy G; Johnson, Patrick

    2013-01-01

    A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers' landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials.

  8. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  9. Impact of Changes in Barometric Pressure on Landfill Methane Emission

    NASA Astrophysics Data System (ADS)

    McDermitt, Dayle; Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla

    2013-04-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska USA. Methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission. Emission rates were systematically higher in December than during the summer period. Higher methane emission rates were associated with changes in barometric pressure that were larger in magnitude and longer in duration in winter than in summer, and with lower mean temperatures, which appeared to reduce methane oxidation rates. Sharp changes in barometric pressure caused up to 35-fold variation in day-to-day methane emissions. Power spectrum and ogive analysis showed that continuous measurements over a period of at least 10 days were needed in order to capture 90% of total variance in the methane emission time series at our site. Our results suggest that point-in-time methane emission rate measurements taken at monthly or even longer time intervals using techniques such as the tracer plume method, the mass balance method, or the closed-chamber method may be subject to large variations because of the strong dependence of methane emissions on changes in barometric pressure. Estimates of long-term integrated methane emissions from landfills based on such measurements will inevitably yield large uncertainties. Our results demonstrate the value of continuous measurements for quantifying total annual methane emission from a landfill.

  10. Falls and Older Adults

    MedlinePlus

    ... rises with age. Click for more information Falls Lead to Fractures, Trauma Each year, more than 1. ... and injury deaths. Fractures caused by falls can lead to hospital stays and disability. Most often, fall- ...

  11. Falls in Nursing Homes

    MedlinePlus

    ... for health care providers. Learn More Falls in Nursing Homes Recommend on Facebook Tweet Share Compartir On ... 5 Why do falls occur more often in nursing homes? Falling can be a sign of other ...

  12. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  13. Landfill gas project. Final report

    SciTech Connect

    1983-01-01

    The methane gas recovered from the landfill is used for space heating and water heating for the Florence-Lauderdale Humane Shelter 600 feet from the well head. The project to date and future development are described briefly. (MHR)

  14. Ultrasound assisted biogas production from landfill leachate

    SciTech Connect

    Oz, Nilgün Ayman Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  15. Electrodegradation of landfill leachate in a flow electrochemical reactor.

    PubMed

    Moraes, Peterson Bueno; Bertazzoli, Rodnei

    2005-01-01

    Sanitary landfills are the major method used today for the disposal and management of municipal solid waste. Decomposition of waste and rainfall generate leachate at the bottom of landfills, causing groundwater contamination. In this study, leachate from a municipal landfill site was treated by electrochemical oxidation in a pilot scale flow reactor, using oxide-coated titanium anode. The experiments were conducted under a constant flow rate of 2000 lh(-1) and the effect of current density on chemical oxygen demand, total organic carbon, color and ammonium removal was investigated. At a current density of 116.0 mA cm(-2) and 180 min of processing, the removal rates achieved were 73% for COD, 57% for TOC, 86% for color and 49% for ammonium. The process proved effective in degrading leachate, despite this effluent's usual refractoriness to treatment.

  16. Modeling impact of small Kansas landfills on underlying aquifers

    USGS Publications Warehouse

    Sophocleous, M.; Stadnyk, N.G.; Stotts, M.

    1996-01-01

    Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

  17. Characterization of thermal properties of municipal solid waste landfills.

    PubMed

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills.

  18. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  19. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1977-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse , incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer hydraulic conductivity 190 to 500 ft/d. The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the entire thickness of the aquifer beneath both landfills, but hydrologic boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 1,400 feet wide at the landfill and narrows to 500 feet near its terminus 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/liter sodium, 110 mg/liter potassium, 565 mg/liter calcium, 100 mg/liter magnesium, 2,700 mg/liter bicarbonate, and 1,300 mg/liter chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Woodard-USGS)

  20. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  1. Fall Enrollment Report. 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    This report summarizes and analyzes fall enrollment in Iowa's community colleges. Each year, Iowa's 15 community colleges submit data on enrollment on the 10th business day of the fall semester. Some highlights from this report include: (1) Fall 2014 enrollment was 93,772 students--a decline of 0.49 percent from last fall; (2) Enrollment continues…

  2. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  3. Variation in organic matter characteristics of landfill leachates in different stabilisation stages.

    PubMed

    Gupta, Abhinav; Zhao, Renzun; Novak, John T; Goldsmith, C Douglas

    2014-12-01

    This study investigates the effect of landfill age on landfill leachate characteristics; two aspects are focused here. One is ultraviolet absorbance at 254 nm (UV(254)) property, as the discharge of landfill leachates to publically owned treatment works can cause interference with UV(254) disinfection. The other is biorefractory organic nitrogen in leachates, as it can contribute to effluent nitrogen making it difficult to meet stringent effluent nitrogen regulations. To study variation in UV(254)-absorbing organic carbon and organic nitrogen, leachate samples ranging from cells with ages 2 to 30 y from a large landfill in Kentucky, were collected and fractionated on a basis of their molecular weight and chemical nature into humic acids, fulvic acids and a hydrophilic fraction. The effectiveness of long term landfilling and membrane treatment for organic matter and organic nitrogen removal was examined. Humic materials, which were the major UV(254)-absorbing substances, were mainly >1 kDa and they degraded significantly with landfill age. The hydrophilic organic fraction, which was the major contributor to organic nitrogen, was mainly <1 kDa and it became increasingly recalcitrant with landfill age. This study provides insight into the characteristics of the different leachate fractions with landfilling age that might aid the design of on-site leachate treatment techniques. PMID:25245294

  4. Town of Edinburg landfill reclamation demonstration project

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  5. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  6. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  7. Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach.

    PubMed

    Ward, Marnie L; Bitton, Gabriel; Townsend, Timothy; Booth, Matthew

    2002-01-01

    The toxicity and physicochemical parameters of municipal solid-waste (MSW) landfill leachates from six sites in north and north-central Florida, United States, were determined. Landfill leachates are complex mixtures of organic and inorganic constituents. Leachate toxicity was assayed using the acute C. dubia (48-h) and Microtoxtrade mark (15-min) assays and the chronic S. capricornutum (96-h) assay. The landfill leachates were shown to be highly toxic to both C. dubia and S. capricornutum with an EC(50) < 10% and < 15%, respectively. However, Microtoxtrade mark was not as sensitive to the leachates. Based on these results, the assays were ranked for their sensitivities to the landfill leachates; C. dubia > S. capricornutum > Microtoxtrade mark. Chemical analyses showed high concentrations of un-ionized ammonia and salts in the landfill leachates but low concentrations of heavy metals. The toxicity of the landfill leachates varied between the sites sampled and within each of the landfill sites. A significant relationship was found between the total ammonia content of the leachates and toxicity as determined by the C. dubia and S. capricornutum assays. Although the chemical constituents in Florida MSW landfill leachates may be more dilute, the toxicity of the leachates is equivalent to that from industrial waste landfills.

  8. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  9. Landfill mining for resource recovery

    SciTech Connect

    Reith, C.C.

    1997-12-31

    Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.

  10. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge. PMID:15626384

  11. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  12. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect

    Hibbard, C.S.

    1999-07-01

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  13. Sanitary Landfill Supplemental Test Final Report

    SciTech Connect

    Altman, D.J.

    1999-07-28

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill.

  14. Landfill mining: Giving garbage a second chance

    SciTech Connect

    Cobb, C.C.; Ruckstuhl, K. )

    1988-08-01

    Some communities face the problems of lack of landfill space and lack of landfill cover dirt. In some cases, existing landfills may be mined to reclaim dirt for use as cover material and to recover space for reuse. Such mining also has the potential of recovering recyclables and incinerator fuels. Machinery to reclaim refuse deposits, and their heterogeneous composted ingredients, was successfully tested at two Florida landfills in June 1987. One of the Florida mining tests, at the Collier County landfill near the city of Naples, had goals of demonstrating an economical mechanical system to separate the depository's ingredients into usable or redisposable components, and to see if the method could enable the county to avoid the expenses associated with permanent closure of a full landfill. This paper describes the history of the Collier County landfill, the equipment and feasibility test, economics, the monitoring of odors, landfill gas, and heavy metals, and results of the test.

  15. Chemical studies of L chondrites. V: compositional patterns for 49 trace elements in 14 L4-6 and 7 LL4-6 falls

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Wang, Ming-Sheng; Lipschutz, Michael E.

    2003-07-01

    To study compositional trends associated with open-system thermal metamorphism and shock-induced collisional breakup of L4-6 chondrite parent(s), we used inductively coupled plasma mass spectrometry and radiochemical neutron activation analysis to determine 49 trace elements in 62 falls. Trends for the 49 elements, especially of the 14 rare earth elements in 5 members of a putative L/LL group (Bjurböle, Cynthiana, Holbrook, Knyahinya, Sultanpur) and 9 additional L chondrites (Aïr, Aumieres, Bachmut, Forksville, Kandahar, Kiel, Milean, Narellan, Santa Isabel) differed markedly from those in the remaining normal 46 samples. Here, we report the data for the 14 L and putative L/LL chondrites and 7 LL (Appley Bridge, Athens, Bandong, Ensisheim, Mangwendi, Olivenza, Soko-Banja), analyzed to test the affinity of the putative L/LL suite to well-characterized LL chondrites. Compositional trends of the 14 atypical L chondrites (including Aïr's unique and possibly contaminated signature) and Mangwendi, an LL6 chondrite, indicate that each is compositionally unrepresentative of well-sampled, whole-rock chondrites. Indeed, half of the unrepresentative chondrites were ≤ 2-g samples. Compositionally, members of the putative L/LL chondrites demonstrate no affinities to normal LL chondrite falls. To establish compositional trends accompanying open-system, thermal episodes involving the L chondrite parent(s), we should ignore data for the 14 unrepresentative L chondrites reported here.

  16. Chemical studies of H chondrites. II - Weathering effects in the Victoria Land, Antarctic population and comparison of two Antarctic populations with non-Antarctic falls

    NASA Astrophysics Data System (ADS)

    Dennison, J. E.; Lipschutz, M. E.

    1987-03-01

    The authors report RNAA data for 14 siderophile, lithophile and chalcophile volatile/mobile trace elements in interior portions of 45 different H4-6 chondrites (49 samples) from Victoria Land, Antarctica and 5 H5 chondrites from the Yamato Mts., Antarctica. Relative to H5 chondrites of weathering types A and B, all elements are depleted (10 at statistically significant levels) in extensively weathered (types B/C and C) samples. Chondrites of weathering types A and B seem compositionally uncompromised and as useful as contemporary falls for trace-element studies. When data distributions for these 14 trace elements in non-Antarctic H chondrite falls and unpaired samples from Victoria Land and from the Yamato Mts. (Queen Maud Land) are compared statistically, numerous significant differences are apparent. These and other differences give ample cause to doubt that the various sample populations derive from the same parent population. The observed differences do no reflect weathering, chance or other trivial causes: a preterrestrial source must be responsible.

  17. The Fall and Fall of Gary Hart.

    ERIC Educational Resources Information Center

    Rowland, Robert C.

    The fall of Gary Hart, brought about because of his indiscretions during the 1988 presidential campaign, should not be treated exclusively as a consequence of Hart's moral failings. Rather, the fall of Hart can be traced to a complex of factors including bad judgment, the near total control that the press exercises over the political agenda, and…

  18. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  19. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  20. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  1. Bethlehem landfill groundwater containment monitoring

    SciTech Connect

    Hasemeier, R.F.; Knight, M.A.

    1997-12-31

    The groundwater containment measures at the City of Bethlehem Landfill near Bethlehem, Pennsylvania include a 13-well pumping system; capping of closed landfill areas; a new landfill liner to decrease recharge; containment of a degraded aquifer; and substantial data reporting requirements to demonstrate effectiveness of the pump and treat system. The containment system functions as a barrier to downgradient contaminant migration. Reduction of groundwater recharge creates a very dynamic abatement system requiring monitoring. Performance monitoring of portions of the groundwater containment is continuous and accomplished through a centralized computer interface. Automated system control and data management reduces the human attention required to maintain a constant hydrodynamic barrier. Abatement system operational data is combined with other site monitoring data, including well water levels, water chemistry data, tonnage reports, and operational data, to fulfill permit reporting requirements for performance.

  2. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.

  3. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    PubMed

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-01

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass.

  4. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    PubMed

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-01

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass. PMID:26130423

  5. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  6. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  7. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  8. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  9. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  10. Mining landfills for space and fuel

    SciTech Connect

    Flosdorf, H.W.; Alexieff, S.

    1993-03-01

    Lancaster County, Pennsylvania`s experiments with landfill reclamation are helping the county remain self-sufficient in managing its solid waste stream. Landfill mining is proving to be a worthwhile approach to extending landfill life and obtaining fuel for the county`s waste-to-energy plant.

  11. Meteorite Falls in Morocco

    NASA Astrophysics Data System (ADS)

    Chennaoui Aoudjehane, H.

    2016-08-01

    The number of meteorite falls reported in Morocco since 2000 is highest than any other place compared to the other countries in the world, that call into question the efficiency of the randomly meteorite falls on Earth.

  12. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    USGS Publications Warehouse

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.

  13. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  14. Missing Halocarbon Source? Data from a Recent New England Landfill Field Campaign

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Prinn, R.

    2005-12-01

    Anthropogenic emissions of long-lived halocarbons, namely chlorofluorocarbons (CFCs), hydrofluorocarbons (HCFCs), methyl chloroform (CH3CCl3), and carbon tetrachloride (CCl4) represent the largest source of atmospheric chlorine. All of these gases with the exception of the HCFCs are banned under the Montreal Protocol from being produced within the US or imported into the US. Several recent studies indicate that lingering emissions of these compounds are occurring around urban areas in the US. One possible source for these emissions is leakage from landfills. Landfill emissions are not currently considered explicitly in the published industry based global estimations of emissions for these gases. Previous studies have been done in the UK and suggested that this leakage may be significant (on the order of 1 Gg/year in the UK) in comparison with industry emissions estimates, but no measurement based estimates of Montreal Protocol gas emissions from US landfills have been previously reported. To further investigate this idea, flask samples were taken during the winter of 2004 at two Eastern Massachusetts landfills and during the summer of 2004 at four landfills in southwestern Britain. These studies showed more data was needed to create clear regression relationships between the landfill parameters (waste composition, landfill age, and total trash volume) and halocarbon gas emissions of CFC-12, CFC-11, CFC-113, and CH3CCl3. In a movement towards creating the necessary database of measurements, an intensive Fall 2005 landfill measurement campaign was conducted in New England. The results from this campaign will be presented, analyzed and compared to our results from the above two 2004 investigations.

  15. Health effects of residence near hazardous waste landfill sites: a review of epidemiologic literature.

    PubMed Central

    Vrijheid, M

    2000-01-01

    This review evaluates current epidemiologic literature on health effects in relation to residence near landfill sites. Increases in risk of adverse health effects (low birth weight, birth defects, certain types of cancers) have been reported near individual landfill sites and in some multisite studies, and although biases and confounding factors cannot be excluded as explanations for these findings, they may indicate real risks associated with residence near certain landfill sites. A general weakness in the reviewed studies is the lack of direct exposure measurement. An increased prevalence of self-reported health symptoms such as fatigue, sleepiness, and headaches among residents near waste sites has consistently been reported in more than 10 of the reviewed papers. It is difficult to conclude whether these symptoms are an effect of direct toxicologic action of chemicals present in waste sites, an effect of stress and fears related to the waste site, or an effect of reporting bias. Although a substantial number of studies have been conducted, risks to health from landfill sites are hard to quantify. There is insufficient exposure information and effects of low-level environmental exposure in the general population are by their nature difficult to establish. More interdisciplinary research can improve levels of knowledge on risks to human health of waste disposal in landfill sites. Research needs include epidemiologic and toxicologic studies on individual chemicals and chemical mixtures, well-designed single- and multisite landfill studies, development of biomarkers, and research on risk perception and sociologic determinants of ill health. PMID:10698726

  16. Case studies in alternative landfill design

    SciTech Connect

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  17. Bringing new life to old landfills

    SciTech Connect

    Rabasca, L.

    1996-01-01

    On the West Coast, Waste Management, Inc. is bringing new life to old landfills. The Bradley Landfill in Sun Valley, CA, just outside of Los Angeles, is being transformed into a recycling park, while a few hundred miles north, in the San Francisco Bay Area, an old landfill is now home to a transfer station and recycling center. WMI began transforming the landfill in the early 1990s.The first change was to process wood and green waste rather than landfilling it. In 1993, WMI added a sorting facility, and in 1994, after the Jan. 17 Northridge earthquake, the company added a construction and demolition debris (C and D) facility. There also is a landfill gas collection facility on the site. In the future, WMI hopes to add the following facilities: composting, railhaul, alternative fuels production, tire processing, and soil remediation. WMI also hopes several companies that use recycled materials as feedstock will build their plants at the landfill.

  18. Lubrication contributes to improved landfill cogeneration plant operation

    SciTech Connect

    1995-10-01

    The Prince George`s county, Maryland, cogeneration plant consists of three lean-burn, 12-cylinder, Waukesha 5790GL turbocharged gas engines, each powering an 850 kW Kato generator. Four Waukesha F1197G engines run gas compressors that draw and compress gas from the landfill, pumping an average of 28000 m{sup 3}/day at 6.2 bar from 29 wells. Landfill gas is 50% methane, 30% carbon dioxide, 10% nitrogen and 10% other gas constituents. These other gas constituents consist of 160 chemical compounds, many of which are very destructive to engines and other equipment. Probably the worst of these are the total organic halide expressed as chloride (TOH/CL), formed from the decomposition of household cleaning preparations and other materials containing chlorides. Landfill gas also contains an abundance of water, which combines not only with the TOH/CLs but with oxides of nitrogen, which are by-products of the combustion process, to form acids. To handle the highly contaminated landfill gas, the Waukesha Engine Division and people from Curtis Engine and Equipment modified the equipment and maintenance practices. One of the first changes was in lubrication. Curtis switched from a standard gas engine oil to Mobile Pegasus 446 oil, an SAE 40 oil that has a total base number (TBN) of 9.5, because of its extended acid-neutralizing capabilities.

  19. A performance-based system for the long-term management of municipal waste landfills.

    PubMed

    Morris, Jeremy W F; Barlaz, Morton A

    2011-04-01

    Landfills have been the dominant alternative for disposal of solid waste and there are tens of thousands of closed landfills throughout the world that require a long-term management strategy. In contrast to approaches based on time or target values, this paper describes a performance-based methodology for evaluation of post-closure care (PCC). Using the methodology, critical components of PCC at a landfill, including leachate and gas management, groundwater monitoring and cover integrity, are considered to determine whether a landfill meets defined conditions for functional stability and can transition from regulated PCC to a post-regulatory custodial care program representing de minimus care activities only. The methodology is predicated on understanding the biological, chemical, and physical behavior of a landfill and the presence of sufficient data to verify expected trends in landfill behavior. If an evaluation suggests that a change can be made to PCC, the landfill owner must perform confirmation monitoring and then surveillance monitoring at a decreasing frequency to verify that the change is protective of human health and the environment. A hypothetical case study showed that using the methodology to evaluate site-specific PCC requirements could result in increased environmental protection at comparable cost by spending available funds where they are most needed.

  20. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  1. Ultrasound assisted biogas production from landfill leachate.

    PubMed

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p<0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.

  2. Ecological risk assessment of landfill air emissions from a hazardous waste management facility in Ontario

    SciTech Connect

    Durda, J.L.; Suit-Kowalski, L.; Preziosi, D.; Chrostowski, P.C.

    1997-12-31

    An ecological risk assessment was conducted to evaluate the potential for adverse environmental impacts associated with chemicals released to air as a result of a proposed expansion of a hazardous waste landfill in Ontario. The purpose of the risk assessment was to characterize ecological risks associated with the proposed expansion relative to those associated with the existing landfill and those that would exist if the current landfill was completely closed and background conditions prevailed. The ecological risk assessment was one part of a comprehensive environmental impact assessment of the proposed landfill continuation that was being performed under the requirements of Ontario`s Environmental Assessment Act. Air monitoring data from the facility were used to identify a list of 141 chemicals potentially released during landfill continuation, as well as to characterize current emissions and background chemical levels. An ecological risk-based chemical screening process that considered background concentration, source strength, environmental partitioning, bioaccumulation potential, and toxicity was used to select a group of 23 chemicals for detailed evaluation in the ecological risk assessment. Dispersion, deposition, partitioning and bioaccumulation modeling were used to predict potential exposures in ecological receptors. Receptors were selected for evaluation based on regional habitat characteristics, exposure potential, toxicant sensitivity, ecological significance, population status, and societal value. Livestock and agricultural crop and pasture species were key receptors for the assessment, given the highly agricultural nature of the study area. In addition, native wildlife species, including the endangered Henslow`s sparrow and the regionally vulnerable pugnose minnow, also were considered.

  3. Superfund Record of Decision (EPA Region 2): Forest Glen Subdivision, Niagara Falls, NY. (First remedial action), December 1989

    SciTech Connect

    Not Available

    1989-12-29

    The Forest Glen Subdivision site consists of 21 acres of developed residential properties and undeveloped land in Niagara Fall, Niagara County, New York. Land in the area surrounding the Forest Glen subdivision is used for residential and industrial purposes, including a mobile home park, small shopping mall, and the CECOS Landfill. Chemical companies reportedly disposed of wastes onsite from the early 1950s to the early 1970s. Sampling by EPA's Field Investigation Team revealed the presence of high concentrations of unknown and tentatively identified compounds (TICs) in August 1987, and further soil sampling was conducted to identify the TICs. EPA has executed interim measures to stabilize site conditions including collecting, staging, and securing drums in areas north and east of the subdivision and temporarily covering visibily contaminated soil with concrete. The remedial activity is the first of two planned operable units and addresses resident relocation only. A subsequent operable unit will address the remediation of site contamination once the relocation is complete.

  4. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

  5. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. PMID:24999096

  6. The decay of wood in landfills in contrasting climates in Australia.

    PubMed

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  7. Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces

    NASA Astrophysics Data System (ADS)

    Lucernoni, Federico; Tapparo, Federica; Capelli, Laura; Sironi, Selena

    2016-11-01

    Emission factors are fundamental tools for air quality management. Odour Emission Factors (OEFs) can be developed in analogy with the emission factors defined for other chemical compounds, which relate the quantity of a pollutant released to the atmosphere to a given associated activity. Landfills typically represent a common source of odour complaint; for this reason, the development of specific OEFs allowing the estimation of odour emissions from this kind of source would be of great interest both for the landfill design and management. This study proposes an up-to-date methodology for the development of an OEF for the estimation of odour emissions from landfills, thereby focusing on the odour emissions related to the emissions of landfill gas (LFG) from the exhausted landfill surface. The proposed approach is an "indirect" approach based on the quantification of the LFG emissions from methane concentration measurements carried out on an Italian landfill. The Odour Emission Rate (OER) is then obtained by multiplying the emitted gas flow rate by the LFG odour concentration. The odour concentration of the LFG emitted through the landfill surface was estimated by means of an ad hoc correlation investigated between methane concentration and odour concentration. The OEF for the estimation of odour emissions from landfill surfaces was computed, considering the landfill surface as the activity index, as the product between the mean specific LFG flux emitted through the surface resulting from the experimental campaigns, equal to 0.39 l/m2/h, and its odour concentration, which was estimated to be equal to 105‧000 eq. ouE/m3, thus giving an OEF of 0.011 ouE/m2/s. This value, which is considerably lower than those published in previous works, should be considered as an improved estimation based on the most recent developments of the research in the field of odour sampling on surface sources.

  8. The decay of wood in landfills in contrasting climates in Australia.

    PubMed

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  9. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  10. Response signatures of four biological indicators to an iron and steel industrial landfill

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Simon, Thomas P.; Simon, Thomas P.

    2003-01-01

    Industrial landfills greatly modify surrounding areas by affecting chemical, physical, and biological integrity. Few data quantifying contaminant levels near landfills in sediments or in the organisms living near landfills exist. We examined several indicators of the aquatic community to determine whether a relationship existed between proximity to an industrial landfill and a decrease in biological integrity. The purpose was to determine patterns in community compositions and concentrations of contaminants in organisms and to assess the effects of contaminants on several trophic levels in the Grand Calumet Lagoons and adjacent ponds. In most aquatic systems, it is difficult to establish causal relationships between contaminants and ecosystem health due to the many ecological factors that can influence the responses of organisms and communities to particular stressors.

  11. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria.

    PubMed

    Pivato, Alberto; Gaspari, Lorenzo

    2006-01-01

    Landfilling is a fundamental step in any waste management strategy, but it can constitute a hazard for the environment for a long time. The need to protect the environment from potential landfill emissions makes risk assessment a decision tool of extreme necessity. The heterogeneity of wastes and the complexity of physical, chemical and biological processes that occur in the body of a landfill need specific procedures in order to evaluate the groundwater risk for the environment. Given the complexity of the composition of landfill leachates, the exact contribution of each potential toxic substance cannot be known precisely. Some reference contaminants that constitute the hazard (toxicity) of leachate have to be found to perform the risk assessment. A preliminary ecotoxicological investigation with luminescent bacteria has been carried out on different leachates from traditional and sustainable landfills in order to rank the chemicals that better characterize the leachate (heavy metals, ammonia and dissolved organic content). The attention has been focused on ammonia because it is present in high concentration and can last for centuries and can seriously contaminate the groundwater. The results showed that the toxicity of the leachate might reliably depend on the ammonia concentration and that the leachate toxicity is considerably lower in sustainable landfills where the ammonia had been degraded. This has an important consequence because if the containment system fails (as usually occur within 30-50yr), the risk of groundwater contamination will be calculated easier only in terms of the probability that the ammonia concentration is higher than a reference concentration.

  12. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  13. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  14. Landfill reduction experience in The Netherlands

    SciTech Connect

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  15. Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant

    SciTech Connect

    Not Available

    1982-10-01

    Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

  16. Plants scrub landfill leachate clean

    SciTech Connect

    Not Available

    1980-09-01

    Leachate from the sanitary landfill in Barre, Mass., is collected in a series of holding lagoons. There, aquatic plants such as duckweed biodegrade and purify the wastewater. The plants saturate the leachate with oxygen, which speeds up aerobic oxidation by bacteria. The leachate is moved progressively through the series of lagoons, and the contents of the final lagoon are emptied into a trout pond. (3 photos)

  17. Use of a digital model to evaluate hydrogeologic controls on groundwater flow in a fractured rock aquifer at Niagara Falls, New York, U.S.A.

    USGS Publications Warehouse

    Maslia, M.L.; Johnston, R.H.

    1984-01-01

    The Hyde Park landfill is a 15-acre (6.1 ha) chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low-permeability glacial till and lacustrine deposits; (2) a moderately permeable fractured rock aquifer - the Lockport Dolomite; and (3) a low-permeability unit - the Rochester Shale. The site is bounded on three sides by groundwater drains; the Niagara River gorge, the Niagara Power Project canal, and the Niagara Power Project buried conduits. The mechanism by which groundwater moves through fractured rocks underlying a hazardous waste site was investigated using a digital simulation approach. Three hypotheses were tested related to flow in the fractured rocks underlying Hyde Park landfill. For this purpose we used a Galerkin finite-element approximation to solve a saturated-unsaturated flow equation. A primary focus was to investigate anisotropy in the Lockport Dolomite, that is the effectiveness of horizontal (bedding) joints vs. vertical joints as water-transmitting openings. Three hydrogeologic scenarios were set up - each with prescribed limits on the hydrologic parameters. Scenario 1 specified strongly anisotropic conditions in the Lockport Dolomite (horizontal hydraulic conductivity along bedding joints exceeds vertical conductivity by 2-3 orders of magnitude), uniform areal recharge (5 in. yr.-1 or 12.7 cm yr.-1) except at the landfill where there is no recharge, and no flow through the base of the Rochester Shale. Scenario 2 also specified strongly anisotropic conditions in the Lockport; however, areal recharge was 6 in. yr.-1 (15.2 cm yr.-1) except at the landfill where the recharge was 2 in. yr.-1 (5.1 cm yr.-1), and outflow from the Rochester occurred. Scenario 3 specified isotropic conditions (that is, permeability along horizontal and vertical joints is the same in the Lockport Dolomite), recharge rates were the same as in scenario 2 and outflow through Rochester occurred. Scenario 2

  18. Use of a digital model to evaluate hydrogeologic controls on groundwater flow in a fractured rock aquifer at Niagara Falls, New York, U.S.A.

    NASA Astrophysics Data System (ADS)

    Maslia, Morris L.; Johnston, Richard H.

    1984-12-01

    The Hyde Park landfill is a 15-acre (6.1 ha) chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low-permeability glacial till and lacustrine deposits; (2) a moderately permeable fractured rock aquifer — the Lockport Dolomite; and (3) a low-permeability unit — the Rochester Shale. The site is bounded on three sides by groundwater drains; the Niagara River gorge, the Niagara Power Project canal, and the Niagara Power Project buried conduits. The mechanism by which groundwater moves through fractured rocks underlying a hazardous waste site was investigated using a digital simulation approach. Three hypotheses were tested related to flow in the fractured rocks underlying Hyde Park landfill. For this purpose we used a Galerkin finite-element approximation to solve a saturated-unsaturated flow equation. A primary focus was to investigate anisotropy in the Lockport Dolomite, that is the effectiveness of horizontal (bedding) joints vs. vertical joints as water-transmitting openings. Three hydrogeologic scenarios were set up — each with prescribed limits on the hydrologic parameters. Scenario 1 specified strongly anisotropic conditions in the Lockport Dolomite (horizontal hydraulic conductivity along bedding joints exceeds vertical conductivity by 2-3 orders of magnitude), uniform areal recharge (5 in. yr. -1 or 12.7 cm yr. -1) except at the landfill where there is no recharge, and no flow through the base of the Rochester Shale. Scenario 2 also specified strongly anisotropic conditions in the Lockport; however, areal recharge was 6 in. yr. -1 (15.2 cm yr. -1) except at the landfill where the recharge was 2 in. yr. -1 (5.1 cm yr. -1), and outflow from the Rochester occurred. Scenario 3 specified isotropic conditions (that is, permeability along horizontal and vertical joints is the same in the Lockport Dolomite), recharge rates were the same as in scenario 2 and outflow through Rochester occurred

  19. Nitrogen management in bioreactor landfills

    SciTech Connect

    Price, G. Alexander; Barlaz, Morton A.; Hater, Gary R

    2003-07-01

    One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO{sub 3}-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH{sub 4}{sup +} by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.

  20. Superfund Record of Decision (EPA Region 1): Coakley Landfill, North Hampton, New Hampshire (first remedial action), June 28, 1990

    SciTech Connect

    Not Available

    1990-06-28

    The 92-acre Coakley Landfill site is in the towns of Greenland and North Hampton, Rockingham County, New Hampshire. The site includes a 27-acre landfill, and borders farmland, undeveloped woodlands, and wetlands to the north and west and commercial and residential properties to the east and south. In 1979, the State received complaints concerning leachate breakouts in the area and, by 1983 VOC-contamination had been identified in a domestic drinking water well. The Record of Decision (ROD) addresses source control and ground water contamination near the landfill. The selected remedial action for the site includes excavating and consolidating approximately 2,000 cubic yards of wetlands sediment and 30,000 cubic yards of solid waste and depositing the material into the landfill prior to capping; collecting and treating landfill gases using a thermal destruction process; ground water pumping and treatment using chemical precipitation for metals removal, air stripping for VOC removal, and biological treatment.

  1. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    PubMed

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (<40 cm), predicting composite NMOC flux (as hexane-C) to within a factor of 10× for 13 out of 15 measurements. However, for thick covers (⩾40 cm) the ratio method overestimated NMOC emissions by ⩾10× for 8 out of 10 measurements. Alternative models were explored incorporating other chemical properties into the ratio method. A molecular weight squared (MW)(2)-modified ratio equation was shown to best address the tendency of the current ratio method to overestimate NMOC fluxes for thick covers. While these analyses were only performed using NMOC fluxes

  2. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    PubMed

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (<40 cm), predicting composite NMOC flux (as hexane-C) to within a factor of 10× for 13 out of 15 measurements. However, for thick covers (⩾40 cm) the ratio method overestimated NMOC emissions by ⩾10× for 8 out of 10 measurements. Alternative models were explored incorporating other chemical properties into the ratio method. A molecular weight squared (MW)(2)-modified ratio equation was shown to best address the tendency of the current ratio method to overestimate NMOC fluxes for thick covers. While these analyses were only performed using NMOC fluxes

  3. Infiltration, soil moisture, and related measurements at a landfill with a fractured cover, Illinois

    NASA Astrophysics Data System (ADS)

    Booth, Colin J.; Price, Bethany C.

    The cover of the Mallard North landfill in northeastern Illinois, completed in 1974, is transected by numerous fractures and locally contains subsidence depressions in which intermittent ponds form. Field measurements using tensiometers and soil-moisture blocks showed that the upper 0.3 m of the cover in the non-fractured sites dries readily and is responsive to climatic events, whereas the fractures and, locally, the deeper cover retain moisture and respond only slightly to climatic events. Experiments with sprinkler and ring infiltrometers showed that infiltration rates are generally high, of the order of 1-10 cm h -1 in most tests, 0.1-1.0 cm h -1 locally, and above 100 cm h -1 into open fractures. Runoff from natural rainstorms, estimated from runoff-plot measurements and pond changes, is low across the landfill. Laboratory studies of bulk density and hydraulic conductivity suggest that the cover is composed of an upper, more permeable topsoil and a lower compacted layer. The study results suggest a hypothetical model in which most rainfall falling onto the landfill infiltrates readily into the upper cover layer, than travels laterally along the top of the compacted layer until it reaches a fracture, whereupon it percolates deeper into the landfill. Percolation also occurs from runoff and interflow collected in subsidence ponds. The fractures and subsidence thus considerably increase the total percolation into the landfill compared with estimates from standard models which assume an unfractured cover and tabulated runoff and soil-moisture conditions.

  4. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    SciTech Connect

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  5. The decay of wood in landfills in contrasting climates in Australia

    SciTech Connect

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-15

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples

  6. Mixed waste landfill annual groundwater monitoring report April 2005.

    SciTech Connect

    Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2006-01-01

    Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

  7. Fall Enrollment Report 2009

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2009

    2009-01-01

    This report summarizes fall enrollment in Iowa's community colleges. Every year Iowa's 15 community college districts submit data on students enrolled on the 10th day of the fall semester. Highlights include: (1) Enrollment grew at its fastest pace since 1975 to a record high of 100,736 students; (2) Year-to-year growth was 14.3 percent, which is…

  8. Experiments in Free Fall

    ERIC Educational Resources Information Center

    Art, Albert

    2006-01-01

    A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…

  9. Learning From Falling

    ERIC Educational Resources Information Center

    Joh, Amy, S.; Adolph, Karen, E.

    2006-01-01

    Walkers fall frequently, especially during infancy. Children (15, 21, 27, 33, and 39 month-olds) and adults were tested in a novel foam pit paradigm to examine age-related changes in the relationship between falling and prospective control of locomotion. In trial 1, participants walked and fell into a deformable foam pit marked with distinct…

  10. First Aid: Falls

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Falls KidsHealth > For Parents > First Aid: Falls Print A A A Text Size en ... Floors, Doors & Windows, Furniture, Stairways: Household Safety Checklist First Aid: Broken Bones Head Injuries Preventing Children's Sports Injuries ...

  11. Fall Leaf Portraits

    ERIC Educational Resources Information Center

    O'Hara, Cristina

    2012-01-01

    In this article, the author describes how students can create a stunning as well as economical mosaic utilizing fall's brilliantly colored leaves, preserved at their peak in color. Start by choosing a beautiful fall day to take students on a nature walk to collect a variety of leaves in different shapes, sizes, and colors. Focus on collecting a…

  12. Fall prevention conceptual framework.

    PubMed

    Abraham, Sam

    2011-01-01

    Falls can have lasting psychological and physical consequences, particularly fractures and slow-healing processes, and patients may also lose confidence in walking. Injuries from falls lead to functional decline, institutionalization, higher health care costs, and decreased quality of life. The process related to the problem of patient falls in the hospital, using the nursing model developed by the theorist, Ida Jean Orlando, is explained in this article. The useful tool that provides guidance to marketers in this endeavor is Maslow's hierarchy of needs. During acute illness, individuals are greatly in need of satisfying their physiological needs. If these needs are not met, patients leave the hospital lacking a positive experience. Initial fall risk assessment is critical to plan intervention and individualize care plan. Interventions depend on the severity of fall risk factors.

  13. Emergency landfill gas control at the Milwaukee County Landfill

    SciTech Connect

    Michels, M.S.; Boone, D.A.

    1996-11-01

    In October 1994, up to 55 percent methane concentrations by volume were found below 76th Street in Franklin, Wisconsin. Numerous utilities exist below 76th Street which service homes located only 100 feet east. The Milwaukee County Landfill, located immediately west of 76th Street, was the source of methane gas. With winter weather conditions approaching, Milwaukee County was concerned that landfill gas (LFG) could migrate along utilities or in sandy soil and enter basements of adjacent homes. The County declared an emergency to immediately release funds and authorized a design/build contract to remedy the gas migration. CDM Engineers and Constructors, Inc. was selected for the project. The Milwaukee County Department of Public Works, Environmental Services Division led the project team. Numerous activities occurred simultaneously, including: (1) Public Relations, (2) Notification to Wisconsin DNR, (3) Design and Permitting, (4) Ordering the Flare, (5) Installing Methane Detectors in 29 Basements. Public relations included public forums with local residences, monthly newsletters, meetings with the ski hill operator, television interviews, local newspaper interviews, briefing the County Alderman and City of Franklin officials. Cooperation from Wisconsin DNR provided a 10-day turnaround for approval of the design. A perimeter active gas collection and flare system was employed to mitigate LFG. The system included eight gas extraction wells drilled to the base of the landfill and one horizontal trench (approximately 40 feet long). Extraction wells and trench were connected together with a buried 6-inch HDPE header pipe. Condensate is collected in a 550-gallon double-walled steel tank.

  14. Heat management strategies for MSW landfills.

    PubMed

    Yeşiller, Nazli; Hanson, James L; Kopp, Kevin B; Yee, Emma H

    2016-10-01

    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness

  15. Engineered Municipal Waste Landfills: Climate Significance, Benefits, and some Landfill "Geophysics"

    NASA Astrophysics Data System (ADS)

    Augenstein, D.; Yazdani, R.

    2002-12-01

    Municipal Solid Waste (MSW) landfills have unique features: Wastes worldwide emit biogenic methane to the atmosphere of magnitude comparable to the total atmospheric buildup between 1980 and 1990. Carbon sequestered in landfills is large in geologic terms Management of decomposition in landfilled waste is desirable: (a) Control of waste decomposition and methane promises over tenfold cheaper greenhouse gas abatement compared to most other greenhouse gas abatement strategies. This is due in part to carbon sequestration and landfill gas energy offset of fossil fuel consumption (b) Landfill gas energy potential worldwide, is up to 1% of world energy. Use of landfill gas conserves a resource otherwise wasted (c) Monetary benefits of landfill life extension from decomposition and rapid volume reduction can be quite attractive This is a benefit for the US, where landfills are increasingly difficult and expensive to site. (d) Landfills containing mixed waste can be significant sources of atmospheric and groundwater pollutants needing control. Control is possible from advancing landfill management approaches (e) The stabilization of waste lessens pollutant risk and needs for costly long-term landfill aftercare. Greater control of landfill decomposition has been advocated in the form of "controlled" or "bioreactor" landfills. (SWANA, 1999; Reinhart and Townsend, 1996). Field trials are encouraging by several environmental/monetary criteria. Control of moisture and temperature have given fivefold or more acceleration of methane generation (Augenstein et al, 1998, 2000). There has been rapid volume loss of the landfilled waste as well, with conversion of waste organics to gas. Many trials over years have shown potential for abatement of pollutants in landfill leachate. Demonstration work by the solid waste management community attests to the benefits potential. Increasing field demonstrations, have been accompanied by observation and/or solution of several issues. As noted

  16. Benthic macroinvertebrate and periphyton community responses to a complex mixture in landfill leachate seep discharge

    SciTech Connect

    Gill, M.A.; Kusnier, J. Jr.; Lowe, R.L.

    1995-12-31

    Typically, the composition of sanitary landfill leachate is a complex mixture of organic and inorganic chemicals. The existence of landfill facilities which operated prior to current solid waste disposal regulations, has resulted in the need for evaluation of potential risks/hazards to the environment, due to leaching of this complex mixture of contaminants to surface and/or subsurface media. Evaluation an a chemical specific basis is tedious at best, and gives little information about the effects of the mixture of chemicals present. Therefore, an evaluation of in-situ community response was conducted. This paper focuses on the response of the macroinvertebrate and periphyton communities, in terms of dominant taxa and community structure, in a small pond adjacent to a former sanitary landfill facility, which receives leachate seep discharge via groundwater flow from an unconfined aquifer. The pond, created during use of the landfill, is actually an area where cover material was obtained for landfill construction. Macroinvertebrate and periphyton community structure was assessed at three shallow, sandy locations in the pond, at varying distances from the areas of known leachate seeps. General water quality and laboratory toxicity testing with Pimephales promelas, Ceriodaphnia dubia, and Chironomus tentans was also conducted using ambient water and sediment from the three locations. Differences between locations are distinct in both the periphyton and macroinvertebrate communities, and in the results of the aquatic toxicity testing. No difference between locations was observed, however, in terms of toxicity testing with chironomids.

  17. Pre-impact fall detection.

    PubMed

    Hu, Xinyao; Qu, Xingda

    2016-06-01

    Pre-impact fall detection has been proposed to be an effective fall prevention strategy. In particular, it can help activate on-demand fall injury prevention systems (e.g. inflatable hip protectors) prior to fall impacts, and thus directly prevent the fall-related physical injuries. This paper gave a systematical review on pre-impact fall detection, and focused on the following aspects of the existing pre-impact fall detection research: fall detection apparatus, fall detection indicators, fall detection algorithms, and types of falls for fall detection evaluation. In addition, the performance of the existing pre-impact fall detection solutions were also reviewed and reported in terms of their sensitivity, specificity, and detection/lead time. This review also summarized the limitations in the existing pre-impact fall detection research, and proposed future research directions in this field.

  18. Pre-impact fall detection.

    PubMed

    Hu, Xinyao; Qu, Xingda

    2016-01-01

    Pre-impact fall detection has been proposed to be an effective fall prevention strategy. In particular, it can help activate on-demand fall injury prevention systems (e.g. inflatable hip protectors) prior to fall impacts, and thus directly prevent the fall-related physical injuries. This paper gave a systematical review on pre-impact fall detection, and focused on the following aspects of the existing pre-impact fall detection research: fall detection apparatus, fall detection indicators, fall detection algorithms, and types of falls for fall detection evaluation. In addition, the performance of the existing pre-impact fall detection solutions were also reviewed and reported in terms of their sensitivity, specificity, and detection/lead time. This review also summarized the limitations in the existing pre-impact fall detection research, and proposed future research directions in this field. PMID:27251528

  19. Photochemical destruction of cyanide in landfill leachate

    SciTech Connect

    Kim, B.R.; Podsiadlik, D.H.; Hartlund, J.L.; Gaines, W.A.; Kalis, E.M.

    1998-11-01

    The Allen Park Clay Mine Landfill, owned by Ford, produces a leachate that occasionally contains cyanide at levels marginally below the discharge limit. The form of the cyanide in the leachate was found to be iron-cyanide complexes that resist oxidation by a conventional treatment method, alkaline oxidation. Furthermore, the leachate also was found to contain a relatively large amount of organics which would exert additional demand for oxidizing agents (e.g., chlorine). A study was performed to determine what treatment technology could be employed in the event treatment becomes necessary because of potential changes in the leachate characteristics and/or discharge limits. In this study, among several chemical oxidation methods, ultraviolet (UV) irradiation with or without ozone was investigated as a treatment option. The following are the primary findings: (1) UV irradiation alone was effective for removing the iron-cyanide complex in both the leachate and the clean water; (2) the demand for UV or ozone by chemical oxygen demand was relatively low for this leachate; (3) ozone alone was not effective for removing the iron-cyanide complex; and (4) UV irradiation alone and UV irradiation with ozone resulted in the same removal for total cyanide in clean-water experiments, but the UV irradiation alone left some free cyanide whereas the UV irradiation with ozone did not.

  20. Emerging contaminants at a closed and an operating landfill in Oklahoma

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  1. Geohydrology and ground-water quality at the Pueblo Depot activity landfill near Pueblo, Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.; Ortiz, Roderick F.

    1990-01-01

    Groundwater samples were collected from the shallow unconfined aquifer at the Pueblo Depot Activity (Colorado) landfill and downstream from the landfill. The Pueblo Depot Activity is a U.S. Department of the Army facility in southeastern Colorado about 15 miles east of Pueblo, Colorado. The land-fill is underlain by upland alluvial terrace deposits that overlie a thick and almost impermeable shale. Saturated thickness of the aquifer generally is from 5 to 10 feet. Groundwater flow at the landfill is to the south-southeast toward the Arkansas River valley. Though not hydraulically connected to the upland terrace deposits, the alluvium underlying the Arkansas River valley may be recharged by groundwater that is discharged from seeps at the contact of the upland terrace deposits and the Pierre Shale. The water is classified as a mixed-cation mixed-anion type water that has concentrations of dissolved solids of 710 to 1,810 mg/L. Dissolved-solids concentrations increase downgradient. Chemical analysis, done to determine possible contamination of the groundwater, indicated that concentrations of trichloroethylene ranged from 5.2 to 2,900 microg/L and of trans-1,2-dichloroethylene ranged from 5 to 720 microg/L. The areal distribution of these volatile organic compounds indicate that there possibly are two sources of contamination of groundwater at the landfill, one upgradient from the landfill and the other within the landfill. Analysis of water samples from wells and seeps offsite and downgradient from the landfill did not indicate either contaminant in groundwater from the alluvial aquifer underlying the Arkansas River valley. (USGS)

  2. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  3. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  4. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  5. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  6. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  7. Effects of landfill leaching on water quality and biology of a nearby stream, South Cairo, Greene County, New York

    USGS Publications Warehouse

    Ehlke, Theodore A.

    1979-01-01

    A 1-kilometer stream reach receiving leachate-enriched water from a small municipal landfill in Greene County, N.Y., was studied from 1971-75 to document streamflow rates and chemical quality of the stream and ground water. The distribution of benthic invertebrates and microorganisms in the stream above the landfill was markedly different from that below it; the difference is attributed to the inflow of leachate. The Trichoptera, Ephemeroptera, and Nematomorpha have been eliminated from the reach adjacent to and below the landfill and have been replaced by large numbers of Tendipedidae and Niadidae. Certain chemical constituents, especially iron and manganese, were extremely concentrated in the ground water immediately beneath the streambed. The elevated concentrations of these and other metals may be the direct cause of the abrupt faunal shift. Algae were replaced by large masses of the iron bacterium Leptothrix in the stream reach below the landfill. (Kosco-USGS)

  8. Seneca Falls. Classroom Focus.

    ERIC Educational Resources Information Center

    Balantic, Jeannette; Libresco, Andrea S.

    1995-01-01

    Presents a secondary school lesson based on the Seneca Falls Declaration of Sentiments. Provides lesson objectives and step-by-step instructional procedures. Includes quoted sections of the Declaration of Sentiments. (CFR)

  9. Editors' Fall Picks

    ERIC Educational Resources Information Center

    Hoffert, Barbara; Heilbrun, Margaret; Kuzyk, Raya; Kim, Ann; McCormack, Heather; Katterjohn, Anna; Burns, Ann; Williams, Wilda

    2008-01-01

    From the fall's cascade of great new books, "Library Journal's" editors select their favorites--a dark rendition of Afghan life, a look at the "self-esteem trap," a celebration of Brooklyn activism, and much more.

  10. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  11. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  12. 6. NARADA FALLS, WITH FIRST CROSSING BRIDGE SHOWN ABOVE FALLS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NARADA FALLS, WITH FIRST CROSSING BRIDGE SHOWN ABOVE FALLS, VIEW FACING NORTHEAST - Paradise River First Crossing Bridge, Spanning Paradise River at Narada Falls on Service Road, Longmire, Pierce County, WA

  13. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  14. Feasibility of biological aerated filters (BAFs) for treating landfill leachate.

    PubMed

    Stephenson, T; Pollard, S J T; Cartmell, E

    2004-03-01

    Ammonia can be removed from landfill leachate using aerobic biological treatment processes. The biological aerated filter (BAF) combines biological treatment and subsequent biomass separation in one reactor providing a small footprint alternative to conventional systems. Leachate from an operational landfill was found to be aerobically treatable using the OECD recommended Modified Zahn-Wellens test. This leachate was used as feed to a pilot-scale BAF at influent chemical oxygen demand (COD) and ammoniacal-nitrogen concentrations of 765 mg l(-1) and 568 mg l(-1) respectively. During an initial period of stable operation without pH control, 33 %w/w of influent ammonia was removed. The reactor pH was 9.2 with little conversion to total oxidized nitrogen (< 45 mg l(-1)), this removal was accounted for primarily by air stripping. In a second period of stable operation, the reactor pH was reduced to pH 7.2 and ammonia removal increased to 97 %w/w with a concomitant increase in effluent nitrite concentration to an average of 524 mg l(-1). Biological aerated filters (BAFs) can be used to nitrify landfill leachates though onward denitrification of nitrite-nitrogen and COD polishing is required to reach typical discharge consent standards.

  15. Delineating landfill leachate discharge to an arsenic contaminated waterway.

    PubMed

    Ford, Robert G; Acree, Steven D; Lien, Bob K; Scheckel, Kirk G; Luxton, Todd P; Ross, Randall R; Williams, Aaron G; Clark, Patrick

    2011-11-01

    Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arsenic contamination in a pond abutting a closed landfill. Subsurface hydrology and ground-water chemistry were evaluated in the aquifer between the landfill and the pond during the period 2005-2009 employing a network of wells to delineate the spatial and temporal variability in subsurface conditions. These observations were compared with concurrent measures of ground-water seepage and surface water chemistry within a shallow cove that had a historical visual record of hydrous ferric oxide precipitation along with elevated arsenic concentrations in shallow sediments. Barium, presumably derived from materials disposed in the landfill, served as an indicator of leachate-impacted ground water discharging into the cove. Evaluation of the spatial distributions of seepage flux and the concentrations of barium, calcium, and ammonium-nitrogen indicated that the identified plume primarily discharged into the central portion of the cove. Comparison of the spatial distribution of chemical signatures at depth within the water column demonstrated that direct discharge of leachate-impacted ground water was the source of highest arsenic concentrations observed within the cove. These observations demonstrate that restoration of the impacted surface water body will necessitate control of leachate-impacted ground water that continues to discharge into the cove.

  16. Hydrogeology and ground-water-quality conditions at the Emporia- Lyon County Landfill, eastern Kansas, 1988

    USGS Publications Warehouse

    Myers, N.C.; Bigsby, P.R.

    1990-01-01

    Hydrogeology and water-quality conditions at the Emporia-Lyon County Landfill, eastern Kansas, were investigated from April 1988 through April 1989. Potentiometric-surface maps indicated groundwater movement from the northeast and northwest towards the landfill and then south through the landfill to the Cottonwood River. The maps indicate that during periods of low groundwater levels, groundwater flows northward in the north-west part of the landfill, which may have been induced by water withdrawal from wells north of the landfill or by water ponded in waste lagoons south and west of the landfill. Chemical analysis of water samples from monitoring wells upgradient and downgradient of the landfill indicate calcium bicarbonate to be the dominant water type. No inorganic or organic chemical concentrations exceeded Kansas or Federal primary drinking-water standards. Kansas secondary drinking-water standards were equaled or exceeded, however, in water from some or all wells for total hardness, dissolved solids, iron, and manganese. Water from one upgradient well contained larger concentrations of dissolved oxygen and nitrate, and smaller concentrations of bicarbonate, alkalinity, ammonia, arsenic, iron, and manganese as compared to all other monitoring wells. Results of this investigation indicate that groundwater quality downgradient of well MW-2 has increased concentrations of some inorganic and organic compounds. Due to the industrial nature of the area and the changing directions of groundwater flow, it is not clear what the source of these compounds might be. Long-term monitoring, additional wells, and access to nearby waste lagoons and waste-lagoon monitoring wells would help define the sources of increased inorganic and organic compounds. (USGS)

  17. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate.

    PubMed

    Al Yaqout, Anwar F

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  18. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  19. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L; Schwab, Eric A

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L(-1) to mg L(-1). Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L(-1)), BPA (6 380 000 ng L(-1)), and phenol (1 550 000 ng L(-1)), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  20. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  1. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L; Schwab, Eric A

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L(-1) to mg L(-1). Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L(-1)), BPA (6 380 000 ng L(-1)), and phenol (1 550 000 ng L(-1)), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation. PMID:25111596

  2. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  3. Inferred performance of surface hydraulic barriers from landfill operational data

    SciTech Connect

    Gross, B.A.; Bonaparte, R.; Othman, M.A.

    1997-12-31

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  4. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  5. Numerical assessment of a landfill compliance limit

    USGS Publications Warehouse

    Hensel, Bruce R.; Keefer, Donald A.; Griffin, Robert A.; Berg, Richard C.

    1991-01-01

    The PLASM and Random Walk ground-water flow and contaminant transport models were used to assess the potential impact of various proposed regulatory compliance distances on landfill siting. Contaminant transport modeling was performed for 16 generalized geological sequences representative of hydrogeological conditions over an estimated 90 to 95 percent of Illinois. Results of this modeling indicate that about 50 percent of the state would be hydrogeologically suitable for landfilling of nonhazardous wastes if the compliance distance was 100 feet. With a compliance distance of 500 feet, about 55 percent of the state would be hydrogeologically suitable. This work demonstrates the utility of computer modeling in the development of regulations governing landfill siting.

  6. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  7. Evaluating the Potential for Landfill Leachate to Affect Surface and Ground Water Quality

    NASA Astrophysics Data System (ADS)

    Pederson, D. T.; Towerton, M. M.

    2005-12-01

    As precipitation percolates through waste in a landfill, contaminants associated with waste dissolve, forming leachate. Landfill leachate has the potential to pollute ground and surface water if not properly managed. Predicting chemical parameters and quantity of leachate generated is vital not only to understand how ground and surface water may be affected by landfill leachate, but also useful in determining when leachate components are in compliance with US Environment Protection Agency's drinking water standards. The Bluff Road landfill in Lincoln, Nebraska provided sixteen years of data from active land filling operation. Data included quarterly chemical analyses of leachate and quantity of leachate generated. Linear regression between chemical parameters and time determine if the long-term concentration trend is increasing, decreasing, or stable. Predictions of quantity of leachate generated were made through application of a published model. Long-term trends for inorganic macro components appear to mirror each other indicating that physical processes dominate over chemical processes. Heavy metal concentrations show a decline with time for all parameters except for iron, cadmium, and copper which is in agreement with published studies. Modeling the quantity of leachate generated was successful in duplicating the general trend of measured values, but was not accurate in matching quantitative values.

  8. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation. PMID:20924666

  9. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  10. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L

    2016-04-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  11. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L

    2016-04-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study. PMID:26562222

  12. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.

    2015-01-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  13. Municipal Landfilling Practice And Its Impact On Groundwater Resources In And Around Urban Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Howard, K. W. F.; Eyles, N.; Livingstone, S.

    1996-01-01

    The hazardous contents of municipal landfills are rarely documented and problems are usually not recognised until landfill leachate pollutes a well or surface-water body. By this time, the groundwater is often extensively contaminated with little opportunity for redress. Recent studies in southern Ontario have adopted a pro-active stance to this issue. The location, size, design and geologic setting of almost 1,200 active and inactive landfills have been documented; in addition, a contaminant-source audit has been performed for a representative region of urban Toronto, where 82 landfills sites are contained in an area of 700 km2. Groundwater flow modeling reveals that at half the sites groundwater travel time to major urban streams and Lake Ontario is less than 10 years, suggesting that chemically conservative chemicals released at these sites would have a rapid impact on surface-water quality. The sites are as large as 99 ha, and waste thickness normally ranges from 3-30 m. In the audited area, the sites contain an estimated 4.6×107 tons of material, consisting primarily of domestic waste, incinerator ashes, and construction and commercial debris; some sites are believed, however, to have received liquid waste from industrial sources. The chemical audit indicates that more than 1.3 million tons, or approximately 2.9 percent of the landfill waste, will enter the landfill leachate. About 99 percent of the leachable mass is composed of calcium, magnesium, sodium, nitrogen (as ammonia, nitrate, and nitrite), chloride, sulphate, and bicarbonate. However, the real potential damage must be measured by the degree of environmental degradation that would ensue if the leachate is released to the subsurface. Ignoring the possible effects of chemical biodegradation and volatilization within the aquifer, calculations indicate that 17 of the 39 leachate components investigated are individually capable of contaminating at least 2×1012 liters of water in excess of Provincial

  14. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect

    Hakonson, T.E.

    1994-03-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  15. Instrumentation of dredge spoil for landfill construction

    SciTech Connect

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  16. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  17. Modelling flow to leachate wells in landfills

    SciTech Connect

    Al-Thani, A.A.; Beaven, R.P.; White, J.K

    2004-07-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  18. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  19. Falling into Winter.

    ERIC Educational Resources Information Center

    Harrington, Carolyn Lang

    2000-01-01

    Presents an activity that connects art, science, and nature in which elementary school students learn about deciduous trees. Explains that students create a torn-tissue collage, using fall colors for a background and drawing a silhouette of a tree without leaves on top of the background with black crayon. (CMK)

  20. Education and Falling Wages.

    ERIC Educational Resources Information Center

    Thurow, Lester C.

    1994-01-01

    Discusses why today's American workforce is experiencing falling wages and suggests that the answer to reversing this trend lies in improving the American education system to world class levels. Suggests the need to develop a postsecondary training system for those who do not go on to college, and highlights ways this might be implemented. (GR)

  1. Fall 2013 International Comparisons

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2014

    2014-01-01

    This Fall report is an aggregated statistical analysis of Measures of Academic Progress® (MAP®) data from international schools. The report provides a consistent means of comparisons of specific sub-groups by subject and grade, which allows partners to compare their MAP® results with other schools within their region or membership organization.…

  2. Freshmen Survey. Fall 1985.

    ERIC Educational Resources Information Center

    Goodyear, Don

    In 1985, College of the Sequoias (COS) was asked by the Cooperative Institutional Research Program (conducted jointly by the American Council on Education and the University of California, Los Angeles) to participate in a survey of incoming freshmen for the fall 1985 semester. During the summer counseling session, 259 new COS freshmen were…

  3. The News, Fall 2002.

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2002-01-01

    This fall 2002 newsletter from the Community College League of California contains several articles, news stories, and the brochure from the 2002 Annual Convention, "Celebrating the Way California LEARNS." Articles include: (1) "Nursing Shortage Poses Dilemma for Colleges: Access vs. Efficiency," a discussion of the debate over how to increase the…

  4. Editors' Fall Picks

    ERIC Educational Resources Information Center

    Heilbrun, Margaret; McCormack, Heather; Katterjohn, Anna; Kuzyk, Raya; Roncevic, Mirela; Fox, Bette-Lee; Hoffert, Barbara

    2009-01-01

    "Library Journal's" review editors select fall titles readers won't want to miss--"Waiting on a Train: The Embattled Future of Passenger Rail Service" (James McCommons); "Happy" (Alex Lemon); "Free for All: Joe Papp, the Public, and the Greatest Theater Story Ever Told" (Kenneth Turan & Joseph Papp); "In My Father's Shadow: A Daughter Remembers…

  5. Precision Falling Body Experiment

    ERIC Educational Resources Information Center

    Blackburn, James A.; Koenig, R.

    1976-01-01

    Described is a simple apparatus to determine acceleration due to gravity. It utilizes direct contact switches in lieu of conventional photocells to time the fall of a ball bearing. Accuracies to better than one part in a thousand were obtained. (SL)

  6. Landfill gas recovery: An analysis of results

    NASA Astrophysics Data System (ADS)

    Peterson, J. M.

    1982-02-01

    Aspects of landfill gas recovery including the range of gas recovery, production rates, corrosion, medium-Btu industrial applications, and conversion to electricity via an internal combustion engine were investigated. It is estimated that the landfill site studied is capable of producing more than 2.17 x 10 to the 13th power Btu's of gas per year for a period of over eight years.

  7. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  8. Geohydrology and ground-water quality at the Pueblo Depot Activity Landfill near Pueblo, Colorado. Water Resources Investigation

    SciTech Connect

    Watts, K.R.; Ortiz, R.F.

    1990-01-01

    The report describes the geohydrologic system and chemical characteristics of ground water at the Pueblo Depot Activity landfill, as required for the issuance of a certificate of designation for the landfill, and describes the potential effects of the landfill on ground-water quality. Ground-water samples were collected during December 1988 and mid-January 1989 from eight wells, a seep, and an offsite stock tank. These sites and the four piezometers were sampled during February 1989. Water levels were measured in the monitor wells and piezometers to determine depth from land surface to the water table, the water-table altitude, and saturated thickness of the shallow unconfined aquifer at the landfill. Hydraulic characteristics of the aquifer are based on lithologic descriptions and results of aquifer tests in nearby wells with similar lithologic characteristics.

  9. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  10. A statistical model for landfill surface emissions.

    PubMed

    Héroux, Martin; Guy, Christophe; Millette, Denis

    2010-02-01

    Landfill operators require a rapid, simple, low-cost, and accurate method for estimation of landfill methane surface emissions over time. Several methods have been developed to obtain instantaneous field measurements of landfill methane surface emissions. This paper provides a methodology for interpolating instantaneous measurements over time, taking variations in meteorological conditions into account. The goal of this study was to determine the effects of three factors on landfill methane surface emissions: air temperature, pressure gradient between waste and atmosphere, and soil moisture content of the cover material. On the basis of a statistical three-factor and two-level full factorial design, field measurements of methane emissions were conducted at the City of Montreal landfill site during the summer of 2004. Three areas were measured: test area 1 (4800 m2), test area 2 (1400 m2), and test area 3 (1000 m2). Analyses of variance were performed on the data. They showed a significant statistical effect of the three factors and the interaction between temperature and soil moisture content on methane emissions. Analysis also led to the development of a multifactor correlation, which can be explained by the underlying processes of diffusive and advective flow and biological oxidation. This correlation was used to estimate total emissions of the three test areas for July and August 2004. The approach was validated using a second dataset for another area adjacent to the landfill. PMID:20222535

  11. Nitrous oxide emissions from a municipal landfill.

    PubMed

    Rinne, Janne; Pihlatie, Mari; Lohila, Annalea; Thum, Tea; Aurela, Mika; Tuovinen, Juha-Pekka; Laurila, Tuomas; Vesala, Timo

    2005-10-15

    The first measurements of nitrous oxide (N20) emissions from a landfill by the eddy covariance method are reported. These measurements were compared to enclosure emission measurements conducted at the same site. The average emissions from the municipal landfill of the Helsinki Metropolitan Area were 2.7 mg N m(-2) h(-1) and 6.0 mg N m(-2) h(-1) measured bythe eddy covariance and the enclosure methods, respectively. The N20 emissions from the landfill are about 1 order of magnitude higher than the highest emissions reported from Northern European agricultural soils, and 2 orders of magnitude higher than the highest emissions reported from boreal forest soils. Due to the small area of landfills as compared to other land-use classes, the total N20 emissions from landfills are estimated to be of minor importance for the total emissions from Finland. Expressed as a greenhouse warming potential (GWP100), the N2O emissions make up about 3% of the total GWP100 emission of the landfill. The emissions measured by the two systems were generally of similar magnitude, with enclosure measurements showing a high small-scale spatial variation. PMID:16295838

  12. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00.

  13. How landfill gas causes RCRA compliance problems

    SciTech Connect

    Kerfoot, H.B.

    1996-06-01

    The Resource Conservation and Recovery Act (RCRA) requires landfill operators to monitor groundwater at their facilities. This regulatory requirement is designed to prevent contamination that can result as rainfall drains through refuse, causing pollutants to leach into the groundwater. Several parameters commonly associated with leachate are monitored under RCRA as indicator parameters, or parameters that represent readily detected indicators of contamination. These parameters include volatile organic compounds (VOCs) and alkalinity. Because of its potentially high concentration of VOCs and non-volatile contaminants, landfill leachate represents the greatest threat to groundwater from solid waste facilities. However, other sources can elevate indicator parameters as well. Increasingly lower detection limits can be achieved for VOCs in groundwater, enabling detection of VOCs and carbon dioxide (CO{sub 2}) from landfill gas. In addition, CO{sub 2} from landfill gas can increase groundwater alkalinity. Releases of VOCs in landfill gas can be eliminated by minimizing the gas pressure within the landfill, either by installing a gas-collection system or upgrading an existing gas-collection system by adding wells or altering gas flow in portions of the system.

  14. Hazardous materials in Fresh Kills landfill

    SciTech Connect

    Hirschhorn, J.S.

    1997-12-31

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  15. A statistical model for landfill surface emissions.

    PubMed

    Héroux, Martin; Guy, Christophe; Millette, Denis

    2010-02-01

    Landfill operators require a rapid, simple, low-cost, and accurate method for estimation of landfill methane surface emissions over time. Several methods have been developed to obtain instantaneous field measurements of landfill methane surface emissions. This paper provides a methodology for interpolating instantaneous measurements over time, taking variations in meteorological conditions into account. The goal of this study was to determine the effects of three factors on landfill methane surface emissions: air temperature, pressure gradient between waste and atmosphere, and soil moisture content of the cover material. On the basis of a statistical three-factor and two-level full factorial design, field measurements of methane emissions were conducted at the City of Montreal landfill site during the summer of 2004. Three areas were measured: test area 1 (4800 m2), test area 2 (1400 m2), and test area 3 (1000 m2). Analyses of variance were performed on the data. They showed a significant statistical effect of the three factors and the interaction between temperature and soil moisture content on methane emissions. Analysis also led to the development of a multifactor correlation, which can be explained by the underlying processes of diffusive and advective flow and biological oxidation. This correlation was used to estimate total emissions of the three test areas for July and August 2004. The approach was validated using a second dataset for another area adjacent to the landfill.

  16. Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece).

    PubMed

    Chalvatzaki, E; Lazaridis, M

    2010-09-01

    Air pollutants emitted from landfills affect air quality, contribute to the greenhouse effect and may cause serious problems to human health under certain circumstances. The current study was focused on the determination of air emissions from the Akrotiri landfill site which is located in the Akrotiri area (Chania, Greece). The landfill consists of two phases, phase A (first phase) which is currently closed (operational between 2003 and 2007) and phase B (second phase, operation between 2007 and (foreseen) 2013). Three different emission models (the EPA LandGEM model, the triangular model and the stoichiometric model) were used for the quantification of emissions. The LandGEM 3.02 software was further adopted and used in conjunction with the long-term dispersion model ISC3-LT for the evaluation of the dispersion of gaseous chemical components from the landfill. The emission and meteorological conditions under which the models were applied were based on the worst-case emission scenario. Furthermore, the concentration of hydrogen sulfide, vinyl chloride and benzene were determined in and around the landfill site. The concentrations of hydrogen sulfide and benzene were calculated to be far below the limit value proposed by the World Health Organization (WHO) for human health safety. However, the vinyl chloride concentrations were above the WHO reference lifetime exposure health criteria for the phase B area.

  17. Geohydrology and ground-water geochemistry at a sub-arctic landfill, Fairbanks, Alaska

    USGS Publications Warehouse

    Downey, J.S.

    1990-01-01

    The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. (USGS)

  18. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  19. Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids.

    PubMed

    Gallen, C; Drage, D; Kaserzon, S; Baduel, C; Gallen, M; Banks, A; Broomhall, S; Mueller, J F

    2016-07-15

    The levels of perfluroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDDs) were studied in Australian landfill leachate and biosolids. Leachate was collected from 13 landfill sites and biosolids were collected from 16 wastewater treatment plants (WWTPs), across Australia. Perfluorohexanoate (PFHxA) (12-5700ng/L) was the most abundant investigated persistent, bioaccumulative and toxic (PBT) chemical in leachate. With one exception, mean concentrations of PFASs were higher in leachate of operating landfills compared to closed landfills. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane isomers (HBCDDs) were detected typically at operating landfills in comparatively lower concentrations than the PFASs. Decabromodiphenyl ether (BDE-209) (<0.4-2300ng/g) and perfluoroctanesulfonate (PFOS) (

  20. Landfill surface runoff and its effect on water quality on river Yamuna.

    PubMed

    Zafar, M; Alappat, B J

    2004-01-01

    During 2000, the estimated quantity of solid waste generated in Delhi, India was more than 9000 tones per day. This is one of the biggest sources of environmental degradation in capital city of India. Since 1950's over 12 large landfill have been packed with all kinds of nonbiodegradable and toxic waste of Delhi. The area covered is at least 1% (14.83 square kilometer) of total Delhi's area. All the landfill sites except Tilak Nagar, Hastal, and Chattarpur are located very closely (0.5-6 km) to the river Yamuna. It contributes the pollution to river Yamuna in a significant way in a form of surface runoff from landfill site especially in rainy season. The chemical analysis of leachate produced by these landfill sites and corresponding river section (at five river points) has been performed for 16 selected parameter (Temperature, Odor, pH, Turbidity, Conductivity, COD, Total Solids, Sulphide, Chloride, Nitrate, Iron) in the first stage and for 8 parameters (pH, Conductivity, COD, Total Solids, Chloride, Nitrate, Iron) in second stage. The study was conducted between August to October, 2000 (rainy season). It is clear from the study that the river water quality is affected by the presence of landfill surface runoff. Its impact can be seen in the region where the drains are meeting the river. This is one of the causes of river pollution apart from other major municipal and industrial sources. PMID:15027821

  1. Modeling the final phase of landfill gas generation from long-term observations.

    PubMed

    Tintner, Johannes; Kühleitner, Manfred; Binner, Erwin; Brunner, Norbert; Smidt, Ena

    2012-06-01

    For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240-1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log-normal distribution curve to gather the maximum gas generation potential. According to the log-normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO(2) balances in waste management and some information to which extent landfills serve as carbon sink.

  2. Transmission electron microscopy investigation of colloids and particles from landfill leachates.

    PubMed

    Matura, Marek; Ettler, Vojtech; Klementová, Mariana

    2012-05-01

    Leachates collected at two (active and closed) municipal solid waste (MSW) landfills were examined for colloids and particles by transmission electron microscopy, energy dispersive spectrometry, selected area electron diffraction and for the chemical compositions of the filtrates after the filtration to 0.1 µm and ultrafiltration to 1 kDa (~ 1 nm). Six groups of colloids/particles in the range 5 nm to 5 µm were determined (in decreasing order of abundance): carbonates, phyllosilicates (clay minerals and micas), quartz, Fe-oxides, organics and others (salts, phosphates). Inorganic colloids/particles in leachates from the active landfill predominantly consist of calcite (CaCO(3)) and minor clay minerals and quartz (SiO(2)). The colloids/particles in the leachates from the closed landfill consist of all the observed groups with dominant phyllosilicates. Whereas calcite, Fe-oxides and phosphates can precipitate directly from the leachates, phyllosilicates and quartz are more probably either derived from the waste or formed by erosion of the geological environment of the landfill. Low amounts of organic colloids/particles were observed, indicating the predominance of organic molecules in the 'truly dissolved' fraction (fulvic compounds). Especially newly formed calcite colloids forming particles of 500 nm and stacking in larger aggregates can bind trace inorganic contaminants (metals/metalloids) and immobilize them in landfill environments.

  3. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    NASA Astrophysics Data System (ADS)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  4. Removal of landfill leachate toxicity and genotoxicity by two treatment methods.

    PubMed

    Brkanac, Sandra Radić; Vujčić, Valerija; Cvjetko, Petra; Baković, Vid; Oreščanin, Višnja

    2014-03-01

    Leachates from active and closed municipal solid waste landfills can be a major source of contamination to groundwater and surface waters. In the present study the toxic and genotoxic potential of leachate from an old sanitary landfill prior to and following chemical and electrochemical treatments were assessed using Lemna, Allium, and comet tests. Photosynthetic pigments, malondialdehyde (indicator of lipid peroxidation) and antioxidant enzyme activities were evaluated as additional indicators of toxicity in duckweed. Following duckweed exposure to 25 % dilution of landfill leachate, growth rate and photosynthetic pigments content significantly decreased while lipid peroxidation increased despite stimulation of antioxidative defence mechanisms. Diluted leachate induced DNA strand breaks in duckweed cells as evidenced by the comet assay. Regarding the Allium test, untreated leachate caused inhibition of Allium cepa cell division and induction of mitotic and chromosomal aberrations. Although both water treatments completely reduced genotoxicity of leachate, the electrochemical method was found to be more efficient in removing toxic substances present in landfill leachate and thus more suitable for treating such leachates prior to their discharge into the environment. As landfill leachates pose a risk to human health and environment in general due to their (geno)toxicity, the present study demonstrates that the ecotoxicity/genotoxicity assays should be used in leachate risk assessment together with physicochemical analysis.

  5. Landfill surface runoff and its effect on water quality on river Yamuna.

    PubMed

    Zafar, M; Alappat, B J

    2004-01-01

    During 2000, the estimated quantity of solid waste generated in Delhi, India was more than 9000 tones per day. This is one of the biggest sources of environmental degradation in capital city of India. Since 1950's over 12 large landfill have been packed with all kinds of nonbiodegradable and toxic waste of Delhi. The area covered is at least 1% (14.83 square kilometer) of total Delhi's area. All the landfill sites except Tilak Nagar, Hastal, and Chattarpur are located very closely (0.5-6 km) to the river Yamuna. It contributes the pollution to river Yamuna in a significant way in a form of surface runoff from landfill site especially in rainy season. The chemical analysis of leachate produced by these landfill sites and corresponding river section (at five river points) has been performed for 16 selected parameter (Temperature, Odor, pH, Turbidity, Conductivity, COD, Total Solids, Sulphide, Chloride, Nitrate, Iron) in the first stage and for 8 parameters (pH, Conductivity, COD, Total Solids, Chloride, Nitrate, Iron) in second stage. The study was conducted between August to October, 2000 (rainy season). It is clear from the study that the river water quality is affected by the presence of landfill surface runoff. Its impact can be seen in the region where the drains are meeting the river. This is one of the causes of river pollution apart from other major municipal and industrial sources.

  6. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  7. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection. PMID:20444588

  8. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates.

    PubMed

    Lu, Mu-Chen; Chen, Yao Yin; Chiou, Mei-Rung; Chen, Men Yu; Fan, Huan-Jung

    2016-09-01

    Landfill leachates might contain pharmaceuticals due to the expired or unwanted drugs were disposed of at landfills. These pharmaceuticals might pose a threat to soil and groundwater. Therefore, this study investigated the distributions of pharmaceutical residues and toxicities among four typical municipal landfill leachates. Twenty six pharmaceuticals were investigated in this study and fifteen of them were found in all samples from four leachates. In addition, ampicillin and methylenedioxymethamphetamine (MDMA) were detected in urban landfills (A1 and A2) but were not in rural and suburb landfills (B and C). On the other hand, some compounds were much more abundant in suburb/rural landfill leachates than those in urban landfills including diclofenac, gemfibrozil and amphetamine. Landfill leachate treatment plants could not remove most of the pharmaceuticals effectively. Landfill leachates without proper treatments would have significant adverse health impacts on human and aquatic life. PMID:27026494

  9. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect

    Dever, S.A. . E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. . E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. . E-mail: r.stuetz@unsw.edu.au

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  10. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    PubMed Central

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  11. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    PubMed

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  12. Review Article: Persistent organic pollutants and landfills - a review of past experiences and future challenges.

    PubMed

    Weber, Roland; Watson, Alan; Forter, Martin; Oliaei, Fardin

    2011-01-01

    The landfilling and dumping of persistent organic pollutants (POPs) and other persistent hazardous compounds, such as polychlorinated biphenyls (PCBs), hexachlorocyclohaxane (HCH), polybrominated diphenylether (PBDEs) or perfluorooctane sulfonic acid (PFOS) can have significant adverse environmental consequences. This paper reviews past experiences with such disposal practices and highlights their unsustainability due to the risks of contamination of ecosystems, the food chain, together with ground and drinking water supplies. The use and associated disposal of POPs have been occurring for over 50 years. Concurrent with the phase-out of some of the most hazardous chemicals, the production of new POPs, such as brominated and fluorinated compounds has increased since the 1990s. These latter compounds are commonly used in a wide range of consumer goods, and as consumer products reach the end of their useful lives, ultimately enter waste recycling and disposal systems, in particular at municipal landfills. Because of their very slow, or lack of degradability, POPs will persist in landfills for many decades and possibly centuries. Over these extended time periods engineered landfill systems and their liners are likely to degrade, thus posing a contemporary and future risk of releasing large contaminant loads to the environment. This review highlights the necessity for alternative disposal methods for POP wastes, including destruction or complete removal from potential environmental release. In addition to such end of pipe solutions a policy change in the use pattern of persistent toxic chemicals is inevitable. In addition, inventories for the location and quantity of POPs in landfills, together with an assessment of their threat to ecosystems, drinking water and food resources are identified as key measures to facilitate appropriate management of risks. Finally the challenges of POP wastes in transition/developing countries, the risk of increased leaching of POPs from

  13. Review Article: Persistent organic pollutants and landfills - a review of past experiences and future challenges.

    PubMed

    Weber, Roland; Watson, Alan; Forter, Martin; Oliaei, Fardin

    2011-01-01

    The landfilling and dumping of persistent organic pollutants (POPs) and other persistent hazardous compounds, such as polychlorinated biphenyls (PCBs), hexachlorocyclohaxane (HCH), polybrominated diphenylether (PBDEs) or perfluorooctane sulfonic acid (PFOS) can have significant adverse environmental consequences. This paper reviews past experiences with such disposal practices and highlights their unsustainability due to the risks of contamination of ecosystems, the food chain, together with ground and drinking water supplies. The use and associated disposal of POPs have been occurring for over 50 years. Concurrent with the phase-out of some of the most hazardous chemicals, the production of new POPs, such as brominated and fluorinated compounds has increased since the 1990s. These latter compounds are commonly used in a wide range of consumer goods, and as consumer products reach the end of their useful lives, ultimately enter waste recycling and disposal systems, in particular at municipal landfills. Because of their very slow, or lack of degradability, POPs will persist in landfills for many decades and possibly centuries. Over these extended time periods engineered landfill systems and their liners are likely to degrade, thus posing a contemporary and future risk of releasing large contaminant loads to the environment. This review highlights the necessity for alternative disposal methods for POP wastes, including destruction or complete removal from potential environmental release. In addition to such end of pipe solutions a policy change in the use pattern of persistent toxic chemicals is inevitable. In addition, inventories for the location and quantity of POPs in landfills, together with an assessment of their threat to ecosystems, drinking water and food resources are identified as key measures to facilitate appropriate management of risks. Finally the challenges of POP wastes in transition/developing countries, the risk of increased leaching of POPs from

  14. Health assessment for Jones Industrial Services (JIS) landfill, South Brunswick Township, Middlesex County, New Jersey, Region 2. CERCLIS No. NJD097400998 (amended June 10, 1991). Final report

    SciTech Connect

    Not Available

    1991-06-10

    The Jones Industrial Landfill site began as a 33 acre pit that had been excavated to provide soil needed during the construction of the New Jersey Turnpike. Landfilling operations reportedly began in 1955. In the 1960's, as part of the landfilling operation, toxic chemicals were dumped into the pit. The site is currently ranked 45 of 110 Superfund sites in New Jersey. The primary pathway of concern is the domestic use of contaminated groundwater. Residents near the JIS landfill have experienced contamination of their well water since 1975. On the basis of the information reviewed, ATSDR and NJDOH have concluded that the site is of public health concern because humans have probably been exposed to VOCs, heavy metals, phthalates and pesticides at concentrations that may result in adverse health effects. The Jones Industrial Services Landfill site is being considered for appropriate follow-up health study and evaluation.

  15. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    NASA Astrophysics Data System (ADS)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  16. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  17. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the

  18. Reduction in falling after a falls-assessment.

    PubMed

    Hansma, A H G; Emmelot-Vonk, M H; Verhaar, H J J

    2010-01-01

    The aim of this single-center retrospective cohort study was to evaluate the effect of a multidisciplinary falls-assessment, consisting of identification and possible modification of risk factors for falls, on the frequency of falls among elderly individuals attending the geriatric outpatient department of the University Medical Center (UMC) Utrecht, the Netherlands. The characteristics of 70 elderly people who visited the outpatient department because of a fall in the period from May 2005 till February 2007 were evaluated. The effectiveness of the falls-assessment was evaluated by telephone interview of those individuals who had attended the falls-assessment. Fifty-three patients (mean age=79.8 years) were interviewed after a mean+/-S.D. of 1.47+/-0.41 years (ranging 0.72-2.34 years) subsequent to the falls-assessment. Falls-assessment led to significantly fewer falls, from 3.78+/-4.66 at the time of the assessment at baseline to 1.10+/-1.86 at the time of the interview (p=0.000041). Fear of falling was also significantly diminished. In conclusion, falls-assessment leads to fewer falls and less fear of falling among elderly individuals.

  19. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    SciTech Connect

    Odusanya, David O.; Okonkwo, Jonathan O. Botha, Ben

    2009-01-15

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high

  20. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    PubMed

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  1. Direct Continuous Measurements of Methane Emissions from a Landfill: Method, Station and Latest Results

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. K.

    2014-12-01

    Solar-powered automated flux station was deployed continuously inside the Bluff Road Landfill (Lincoln, NE) for the period of over4 years starting June 2010. Landfill methane emissions were measured using the eddy covariance method, reporting hourly emission rates. The data shown in this presentation are from the period of June to December 2010 when no gas recovery was in operation. The continuous measurements of hourly emission rates allowed a number of important analyses of the key factors affecting landfill methane emissions at different time scales. In particular, the results show that landfill methane emissions strongly depended on changes in barometric pressure. Rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, resulting in up to a 35-fold variation in day-to-day methane emissions. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at the site.From these results, it is apparent that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions based on such measurements could yield uncertainties, ranging from 28% underestimation to 32% overestimation.The results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may also apply to the wetlands, peatlands, lakes, and other environments where emissions are from porous media or ebullition.

  2. Town of Edinburg landfill reclamation demonstration project. Final report

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  4. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  5. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Bohlke, Johnkarl F.; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  6. Pilot-scale experiment on anaerobic bioreactor landfills in China

    SciTech Connect

    Jiang, Jianguo Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-07-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m{sup 3} leachate and 0.1 m{sup 3} tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  7. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  8. Health assessment for McCarty's Bald Knob Landfill, Mt. Vernon, Indiana, Region 5. CERCLIS No. IND980500417. Preliminary report

    SciTech Connect

    Not Available

    1988-07-07

    McCarty's Bald Knob Landfill in Mt. Vernon, Indiana is listed on the National Priorities List. It is a closed landfill that has been capped, graded, and seeded. Solvents and other organic chemicals were disposed of at the site. The following chemicals have been identified in ground water from monitoring well samples: phenols, phthalate, and heavy metals. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ground water contamination.

  9. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  10. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  11. Landfills for the 21st century

    SciTech Connect

    Poland, R. )

    1994-01-01

    In the next 10 years, the role of landfills will not change significantly. Landfills are, and will continue to be, the cornerstone of any waste services system. A number of factors will, however, cause adjustments in the way landfills function. The character of the waste is also changing. Mankind will see more treated industrial residue in future years. Certain types of these materials have, in the past, gone to hazardous waste disposal sites. These are non-hazardous wastes, but generators found a certain comfort in sending them to hazardous waste facilities that had double composite liners, leachate collection, and financial assurance. With the new technical standards and environmental security of sanitary landfills, there will be a reluctance on the part of generators to pay a premium to send this waste to a hazardous waste site. There is also a growing interest in treating characteristic'' hazardous waste to a level where it is no longer hazardous and can be placed in a sanitary landfill.

  12. Ecotoxicological diagnosis of a sealed municipal landfill.

    PubMed

    Hernández, A J; Bartolomé, C; Pérez-Leblic, M I; Rodríguez, J; Alvarez, J; Pastor, J

    2012-03-01

    Assessing the environmental impact of a soil-topped landfill requires an accurate ecotoxicological diagnosis. This paper describes various diagnostic protocols for this purpose and their application to a real case: the urban solid waste (USW) municipal landfill of Getafe (Madrid, Spain). After their initial sealing with soil from the surroundings about 20 years ago, most USW landfills in the autonomous community of Madrid have continued to receive waste. This has hindered precise assessment of their impact on their environment and affected ecosystems. The procedure proposed here overcomes this problem by assessing the situation in edaphic, aquatic and ecological terms. The present study focused on the most influential soil variables (viz. salinity due largely to the presence of anions, and heavy metals and organic compounds). These variables were also determined in surface waters of the wetland most strongly affected by leachates running down landfill slopes. Determinations included the characterization of plant communities and microbial biodiversity. The study was supplemented with a bioassay under controlled conditions in pots containing soil contaminated with variable concentrations of Zn (as ZnCl(2)) intended to assess ecochemical actions in a population of Bromus rubens, which grows profusely in the landfill. PMID:21075508

  13. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.

    PubMed

    Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar

    2011-01-01

    The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment. PMID:21970176

  14. Sonochemical degradation of peerfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects.

    PubMed

    Cheng, Jie; Vecitis, Chad D; Park, Hyunwoong; Mader, Brian T; Hoffmann, Michael R

    2008-11-01

    Perfluorinated chemicals such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmentally persistent and recalcitrant to most conventional chemical and microbial treatment technologies. In this paper, we show that sonolysis is able to decompose PFOS and PFOA present in groundwater beneath a landfill. However, the pseudo first-order rate constant for the sonochemical degradation in the landfill groundwater is reduced by 61 and 56% relative to MilliQ water for PFOS and PFOA, respectively, primarily due to the presence of other organic constituents. In this study, we evaluate the effect of various organic compounds on the sonochemical decomposition rates of PFOS and PFOA. Organic components in environmental matrices may reduce the sonochemical degradation rates of PFOS and PFOA by competitive adsorption onto the bubble-water interface or by lowering the average interfacial temperatures during transient bubble collapse events. The effect of individual organic compounds depends on the Langmuir adsorption constant the Henry's law constant the specific heat capacity, and the overall endothermic heat of dissociation. Volatile organic compounds (VOCs) are identified as the primary cause of the sonochemical rate reduction for PFOS and PFOA in landfill groundwater, whereas the effect of dissolved natural organic matter (DOM) is not significant Finally, a combined process of ozonation and sonolysis is shown to substantially recover the rate loss for PFOS and PFOA in landfill groundwater.

  15. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  16. Martial recycling from renewable landfill and associated risks: A review.

    PubMed

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction.

  17. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  18. EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  19. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  20. Artificial sweeteners as potential tracers of municipal landfill leachate.

    PubMed

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

  1. Using landfill gas for energy: Projects that pay

    SciTech Connect

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  2. Hydrogeology and ground-water-quality conditions at the Linn County landfill, eastern Kansas, 1988-89

    SciTech Connect

    Falwell, R.; Bigsby, P.R.; Myers, N.C. )

    1991-01-01

    An investigation of the hydrogeology and groundwater quality conditions near the Linn County Landfill, eastern Kansas was conducted from July 1988 through June 1989. The landfill is located in an unreclaimed coal strip-mine area near Prescott. Analysis of water levels from nine temporary wells and from strip-mine ponds indicated that groundwater flows southwest through the present landfill. A county road west of the landfill acts as a barrier to shallow westerly groundwater flow. Seasonal variations in the direction of groundwater flow may occur. Water samples from monitoring wells and a strip-mine pond were analyzed for inorganic and organic compounds. Iron, manganese, and dissolved-organic-carbon concentrations were good indicators of the presence of landfill leachate in the groundwater. Benzene, carbon tetrachloride, 1,1-dichloroethane, and 1,1,1-trichloroethane were also detected. None of the inorganic or organic compounds detected exceeded Kansas primary drinking-water standards. Chemical concentrations and water levels in some nested wells indicate there is a hydraulic connection between the strip-mine spoil material and the underlying limestone. Leachate-contaminated groundwater has the potential to migrate southwest corner of the landfill through either strip-mine spoil material or through the underlying Pawnee Limestone.

  3. Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Srivastava, Sunil Kumar; Ramanathan, A. L.

    2008-02-01

    A geochemical assessment of groundwater quality and possible contamination in the vicinity of the Bhalswa landfill site was carried out by using a hydrochemical approach with graphical and multivariate statistical methods with the objective of identifying the occurrence of various geochemical processes and understanding the impact of landfill leachates on groundwater quality. Results indicate that nitrate, fluoride and heavy-metal pollution are in an alarming state with respect to the use of groundwater for drinking purposes. Various graphical plots and statistical analyses have been applied to the chemical data based on the ionic constituents, water types, and hydrochemical facies to infer the impact of the landfill on groundwater quality. The statistical analysis and spatial and temporal variations indicate the leaching of contaminants from the landfill to the groundwater aquifer system. The concentrations of heavy metals in the landfill leachates are as follows: Fe (22 mg/l), Mn (~20 mg/l), Cu (~10 mg/l), Pb (~2 mg/l), Ni (0.25 mg/l), Zn (~10 mg/l), Cd (~0.2 mg/l), Cl- (~4,000 mg/l), SO{4/2-} (~3,320 mg/l), PO{4/3-} (~4 mg/l), NO{3/-} (30 mg/l) and fluoride (~50 mg/l); all were much higher than the standards. The study reveals that the landfill is in a depleted phase and is affecting groundwater quality in its vicinity and the surrounding area due to leaching of contaminants.

  4. [Variation characteristics and mathematical model of humic substances in landfill leachates with different landfill ages].

    PubMed

    Huang, You-Fu; Xu, Xin-Ya; Fan, Liang-Xin; Fang, Yi-Min

    2014-07-01

    The influence of municipal landfill age on the characteristics of humic substances in leachate on the basis of investigating 12 different kinds of leachates from landfills in Fujian province is presented in this study. It was shown that the concentration and percentage of fulvic acid (FA) were obviously higher than those of humic acid (HA). As the landfill age increased, the concentrations of HA, FA and humic substances (HS) increased, moreover, the percentage of HA first increased and then decreased. While the percentages of FA and HS first increased and then fluctuated with the landfill age. The UV-Vis analytical results of HA and FA through E280, E300/E400 and E465/E665 revealed that HA had a relatively higher content of aromatic compounds and higher molecular weight than FA. The humification of FA had a tendency to increase as the landfill age increased, while HA had opposite result. The E300/E400 and E465/E665 of HA and FA fluctuated with increasing landfill age. A mathematical model simulating the concentration of humic substances varied with the landfill age was presented and demonstrated based on degradation kinetics. The simulated results were close to the measured values with a correlation coefficient R2 of 0.820, 0.932 and 0.946, respectively, indicating that the concentrations of HA, FA and HS could be accurately forecasted.

  5. `In free fall'

    NASA Astrophysics Data System (ADS)

    Beijerinck, Herman C. W.

    2014-01-01

    Physicists in the lead of a fiction book or a play, that's a rare event! Writers in general do not understand physics, while physicists seldom have the talent of writing for a large audience. So when it happens, we should rejoice. The up-and-coming German author Juli Zeh [1] (1974), who studied law, has succeeded in combining beautiful prose, psychological drama, crime and physics in a challenging book `In free fall' [2]. A good friend of hers, Bettina Bruinier, has put the core message of the book into a compelling play in the `Volkstheater' in Munich [1]. Yes, it can be done.

  6. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  7. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  8. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion. PMID:25194843

  9. Environmental assessment of Ammässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE).

    PubMed

    Niskanen, Antti; Manfredi, Simone; Christensen, Thomas H; Anderson, Reetta

    2009-08-01

    The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized.

  10. Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China.

    PubMed

    Song, Liyan; Li, Lei; Yang, Shu; Lan, Jiwu; He, Haijie; McElmurry, Shawn P; Zhao, Youcai

    2016-05-01

    Landfills are likely to be important reservoirs of antibiotics and antibiotic resistant genes (ARGs) as they receive unused and unwanted antibiotics and ARGs in municipal solid waste (MSW). The distribution, transportation and dynamics of antibiotics and ARGs in landfills remain largely unknown. In the present study, 3 antibiotics - sulfamethoxazole (SMX), tetracycline (TC), and oxytetracycline (OTC) - and their related ARGs (sulI and tetO) were quantified in 51 refuse samples from different depths at 8 locations within a large-scale landfill in central China. The average concentration of OTC was the highest, up to 100.9±141.81μg/kg (dw, n=48), followed by TC (63.8±37.7μg/kg, n=40), and SMX (47.9±8.1μg/kg, n=30). Both sulI and tetO were detected in all samples. Of the ARGs, sul1 (-3.06±1.18, n=51, log10 ARGs/16SrDNA) was more abundant than tetO (-4.37±0.97) in all refuse samples (p<0.05). Both sulI and tetO negatively correlated to refuse age, suggesting they are attenuated during landfill stabilization. OTC and TC positively correlated to tetO (r=0.41, p<0.01) and sulI (r=0.29, p=0.04), respectively. Chemical conditions (e.g. moisture content and nitrate concentrations) within the refuse correlated to antibiotics and ARGs suggesting environmental factors impact the distribution of antibiotics and ARGs in landfill matrix. This study is the first comprehensive in situ landfill study to connect the concentrations of antibiotic residues to ARGs. PMID:26874755

  11. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  12. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  13. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  14. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  15. Landfill gas boosted to pipeline quality

    SciTech Connect

    Not Available

    1984-03-01

    The world's largest landfill recovery facility, located on Staten Island, went on stream in 1982 and is expected to produce 1.3 billion CF/yr of pipeline gas. Containing 45% carbon dioxide, the gas is compressed and cooled in stages to meet the requirements of the Selexol purification plant. Two 1120-kW (1500-hp) Copper Bessemer GMVS-8C integral gas engine-compressors, fueled by the landfill gas, provide the compression needed from the wells to the final solvent-contact stage.

  16. Electrocoagulation and decolorization of landfill leachate

    NASA Astrophysics Data System (ADS)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  17. Geoenvironmental weathering/deterioration of landfilled MSWI-BA glass.

    PubMed

    Wei, Yunmei; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Zhao, Chun; Peng, Xuya; Gao, Junmin

    2014-08-15

    Municipal solid waste incineration bottom ash (MSWI-BA) glass serves as a matrix of assorted bottom ash (BA) compounds. Deterioration of the BA glass phases is quite important as they regulate the distribution of a series of toxic elements. This paper studied landfilled MSWI-BA samples from the mineralogical and geochemical viewpoint to understand the deterioration behavior of the BA glass phases as well as mechanisms involved. Bulk analysis by PXRD as well as micro-scale analysis by optical microscopy and SEM/EDX was conducted for such purposes. The results revealed that dissolution of the BA glass phases has resulted in a deterioration layer of 10(0)-10(2)μm thickness after years of disposal. This rapid weathering process is highly relevant to the specific glass characteristics and solution pH. The BA glass phases with more embedded compounds and cracks/fissures tend to be more vulnerable. Moreover, the generally alkaline pH in ash deposit favors a rapid disruption of the glass phase. The weathering products are mainly gel phases (including Al-Si gel, Ca-Al-Si gel, Fe-Al-Si gel etc.) with iron oxide/hydroxide as accessory products. Breakdown of the BA glass phases triggers chemical evolution of the embedded compounds. Based on all the findings above, a model is proposed to illustrate a general evolution trend for the landfilled MSWI-BA glass phases.

  18. Surface-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Powers, Christopher J.; Wilson, Joanna; Haeni, F.P.; Johnson, C.D.

    1999-01-01

    A surface-geophysical investigation of the former landfill area at the University of Connecticut in Storrs, Conn. was conducted as part of a preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. Geophysical data were used to help determine the dominant direction of fracture strike; subsurface structure of the landfill; locations of possible leachate plumes, fracture zones or conductive lithologic layers; and the location and number of chemical waste-disposal pits. Azimuthal square-array direct-current (dc) resistivity, two-dimensional (2D) dc-resistivity, inductive terrain conductivity, and ground-penetrating radar (GPR) were the methods used to characterize the landfill area.The dominant strike direction of bedrock fractures interpreted from azimuthal square-array resistivity data is north, ranging from 285 to 30 degrees east of True North. These results complement local geologic maps that identify bedrock foliation and fractures that strike approximately north-south and dip 30 to 40 degrees west.The subsurface structure of the landfill was imaged with 2D dc-resistivity profiling data, which were used to interpret a landfill thickness of 10 to 15 meters. Orientation of the landfill trash disposal trenches were detected by azimuthal square-array resistivity soundings; the dimension and the orientation of the trenches were verified by aerial photographs.Inductive terrain conductivity and 2D dc-resistivity profiling detected conductive anomalies that were interpreted as possible leachate plumes near two surface-water discharge areas. The conductive anomaly to the north of the landfill is interpreted to be a shallow leachate plume and dissipates to almost background levels 45 meters north of the landfill. The anomaly to the southwest is interpreted to extend vertically through the overburden and into the shallow bedrock and laterally along the intermittent drainage to Eagleville Brook, terminating 140 meters

  19. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  20. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  1. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    EPA Science Inventory

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstration
    of municipal waste landfills being operated as bioreact...

  2. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-12

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  3. Hydrogeology and water quality near a solid- and hazardous-waste landfill, Northwood, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Breen, K.J.

    1989-01-01

    Hydrogeology and water quality of ground water and selected streams were evaluated near a landfill in northwestern Ohio. The landfill is used for codisposal of solid and hazardous waste. Water-level and geologic data were collected from 36 wells and 3 surface-water sites during the period November 1983 to November 1985. Water-quality samples were collected from 18 wells and 3 surface-water sites this during this same period. The primary aquifers in the area are the Greenfield Dolomite and underlying Lockport Dolomite of Silurian age. These bedrock carbonates are overlain by two clay tills of Wisconsin age. The tills are capped by a glacial lake clay. The tills generally are saturated, but do not yield sufficient water to be considered an aquifer. Two wells in the study area yield water, in part, from discontinuous deposits of outwash sand and gravel at the lower till-bedrock interface. Regional ground-water flow is from southwest to northeast; local flow is influenced by a ground-water mound centered under the northernmost cells of the landfill. Water levels in wells penetrating refuse within the landfill and the presence of leachate seeps indicate that the refuse is saturated. Head relations among the landfill, till, and dolomite aquifer indicate a vertical component of flow downward from the landfill to the dolomite aquifer. Water levels near the landfill fluctuate as much as 14 feet per year, in contrast to fluctuations of less than 3 feet per year in wells upgradient landfill. Ground waters from wells completed in the dolomite aquifer and glacial till were found to have major-iron concentrations controlled, in large part, by reaction with calcite, dolomite, and other minerals in the aquifer. Only minor departures from equilibrium mineral saturation were noted for ground water, except in wells affected by cement/grout contamination. Molal ratios of calcuim:magnesium in ground water suggest a similar chemical evolution of waters throughout the dolomite aquifer in

  4. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  5. Intrinsic bioremediation of landfills interim report

    SciTech Connect

    Brigmon, R.L.; Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  6. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  7. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  8. Biotic systems to mitigate landfill methane emissions.

    PubMed

    Huber-Humer, Marion; Gebert, Julia; Hilger, Helene

    2008-02-01

    Landfill gases produced during biological degradation of buried organic wastes include methane, which when released to the atmosphere, can contribute to global climate change. Increasing use of gas collection systems has reduced the risk of escaping methane emissions entering the atmosphere, but gas capture is not 100% efficient, and further, there are still many instances when gas collection systems are not used. Biotic methane mitigation systems exploit the propensity of some naturally occurring bacteria to oxidize methane. By providing optimum conditions for microbial habitation and efficiently routing landfill gases to where they are cultivated, a number of bio-based systems, such as interim or long-term biocovers, passively or actively vented biofilters, biowindows and daily-used biotarps, have been developed that can alone, or with gas collection, mitigate landfill methane emissions. This paper reviews the science that guides bio-based designs; summarizes experiences with the diverse natural or engineered substrates used in such systems; describes some of the studies and field trials being used to evaluate them; and discusses how they can be used for better landfill operation, capping, and aftercare.

  9. Soil contamination in landfills: a case study of a landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  10. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  11. Preventing falls and fall-related injuries in hospitals.

    PubMed

    Oliver, David; Healey, Frances; Haines, Terry P

    2010-11-01

    Falls are a widespread concern in hospitals settings, with whole hospital rates of between 3 and 5 falls per 1000 bed-days representing around a million inpatient falls occurring in the United States each year. Between 1% and 3% of falls in hospitals result in fracture, but even minor injuries can cause distress and delay rehabilitation. Risk factors most consistently found in the inpatient population include a history of falling, muscle weakness, agitation and confusion, urinary incontinence or frequency, sedative medication, and postural hypotension. Based on systematic reviews, recent research, and clinical and ethical considerations, the most appropriate approach to fall prevention in the hospital environment includes multifactorial interventions with multiprofessional input. There is also some evidence that delirium avoidance programs, reducing sedative and hypnotic medication, in-depth patient education, and sustained exercise programs may reduce falls as single interventions. There is no convincing evidence that hip protectors, movement alarms, or low-low beds reduce falls or injury in the hospital setting. International approaches to developing and maintaining a fall prevention program suggest that commitment of management and a range of clinical and support staff is crucial to success.

  12. [Application of cowl in semi-aerobic landfill and its influence in initial stage].

    PubMed

    Han, Dan; Zhao, You-cai; Xue, Bin-jie; Gao, Pin

    2009-10-15

    Enhancement of semi-aerobic landfill performance through a cowl installed on the gas ventilation pipeline using a simulated landfill box with 2 m x 1 m x 2 m in size was investigated, aiming at the maximum methane emission reduction. Influence of cowl on semi-aerobic environment formation was explored, and variety of methane and carbon dioxide concentrations at different wind speeds and mechanism of cowl operation were identified to provide information on design and improvement of semi-aerobic landfill. The results show that the cowl speeds up the semi-aerobic environment to shape, from over 50 days down to approximately 40 days, and reduces methane emission by promoting methane transformation to carbon dioxide. When the cowl is taken off suddenly during the normal operation, carbon dioxide concentration falls to 15.88% from the initial 16.67% immediately, and methane concentration increases to 16.12% from 6.14%. However, the carbon dioxide and methane concentration becomes 19.18% and 10.05%, respectively, as the cowl is taken on again. Additionally, methane emissions in the exhaust gas were monitored at different wind speeds of 2.0, 3.5, 5.0, 6.5, 8.0 m/s, and finds that the methane concentration reduces from the initial 15% to below 5% when the wind speed increases from 2 m/s to 8 m/s.

  13. Landfill gas energy recovery: Turning a liability into an asset

    SciTech Connect

    Nichols, M.

    1996-08-01

    Until the past decade, landfill gas (LFG) was viewed as a nuisance at best and a hazard at worst. Today, municipalities and private-sector solid waste management companies are findings ways to put landfill gas to productive use. Landfill gas energy recovery eliminates detrimental air emissions; prevents landfill methane from contributing to global climate change; stops methane from migrating off-site and becoming a safety hazard or odor problem; and provides local utilities, industry, and consumers with a competitive, local source of power. In other words, LFG-to-energy facilities provide a unique form of recycling--solid waste is hauled to the landfill as refuse and returned to the consumer in the form of energy. US EPA`s Landfill Methane Outreach Program (LMOP) and new EPA regulations for control of landfill gas emissions work together to encourage greater use of LFT at many facilities across the US.

  14. Health assessment for Pigeon Point Landfill Site (New Castle City Landfill), New Castle, Delaware, Region 3. CERCLIS No. DED980494603. Preliminary report

    SciTech Connect

    Not Available

    1988-05-11

    The Pigeon Point Landfill 180-acre site includes a former municipal landfill that reportedly received industrial wastes during the period from 1968 to 1985. Initial sampling of groundwater and leachate revealed inorganic and organic chemicals at levels of health concern; however, per anecdotal information received from EPA, subsequent sampling has not confirmed initial sampling results. Only the original sampling data were available for this health assessment and since the data are questionable, they are not reported here. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater and leachate. However, information available on the site at present is of questionable validity. Additional information on contaminants released, populations potentially exposed, and environmental pathways through which the contaminants can reach these populations is needed.

  15. Application of tire chips to reduce the temperature of secondary geomembranes in municipal solid waste landfills.

    PubMed

    Hoor, Azadeh; Rowe, R Kerry

    2012-05-01

    Heat generated by the biodegradation of waste and other chemical processes in a landfill can potentially affect the long-term performance of landfill liner system, in particular that of a high-density polyethylene geomembrane. In a double liner system, the difference in leachate exposure and temperature might improve the long-term performance of the secondary geomembrane compared to that of the primary geomembrane. However, in some cases, the temperature is likely to be high enough to substantially reduce the service-life of the secondary geomembrane. This study explores the possible effectiveness of using tire chips as thermal insulation between primary and secondary liners to reduce the temperature of secondary geomembranes as compared to traditional soil materials. Heat and contaminant migration analyses are performed for cases with no insulation and for cases in which a layer of soil or tire chips has been used as thermal insulation between the primary and secondary liners. The effect of insulation on prolonging the service-life of a secondary geomembrane and, consequently, on contaminant transport through a liner system is examined for the case of a volatile organic compound (dichloromethane) found in landfill leachate. The study suggests that the use of tire chips warrants consideration, however there are other practical issues that require consideration in the detailed design and construction of landfill liners. Issues such as finite service-life, low working temperature, excessive settlement, ability to generate internal heat, leaching of tire chips and limitations in performing electrical resistivity leak detection tests are identified.

  16. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  17. Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.

    PubMed

    Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes

    2013-02-01

    Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. PMID:23177019

  18. Advanced treatment of landfill leachate by a new combination process in a full-scale plant.

    PubMed

    Li, Huo-Sheng; Zhou, Shao-Qi; Sun, Yan-Bo; Feng, Ping; Li, Jing-da

    2009-12-15

    Advanced treatment of mature landfill leachate from a municipal landfill located in southern China (Jiangmen) was carried out in a full-scale plant using a new process. The combined process has a sequencing batch reactor (SBR) serving as the primary treatment, with polyferric sulfate (PFS) coagulation coupled with a Fenton system as secondary treatment, and a pair of upflow biological aerated filters (UBAFs) in parallel as tertiary treatment. The overall removal efficiency of chemical oxygen demand (COD) in this process was 97.3%, with an effluent COD less than 100 mg/L. Up to 99% ammonia (N-NH3) removal efficiency was achieved in the SBR, with an effluent of less than 3 mg/L, which meets the discharge standard (< or =25 mg/L) with only primary treatment. The total phosphorus (TP) and suspended solids (SS) in the final effluent were reduced to less than 1 mg/L and 10 mg/L, respectively. The experience gained in the operation and maintenance will lead to a more stable performance of this combined process. An economic analysis shows that the overall operating cost of the advanced treatment was $2.70/m(3). This new combination process was proved to be highly compatible and efficient in a small-scale landfill leachate treatment plant and is recommended for small-scale landfill leachate treatment plants.

  19. Impact of landfill leachate on the groundwater quality: A case study in Egypt.

    PubMed

    Abd El-Salam, Magda M; I Abu-Zuid, Gaber

    2015-07-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  20. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    PubMed Central

    Abd El-Salam, Magda M.; I. Abu-Zuid, Gaber

    2014-01-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  1. Phytoremediation of landfill leachate using Pennisetum clandestinum.

    PubMed

    Sögüt, Zerrin; Zaimoglu, B Zeynep; Erdogan, Reyhan; Sucu, M Yavuz

    2005-01-01

    Landfills are still the most widely used solid waste disposal method used across the world. Leachate generated from landfill areas exerts environmental risks mostly on surface and groundwater, with its high pollutant content, most notably metals, which cause an unbearable lower water quality. During dumping or after the capacity of the landfill has been reached, a decontamination and remediation program should be taken for the area. This study was conducted to assess the capacity and efficiency of Pennisetum clandestinum, a prostrate perennial plant, to accumulate chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), zinc (Zn) and lead (Pb). Leachate, taken from the Sofulu Landfill Site, was given to Pennisetum clandestinum for 180 days, in 3 dilution sets as 1/1, 1/2 and 1/4, in batch configuration. An additional control set was also installed for comparison. Results showed that, even though the metal content of soil had risen, plants accumulated 2 to 8.5 times higher concentrations than the control set. It is important to see, the plant showed almost no stress symptoms even if the set was fed by pure leachate. Pennisetum clandestinum was observed to accumulate metals mostly in the upper bodies, excluding Fe and Cu. 76% of accumulated Cr, 85% of Ni, 66% of Zn and 100% of Pb was observed to accumulate in above-ground parts, where only 20% of Cu and 4% of Fe was accumulated. Due to the high pollution tolerance of Pennisetum clandestinum, makes this plant suitable for decontamination and remediation of landfill sites.

  2. Anode Fall Formation in a Hall Thruster

    SciTech Connect

    Leonid A. Dorf; Yevgeny F. Raitses; Artem N. Smirnov; Nathaniel J. Fisch

    2004-06-29

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed.

  3. Space monitoring of municipal solid waste landfills in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  4. Geohydrology and quality of shallow ground water at and near the Old Laurel County and GC Singleton Landfills, Laurel County, Kentucky

    USGS Publications Warehouse

    Parnell, J.M.

    1993-01-01

    Between 1969 and 1983, solid and hazardous waste was deposited at the Old Laurel County and G.C. Singleton Landfills that were developed on a bench created by strip mining for coal. Water-level data from eight monitoring wells indicate that the general direction of groundwater flow in the shallow aquifer is toward Slate Lick, which is at a lower altitude than the landfills. Analyses of water samples from these wells indicate that the water quality near the landfills is similar to that expected in coal strip-mined areas. The pH of groundwater ranged from 4.6 to 6.2 and indicates acidic conditions. Elevated values of specific conductance in groundwater near the landfills may indicate the effects of landfill leachate or acid-mine drainage. The groundwater samples also contained high concentrations of dissolved constituents commonly associated with acid-mine drainage such as aluminum, iron, manganese, sulfate, and zinc. A relatively high concentration of fluoride, 4.5 mg/L, in water from one well may be related to landfill leachate. Except for 3,4-dichloro-benzoic acid, organic constituents were not detected in the groundwater samples. However, because of the widespread use of chemicals containing 3,4-dichloro-benzoic acid, the source of this constituent in the shallow aquifer system near the landfills cannot be determined.

  5. EPA`s landfill methane outreach program: Helping facilities save money and protect the environment by using landfill gas

    SciTech Connect

    Walsh, J.

    1997-06-01

    Until the past decade, landfill gas (LFG) was viewed as a nuisance at best and a hazard at worst. Today, many landfill owners and private-sector solid waste management companies are finding ways to put landfill gas to productive use. Landfill gas energy recovery eliminates detrimental air emissions; prevents landfill methane from contributing to global climate change; stops methane from migrating off-site and becoming a safety hazard or odor problem; and provides local utilities, industry, and consumers with a competitive, local source of power. In other words, LFG-to-energy facilities provide a unique form of recycling - solid waste is hauled to the landfill as refuse and returned to the consumer in the form of energy. US EPA`s Landfill Methane Outreach Program (LMOP) works to encourage greater use of LFG at facilities across the US.

  6. 1991 Fall Meeting Report

    NASA Astrophysics Data System (ADS)

    Chapman, David S.

    The AGU 1991 Fall Meeting, held in San Francisco December 9-13, was the largest national AGU meeting ever held. Meeting participation continued the steady growth trend set throughout the previous decade. A total of 4,037 papers and posters were presented, and by Friday noon of the meeting over 5,500 members had registered.Several special events were scheduled to inform and engage members on societal and programmatic aspects of our science. AGU's Committee on Education and Human Resources sponsored an open forum that addressed opportunities and problems associated with dual-career couples. A discussion of NASA's strategic plan by Berrien Moore and Joseph Alexander drew a large audience, and a special session on societal aspects of the Mt. Pinatubo eruption drew an overflow crowd. Two special lectures— “Plumes, Plates, and Deep Earth Structure” by Don L. Anderson and “New Frontiers in Aeronomy: Effects of Global Atmospheric Change” by P. M. Banks-also drew overflow crowds.

  7. An integrated surface-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut, 2000

    USGS Publications Warehouse

    Johnson, Carole D.; Dawson, C.B.; Belaval, Marcel; Lane, Jr., John W.

    2002-01-01

    abruptly about 450 feet southwest of the landfill. The sheet-like conductive anomaly was interpreted as a fractured, conductive lithologic feature filled with conductive fluids. To further delineate this anomaly, two two-dimensional resistivity profiles were collected west of the sheet-like conductive anomaly to assess the possibility that the sheet-like conductive anomaly continued to the west in its down-dip direction. Each of the north-south oriented resistivity profiles showed bullet-shaped rather than linear-shaped anomalies, with a relatively smaller magnitude of conductivity than the sheet-like conductive anomaly to the east. If these bullet-like features are spatially connected, they may represent a linear, or pipe-like, conductive anomaly in the bedrock with a trend of N290?E and a plunge of 12?. Additional surveys were conducted to assess the apparent southern termination of the sheet-like conductive feature. Terrain-conductivity surveys indicated the sheet-like feature was not continuous to the south. A two-dimensional resistivity line and a coincident terrain-conductivity profile indicated the presence of a steep, eastward dipping, low magnitude, electrically conductive anomaly on the eastern end of the profile. Although the sheet-like conductive anomaly apparently did not continue to the south, the survey conducted in 2000 identified an isolated, weak conductive anomaly south of the previously identified anomaly. Inductive terrain-conductivity surveys performed north of the sheet-like conductive anomaly and west of the landfill indicated the anomaly did not extend to the north into the area of the former chemical-waste disposal pits. No conductive plumes or conductive features were observed in the subsurface bedrock west of the landfill. A conductive anomaly was identified in the southern section of the new terrain-conductivity grid. The magnitude and distribution of the apparent conductivity of this anomaly was identified as a nearly vertica

  8. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.

  9. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system

    SciTech Connect

    Baldasano, J.M.; Gasso, S.; Perez, C

    2003-07-01

    This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O and M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 Euro/t, respectively.

  10. Powdered activated carbon added biological treatment of pre-treated landfill leachate in a fed-batch reactor.

    PubMed

    Kargi, Fikret; Pamukoglu, M Yunus

    2003-05-01

    Biological treatment of landfill leachate usually results in low treatment efficiencies because of high chemical oxygen demand (COD), high ammonium-N content and also presence of toxic compounds such as heavy metals. A landfill leachate with high COD content was pre-treated by coagulation-flocculation followed by air stripping of ammonia at pH = 12. Pre-treated leachate was biologically treated in an aeration tank operated in fed-batch mode with and without addition of powdered activated carbon (PAC). PAC at 2 g l-1 improved COD and ammonium-N removals resulting in nearly 86% COD and 26% NH4-N removal.

  11. Health assessment for Coker's Sanitation Service Landfills, Cheswold, Delaware, Region 3. CERCLIS No. DED980704860. Preliminary report

    SciTech Connect

    Not Available

    1988-11-14

    The Coker's Sanitation Service Landfills site is the location of two former landfills used to dispose of latex rubber waste sludges from what is now the Reichhold Chemicals, Inc. plant. On-site contamination consists of ethylbenzene, iron, toluene, acrolein, and bis-2-chloroethylether in groundwater, waste sludges, sediments, and leachate. Off-site sampling of monitoring wells indicates acrolein and ethylbenzene in groundwater. There are no reports of physical hazards at the site. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater.

  12. Landfill mining: Development of a cost simulation model.

    PubMed

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. PMID:26858240

  13. NOVA Fall 1999 Teacher's Guide.

    ERIC Educational Resources Information Center

    French, Wayne; Karlan, James W.; Ransick, Kristina; Rosene, Dale; Sammons, Fran Lyons; Sammons, James

    This teacher's guide complements five programs that aired on the Public Broadcasting System (PBS) in the fall of 1999. Programs include: (1) "Fall of the Leaning Tower"; (2) "Everest: The Mystery of Mallory and Irvine"; (3) "Time Travel, Decoding Nazi Secrets"; (3) "Voyage of Doom"; and (5) "Barely Breathing". It provides activity set-ups related…

  14. Not Just a Fall Tree

    ERIC Educational Resources Information Center

    Miller-Hewes, Kathy A.

    2004-01-01

    Trees burst with color in the northern states. Autumn leaves dust the ground. Painting the fall landscape is nothing new. Teachers have been doing it in classrooms for decades. The approach, however, can make the difference between whether the fall landscape is simply painting for fun, or a real learning experience. Students learn best when they…

  15. Project Profile Report. Fall 1993.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport.

    Pennsylvania College of Technology's Project Profile seeks to provide a portrait of all students entering each fall by collecting and analyzing surveys completed at the time of admission and comparing them to previous years. This report presents data on the 4,942 students who applied and matriculated in fall 1993 and includes comparisons by…

  16. [FALLS IN PATIENTS WITH DEMENTIA].

    PubMed

    Aizen, Efraim

    2015-05-01

    Older people with dementia are at increased risk of falls and their consequences. Patients with dementia fall twice as often as elderly cognitively intact people and are at greater risk of injurious falls. Falls in older people with dementia cause higher rates of morbidity, mortality and institutionalization. There is limited literature attempting to show specific risk factors for falls in this population, mainly: Lewy body dementia, dementia related to Parkinson's disease and depression, psychotropic medication, functional disability and behavioral disturbances. The Physiological Profile Assessment (PPAJ has been found to be a good fall risk screening tool in this population. There are few trials that have shown limited effectiveness of targeted fall prevention programs in community-dwelling cognitively impaired elderly. The evidence from hospitals and residential care is not conclusive. However, it has been demonstrated that some interventions, primarily exercise interventions, can modify certain risk factors in patients with dementia. Further research is required in specifically targeting fall prevention in older people with dementia. PMID:26168645

  17. The effect of atmospheric pressure on CH4 and CO2 emission from a closed landfill site in Manchester, UK.

    PubMed

    Nwachukwu, A N; Anonye, D

    2013-07-01

    A time series study was conducted to ascertain the effect of barometric pressure on the variability of CH4 and CO2 concentrations in a closed landfill site. An in situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the GasClam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentrations and barometric pressure. The result shows CH4 and CO2 concentrations to be variable with weak negative correlations of 0.2691 and 0.2773, respectively, with barometric pressure over the entire monitoring period. Although the R(2) was slightly improved by considering their concentration over single periods of rising and falling pressure, single periods of rising pressure and single periods of falling pressure, their correlations remained insignificant at 95% confidence level. The result revealed that atmospheric pressure--the acclaimed major control on the variability of ground-gas concentration--is not always so. A case was made for the determination of other possible controls such as changes in temperature, soil permeability, landfill water depth, season, and geology of the borehole and also how much of control each factor would have on the variability/migration of CH4 and CO2 concentrations from the studied landfill.

  18. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  19. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  20. Automatic Fall Monitoring: A Review

    PubMed Central

    Pannurat, Natthapon; Thiemjarus, Surapa; Nantajeewarawat, Ekawit

    2014-01-01

    Falls and fall-related injuries are major incidents, especially for elderly people, which often mark the onset of major deterioration of health. More than one-third of home-dwelling people aged 65 or above and two-thirds of those in residential care fall once or more each year. Reliable fall detection, as well as prevention, is an important research topic for monitoring elderly living alone in residential or hospital units. The aim of this study is to review the existing fall detection systems and some of the key research challenges faced by the research community in this field. We categorize the existing platforms into two groups: wearable and ambient devices; the classification methods are divided into rule-based and machine learning techniques. The relative merit and potential drawbacks are discussed, and we also outline some of the outstanding research challenges that emerging new platforms need to address. PMID:25046016

  1. Study of vinyl chloride formation at landfill sites in California. Final report, 16 July 1985-15 January 1987

    SciTech Connect

    Molton, P.M.; Hallen, R.T.; Payne, J.W.

    1987-01-01

    The purpose of this study was to determine if vinyl chloride (VC) detected in air above California landfills is produced in situ. Experiments were performed with N and S California landfill samples and anaerobic-digestor sewage sludge. Test materials were incubated with various chlorocarbons and with /sup 13/C-trichloroethylene (TCE) to confirm biological production of /sup 13/C-VC. These experiments confirmed the biological dechlorination of chloroethylenes as the most likely route for VC emission from landfills, rather than chemical or photochemical routes, or PVC degradation. Leaching from PVC could be a minor source of VC, though there was less than 0.1% (estimated) plastic in the landfill samples, containing at most 330 ppm of VC monomer. A landfill sample known to produce VC was used to start an anaerobic chemostat using methanol as sole carbon source. The enriched culture resulting was homogeneous, and when incubated with /sup 13/C-TCE, produced (13)C-VC, confirmed by GC/MS.

  2. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO₂ nanoparticles.

    PubMed

    Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Dong, Haoran; Liu, Yutang; Wan, Jia; Chen, Anwei; Guo, Zhi; Yan, Ming; Wu, Haipeng; Yu, Zhigang

    2016-01-15

    This study investigated the performance of immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles in the treatment of raw landfill leachate with a very low biodegradability ratio (BOD5/COD) of 0.09. The effects of various operating parameters, such as initial chemical oxygen demand (COD) concentration, pH, temperature, and biosorbent dosage, were evaluated with respect to the removal efficiency of total organic carbon (TOC) and ammonia nitrogen (NH3-N). For the immobilized biosorbents, an optimum pH of 6.0 for TOC and 7.0 for NH3-N were found suitable for TOC and NH3-N removal at temperature of 37°C, respectively. The most superior removal efficiencies of TOC and NH3-N of landfill leachate were over 75% and 74% in 72 h at an initial COD concentration of 200 mg L(-1), respectively. In addition, heavy metals were partly removed by the immobilized biosorbents during the process of landfill leachate treatment. The species and mass percentage of organic compounds in landfill leachate after the treatment were found to have considerably declined according to the gas chromatography coupled with mass spectrometry (GC-MS) system. These results indicate that the immobilized P. chrysosporium loaded with nitrogen-doped TiO2 nanoparticles could be a convenient and efficient method for the treatment of landfill leachate. PMID:26355412

  3. Arsenic speciation in municipal landfill leachate.

    PubMed

    Li, Yarong; Low, Gary K-C; Scott, Jason A; Amal, Rose

    2010-05-01

    Arsenic species in municipal landfill leachates (MLL) were investigated by HPLC-DRC-ICPMS and LC-ESI-MS/MS. Various arsenic species including arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), as well as sulfur-containing organoarsenic species were detected. Two sulfur-containing arsenic species in a MLL were positively identified as dimethyldithioarsinic acid (DMDTA(V)) and dimethylmonothioarsinic acid (DMMTA(V)) by comparing their molecular ions, fragment patterns and sulfur/arsenic ratios with in-house synthesised thiol-organoarsenic compounds. The findings demonstrated the potential for transformation of DMA(V) to DMDTA(V) and DMMTA(V) in a DMA(V)-spiked MLL in a landfill leachate environment.

  4. Assessing the environmental risks associated with contaminated sites: Definition of an Ecotoxicological Classification index for landfill areas (ECRIS).

    PubMed

    Senese, V; Boriani, E; Baderna, D; Mariani, A; Lodi, M; Finizio, A; Testa, S; Benfenati, E

    2010-06-01

    Assessing ecological risk in quantitative terms is a site-specific complex procedure requiring evaluation of all possible pathways taken by the chemicals from the contamination source to the targets to be protected. Unfortunately, too many cases lack of physico-chemical and ecotoxicological data makes impossible to quantify the ecological risk. We present the Ecotoxicological Classification Risk Index for Soil (ECRIS), a new classification system specific for soil risk assessment, which gives a comparative indication of the risk linked to environmental contamination by any chemical. The tool we propose is based on the integration of a data set characterizing the ecotoxicological and exposure profile of chemicals. ECRIS is a simple approach specifically set up for the landfill scenario. This index draws on the huge amount of data from our many years of leachate analysis. ECRIS is useful for a first screening of probably contaminated soil. A case study based on some Italian landfills is proposed.

  5. Cowlitz Falls Fish Passage.

    SciTech Connect

    1995-09-01

    The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system.

  6. Methane production in simulated hybrid bioreactor landfill.

    PubMed

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  7. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  8. Falls in elderly hemodialysis patients.

    PubMed

    Abdel-Rahman, E M; Turgut, F; Turkmen, K; Balogun, R A

    2011-10-01

    The elderly, (age ≥ 65 years) hemodialysis (HD) patient population is growing rapidly across the world. The risk of accidental falls is very high in this patient population due to multiple factors which include aging, underlying renal disease and adverse events associated with HD treatments. Falls, the most common cause of fatal injury among elderly, not only increase morbidity and mortality, but also increase costs to the health system. Prediction of falls and interventions to prevent or minimize fall risk and associated complications will be a major step in helping these patients as well as decreasing financial and social burdens. Thus, it is vital to learn how to approach this important problem. In this review, we will summarize the epidemiology, risk factors, pathophysiology and complications of falls in elderly HD patients. We will also focus on available methods to assess and predict the patients at higher risk of falling and will provide recommendations for interventions to reduce the occurrence of falls in this population.

  9. Radar fall detectors: a comparison

    NASA Astrophysics Data System (ADS)

    Erol, Baris; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem

    2016-05-01

    Falls are a major cause of accidents in elderly people. Even simple falls can lead to severe injuries, and sometimes result in death. Doppler fall detection has drawn much attention in recent years. Micro-Doppler signatures play an important role for the Doppler-based radar systems. Numerous studies have demonstrated the offerings of micro-Doppler characteristics for fall detection. In this respect, a plethora of micro-Doppler signature features have been proposed, including those stemming from speech recognition and wavelet decomposition. In this work, we consider four different sets of features for fall detection. These can be categorized as spectrogram based features, wavelet based features, mel-frequency cepstrum coefficients, and power burst curve features. Support vector machine is employed as the classifier. Performance of the respective fall detectors is investigated using real data obtained with the same radar operating resources and under identical sensing conditions. For the considered data, the spectrogram based feature set is shown to provide superior fall detection performance.

  10. Decontamination of landfill leachate by soils with different textures.

    PubMed

    Wong, M H; Li, M M; Leung, C K; Lan, C Y

    1990-12-01

    Soils with different textures (sandy, loamy, and clay soils) were used as filters to attenuate leachate from the Gin Drinkers' Bay landfill. They were used to pack columns of different depths: 0.2, 0.6, and 1.0 m. Eight millimeters of leachate was drained into the soil columns each day for 56 days. The percolated leachates were collected weekly and their properties analyzed. It was revealed that the properties became rather stable at Day 28 and therefore only the data from Day 28 are presented. The effluents from the loamy and clay columns with depths of 0.6 and 1.0 m contained significantly lower (P less than 0.05) ammonia contents and had lower chemical oxygen demand than those from sandy soil columns. Moreover, the depth of the columns of loam and clay did not show a significant difference (P greater than 0.05). Sandy soil was the least effective in attenuating the leachate. The efficiency of all the soil columns decrease as the soil depth decreased. It was also noted that growing of tree seedings (Acacia confusa) could further improve the efficiency of the loamy soil, especially for the removal of Na. The phytotoxicity of the raw and percolated leachate was evaluated using seed germination of two plant species (Brassica chinensis and Lolium perenne) and the growth of an uncellular green alga (Chlorella pyrenoidosa). In general, the raw leachate was toxic and inhibited seed germination and root growth of the two plant species and the growth rate of the unicellular green alga. The toxicity was due to the high levels of ammonia-nitrogen. COD, iron, manganese, and sodium ions. Percolated leachate, especially from loamy and clay soil columns, exhibited a decrease in phytotoxicity. Clay or loamy soil columns of 0.6-m soil depth seemed to be sufficient to remove the phytotoxic substances in landfill leachate.

  11. A technologist's view on municipal solid waste landfill risks

    SciTech Connect

    Haire, M.J.

    1991-01-01

    There are risks associated with all human activity. The level of risk that is acceptable is a matter of choice, personal judgement, and public policy. We are not conscious of many of the risks that we take. We tend to be unbalanced in our assessments of risk. We attach more importance to accidents and catastrophic events where large numbers of people die (e.g., airplane crashes) than to the individual deaths from a large number of events (e.g., deaths from automobile accidents). Scientists do not communicate technical risks well. Public risk perceptions are based on broad considerations such as justice, equity, choice, concern for future generations, morality, etc. Thus, there are frequent differences between a technical assessment of risk versus the public's perception of the risk. As engineers and scientists, it is our duty to effectively communicate risk options facing society. Technologists must understand why the public feels the way it does about waste risks and address the root causes of those concerns. There is a disturbing trend to concentrate on small'' risks (e.g., chemicals in clothing) and to minimize truly important and large risks (e.g., the disparity between rich and poor). The risks posed by the modern municipal waste landfill are small compared to others we face daily. Regarding contamination of drinking water, the EPA reported in its 1988 report to Congress that the vast majority of municipal solid waste landfills pose between no and very low risks, some 12% pose moderate risks, and only a small fraction of a percent nationwide have a high risk. The risks from gas emissions are summarily low. 12 refs., 5 tabs.

  12. Health assessment for Butterworth Landfill, Kent County, Michigan, Region 5. CERCLIS No. MID062222997. Preliminary report

    SciTech Connect

    Not Available

    1989-03-10

    The Butterworth Landfill is currently listed on the National Priorities List. The Butterworth Landfill was owned and operated by the City of Grand Rapids until ordered closed by the State of Michigan in 1973 for improper operations. Prior to closure, the landfill accepted industrial waste, including plating wastes, cyanide, organic solvents, inert materials and medical wastes. On-site soil samples indicate that phthalate esters, polychlorinated biphenyls (PCBs), and the polycyclic aromatic hydrocarbons (PAHs) are the organic contaminants of concern. Included in these three chemical groups are the following specific compounds and maximum concentrations in parts per billion (ppb): bis(2-ethylhexyl)phthalate, 66,000; butylbenzylphthalate, 29,000; Araclor 1254 (PCB), 730,000; Araclor 1260 (PCB), 800,000; pyrene, 7,500; chrysene, 3,600; benzo(a)anthracene, 2,900; anthracene, 2,000; and phenanthrene, 7,100. Results showed maximum concentrations in ppb of the following metals in on-site soils: chromium, 43,000,000; cadmium, 280; and lead, 67,500. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to organic and inorganic chemicals may occur via direct contact, ingestion, or inhalation.

  13. Hydrogeology and ground-water-quality conditions at the Geary County landfill, northeast Kansas, 1988

    USGS Publications Warehouse

    Myers, N.C.; Bigsby, P.R.

    1989-01-01

    Chemical analysis of water from monitoring wells upgradient and downgradient of the Geary County Landfill in Kansas near Junction City indicate the presence of several chemically distinct water types. For the dominant calcium bicarbonate water type, concentrations of inorganic and organic constituents indicate the presence of reducing conditions within the landfill and increased concentrations of calcium, magnesium, sodium, bicarbonate, sulfate, chloride, ammonia, iron, manganese, and other trace elements downgradient within a leachate plume that extends northeasterly away from the landfill. The orientation of the long axis of the leachate plume does not coincide with the August or September directions of groundwater flow, possibly due to the effect of abundant rainfall and high river stages at other times of the year or preferential flow in very transmissive zones, and thus may indicate the dominant direction of groundwater flow. None of the organic-constituent or inorganic-constituent concentrations exceeded secondary drinking-water standards. Concentrations of benzene, vinyl chloride, and 1,2-trans-dichloroethene exceeded Kansas notification levels. (USGS)

  14. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  15. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  16. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated. PMID:26577215

  17. A new perspective: Measuring and modeling of landfill methane emissions

    SciTech Connect

    Bogner, J. |; Meadows, M.; Repa, E.

    1998-06-01

    Estimating landfill methane emissions at national and global levels is fraught with uncertainties. The goal for the near-term is to improve national and global estimates based on improved models, which more realistically simulate a growing database of field measurements. This would assist regulators and policy makers to more accurately evaluate landfill methane emissions and guide development of national mitigation strategies. This article provides an updated perspective on landfill methane emissions by: (1) discussing recent field measurements and research results; (2) proposing research still needed; and (3) suggesting improved modeling strategies (including regulatory approaches) to assess landfill methane emissions more accurately.

  18. Generating CO(2)-credits through landfill in situ aeration.

    PubMed

    Ritzkowski, M; Stegmann, R

    2010-04-01

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

  19. Injuries due to falling coconuts.

    PubMed

    Barss, P

    1984-11-01

    Falling coconuts can cause injury to the head, back, and shoulders. A 4-year review of trauma admissions to the Provincial Hospital, Alotau, Milne Bay Province, Papua New Guinea, revealed that 2.5% of such admissions were due to being struck by falling coconuts. Since mature coconut palms may have a height of 24 up to 35 meters and an unhusked coconut may weigh 1 to 4 kg, blows to the head of a force exceeding 1 metric ton are possible. Four patients with head injuries due to falling coconuts are described. Two required craniotomy. Two others died instantly in the village after being struck by dropping nuts.

  20. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  1. Highlights of 2012 Fall Meeting

    NASA Astrophysics Data System (ADS)

    Finn, Carol

    2013-01-01

    This past December the streets of San Francisco, Calif., surrounding the Moscone Center were awash with a sea of Earth and space scientists attending the 45th consecutive AGU Fall Meeting, eager to share and expand their knowledge "for the benefit of humanity." As it has for many years, attendance at AGU's Fall Meeting—the largest gathering of Earth and space scientists in the world—continued to increase, this year passing the 24,000 mark. Attendees at the meeting, which took place on 3-7 December 2012, hailed from 97 countries; nearly 7000 of them were students. News from the Fall Meeting was carried in newspapers and on Web sites around the world, and the social media sphere lit up with talk of AGU and the Fall Meeting. It's even reported that for a short time we were a trending topic on Twitter.

  2. Exercises to help prevent falls

    MedlinePlus

    ... D, Dempster DW, Luckey M, Cauley J, eds. Osteoporosis . 4th ed. Philadelphia, PA: Elsevier; 2013:chap 70. Donath L, van Dieen J, Faude O. Exercise-based fall prevention in the elderly: what about ...

  3. Community College Estimated Growth: Fall 2010

    ERIC Educational Resources Information Center

    Phillippe, Kent; Mullin, Christopher M.

    2011-01-01

    A survey from the American Association of Community Colleges (AACC) found that enrollment growth in fall 2010 slowed its pace at community colleges, increasing 3.2% from the previous year. This contrasts with more dramatic increases in recent years: more than 11% between fall 2008 and fall 2009, and nearly 17% between fall 2007 and fall 2009,…

  4. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  5. Sewage sludge to landfill: some pertinent engineering properties.

    PubMed

    O'Kelly, Brendan C

    2005-06-01

    More stringent controls on the quality of wastewater discharges have given rise to increasing volumes of sewage sludge for disposal, principally to land, using either land-spreading or sludge-to-landfill operations. Current sludge-to-landfill methods generally involve mixing the concentrated sludge with other solid waste in municipal landfills. However, stricter waste disposal legislation and higher landfill taxes are forcing the water industry to look for more efficient disposal strategies. Landfill operators are also increasingly reluctant to accept sludge material in the slurry state because of construction difficulties and the potential for instability of the landfill slopes. The engineering and drying properties of a municipal sewage sludge are presented and applied, in particular, to the design, construction, and performance of sewage sludge monofills. Sludge handling and landfill construction are most effectively conducted within the water content range of 85% water content, the optimum water content for standard proctor compaction, and 95% water content, the sticky limit of the sludge material. Standard proctor compaction of the sludge within this water content range also achieves the maximum dry density of approximately 0.56 tonne/m3, which maximizes the storage capacity and, hence, the operational life of the landfill site. Undrained shear strength-water content data (pertinent to the stability of the landfill body during construction) and effective stress-strength parameters, which take into account the landfill age and the effects of ongoing sludge digestion, are presented. Landfill subsidence, which occurs principally because of creep and decomposition of the solid organic particles, is significant and continues indefinitely but at progressively slower rates.

  6. The potential for aeration of MSW landfills to accelerate completion

    SciTech Connect

    Rich, Charlotte; Gronow, Jan; Voulvoulis, Nikolaos

    2008-07-01

    Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.

  7. A new system for groundwater contamination hazard rating of landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2009-01-01

    In developing countries, several unregulated landfills exist adjacent to large cities, releasing harmful contaminants to the underlying aquifer. Normally, landfills are constructed to hold three types of waste, namely hazardous waste, municipal solid waste, and construction and demolition waste. Hazardous waste and municipal solid waste landfills are of greater importance as these pose greater hazard to groundwater, in comparison with landfills holding waste from construction and demolition. The polluting landfills need to be prioritized to undertake necessary control and remedial measures. This paper assesses existing site hazard rating systems and presents a new groundwater contamination hazard rating system for landfills, which can be used for site prioritization. The proposed system is based on source-pathway-receptor relationships and evaluates different sites relative to one another. The system parameters have been selected based on literature. The Delphi technique is used to derive the relative importance weights of the system parameters. The proposed system is compared with nine existing systems. The comparison shows that the site hazard scores produced by the existing systems for hazardous waste, municipal solid waste, and construction and demolition waste landfills are of the same order of magnitude and tend to overlap each other but the scores produced by the proposed system for the three types of landfills vary almost by an order of magnitude, which shows that the proposed system is more sensitive to the type of waste. The comparison further shows that the proposed system exhibits greater sensitivity also to varied site conditions. The application of different systems to six old municipal solid waste landfills shows that whereas the existing systems produce clustered scores, the proposed system produces significantly differing scores for all the six landfills, which improves decision making in site ranking. This demonstrates that the proposed system

  8. Aqueous- and solid-phase biogeochemistry of a calcareous aquifer system downgradient from a municipal solid waste landfill (Winterthur, Switzerland)

    SciTech Connect

    Amirbahman, A.; Schoenenberger, R.; Johnson, C.A.; Sigg, L. |

    1998-07-01

    This study addresses the biogeochemical changes that take place in a calcareous aquifer system under and down-gradient from a municipal solid waste landfill. Aqueous-phase chemical analysis of the redox-sensitive species indicates the presence of aerobic respiration, denitrification/NO{sub 3}{sup {minus}} reduction, and Fe(III), Mn(III/IV), and SO{sub 4} reduction processes under the landfill. Because available and released organic matter is limited, reduction processes downgradient from the landfill do not go far beyond aerobic respiration, denitrification, and Mn(III/IV) reduction. Assuming steady-state conditions, STEADYQL computer program has been used to model the biogeochemical processes by taking into account the kinetics of the redox reactions, calcite precipitation and dilution. Dilution has the most significant influence on the concentrations of the dissolved organic and inorganic carbon. Dissolved Mn(II) concentrations in the entire anaerobic zone are controlled by the solubility of rhodocrocite [MnCO{sub 3}(S)]. At selected locations under the landfill where SO{sub 4} reduction takes place, dissolved Fe(II) concentrations are regulated by the solubility of amorphous FeS. Chemical extraction of the aquifer solid phase indicates that the oxidation capacity of this aquifer system is largely controlled by iron(III)(hydr)-oxides.

  9. TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL

    EPA Science Inventory

    The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...

  10. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    EPA Science Inventory

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  11. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. PMID:27264459

  12. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed.

  13. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  14. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  15. Supercritical water oxidation of landfill leachate

    SciTech Connect

    Wang Shuzhong; Guo Yang; Chen Chongming; Zhang Jie; Gong Yanmeng; Wang Yuzhen

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

  16. Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the DeepWater Horizon (DWH) oil spill.

    PubMed

    Bentivegna, Carolyn S; Cooper, Keith R; Olson, Gregory; Pena, Edwin A; Millemann, Daniel R; Portier, Ralph J

    2015-12-01

    Body burdens of PAHs were compared to histological effects in menhaden (Family: Clupeidae, Genus: Brevoortia) collected in fall 2010 from Barataria Bay, LA (BBLA) and Delaware Bay, NJ (DBNJ). Barataria Bay was heavily oiled during the DeepWater Horizon (DWH) oil spill, while Delaware Bay although urbanized had no reported recent oil spills. GCMS analyses of pre-spill 2009, BBLA and DBNJ fish found predominantly C2/C3 phenanthrene (1.28-6.52 ng/mg). However, BBLA also contained five higher molecular weight PAHs (0.06-0.34 ng/mg DW). Fluorescent aromatic compound spectroscopy (FACS) of gastrointestinal (GI) tract tissue showed statistically higher levels of hydroxypyrene-like PAHs in DBNJ than BBLA fish. Histopathologic lesions were more prevalent in BBLA than DBNJ fish. The lesion prevalence (gill, trunk kidney, epidermis, stomach) in the BBLA menhaden were significantly higher and more severe than observed in the DBNJ menhaden. Reversible lesions included gill lamellar hyperplasia, adhesions, edema, and epidermal hyperplasia. The increased pigmented macrophage centers were indicative of activated macrophages responding to connective tissue damage or other antigens. The liver hepatic necrosis and renal tissue mineralization may well have undergone repair, but damage to the kidney nephrons and hepatic/biliary regions of the liver would be slower to resolve and apparently remained after elimination of PAHs. Therefore, a direct cause and effect between DWH oil spill and increased lesion prevalence in BBLA menhaden could not be established.

  17. Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the DeepWater Horizon (DWH) oil spill.

    PubMed

    Bentivegna, Carolyn S; Cooper, Keith R; Olson, Gregory; Pena, Edwin A; Millemann, Daniel R; Portier, Ralph J

    2015-12-01

    Body burdens of PAHs were compared to histological effects in menhaden (Family: Clupeidae, Genus: Brevoortia) collected in fall 2010 from Barataria Bay, LA (BBLA) and Delaware Bay, NJ (DBNJ). Barataria Bay was heavily oiled during the DeepWater Horizon (DWH) oil spill, while Delaware Bay although urbanized had no reported recent oil spills. GCMS analyses of pre-spill 2009, BBLA and DBNJ fish found predominantly C2/C3 phenanthrene (1.28-6.52 ng/mg). However, BBLA also contained five higher molecular weight PAHs (0.06-0.34 ng/mg DW). Fluorescent aromatic compound spectroscopy (FACS) of gastrointestinal (GI) tract tissue showed statistically higher levels of hydroxypyrene-like PAHs in DBNJ than BBLA fish. Histopathologic lesions were more prevalent in BBLA than DBNJ fish. The lesion prevalence (gill, trunk kidney, epidermis, stomach) in the BBLA menhaden were significantly higher and more severe than observed in the DBNJ menhaden. Reversible lesions included gill lamellar hyperplasia, adhesions, edema, and epidermal hyperplasia. The increased pigmented macrophage centers were indicative of activated macrophages responding to connective tissue damage or other antigens. The liver hepatic necrosis and renal tissue mineralization may well have undergone repair, but damage to the kidney nephrons and hepatic/biliary regions of the liver would be slower to resolve and apparently remained after elimination of PAHs. Therefore, a direct cause and effect between DWH oil spill and increased lesion prevalence in BBLA menhaden could not be established. PMID:26385175

  18. America's Poisoned Playgrounds: Children and Toxic Chemicals.

    ERIC Educational Resources Information Center

    Freedberg, Louis

    Next to chemical and farm workers, today's children are at the greatest risk from toxic chemicals. Through their normal play activities, children are exposed to a frightening array of toxic hazards, including lead, pesticides, arsenic, and unknown dangers from abandoned landfills and warehouses. Through a series of documented examples, the author…

  19. LEACHATE RECIRCULATION, METHANOGENS AND METAL CONCENTRATIONS IN BIOREACTOR LANDFILLS

    EPA Science Inventory

    The idea of operating landfills as bioreactors has received a lot of attention owing to many of the economic and waste treatment benefits. Portions of the Outer Loop landfill in Louisville, KY, owned and operated by WMI, Inc., are currently being used to test two different decom...

  20. ADVANCING THE FIELD EVALUATIONS AND APPLICATIONS OF LANDFILL BIOREACTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is undertaking a long-term program to conduct field evaluations of landfill bioreactors. The near-term effort is focused on the development of appropriate monitoring strategies to ensure adequate control of the landfill bioreactors an...

  1. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor... reference with 5 U.S.C. 552(a) and 1 CFR part 51. These methods are available from The American Society for... landfills operated by the Waste Management, Inc. or its successors: The Maplewood Recycling and...

  2. Talking trash: the economic and environmental issues of landfills.

    PubMed

    Taylor, D

    1999-08-01

    The U.S. per-capita figure for garbage production has topped four pounds per person per day, and that amount is rising at roughly 5% per year. In the past, municipal solid waste was sent to the nearest local landfill or incinerator. But in 1988, the U.S. Environmental Protection Agency instituted the first federal standards for landfills, designed to make them safer. Over 10,000 small municipal landfills have since been consolidated into an estimated 3,500 newer, safer landfills, some of which are "megafills" that can handle up to 10,000 tons of waste a day. The new landfills are outfitted to prevent air and water pollution and limit the spread of disease by scavengers. Although the new landfills provide better controls against air and water pollution as well as an alternate source of municipal income, they are not entirely problem-free. Some experts believe the new landfill technology has not been properly tested and will therefore not provide protection in the long run. Others feel that poorer, less well-informed communities are targeted as sites for new landfills. In addition, many people that live near megafills, which may draw garbarge from several states, are unhappy about the noise, truck traffic, odors, and pests caused by the facilities.

  3. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  4. Talking trash: the economic and environmental issues of landfills.

    PubMed Central

    Taylor, D

    1999-01-01

    The U.S. per-capita figure for garbage production has topped four pounds per person per day, and that amount is rising at roughly 5% per year. In the past, municipal solid waste was sent to the nearest local landfill or incinerator. But in 1988, the U.S. Environmental Protection Agency instituted the first federal standards for landfills, designed to make them safer. Over 10,000 small municipal landfills have since been consolidated into an estimated 3,500 newer, safer landfills, some of which are "megafills" that can handle up to 10,000 tons of waste a day. The new landfills are outfitted to prevent air and water pollution and limit the spread of disease by scavengers. Although the new landfills provide better controls against air and water pollution as well as an alternate source of municipal income, they are not entirely problem-free. Some experts believe the new landfill technology has not been properly tested and will therefore not provide protection in the long run. Others feel that poorer, less well-informed communities are targeted as sites for new landfills. In addition, many people that live near megafills, which may draw garbarge from several states, are unhappy about the noise, truck traffic, odors, and pests caused by the facilities. PMID:10417373

  5. [Research on permeability of landfill's body in primary compression].

    PubMed

    Liu, Hui; Huang, Tao; Zhang, Chi

    2009-12-01

    Refuse degradation and landfill leachate treatment are the main research directions of landfill technology at present, but permeability characteristics of landfill body are paid little attention on. According to this actuality, the study selected four kinds of landfill's bodies under different pressures as study objects and tested the permeability characteristics in the stage of main compression settlement. Through the laboratory physical simulation experiments, the results show that the data of determination and analysis on landfill's bodies under four difference pressures conform to Darcy's law. Because the change of COD is in the phase of acid producing, its impact on permeability can not be considered. Based on these conditions, the calculation results of permeability coefficient indicate that during the course of the main compression settlement, the change law of landfill permeability coefficient index is approximately agreed with nature exponential law, expect for the condition of landfill body without pressure. Meanwhile, the landfill permeability coefficient values under four difference pressures are in the range of 10(-4.5)-10(-5.3) m x s(-1), which are consistent with the typical representative values of garbage permeability coefficient.

  6. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  7. Characteristics and biological treatment of leachates from a domestic landfill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste material from urban areas is a major environmental concern and landfill application is a frequent method for waste disposal. The leachate from landfills can, however, negatively affect the surrounding environment. A bioreactor cascade containing submerged biofilms was used to treat newly forme...

  8. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM LANDFILLS AND OPEN DUMPS

    EPA Science Inventory

    The report presents an empirical model to estimate global methane (CH4) emissions from landfills and open dumps based on EPA data from landfill gas (LFG) recovery projects. The EPA CH4 estimates for 1990 range between 19 and 40 teragrams (10 to the 12th power) per year (Tg/yr), w...

  9. Optimizing landfill site selection by using land classification maps.

    PubMed

    Eskandari, M; Homaee, M; Mahmoodi, S; Pazira, E; Van Genuchten, M Th

    2015-05-01

    Municipal solid waste disposal is a major environmental concern throughout the world. Proper landfill siting involves many environmental, economic, technical, and sociocultural challenges. In this study, a new quantitative method for landfill siting that reduces the number of evaluation criteria, simplifies siting procedures, and enhances the utility of available land evaluation maps was proposed. The method is demonstrated by selecting a suitable landfill site near the city of Marvdasht in Iran. The approach involves two separate stages. First, necessary criteria for preliminary landfill siting using four constraints and eight factors were obtained from a land classification map initially prepared for irrigation purposes. Thereafter, the criteria were standardized using a rating approach and then weighted to obtain a suitability map for landfill siting, with ratings in a 0-1 domain and divided into five suitability classes. Results were almost identical to those obtained with a more traditional environmental landfill siting approach. Because of far fewer evaluation criteria, the proposed weighting method was much easier to implement while producing a more convincing database for landfill siting. The classification map also considered land productivity. In the second stage, the six best alternative sites were evaluated for final landfill siting using four additional criteria. Sensitivity analyses were furthermore conducted to assess the stability of the obtained ranking. Results indicate that the method provides a precise siting procedure that should convince all pertinent stakeholders.

  10. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    EPA Science Inventory

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  11. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following parameters, monitored, at a minimum, on an annual basis: (A) pH; (B) Conductivity; (C) Dissolved... of the landfill leachate and analyze them for the following parameters: pH, Conductivity, Dissolved..., Volatile Solids and pH. (11) The operator of the landfill shall report to the EPA Regional...

  12. Review of groundwater contamination hazard rating systems for old landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2010-02-01

    A large number of old uncontrolled landfills exist in developing countries. These are potentially harmful to the environment, especially with respect to groundwater contamination, and therefore, are in need of appropriate control and remedial measures. However, due to resource constraints, such measures are to be undertaken in a phased manner. An appropriate landfill hazard rating system that can evaluate relative groundwater contamination hazard of different sites is a useful tool for site ranking in order to set priorities. This paper reviews 18 existing hazard rating systems that follow the index function approach. Nine systems that are best representative of the existing systems, have been applied to six hazardous waste landfills as well as six municipal solid waste landfills. When used for ranking hazardous waste landfills, some systems such as HRS-1990, ERPHRS, WARM and RSS respond well whereas others like DRASTIC, NCS, NPC system and JENV system show a clustering effect. However, these rating systems do not perform well when applied to old municipal solid waste landfills. Even the HRS-1990, which is observed to be the most sensitive among all rating systems, exhibits some shortcomings. Improvements have been suggested in the waste quantity factor values of HRS-1990 to make it suitable for old municipal solid waste landfills. The improved system is observed to provide superior results in comparison with the existing systems, making it appropriate for use as a tool for ranking of old landfills in need of remediation and control measures.

  13. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  14. Reclamation and reuse of an unlined landfill

    SciTech Connect

    Fry, F.F.

    1995-09-01

    The YCSWRA retained Acer Engineers & Consultants, Inc. (Acer) to develop a preliminary waste removal and reuse plan. The focus of this plan was the removal of waste from the unlined areas of the landfill and reuse of the reclaimed areas for an ash fill and an 18-hole public golf course. The scope included staffing and equipment recommendations, development of a detailed schedule, preparation of a health and safety plan, and preparation of a closure and postclosure plan. Reclaimed waste will be co-combusted with municipal waste.

  15. Methane recovery from landfill in China

    SciTech Connect

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  16. Construction Costs of Six Landfill Cover Designs

    SciTech Connect

    Dwyer, S.F.

    1998-12-23

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  17. Catching a Falling Star

    NASA Astrophysics Data System (ADS)

    2004-07-01

    . Comets are another important source of meteoroids and perhaps the most spectacular. After many visits near the Sun, a comet "dirty-snowball" nucleus of ice and dust decays and fragments, leaving a trail of meteoroids along its orbit. Some "meteoroid streams" cross the earth's orbit and when our planet passes through them, some of these particles will enter the atmosphere. The outcome is a meteor shower - the most famous being the "Perseids" in the month of August [2] and the "Leonids" in November. Thus, although meteors are referred to as "shooting" or "falling stars" in many languages, they are of a very different nature. More information The research presented in this paper is published in the journal Meteoritics and Planetary Science, Vol. 39, Nr. 4, p. 1, 2004 ("Spectroscopic anatomy of a meteor trail cross section with the ESO Very Large Telescope", by P. Jenniskens et al.). Notes [1] The team is composed of Peter Jenniskens (SETI Institute, USA), Emmanuël Jehin (ESO), Remi Cabanac (Pontificia Universidad Catolica de Chile), Christophe Laux (Ecole Centrale de Paris, France), and Iain Boyd (University of Michigan, USA). [2] The maximum of the Perseids is expected on August 12 after sunset and should be easily seen.

  18. Stable Isotopic and Hydrogeochemical Characteristics of Natural Attenuation in a Municipal Landfill

    NASA Astrophysics Data System (ADS)

    Ko, K.; Lee, K.

    2008-12-01

    The goal of the study is to know the mechanisms of groundwater contamination by leachate from a municipal landfill located at Busan city, Korea. This study illustrates that isotopic and major ions chemistry of groundwater and leachate is to provide redox, ion exchange and precipitation reactions occurring in the aquifer. The multivariate statistical methods were also adopted to investigate of groundwater chemistry variation induced by leachates from a landfill and to evaluate the biodegradation processes by hydrogeochemical and isotopic studies. Hydrogeochemical and stable isotope data exhibit that chemical and isotopic compositions of the landfill were significantly affected by biodegradation of organic wastes. The comparison results of hydrochemical components distribution by box-whisker plots showed that Na, Cl, and K of leachates have higher values than those of groundwaters and stream waters. It is presumably considered that the active biological activity has led to increase of temperature and bicarbonate values of leachate. The lack of correlation between bicarbonate and calcium concentrations in leachate and contaminated groundwater is ascribed to microbiologically mediated reactions. Sulfate variation of groundwaters which is induced by the difference of disseminated pyrite contents included in andesite and rhyolite implies that geology is critical parameter for the capability of natural attenuation in oxygen-limited sulfate reducing environment formed by landfill leachate. The enrichment of bicarbonate in leachates suggest that an additional source of CO2 from microbial degradation of organic wastes. The enrichment of deuterium isotopic values of leachates probably results from metanogenesis within the limited reservoir of landfill. The delta 13C-DIC values were significantly enriched in leachates than in pristine groundwater. Alkalinity showed a positive relationship with delta 13C-DIC in water samples. Some groundwater samples also showed deuterium

  19. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  20. Landfill energy complex based on the renewable energy installations

    NASA Astrophysics Data System (ADS)

    Gilmanshin, Iskander; Kashapov, Nail; Gilmanshina, Suriya; Galeeva, Asiya

    2016-06-01

    The article presents the analysis of standard approaches to degassing of landfills. The need of comprehensive work on the degassing of the landfill body is identified. The author's task decomposition of the landfill degassing is formulated. The analysis of existing methods of work on degassing of landfills is presented. The author's approach is including implements of series of parallel studies in the framework of achieving a common goal to reduce the anthropogenic pressure on the ecosystem of the region due to the need for disposal of solid waste. An action plan for the development of the target problem-oriented management techniques of the landfill with the following development of the effective energy complex is formulated.

  1. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  2. A decision support system for assessing landfill performance.

    PubMed

    Celik, Başak; Girgin, Sertan; Yazici, Adnan; Unlü, Kahraman

    2010-01-01

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  3. A decision support system for assessing landfill performance

    SciTech Connect

    Celik, Basak; Girgin, Sertan; Yazici, Adnan; Unlue, Kahraman

    2010-01-15

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  4. Quantification of landfill emissions to air: a case study of the Ano Liosia landfill site in the greater Athens area.

    PubMed

    Paraskaki, Ioanna; Lazaridis, Mihalis

    2005-06-01

    Fugitive pollutant emissions from municipal solid waste landfills have the potential to cause annoyance and health impacts in the surrounding residential areas. The overall objective of this research was to perform an assessment of fugitive pollutant emissions and a dispersion analysis downwind of a specific landfill site. The study was performed at the closed Ano Liosia landfill site which is located in the greater Athens area. The human exposure from priority to health-risk pollutants emitted from landfill, such as vinyl chloride and benzene, was estimated by the landfill gas emission LandGEM 2.01 software combined with the atmospheric long-term dispersion model ISC3-LT. The emission and meteorological conditions under which the models were applied referred to the worst-case scenario. This scenario was used for the evaluation of the maximum human exposure assessed beyond the Ano Liosia landfill towards the residential areas. The above scenario provides the minimum downwind distance of the health-risk zone which is calculated to be equal to 1.5 km from the landfill. Within this distance the assessed air pollutant concentration for several air pollutants was significantly above the World Health Organization reference lifetime exposure health criteria. Finally, the applied methodology was used in the Ano Liosia landfill, where atmospheric concentrations of pollutants measured in the field were compared with model predictions. PMID:15997481

  5. Quantification of landfill emissions to air: a case study of the Ano Liosia landfill site in the greater Athens area.

    PubMed

    Paraskaki, Ioanna; Lazaridis, Mihalis

    2005-06-01

    Fugitive pollutant emissions from municipal solid waste landfills have the potential to cause annoyance and health impacts in the surrounding residential areas. The overall objective of this research was to perform an assessment of fugitive pollutant emissions and a dispersion analysis downwind of a specific landfill site. The study was performed at the closed Ano Liosia landfill site which is located in the greater Athens area. The human exposure from priority to health-risk pollutants emitted from landfill, such as vinyl chloride and benzene, was estimated by the landfill gas emission LandGEM 2.01 software combined with the atmospheric long-term dispersion model ISC3-LT. The emission and meteorological conditions under which the models were applied referred to the worst-case scenario. This scenario was used for the evaluation of the maximum human exposure assessed beyond the Ano Liosia landfill towards the residential areas. The above scenario provides the minimum downwind distance of the health-risk zone which is calculated to be equal to 1.5 km from the landfill. Within this distance the assessed air pollutant concentration for several air pollutants was significantly above the World Health Organization reference lifetime exposure health criteria. Finally, the applied methodology was used in the Ano Liosia landfill, where atmospheric concentrations of pollutants measured in the field were compared with model predictions.

  6. QUALITY ASSURANCE AND SYSTEMATIC PLANNING FOR THE EVALUATION OF TWO LANDFILL BIOREACTOR OPERATIONAL TECHNIQUES AT AN EXISTING LANDFILL

    EPA Science Inventory

    A Quality Assurance Project Plan (QAPP) was prepared to document the primary objectives and data collection and interpretation efforts for two landfill bioreactor studies at the Outer Loop Landfill in Louisville, KY, operated by Waste Management, Inc. WMI). The two multi-year stu...

  7. THE ROLE OF QUALITY ASSURANCE IN THE EVALUTION OF TWO LANDFILL BIOREACTOR OPERATIONAL TECHNIQUES AT AN EXISTING LANDFILL

    EPA Science Inventory

    A Quality Assurance Project Plan (QAPP) was prepared to document the primary objectives and data collection and interpretation efforts for two landfill bioreactor studies at the Outer Loop Landfill in Louisville, KY, operated by Waste Management, Inc. WMI). The two multi-year stu...

  8. Study on the effect of landfill leachate on nutrient removal from municipal wastewater.

    PubMed

    Yuan, Qiuyan; Jia, Huijun; Poveda, Mario

    2016-05-01

    In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency.

  9. Technical and economic evaluation of selected technologies of the Landfill Characterization System

    SciTech Connect

    Floran, R.J.

    1993-12-31

    In 1992 and 1993, numerous innovative and emerging technologies for characterizing metal and mixed waste contaminants and their migration beneath landfills in and environments were field tested at Sandia`s Chemical Waste Landfill. Many of these technologies are being evaluated as part of the Landfill Characterization System (LCS). The LCS emphasizes minimally intrusive technologies and downhole sensors that strive to be cheaper, better, safer and faster than conventional methods. Major aims of the LCS are to demonstrate, test and evaluate these technologies, and determine whether substantial cost saving over traditional baseline methods can be realized. To achieve these goals, the LCS uses an integrated systems approach that stresses the application of complementary and compatible technologies. Successful field demonstrations combined with favorable economics, will greatly assist the commercialization of these technologies to the private sector and to Environmental Restoration groups throughout the DOE Complex. In this paper, a technical and economic evaluation of selected technologies that comprise the LCS is presented. Because sampling and analysis is the most costly part of a characterization effort, the economic evaluation presented here focuses specifically on these activities. LCS technologies discussed include the ``Smart Sampling Methodology`` and two field screening analytical methods, stripping voltammetry and x-ray fluorescence.

  10. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation. PMID:26630756

  11. Study on the effect of landfill leachate on nutrient removal from municipal wastewater.

    PubMed

    Yuan, Qiuyan; Jia, Huijun; Poveda, Mario

    2016-05-01

    In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency. PMID:27155420

  12. Health assessment for Onalaska Municipal Landfill, Onalaska, Wisconsin, Region 5. CERCLIS No. WID980821656. Final report

    SciTech Connect

    Not Available

    1988-12-29

    The Onalaska Municipal Landfill is in La Crosse County, Wisconsin. The town of Onalaska owned and operated the 11-acre landfill from 1969 to 1980 and is reported to have accepted materials including waste solvents, naphtha, toluene, paint residues, industrial wastes, barium, inorganic chemicals, industrial waste oils, ink residues, municipal wastes, solid wastes, solvosol, asphaltum, mineral spirits, PTL-1009, transformer oil, gun oil, synthetic lubricants, insecticides and septic waste. Along with full barrels of solvent, a 500-gallon tank truck partially filled with paint residues was buried at the site. Principal contaminants of concern in the ground water include trichloroethylene, naphtha, barium, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, toluene, 1,1-dichloroethane, xylene, and ethyl benzene. Sampling of residential and monitoring wells has shown ground water concentrations exceeding drinking water standards or criteria for trichloroethylene, barium, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1,2,2-tetrachloroethane toluene, xylene, and ethyl benzene. The site is considered to be of potential public health concern. Potential human health risks could be caused by movement of landfill contaminants into the groundwater, soil, air, or surrounding surface waters.

  13. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate.

    PubMed

    Rizkallah, Marwan; El-Fadel, Mutasem; Saikaly, Pascal E; Ayoub, George M; Darwiche, Nadine; Hashisho, Jihan

    2013-10-01

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. PMID:23856789

  14. Effects of landfill leachate treatment on hepatopancreas of Armadillidium vulgare (Crustacea, Isopoda).

    PubMed

    Manti, Anita; Canonico, Barbara; Mazzeo, Roberto; Santolini, Riccardo; Ciandrini, Eleonora; Sisti, Davide; Rocchi, Marco Bruno Luigi; Nannoni, Francesco; Protano, Giuseppe; Papa, Stefano

    2013-11-01

    The major environmental impact of landfills is emission of pollutants via the leachate and gas pathways. The hepatopancreas of the terrestrial isopod Armadillidium vulgare (Isopoda, Crustacea, Latreille 1804) plays an important role in the bioaccumulation of contaminants, such as heavy metals. To evaluate the effects of landfill leachate treatment, 2 different approaches were applied: 1) the detection of accumulation of trace elements (As, Cd, Cr, Cu, Sb, Zn, Pb, Ni, V) in hepatopancreatic cells, and 2) the evaluation of biological effect of contaminants on fresh hepatopancreatic cells by flow-cytometric analyses. The presence of 2 different cell types (herein referred to as "small" [S] cells and "big" [B] cells, in agreement with the literature based on morphological examinations) was detected for the first time by flow cytometry, which also highlighted their different response to stress stimuli. In particular, B cells appeared more sensitive to landfill leachate treatment, being more damaged in the short term, while S cells seemed more adaptive. Furthermore, S cells could represent a pool from which they are able to differentiate into B cells. These findings were also confirmed by principal component analyses, underlining that S SYBR Green I bright cells correlate with specific chemicals (Ca, Cu, Co), confirming their resistance to stress stimuli, and suggesting that the decrease of specific cell types may prime other elements to replace them in a homeostasis-preservation framework. PMID:23929682

  15. Effect of biological pretreatment of coarse MSW on landfill behaviour: laboratory study.

    PubMed

    Bayard, R; de Araujo Morais, J; Rouez, M; Fifi, U; Achour, F; Ducom, G

    2008-01-01

    Mechanical and biological pre-treatment (MBT) of residual Municipal Solid Waste (MSW) is considered as a promising technical option prior to landfilling. The aim of MBT is to control the biological landfill activity to minimize biogas and leachate production. Laboratory-scale bioreactors were set up to study the behaviour of untreated and pre-treated residues. The bioreactors were designed to simulate the anaerobic condition of sanitary landfill. Initial water addition has been performed to ensure optimal condition of biological degradation. The incubation time was 400 days to achieve the biodegradation. Experiments have been carried out with untreated or treated waste collected from a mechanical-aerobic biological treatment plant located in middle south of France. Chemical and biological analyses have been performed to characterise the waste samples before and after the incubation. Results showed that a residual anaerobic activity does exist for the pre-treated waste when incubated in optimal moisture condition: biogas production does still exist even after a long period of aerobic hot fermentation and maturation. PMID:18957748

  16. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  17. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate.

    PubMed

    He, Shilong; Zhang, Yu; Yang, Min; Du, Wenli; Harada, Hiroyuki

    2007-02-01

    The residues of magnesium ammonium phosphate (MAP) decomposed by heating under alkali conditions were repeatedly used as the sources of phosphate and magnesium for the removal of high ammonium concentration from landfill leachate. Up to 96% of ammonium in MAP powder could be released under the following conditions: NH4(+):OH- molar ratio, 1:1; temperature, 90 degrees C; heating time, 2 h. Fourier transform infrared spectra and X-ray diffraction analysis of MAP before and after heating demonstrated that MAP was mainly transformed to amorphous magnesium sodium phosphate (MgNaPO4), which makes it possible for the NH4(+) to replace Na+ in MgNaPO4 to form more stable struvite. Successful ammonium removal was achieved by using the MAP decomposition residues as the sole phosphate and magnesium sources. The ammonium removal decreased gradually following the increase of MAP reuse cycles, and in the 6th cycle, ammonium removals of 84% and 62% were achieved for synthetic wastewater and landfill leachate, respectively. Analysis of the surfaces of MAP powders acquired at different reuse cycles using scanning electron microscopy with energy dispersive X-ray suggested that the existence of calcium, kalium and aluminum ions in landfill leachate might have inhibited the formation of MAP through competition with ammonium ions for phosphate ions. It is estimated that reuse of MAP for 3 cycles could save about 44% chemical costs.

  18. Effects of landfill leachate treatment on hepatopancreas of Armadillidium vulgare (Crustacea, Isopoda).

    PubMed

    Manti, Anita; Canonico, Barbara; Mazzeo, Roberto; Santolini, Riccardo; Ciandrini, Eleonora; Sisti, Davide; Rocchi, Marco Bruno Luigi; Nannoni, Francesco; Protano, Giuseppe; Papa, Stefano

    2013-11-01

    The major environmental impact of landfills is emission of pollutants via the leachate and gas pathways. The hepatopancreas of the terrestrial isopod Armadillidium vulgare (Isopoda, Crustacea, Latreille 1804) plays an important role in the bioaccumulation of contaminants, such as heavy metals. To evaluate the effects of landfill leachate treatment, 2 different approaches were applied: 1) the detection of accumulation of trace elements (As, Cd, Cr, Cu, Sb, Zn, Pb, Ni, V) in hepatopancreatic cells, and 2) the evaluation of biological effect of contaminants on fresh hepatopancreatic cells by flow-cytometric analyses. The presence of 2 different cell types (herein referred to as "small" [S] cells and "big" [B] cells, in agreement with the literature based on morphological examinations) was detected for the first time by flow cytometry, which also highlighted their different response to stress stimuli. In particular, B cells appeared more sensitive to landfill leachate treatment, being more damaged in the short term, while S cells seemed more adaptive. Furthermore, S cells could represent a pool from which they are able to differentiate into B cells. These findings were also confirmed by principal component analyses, underlining that S SYBR Green I bright cells correlate with specific chemicals (Ca, Cu, Co), confirming their resistance to stress stimuli, and suggesting that the decrease of specific cell types may prime other elements to replace them in a homeostasis-preservation framework.

  19. Treatment of landfill leachate by using lateritic soil as a natural coagulant.

    PubMed

    Syafalni; Lim, Han Khim; Ismail, Norli; Abustan, Ismail; Murshed, Mohamad Fared; Ahmad, Anees

    2012-12-15

    In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.

  20. Fall prevention in hospitals: an integrative review.

    PubMed

    Spoelstra, Sandra L; Given, Barbara A; Given, Charles W

    2012-02-01

    This article summarizes research and draws overall conclusions from the body of literature on fall prevention interventions to provide nurse administrators with a basis for developing evidence-based fall prevention programs in the hospital setting. Data are obtained from published studies. Thirteen articles are retrieved that focused on fall interventions in the hospital setting. An analysis is performed based on levels of evidence using an integrative review process. Multifactoral fall prevention intervention programs that included fall-risk assessments, door/bed/patient fall-risk alerts, environmental and equipment modifications, staff and patient safety education, medication management targeted to specific types, and additional assistance with transfer and toileting demonstrate reduction in both falls and fall injuries in hospitalized patients. Hospitals need to reduce falls by using multifactoral fall prevention programs using evidence-based interventions to reduce falls and injuries.

  1. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  2. Evaluation of the age of landfill gas methane in landfill gas-natural gas mixtures using co-occurring constituents.

    PubMed

    Kerfoot, Henry B; Hagedorn, Benjamin; Verwiel, Mark

    2013-06-01

    At a municipal solid waste landfill in southern California (USA) overlying a natural gas reservoir, methane was detected at concentrations of up to 40% (by volume) in perimeter soil gas probes. Stable isotope and (14)C values of methane together with gas composition (major components and volatile organic compounds) data were evaluated to assess the relative contributions of landfill gas and natural gas to the measured methane concentrations. The data was further used to estimate the residence time of the landfill gas in the probes. Results showed that up to 37% of the measured methane was derived from landfill gas. In addition, the landfill gas in the probe samples has undergone extensive alteration due to dissolution of carbon dioxide in pore water. Data further indicates that the measured methane was released from the waste approximately 1.2 to 9.4 years ago, rather than representing evidence of an ongoing release.

  3. Fall Enrollment Report: University of Hawaii, Community Colleges, Fall 1981.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Office of Institutional Research and Analysis.

    Data are presented on a series of tables summarizing enrollment trends and the academic and personal characteristics of the 20,087 regular students enrolled in credit programs at six University of Hawaii community colleges during Fall, 1981. The tables cover: (1) headcount enrollment in regular credit and special programs; (2) headcount enrollment…

  4. Applications, Acceptances and Registrations, Fall 1975-Fall 1979.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Office of Institutional Research and Analysis.

    Patterns in student progression from application to acceptance and registration were analyzed for the fall semesters from 1975 to 1979 at six Hawaii community colleges. The data, compiled from the Coordinated Admissions Program Information System and from the Student Information System, indicate, with regard to applications, that: (1) a total of…

  5. A Piece of Paper Falling Faster than Free Fall

    ERIC Educational Resources Information Center

    Vera, F.; Rivera, R.

    2011-01-01

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls…

  6. BURDEN FALLS ROADLESS AREA, ILLINOIS.

    USGS Publications Warehouse

    Klasner, John S.; Thompson, Robert M.

    1984-01-01

    The Burden Falls Roadless Area lies in the Shawnee National Forest of southern Illinois, about 5 mi west of the western edge of the Illinois-Kentucky fluorspar district. Geologic mapping and geochemical surveys indicate that the area has little promise for the occurrence of fluorspar and associated minerals; other special studies also indicate little promise for oil and gas and construction materials. Traces of gold and silver were detected in some geochemical samples but follow-up studies indicate little promise for the occurrence of resources of these metals within the Burden Falls Roadless Area.

  7. Abiotic properties of landfill leachate controlling arsenic release from drinking water adsorbents.

    PubMed

    Stuckman, Mengling Y; Lenhart, John J; Walker, Harold W

    2011-10-15

    In this study, As leaching from five arsenic bearing solid residuals (ABSRs) comprised of the iron hydroxide adsorbent Bayoxide E33 used in long-term operations was evaluated in leaching trials using California Waste Extraction Test (CalWET) and Toxicity Characteristic Leaching Protocol (TCLP) leachate solutions, a landfill leachate (LL), and synthetic leachate (SL). The initial As loading of the media, which reflects the influence of source water chemistry and varying treatment conditions at the point of removal, strongly influenced the magnitude of As release. The chemical composition of the leachate also influenced As release and demonstrated the relative importance of different release mechanisms, namely media dissolution, pH-dependent sorption/desorption, and ion exchange. The CalWET solution, which partially dissolved the iron-based media, resulted in 100 times more As release than did the TCLP solution, which did not dissolve the media. The LL had a higher pH than the TCLP solution, and even though its organic carbon content was lower it tended to release more As. Tests with the SL were conducted to determine the influence of variations in leachate pH, phosphate, bicarbonate, sulfate, silicate, and natural organic matter (NOM). Release increased at high pH, in the presence of high concentrations of phosphate and bicarbonate, and in the presence of high NOM concentrations. For pH, this reflects the pH-dependence of sorption reactions, whereas for the anions and NOM, direct competition appeared important. Similar to the CalWET solution, excess NOM dissolved portions of the media thereby facilitating As release. In general, our results suggest that estimating As release into landfills will remain a challenge as it depends upon As loading, which reflects site-specific properties, and the composition of the leachate, which varies from landfill to landfill.

  8. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    SciTech Connect

    Gibbons, Robert D.; Morris, Jeremy W.F.; Prucha, Christopher P.; Caldwell, Michael D.; Staley, Bryan F.

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.

  9. Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.

    PubMed

    Kwon, O; Park, J

    2006-11-01

    This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement.

  10. Global Biogenic Emission of Carbon Dioxide from Landfills

    NASA Astrophysics Data System (ADS)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  11. Landfill modelling in LCA - a contribution based on empirical data.

    PubMed

    Obersteiner, Gudrun; Binner, Erwin; Mostbauer, Peter; Salhofer, Stefan

    2007-01-01

    Landfills at various stages of development, depending on their age and location, can be found throughout Europe. The type of facilities goes from uncontrolled dumpsites to highly engineered facilities with leachate and gas management. In addition, some landfills are designed to receive untreated waste, while others can receive incineration residues (MSWI) or residues after mechanical biological treatment (MBT). Dimension, type and duration of the emissions from landfills depend on the quality of the disposed waste, the technical design, and the location of the landfill. Environmental impacts are produced by the leachate (heavy metals, organic loading), emissions into the air (CH(4), hydrocarbons, halogenated hydrocarbons) and from the energy or fuel requirements for the operation of the landfill (SO(2) and NO(x) from the production of electricity from fossil fuels). To include landfilling in an life-cycle assessment (LCA) approach entails several methodological questions (multi-input process, site-specific influence, time dependency). Additionally, no experiences are available with regard to mid-term behaviour (decades) for the relatively new types of landfill (MBT landfill, landfill for residues from MSWI). The present paper focuses on two main issues concerning modelling of landfills in LCA: Firstly, it is an acknowledged fact that emissions from landfills may prevail for a very long time, often thousands of years or longer. The choice of time frame in the LCA of landfilling may therefore clearly affect the results. Secondly, the reliability of results obtained through a life-cycle assessment depends on the availability and quality of Life Cycle Inventory (LCI) data. Therefore the choice of the general approach, using multi-input inventory tool versus empirical results, may also influence the results. In this paper the different approaches concerning time horizon and LCI will be introduced and discussed. In the application of empirical results, the presence of

  12. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    SciTech Connect

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  13. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  14. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill af...

  15. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  16. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  17. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  18. [Violence Profiles for Fall Programming.

    ERIC Educational Resources Information Center

    National Citizens Committee for Broadcasting, Washington, DC.

    This document presented by the National Citizens' Committee for Broadcasting at a 1976 press conference provides an assortment of materials concerned with violence in television. Among the materials included are "Who Sponsors the New Fall Violence?" by Nicholas Johnson, a description of and rationale for the study of advertisers who sponsor…

  19. Fall 1984 Community Services Study.

    ERIC Educational Resources Information Center

    Weeks, Ann A.

    In fall 1984, students who enrolled in credit-free courses at Dutchess Community College (DCC) were asked to provide demographic information as part of their registration process. Approximately 2,000 students, from almost all of the credit-free courses offered both on-campus and at off-campus sites, completed the student data form. Findings…

  20. [A study on fall accident].

    PubMed

    Lee, H S; Kim, M J

    1997-01-01

    The study was conducted from November 1995 to May 1996 at the one general hospital in Seoul. The total subjects of this study were 412 patients who have the experience of fall accident, among them 31 was who have fallen during hospitalization and 381 was who visited emergency room and out patient clinic. The purposes of this study were to determine the characteristics, risk factors and results of fall accident and to suggest the nursing strategies for prevention of fall. Data were collected by reviewing the medical records and interviewing with the fallers and their family members. For data analysis spss/pc+ program was utilized for descriptive statistics, adjusted standardized X2-test. The results of this study were as follows: 1) Total subjects were 412 fallers, of which 245 (59.5%) were men and 167 (40.5%) were women. Age were 0-14 years 79 (19.2%), 15-44 years 125 (30.4%), 45-64 years 104 (25.2%), over 65 years 104 (25.2%). 2) There was significant association between age and the sexes (X2 = 39.17, P = 0.00). 3) There was significant association between age and history of falls (X2 = 44.41, P = .00). And history of falls in the elderly was significantly associated with falls. 4) There was significant association with age and medical diagnosis (X2 = 140.66, P = .00), chief medical diagnosis were hypertension (34), diabetes mellitus (22), arthritis (11), stroke (8), fracture (7), pulmonary tuberculosis (6), dementia (5) and cataract (5). 5) There was significant association between age and intrinsic factors: cognitive impairment, mobility impairment, insomnia, emotional problems, urinary difficulty, visual impairments, hearing impairments, use of drugs (sedatives, antihypertensive drugs, diuretics, antidepressants) (P < 0.05). But there was no significant association between age and dizziness (X2 = 2.87, P = .41). 6) 15.3% of total fallers were drunken state when they were fallen. 7) Environmental factors of fall accident were unusual posture (50.9%), slips (35