Sample records for false fire hoses

  1. 46 CFR 118.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... commercial fire hose that conforms to Underwriters Laboratory (UL) 19 “Lined Fire Hose and Hose Assemblies... National Fire Protection Association (NFPA) 1963 “Fire Hose Connections,” or other standard specified by... 46 Shipping 4 2013-10-01 2013-10-01 false Fire hoses and nozzles. 118.320 Section 118.320 Shipping...

  2. 46 CFR 118.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... commercial fire hose that conforms to Underwriters Laboratory (UL) 19 “Lined Fire Hose and Hose Assemblies... National Fire Protection Association (NFPA) 1963 “Fire Hose Connections,” or other standard specified by... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hoses and nozzles. 118.320 Section 118.320 Shipping...

  3. 46 CFR 118.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... commercial fire hose that conforms to Underwriters Laboratory (UL) 19 “Lined Fire Hose and Hose Assemblies... National Fire Protection Association (NFPA) 1963 “Fire Hose Connections,” or other standard specified by... 46 Shipping 4 2012-10-01 2012-10-01 false Fire hoses and nozzles. 118.320 Section 118.320 Shipping...

  4. 46 CFR 118.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... commercial fire hose that conforms to Underwriters Laboratory (UL) 19 “Lined Fire Hose and Hose Assemblies... National Fire Protection Association (NFPA) 1963 “Fire Hose Connections,” or other standard specified by... 46 Shipping 4 2014-10-01 2014-10-01 false Fire hoses and nozzles. 118.320 Section 118.320 Shipping...

  5. 46 CFR 118.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... commercial fire hose that conforms to Underwriters Laboratory (UL) 19 “Lined Fire Hose and Hose Assemblies... National Fire Protection Association (NFPA) 1963 “Fire Hose Connections,” or other standard specified by... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hoses and nozzles. 118.320 Section 118.320 Shipping...

  6. 46 CFR 105.35-15 - Fire hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-15 Fire hose. (a) One length of fire hose shall be provided for each fire hydrant required. (b) Fire hose may be commercial fire...

  7. 46 CFR 105.35-15 - Fire hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-15 Fire hose. (a) One length of fire hose shall be provided for each fire hydrant required. (b) Fire hose may be commercial fire...

  8. 46 CFR 105.35-15 - Fire hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-15 Fire hose. (a) One length of fire hose shall be provided for each fire hydrant required. (b) Fire hose may be commercial fire...

  9. 46 CFR 105.35-15 - Fire hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-15 Fire hose. (a) One length of fire hose shall be provided for each fire hydrant required. (b) Fire hose may be commercial fire...

  10. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  11. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  12. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  13. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  14. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a nozzle must be attached to each fire hydrant at all times. For fire hydrants located on open decks or...

  15. 46 CFR 108.425 - Fire hoses and associated equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... either: (1) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2... 46 Shipping 4 2012-10-01 2012-10-01 false Fire hoses and associated equipment. 108.425 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.425 Fire hoses and associated...

  16. 46 CFR 108.425 - Fire hoses and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... either: (1) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2... 46 Shipping 4 2014-10-01 2014-10-01 false Fire hoses and associated equipment. 108.425 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.425 Fire hoses and associated...

  17. 46 CFR 108.425 - Fire hoses and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... either: (1) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2... 46 Shipping 4 2013-10-01 2013-10-01 false Fire hoses and associated equipment. 108.425 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.425 Fire hoses and associated...

  18. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  19. 46 CFR 105.35-15 - Fire hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bronze or equivalent metal. (e) All fittings on fire hose shall be of brass, copper, or other suitable corrosion resistant metal. (f) A length of fire hose shall be attached to each fire hydrant at all times... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST...

  20. 46 CFR 193.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire hydrants and hose. 193.10-10 Section 193.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... hose and couplings shall be of good commercial grade. (4) Each section of fire hose used after January...

  1. 46 CFR 193.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire hydrants and hose. 193.10-10 Section 193.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... hose and couplings shall be of good commercial grade. (4) Each section of fire hose used after January...

  2. 46 CFR 193.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire hydrants and hose. 193.10-10 Section 193.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... hose and couplings shall be of good commercial grade. (4) Each section of fire hose used after January...

  3. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  4. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  5. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  6. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  7. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  8. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  9. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2014-10-01 2014-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  10. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2012-10-01 2012-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  11. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  12. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2013-10-01 2013-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  13. 46 CFR 193.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... length of firehose on each fire hydrant outside and in the immediate vicinity of each laboratory; (2... 1, 1980 must be lined commercial fire hose that conforms to Underwriters' Laboratories, Inc... 46 Shipping 7 2011-10-01 2011-10-01 false Fire hydrants and hose. 193.10-10 Section 193.10-10...

  14. 46 CFR 76.10-10 - Fire station hydrants, hose and nozzles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2 inch (64... 46 Shipping 3 2014-10-01 2014-10-01 false Fire station hydrants, hose and nozzles. 76.10-10 Section 76.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE...

  15. 46 CFR 76.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2 inch (64... 46 Shipping 3 2010-10-01 2010-10-01 false Fire station hydrants, hose and nozzles-T/ALL. 76.10-10 Section 76.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE...

  16. 46 CFR 76.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2 inch (64... 46 Shipping 3 2011-10-01 2011-10-01 false Fire station hydrants, hose and nozzles-T/ALL. 76.10-10 Section 76.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE...

  17. 46 CFR 76.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2 inch (64... 46 Shipping 3 2012-10-01 2012-10-01 false Fire station hydrants, hose and nozzles-T/ALL. 76.10-10 Section 76.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE...

  18. 46 CFR 76.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Use National Standard fire hose coupling threads for the 11/2 inch (38 millimeter) and 21/2 inch (64... 46 Shipping 3 2013-10-01 2013-10-01 false Fire station hydrants, hose and nozzles-T/ALL. 76.10-10 Section 76.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE...

  19. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  20. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  1. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  2. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  3. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... place where the remote fire pump control is located. (c) The fire main must have a sufficient number of... 46 Shipping 1 2014-10-01 2014-10-01 false What are the requirements for fire pumps, fire mains... the requirements for fire pumps, fire mains, and fire hoses on towing vessels? By April 29, 2005, you...

  4. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  5. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  6. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  7. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  8. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  9. 29 CFR 1910.159 - Automatic sprinkler systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... supply is out of service, except for systems of 20 or fewer sprinklers. (5) Hose connections for fire fighting use. The employer may attach hose connections for fire fighting use to wet pipe sprinkler systems... 29 Labor 5 2010-07-01 2010-07-01 false Automatic sprinkler systems. 1910.159 Section 1910.159...

  10. 29 CFR 1910.159 - Automatic sprinkler systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... supply is out of service, except for systems of 20 or fewer sprinklers. (5) Hose connections for fire fighting use. The employer may attach hose connections for fire fighting use to wet pipe sprinkler systems... 29 Labor 5 2013-07-01 2013-07-01 false Automatic sprinkler systems. 1910.159 Section 1910.159...

  11. 29 CFR 1910.159 - Automatic sprinkler systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... supply is out of service, except for systems of 20 or fewer sprinklers. (5) Hose connections for fire fighting use. The employer may attach hose connections for fire fighting use to wet pipe sprinkler systems... 29 Labor 5 2014-07-01 2014-07-01 false Automatic sprinkler systems. 1910.159 Section 1910.159...

  12. 29 CFR 1910.159 - Automatic sprinkler systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... supply is out of service, except for systems of 20 or fewer sprinklers. (5) Hose connections for fire fighting use. The employer may attach hose connections for fire fighting use to wet pipe sprinkler systems... 29 Labor 5 2012-07-01 2012-07-01 false Automatic sprinkler systems. 1910.159 Section 1910.159...

  13. 29 CFR 1910.159 - Automatic sprinkler systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... supply is out of service, except for systems of 20 or fewer sprinklers. (5) Hose connections for fire fighting use. The employer may attach hose connections for fire fighting use to wet pipe sprinkler systems... 29 Labor 5 2011-07-01 2011-07-01 false Automatic sprinkler systems. 1910.159 Section 1910.159...

  14. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  15. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  16. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  17. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  18. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  19. 29 CFR 1915.507 - Land-side fire protection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specific recommendations in NFPA 14-2003 Standard for the Installation of Standpipe and Hose Systems... 29 Labor 7 2010-07-01 2010-07-01 false Land-side fire protection systems. 1915.507 Section 1915... Protection in Shipyard Employment § 1915.507 Land-side fire protection systems. (a) Employer responsibilities...

  20. 46 CFR 34.05-1 - Fire main system-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fire main system-T/ALL. 34.05-1 Section 34.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Firefighting Equipment, Where Required § 34.05-1 Fire main system—T/ALL. (a) Fire pumps, piping, hydrants, hose and nozzles...

  1. 46 CFR 34.05-1 - Fire main system-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire main system-T/ALL. 34.05-1 Section 34.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Firefighting Equipment, Where Required § 34.05-1 Fire main system—T/ALL. (a) Fire pumps, piping, hydrants, hose and nozzles...

  2. STS-32 crewmembers use water hoses during fire fighting training at JSC

    NASA Image and Video Library

    1989-09-22

    STS-32 crewmembers use water hoses during fire fighting exercises at JSC's Fire Training Pit across from the Gilruth Center Bldg 207. Mission Specialist (MS) G. David Low with nozzle open directs water into the fire as fire/ security personnel coaches and instructs him on his attempt to extinguish the blaze. MS Bonnie J. Dunbar maneuvers the hose behind Low. A second group of crewmembers alongside Low and Dunbar, MS Marsha S. Ivins, holding hose nozzle, Commander Daniel C. Brandenstein, and Pilot James D. Wetherbee position themselves before opening hose nozzle.

  3. STS-32 crewmembers use water hoses during fire fighting training at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 crewmembers use water hoses during fire fighting exercises at JSC's Fire Training Pit across from the Gilruth Center Bldg 207. Mission Specialist (MS) G. David Low with nozzle open directs water into the fire as fire/ security personnel coaches and instructs him on his attempt to extinguish the blaze. MS Bonnie J. Dunbar maneuvers the hose behind Low. A second group of crewmembers alongside Low and Dunbar, MS Marsha S. Ivins, holding hose nozzle, Commander Daniel C. Brandenstein, and Pilot James D. Wetherbee position themselves before opening hose nozzle.

  4. 29 CFR 1915.509 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... harmful. Hose systems—fire protection systems consisting of a water supply, approved fire hose, and a... fire protection system consisting of piping and hose connections used to supply water to approved hose... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an...

  5. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fire pump on a vessel 79 feet (24 meters) or more in length must be capable of delivering water..., fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...) A fire hose on a vessel less than 79 feet (24 meters) in length must be at least 5/8 inch (16...

  6. 46 CFR 108.425 - Fire hoses and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... size diameter; (2) Of 50 foot nominal hose size length; and (3) Lined commercial fire hose that meets... inch (64 millimeter) hose sizes, i.e., 9 threads per inch for 11/2 inch hose, and 71/2 threads per inch...

  7. 46 CFR 108.425 - Fire hoses and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... size diameter; (2) Of 50 foot nominal hose size length; and (3) Lined commercial fire hose that meets... inch (64 millimeter) hose sizes, i.e., 9 threads per inch for 11/2 inch hose, and 71/2 threads per inch...

  8. 46 CFR 193.10-5 - Fire main system, details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire main system, details. 193.10-5 Section 193.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... 21/2 2 7/8 2 50 1 On vessels of 65 feet in length or less, 3/4-inch hose of good commercial grade...

  9. 46 CFR 193.10-5 - Fire main system, details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire main system, details. 193.10-5 Section 193.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... 21/2 2 7/8 2 50 1 On vessels of 65 feet in length or less, 3/4-inch hose of good commercial grade...

  10. 46 CFR 193.10-5 - Fire main system, details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire main system, details. 193.10-5 Section 193.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... 21/2 2 7/8 2 50 1 On vessels of 65 feet in length or less, 3/4-inch hose of good commercial grade...

  11. 30 CFR 75.1107-13 - Approval of other fire suppression devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...

  12. 30 CFR 75.1107-13 - Approval of other fire suppression devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...

  13. 30 CFR 75.1107-13 - Approval of other fire suppression devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...

  14. 30 CFR 75.1107-13 - Approval of other fire suppression devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...

  15. STS-47 crew during fire fighting exercises at JSC's Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses to extinguish a blaze in JSC's Fire Training Pit during fire fighting exercises. Manning the hose in the foreground are Payload Specialist Mamoru Mohri, holding the hose nozzle, backup Payload Specialist Takao Doi, Mission Specialist (MS) Jerome Apt, and Commander Robert L. Gibson, at rear. Lined up on the second hose are Pilot Curtis L. Brown, Jr, holding the hose nozzle, followed by MS N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak. A veteran firefighter monitors the effort from a position between the two hoses. In the background, backup Payload Specialist Chiaki Naito-Mukai, donning gloves, and MS Mae C. Jemison look on. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Mohri, Doi, and Mukai all represent Japan's National Space Development Agency (NASDA).

  16. University of Minnesota Duluth Engineering Design Challenge

    DTIC Science & Technology

    2015-03-23

    on overall weight, size, lifting capacity, and ease of transporting. Many initial designs were considered including fire hose lift bags, hydraulic...Many initial designs were considered including fire hose lift bags, hydraulic lifts, a scissor lift, a spring loaded pawl tri-pod, and a pulley lift...26 Fire Hose

  17. STS-48 crew participates in JSC fire fighting and fire training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Pilot Kenneth S. Reightler, Jr directs water hose nozzle as Mission Specialist (MS) Charles D. Gemar pulls the hose toward the blaze. In the background, an unidentified fire department Official instructs Commander John O. Creighton and MS Mark N. Brown (wearing cap), manning a second hose, on how to approach the blaze. These fire fighting and fire training exercises were conducted at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207.

  18. STS-47 crew during JSC fire fighting exercises in the Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses during JSC fire fighting exercises held at JSC's Fire Training Pit. In the foreground are (left to right) Pilot Curtis L. Brown, Jr, holding the hose nozzle, Mission Specialist (MS) N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak, partially visible at the end of the line. In the background, manning a second hose are backup Payload Specialist Takao Doi, MS Jerome Apt, and Commander Robert L. Gibson. A veteran fire fighter (behind Brown) stands between the two hoses giving instructions. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Doi represents Japan's National Space Development Agency (NASDA).

  19. Final Environmental Assessment For the Construction and Operation of a Fire Training Facility

    DTIC Science & Technology

    2010-04-29

    practice drafting (i.e., water uptake through hoses ) operations during live fires. The proposed drafting pit would also allow the department to...FTF to allow the Clear FD to practice drafting (i.e., water uptake through hoses ) operations during live fires. The proposed drafting pit would also...respirators, etc.), but trucks, hoses , and other large equipment would need to be supplied by the host fire department (so as not to leave Clear AFS

  20. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...

  1. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...

  2. STS-32 crewmembers use water hose during exercises at JSC fire training pit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Commander Daniel C. Brandenstein (left) and Pilot James D. Wetherbee handle water hose during fire training exercises conducted at JSC Fire Training Pit across from the Gilruth Center Bldg 207.

  3. STS-42 crewmembers participate in JSC fire fighting training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Norman E. Thagard, holding hose nozzle, is followed by Payload Specialist Ulf D. Merbold and backup Payload Specialist Kenneth Money as the team positions the water hose in the direction of a blazing fire at JSC's Fire Training Pit. A second team of crewmembers, manning another hose, forms a line parallel to the first. The crewmembers and backups are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  4. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the requirements for fire pumps, fire mains, and fire hoses on towing vessels? By April 29, 2005, you... from both branches of the fitting if the highest hydrant has a Siamese fitting, at a pitot-tube... of corrosion-resistant material capable of providing a solid stream and a spray pattern. (f) You must...

  5. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are... siamese fitting, at a pitot tube pressure of at least 50 psi (0.345 Newtons per square millimeter) and a... material capable of providing a solid stream and a spray pattern. (4) A fire hose on a vessel 79 feet (24...

  6. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are... siamese fitting, at a pitot tube pressure of at least 50 psi (0.345 Newtons per square millimeter) and a... material capable of providing a solid stream and a spray pattern. (4) A fire hose on a vessel 79 feet (24...

  7. 46 CFR 34.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be located to afford protection from heavy seas. The hose must be stored in a location that is... metal. Couplings shall either: (1) Use National Standard fire hose coupling threads for the 11/2 inch... shall be connected to outlets at all times. However, in heavy weather on open decks where no protection...

  8. Low-cost, portable fire hose tester

    NASA Technical Reports Server (NTRS)

    Jocke, R. F.; Miller, R. E.

    1975-01-01

    Availability of pumping unit permits scheduling and performing required periodic hose tests in proper manner while retaining full fire equipment readiness. Use of pumping unit preserves operating life and capability of pumper truck.

  9. STS-48 crew participates in JSC fire fighting and fire training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Mission Specialist (MS) Charles D. Gemar opens water hose nozzle as he approaches a fire blazing in JSC's Fire Training Pit during fire fighting and fire training exercises. Pilot Kenneth S. Reightler, Jr steadies the hose behind Gemar. At Gemars right is an unidentified fire department Official, MS Mark N. Brown, and Commander John O. Creighton. Brown and Crieghton are obscured by the water spray. The Fire Training Pit is located across from the Gilruth Center Bldg 207.

  10. 30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...

  11. 30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...

  12. 30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...

  13. 30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dry chemical devices; capacity; minimum... Dry chemical devices; capacity; minimum requirements. (a) Dry chemical fire extinguishing systems used...; (3) Hose and pipe shall be as short as possible; the distance between the chemical container and...

  14. Airborne asbestos exposures associated with work on asbestos fire sleeve materials.

    PubMed

    Blake, Charles L; Harbison, Stephen C; Johnson, Giffe T; Harbison, Raymond D

    2011-11-01

    Asbestos-containing fire sleeves have been used as a fire protection measure for aircraft fluid hoses. This investigation was conducted to determine the level of airborne asbestos fiber exposure experienced by mechanics who work with fire sleeve protected hoses. Duplicate testing was performed inside a small, enclosed workroom during the fabrication of hose assemblies. Personal air samples taken during this work showed detectable, but low airborne asbestos fiber exposures. Analysis of personal samples (n=9) using phrase contract microscopy (PCM) indicated task duration airborne fiber concentrations ranging from 0.017 to 0.063 fibers per milliliter (f/ml) for sampling durations of 167-198 min, and 0.022-0.14 f/ml for 30 min samples. Airborne chrysotile fibers were detected for four of these nine personal samples, and the resulting asbestos adjusted airborne fiber concentrations ranged from 0.014 to 0.025 f/ml. These results indicate that work with asbestos fire sleeve and fire sleeve protected hose assemblies, does not produce regulatory noncompliant levels of asbestos exposure for persons who handle, cut and fit these asbestos-containing materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. STS-30 crewmembers participate in fire fighting training at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in fire fighting training at JSC's fire training pit across from the Gilruth Center Bldg 207. Crewmembers listen to hose and nozzle instructions given by fire / security staff member Robert Fife. Left to right Commander David M. Walker (holding hose nozzle), Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard.

  16. Fluid Flow through Pipes--Another Look at Fire Hoses and Garden Hoses.

    ERIC Educational Resources Information Center

    Brouwer, W.; Paranjape, B. V.

    1991-01-01

    The forward force of water on a hose is calculated using only the pressure gradient, the radius and length of the hose. The misconception about recoil on the nozzle is discussed. Dissipation energy and the consequent heat generation in a fluid flow are also described. (KR)

  17. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, E.

    1997-04-01

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  18. PBF Control Building auxiliary features, including fire hose house and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building auxiliary features, including fire hose house and sewage system. Ebasco Services 1205 PER/PER-A-4. INEEL undex no. 760-0619-00-205-123024 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. STS-29 crewmembers participate in fire fighting training at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in fire fighting training at JSC's fire training pit across from the Gilruth Center Bldg 207. Mission Specialist (MS) Robert C. Springer (left) and Pilot John E. Blaha, controlling water hose nozzles, approach the blaze and attempt to extinguish it. They are followed by fire / security staff member Robert Fife (between hoses), Commander Michael L. Coats (left), and MS James P. Bagian.

  20. 46 CFR 193.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... decks where no protection is afforded to the hose in heavy weather, the hose may be temporarily removed... a garden hose nozzle that is bronze or metal with strength and corrosion resistance equivalent to... and couplings shall be as follows: (1) Couplings shall be of brass, bronze, or other equivalent metal...

  1. 166. ARAIII Fire hose houses (Probably numbered on site as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    166. ARA-III Fire hose houses (Probably numbered on site as ARA-624). Aerojet-general 880-area/GCRE-701-S-4. Date: February 1958. Ineel index code no. 063-0624-00-013-102695. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  2. STS-42 crewmembers participate in JSC fire fighting training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Ulf D. Merbold (far left), fire fighting trainer (center), Payload Specialist Roberta L. Bondar (holding hose nozzle), and backup Payload Specialist Roger K. Crouch position water hoses in the direction of a blazing fire in JSC's Fire Training Pit. The crewmembers and backup are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) and Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  3. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in § 76.10-5(c...

  4. 78 FR 63130 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the stowage box and... internal, anti-collapse spring of the low-pressure oxygen hose, which can cause the low- pressure oxygen hose to melt or burn and lead to an oxygen-fed fire on the flight deck. DATES: We must receive comments...

  5. Defense Standardization Program Journal. April/September 2012

    DTIC Science & Technology

    2012-01-01

    were magnified. In 1905, a committee of the National Fire Protection Association established a national standard for the diameter and threads per inch...for fire hydrants and hose couplings. The standard specifies that fire hydrants have 2.5-inch hose connections with 7.5 threads per inch and that...dsp.dla.mil I Field of view, lens material haze, luminous transmittance, and lens abrasion resistance (APR) I Communications (APR) I Fogging (APR

  6. Fire Hose Instability in the Multiple Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.

    2017-12-01

    We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.

  7. 46 CFR 132.100 - General; preemptive effect.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hose is— (1) Of good commercial grade and is constructed of an inner rubber tube, plies of braided... have, instead of a fire main that complies with this subpart, a hand-operated pump and a hose capable of providing an effective stream of water to each part of the vessel. (c) A garden hose of nominal...

  8. 46 CFR 132.100 - General; preemptive effect.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hose is— (1) Of good commercial grade and is constructed of an inner rubber tube, plies of braided... have, instead of a fire main that complies with this subpart, a hand-operated pump and a hose capable of providing an effective stream of water to each part of the vessel. (c) A garden hose of nominal...

  9. 46 CFR 132.100 - General; preemptive effect.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hose is— (1) Of good commercial grade and is constructed of an inner rubber tube, plies of braided... have, instead of a fire main that complies with this subpart, a hand-operated pump and a hose capable of providing an effective stream of water to each part of the vessel. (c) A garden hose of nominal...

  10. 77 FR 41045 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... deck. This AD requires replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen... through the low-pressure oxygen hose internal anti-collapse spring, which can cause the low-pressure oxygen hose to melt or burn, and a consequent oxygen-fed fire in the flight compartment. DATES: This AD...

  11. 46 CFR 125.180 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Yacht and Boat Council, Inc. (AYBC): 3069 Solomon's Island Rd., Edgewater, MD 21037-1416 A-3-1993... Laboratory Drive, Research Triangle Park, NC 27709-3995 UL 19-1992, Lined Fire Hose and Hose Assemblies 132...

  12. 46 CFR 125.180 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Yacht and Boat Council, Inc. (AYBC): 3069 Solomon's Island Rd., Edgewater, MD 21037-1416 A-3-1993... Laboratory Drive, Research Triangle Park, NC 27709-3995 UL 19-1992, Lined Fire Hose and Hose Assemblies 132...

  13. 46 CFR 125.180 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Yacht and Boat Council, Inc. (AYBC): 3069 Solomon's Island Rd., Edgewater, MD 21037-1416 A-3-1993... Laboratory Drive, Research Triangle Park, NC 27709-3995 UL 19-1992, Lined Fire Hose and Hose Assemblies 132...

  14. 46 CFR 125.180 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Yacht and Boat Council, Inc. (AYBC): 3069 Solomon's Island Rd., Edgewater, MD 21037-1416 A-3-1993... Laboratory Drive, Research Triangle Park, NC 27709-3995 UL 19-1992, Lined Fire Hose and Hose Assemblies 132...

  15. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...

  16. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...

  17. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Brake tubing and hoses; hose assemblies and end... assemblies and end fittings. (a) General construction requirements for tubing and hoses, assemblies, and end fittings. All brake tubing and hoses, brake hose assemblies, and brake hose end fittings must meet the...

  18. FireHose Streaming Benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  19. Proton fire hose instabilities in the expanding solar wind: Role of oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr

    2016-04-01

    The double adiabatic (CGL) approximation for the ideal (Parker) interplanetary magnetic field (IMF) predicts generation of the parallel particle temperature anisotropy (T∥ > T⊥) for a nearly radial magnetic field whereas for a strongly oblique IMF generation of the opposite temperature anisotropy is expected. The transition between the two behaviours is expected at around 45o, i.e. around 1 AU in the solar wind in the ecliptic plane. We investigate properties of a proton-electron plasma system in the solar wind using hybrid expanding box simulations starting with an oblique IMF. The simulated system becomes unstable with respect to the parallel and oblique fire hose instabilities and is forced to stay around the corresponding marginal stability. Rotation of the IMF reduces the time system stays near the marginal stability regions and for a strongly transverse IMF the system moves away from the regions unstable with respect to the fire hose instabilities.

  20. 46 CFR 76.10-5 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... International voyage Other Hose and hydrant size, inches Nozzle orifice size, inches Length of hose, feet 100 2...,000 3 3 1 21/2 1 7/8 1 50 1 75 feet of 11/2-inch hose and 5/8-inch nozzles may be used where specified... vessels of less than 300 feet in length, where it is shown to the satisfaction of the Commandant that it...

  1. 46 CFR 132.100 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equivalent fire-resistant material; and (2) Fitted with a commercial garden-hose nozzle of high-grade bronze..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Fire Main § 132... equipped with a fire main that complies with this subpart. (b) Each vessel of less than 100 gross tons and...

  2. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  3. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  4. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  5. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  6. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  7. Guidelines for Mass Casualty Decontamination During a HAZMAT/Weapon of Mass Destruction Incident. Volumes 1 and 2

    DTIC Science & Technology

    2009-04-01

    Prioritization of victims for decontamination based on injury and evidence of contamination and/or exposure to the hazard. Fog nozzle - Firefighting hose nozzle...A thick, high-pressure hose used to carry water to a fire to extinguish it. Hot Zone - Contaminated area of HAZMAT incident that must be isolated and...evidence of contamination and/or exposure to the hazard. Fog nozzle - Firefighting hose nozzle that separates water into droplets. Hazardous Material

  8. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562...

  9. 46 CFR 98.25-80 - Cargo hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2013-10-01 2013-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...

  10. 46 CFR 98.25-80 - Cargo hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...

  11. 46 CFR 98.25-80 - Cargo hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2012-10-01 2012-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...

  12. 46 CFR 98.25-80 - Cargo hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2011-10-01 2011-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...

  13. 46 CFR 98.25-80 - Cargo hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...

  14. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  15. 46 CFR 154.560 - Cargo hose: Prototype test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Prototype test. 154.560 Section 154.560... Hose § 154.560 Cargo hose: Prototype test. (a) Each cargo hose must be of a type that passes a prototype test at a pressure of at least five times its maximum working pressure at or below the minimum...

  16. STS-47 crew participates in fire fighting exercises at JSC Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) N. Jan Davis (foreground) and MS and Payload Commander (PLC) Mark C. Lee, squinting and holding water hose, listen to instructions prior to participating in fire fighting exercises held at JSC's Fire Training Pit across from Gilruth Center Bldg 207.

  17. U.S. Navy Wire-Rope Handbook. Volume 1. Design and Engineering of Wire-Rope Systems

    DTIC Science & Technology

    1976-01-01

    by " braiding " or "weaving" one rope end into another. Splices may be made at the end of a single rope after forming a loop (an eye splice) or between...rags, large pieces of old hemp rope and fire hose are other popular types of chafing gear for semi-fixed position ropes (see Figure 7-3(b)). 7.4. LINKS...Figure 7-3. Chafing Gear 7-6 Links 7.4. SWOOD PLANK FIRE HOSE ., ’ _APPLY GREASE CANJVAS, LEATHER, COPPER (b) For Semi-Fixed Position Ropes lo- Figcre

  18. Firefighters from Mayport Naval Station train at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During training exercises at Cape Canaveral Air Force Station Pad 30, firefighters with the Fire and Emergency Services at the Naval Station Mayport, Fla., turn their hoses toward the fire on the simulated aircraft.

  19. KSC00pp1439

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- During training exercises at Cape Canaveral Air Force Station Pad 30, firefighters with the Fire and Emergency Services at the Naval Station Mayport, Fla., turn their hoses toward the fire on the simulated aircraft.

  20. KSC-00pp1439

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- During training exercises at Cape Canaveral Air Force Station Pad 30, firefighters with the Fire and Emergency Services at the Naval Station Mayport, Fla., turn their hoses toward the fire on the simulated aircraft.

  1. 46 CFR 34.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Weather deck 4 10 or 12 Machinery space 2 4 (f) Each combination firehose nozzle previously approved under... be of sufficient number and so located that any part of living quarters, storerooms, working spaces... water, one of which shall be from a single 50-foot length of hose. In main machinery spaces all portions...

  2. 46 CFR 34.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Weather deck 4 10 or 12 Machinery space 2 4 (f) Each combination firehose nozzle previously approved under... be of sufficient number and so located that any part of living quarters, storerooms, working spaces... water, one of which shall be from a single 50-foot length of hose. In main machinery spaces all portions...

  3. 46 CFR 34.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Weather deck 4 10 or 12 Machinery space 2 4 (f) Each combination firehose nozzle previously approved under... be of sufficient number and so located that any part of living quarters, storerooms, working spaces... water, one of which shall be from a single 50-foot length of hose. In main machinery spaces all portions...

  4. 46 CFR 34.10-10 - Fire station hydrants, hose and nozzles-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Weather deck 4 10 or 12 Machinery space 2 4 (f) Each combination firehose nozzle previously approved under... be of sufficient number and so located that any part of living quarters, storerooms, working spaces... water, one of which shall be from a single 50-foot length of hose. In main machinery spaces all portions...

  5. Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach

    DTIC Science & Technology

    2006-09-01

    hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety

  6. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  7. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  8. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  9. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  10. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  11. 30 CFR 57.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen hose lines. 57.7802 Section 57.7802... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose...

  12. 30 CFR 57.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen hose lines. 57.7802 Section 57.7802... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose...

  13. 30 CFR 57.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen hose lines. 57.7802 Section 57.7802... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose...

  14. 30 CFR 57.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen hose lines. 57.7802 Section 57.7802... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose...

  15. 30 CFR 57.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen hose lines. 57.7802 Section 57.7802... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose...

  16. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  17. U.S. Coast Guard cutter personnel on Sweetbriar train their fire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Coast Guard cutter personnel on Sweetbriar train their fire hoses on a burning pleasure boat in an Alaskan harbor. A U.S. Coast Guard rigid-hull inflatable helps with the fire-fighting effort - U.S. Coast Guard Cutter SWEETBRIER, Cordova, Valdez-Cordova Census Area, AK

  18. Metal anesthesia circuit components stop the progression of laser fires.

    PubMed

    Sosis, M B; Braverman, B

    1994-01-01

    To determine whether metallic Y-pieces and elbows would halt the progression of a laser-induced endotracheal tube fire. A segment of polyvinyl chloride endotracheal tube was attached to either an all-plastic anesthesia circle breathing system (n = 5) or a circuit consisting of a metal Y-piece and elbow with plastic hoses (n = 5). In each case, an Nd-YAG laser was used to ignite the endotracheal tube segment and attached anesthesia circuit as 5 L/min of oxygen was flowing through them. Research laboratory of a university-affiliated metropolitan medical center. The flames from the endotracheal tubes burned through the 22 mm hoses that were part of the all-plastic circuits in 49.5 +/- 8.8 seconds (mean +/- SD). In none of the trials with the metal components did the fire advance beyond the endotracheal tube's 15 mm adapter. Metal circuit components halt the progression of laser-induced endotracheal tube fires toward the anesthesia machine.

  19. STS-48 crew participates in JSC fire fighting and fire training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this overall view, STS-48 crewmembers approach a firey blaze armed with water hoses. Left to right are Mission Specialist (MS) Charles D. Gemar, Pilot Kenneth S. Reightler, Jr, an unidentified fire department Official, MS Mark N. Brown, and Commander John O. Creighton. These fire fighting and fire training exercises were conducted at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207.

  20. Effects of Hall current and electron temperature anisotropy on proton fire-hose instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Wang, B.-J.

    The standard magnetohydrodynamic (MHD) theory predicts that the Alfvén wave may become fire-hose unstable for β{sub ∥}−β{sub ⊥}>2. In this study, we examine the proton fire-hose instability (FHI) based on the gyrotropic two-fluid model, which incorporates the ion inertial effects arising from the Hall current and electron temperature anisotropy but neglects the electron inertia in the generalized Ohm's law. The linear dispersion relation is derived and analyzed which in the long wavelength approximation, λ{sub i}k→0 or α{sub e}=μ{sub 0}(p{sub ∥,e}−p{sub ⊥,e})/B{sup 2}=1, recovers the ideal MHD model with separate temperature for ions and electrons. Here, λ{sub i} is the ionmore » inertial length and k is the wave number. For parallel propagation, both ion cyclotron and whistler waves become propagating and growing for β{sub ∥}−β{sub ⊥}>2+λ{sub i}{sup 2}k{sup 2}(α{sub e}−1){sup 2}/2. For oblique propagation, the necessary condition for FHI remains to be β{sub ∥}−β{sub ⊥}>2 and there exist one or two unstable fire-hose modes, which can be propagating and growing or purely growing. For large λ{sub i}k values, there exists no nearly parallel FHI leaving only oblique FHI and the effect of α{sub e}>1 may greatly enhance the growth rate of parallel and oblique FHI. The magnetic field polarization of FHI may be reversed due to the sign change associated with (α{sub e}−1) and the purely growing FHI may possess linear polarization while the propagating and growing FHI may possess right-handed or left-handed polarization.« less

  1. 29 CFR 1910.158 - Standpipe and hose systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Standpipe and hose systems. 1910.158 Section 1910.158 Labor... Standpipe and hose systems. (a) Scope and application—(1) Scope. This section applies to all small hose, Class II, and Class III standpipe systems installed to meet the requirements of a particular OSHA...

  2. 30 CFR 56.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen hose lines. 56.7802 Section 56.7802... Piercing Rotary Jet Piercing § 56.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose lines of 1-inch inside...

  3. 30 CFR 56.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen hose lines. 56.7802 Section 56.7802... Piercing Rotary Jet Piercing § 56.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose lines of 1-inch inside...

  4. 30 CFR 56.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen hose lines. 56.7802 Section 56.7802... Piercing Rotary Jet Piercing § 56.7802 Oxygen hose lines. Safety chains or other suitable locking devices shall be provided across connections to and between high pressure oxygen hose lines of 1-inch inside...

  5. 78 FR 59304 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... ducting with smoke and fire. Incorrectly installed metal clamps, if not corrected, could cause wire bundle... with smoke and fire caused by metal clamps installed on certain hoses. We are issuing this AD to... chaffing, arcing, and burning damage to the control cabin overhead wiring and ducting with smoke and fire...

  6. 33 CFR 127.1102 - Transfer hoses and loading arms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Transfer hoses and loading arms... Transfer hoses and loading arms. (a) Each hose within the marine transfer area for LHG used for the... transferred, in both the liquid and vapor state (if wire braid is used for reinforcement, the wire must be of...

  7. 33 CFR 127.1102 - Transfer hoses and loading arms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Transfer hoses and loading arms... Transfer hoses and loading arms. (a) Each hose within the marine transfer area for LHG used for the... transferred, in both the liquid and vapor state (if wire braid is used for reinforcement, the wire must be of...

  8. 33 CFR 127.1102 - Transfer hoses and loading arms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Transfer hoses and loading arms... Transfer hoses and loading arms. (a) Each hose within the marine transfer area for LHG used for the... transferred, in both the liquid and vapor state (if wire braid is used for reinforcement, the wire must be of...

  9. 46 CFR 58.30-20 - Fluid power hose and fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a... 46 Shipping 2 2012-10-01 2012-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20... of flexible hose where required for proper operation of machinery and components in the hydraulic...

  10. 46 CFR 58.30-20 - Fluid power hose and fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a... 46 Shipping 2 2011-10-01 2011-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20... of flexible hose where required for proper operation of machinery and components in the hydraulic...

  11. 46 CFR 58.30-20 - Fluid power hose and fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a... 46 Shipping 2 2013-10-01 2013-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20... of flexible hose where required for proper operation of machinery and components in the hydraulic...

  12. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  13. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  14. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  15. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  16. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  17. 33 CFR 127.607 - Fire main systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter (75 p.s.i.), the two outlets having the greatest pressure drop between the source of water and the hose or monitor nozzle, when only those two outlets are open. (d) If the source of water for the fire... marine transfer area for LNG must have a fire main system that provides at least two water streams to...

  18. A description of electron heating with an electrostatic potential jump in a parallel, collisionless, fire hose shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1988-01-01

    The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).

  19. 75 FR 3658 - Airworthiness Directives; The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... low-pressure flex-hoses of the crew oxygen system installed under the oxygen mask stowage boxes in the.... This proposed AD results from reports of low-pressure flex-hoses of the crew oxygen system that burned... the crew oxygen system to melt or burn, causing oxygen system leakage and smoke or fire. DATES: We...

  20. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b...

  1. 46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b...

  2. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  3. At Sea Personnel Transfer Concepts

    DTIC Science & Technology

    2006-07-28

    transfer at sea. Personnel can be transferred with relatively short notice using a 4” double braided , polyester synthetic highline instead of steel...supporting 1000 lbs at the tip of the ladder, and sustaining a 60000 gal/hr hose firing at any angle. The ladders are capable of supporting this...significant burden for the bridges. To further reduce the tip weight, the vacuum pumps will be stored on the deck of the ship and hosing will be run

  4. Firefighters from Mayport Naval Station train at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Firefighters surround a burning simulated aircraft during training exercises Cape Canaveral Air Force Station Pad 30. Those at left wait their turn as the crew on the right turn their hoses toward the fire. The firefighters are with Fire and Emergency Services at the Naval Station Mayport, Fla.

  5. Evaluating Fire Doors with Hose Ports.

    DTIC Science & Technology

    1987-06-01

    cm) of approved mineral wool structural insulation was applied to the fire side of the steel bulkhead. Steel pins were welded to the bulkhead and the...steel bulkheads, by continuously welding the frame Cl]nce to the bulkhead, USCG approved mineral wool structural insulation was applied on one side of

  6. KSC-00pp1445

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- Firefighters surround a burning simulated aircraft during training exercises Cape Canaveral Air Force Station Pad 30. Those at left wait their turn as the crew on the right turn their hoses toward the fire. The firefighters are with Fire and Emergency Services at the Naval Station Mayport, Fla

  7. KSC00pp1445

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- Firefighters surround a burning simulated aircraft during training exercises Cape Canaveral Air Force Station Pad 30. Those at left wait their turn as the crew on the right turn their hoses toward the fire. The firefighters are with Fire and Emergency Services at the Naval Station Mayport, Fla

  8. Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Matteini, Lorenzo; Landi, Simone; Hellinger, Petr; Velli, Marco

    2006-10-01

    We report a study of the properties of the parallel proton fire hose instability comparing the results obtained by the linear analysis, from one-dimensional (1-D) standard hybrid simulations and 1-D hybrid expanding box simulations. The three different approaches converge toward the same instability threshold condition which is in good agreement with in situ observations, suggesting that such instability is relevant in the solar wind context. We investigate also the effect of the wave-particle interactions on shaping the proton distribution function and on the evolution of the spectrum of the magnetic fluctuations during the expansion. We find that the resonant interaction can provide the proton distribution function to depart from the bi-Maxwellian form.

  9. TXCHEM HE-1000™

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups is applied by pressure sprayer, heated pressure washer, fire hoses, or mixing on or into hydrocarbon contaminated media.

  10. Firefighters from Mayport Naval Station train at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A firefighter (right) holds a water hose in readiness as others enter a smoke-filled simulated aircraft. The activities are part of fire training exercises at Cape Canaveral Air Force Station Pad 30 for firefighters with Fire and Emergency Services at the Naval Station Mayport, Fla. The firefighters have already extinguished flames from the aircraft.

  11. KSC-00pp1443

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- A firefighter (right) holds a water hose in readiness as others enter a smoke-filled simulated aircraft. The activities are part of fire training exercises at Cape Canaveral Air Force Station Pad 30 for firefighters with Fire and Emergency Services at the Naval Station Mayport, Fla. The firefighters have already extinguished flames from the aircraft

  12. KSC00pp1443

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- A firefighter (right) holds a water hose in readiness as others enter a smoke-filled simulated aircraft. The activities are part of fire training exercises at Cape Canaveral Air Force Station Pad 30 for firefighters with Fire and Emergency Services at the Naval Station Mayport, Fla. The firefighters have already extinguished flames from the aircraft

  13. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...

  14. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...

  15. 46 CFR 58.30-20 - Fluid power hose and fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a...

  16. 46 CFR 58.30-20 - Fluid power hose and fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a...

  17. General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.

    Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less

  18. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  19. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  20. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  1. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  2. Incident analysis of Bucheon LPG filling station pool fire and BLEVE.

    PubMed

    Park, Kyoshik; Mannan, M Sam; Jo, Young-Do; Kim, Ji-Yoon; Keren, Nir; Wang, Yanjun

    2006-09-01

    An LPG filling station incident in Korea has been studied. The direct cause of the incident was concluded to be faulty joining of the couplings of the hoses during the butane unloading process from a tank lorry into an underground storage tank. The faulty connection of a hose to the tank lorry resulted in a massive leak of gas followed by catastrophic explosions. The leaking source was verified by calculating the amount of released LPG and by analyzing captured photos recorded by the television news service. Two BLEVEs were also studied.

  3. 29 CFR 1926.151 - Fire prevention.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous locations. (5) The nozzle of air, inert gas, and steam lines or hoses, when used in the cleaning... nearest unit shall not exceed 100 feet. (d) Indoor storage. (1) Storage shall not obstruct, or adversely...

  4. 49 CFR 193.2621 - Testing transfer hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Testing transfer hoses. 193.2621 Section 193.2621 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  5. National Fire Codes. A Compilation of NFPA Codes, Standards, Recommended Practices, and Manuals. Volume 7: Alarm and Special Extinguishing Systems. 1969-70.

    ERIC Educational Resources Information Center

    National Fire Protection Association, Boston, MA.

    These NFPA recommendations are phrased in terms of performance or objectives, the intent being to permit the utilization of any methods, devices, or materials which will produce the desired results. The major topics included are--(1) extinguishing systems, (2) standpipe and hose systems, (3) wetting agents, (4) fire hydrants, (5) water charges for…

  6. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteini, L.; Schwartz, S. J.; Hellinger, P.

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion speciesmore » have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.« less

  7. 30 CFR 18.39 - Hose conduit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hose conduit. 18.39 Section 18.39 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements...

  8. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hose clamps: Installation. 183.560 Section 183.560 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.560...

  9. 46 CFR 153.972 - Connecting a cargo hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...

  10. 46 CFR 153.972 - Connecting a cargo hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...

  11. 46 CFR 153.972 - Connecting a cargo hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...

  12. 46 CFR 153.972 - Connecting a cargo hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...

  13. 46 CFR 153.972 - Connecting a cargo hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...

  14. 46 CFR 125.180 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) American Yacht and Boat Council, Inc. (AYBC): 3069 Solomon's Island Rd., Edgewater, MD 21037-1416, 410-990..., Research Triangle Park, NC 27709-3995, 919-549-1400, http://www.ul.com: (1) UL 19-1992—Lined Fire Hose and...

  15. 46 CFR 71.25-20 - Fire-detecting and extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... weight loss exceed 10 percent of weight of charge. Inspect hose and nozzle to be sure they are clear.1... cylinders. Recharge if weight loss exceeds 10 percent of weight of charge.1 1 Cylinders must be tested and...

  16. 2006 Joint Services Small Arms Systems Annual Symposium, Exhibition and Firing Demonstration

    DTIC Science & Technology

    2006-05-18

    FE FE FE /F H FE/FH FE FH EXIT EX IT EX IT EX IT EXIT FH - FIRE HOSE FE - FIRE EXTINGUISHER N S W E LOUNGE 20 20 LOUNGE 20 20 31’ AAI Corporation 302...Sniper Rifle Congressional Program, Mr. Neil E . Lee, US Army ARDEC • Plasma Transfer Arc Fabrication of Enhanced Performance Barrels, Mr. Kris C...Years of Small Arms (1326 – 1626)”, Dr. Stephen C. Small, JSSAP/ARDEC Session IV: International Programs • Small Arms in NATO Transformation, Mr. Vernon E

  17. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Spud, pipe, and hose fitting configuration. 183.530 Section 183.530 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183...

  18. 30 CFR 57.4201 - Inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  19. 30 CFR 57.4201 - Inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  20. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  1. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  2. 30 CFR 57.4201 - Inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  3. 30 CFR 57.4201 - Inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  4. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  5. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  6. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  7. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  8. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  9. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  10. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting...

  11. 46 CFR 154.1165 - Controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Controls. 154.1165 Section 154.1165 Shipping COAST GUARD... Chemical § 154.1165 Controls. (a) Each dry chemical hand hose line must be one that can be actuated at its... to any dry chemical system hose, monitor, pipe or control circuits must not prevent the operation of...

  12. 46 CFR 154.1165 - Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Controls. 154.1165 Section 154.1165 Shipping COAST GUARD... Chemical § 154.1165 Controls. (a) Each dry chemical hand hose line must be one that can be actuated at its... to any dry chemical system hose, monitor, pipe or control circuits must not prevent the operation of...

  13. 46 CFR 154.1165 - Controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Controls. 154.1165 Section 154.1165 Shipping COAST GUARD... Chemical § 154.1165 Controls. (a) Each dry chemical hand hose line must be one that can be actuated at its... to any dry chemical system hose, monitor, pipe or control circuits must not prevent the operation of...

  14. 46 CFR 154.1165 - Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Controls. 154.1165 Section 154.1165 Shipping COAST GUARD... Chemical § 154.1165 Controls. (a) Each dry chemical hand hose line must be one that can be actuated at its... to any dry chemical system hose, monitor, pipe or control circuits must not prevent the operation of...

  15. 46 CFR 154.1165 - Controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Controls. 154.1165 Section 154.1165 Shipping COAST GUARD... Chemical § 154.1165 Controls. (a) Each dry chemical hand hose line must be one that can be actuated at its... to any dry chemical system hose, monitor, pipe or control circuits must not prevent the operation of...

  16. 40 CFR 267.32 - What equipment am I required to have?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... supply water hose streams, or foam-producing equipment, or automatic sprinklers, or water spray systems. ... alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  17. 40 CFR 267.32 - What equipment am I required to have?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... supply water hose streams, or foam-producing equipment, or automatic sprinklers, or water spray systems. ... alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  18. 40 CFR 267.32 - What equipment am I required to have?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... supply water hose streams, or foam-producing equipment, or automatic sprinklers, or water spray systems. ... alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  19. 40 CFR 267.32 - What equipment am I required to have?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... supply water hose streams, or foam-producing equipment, or automatic sprinklers, or water spray systems. ... alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  20. 40 CFR 267.32 - What equipment am I required to have?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... supply water hose streams, or foam-producing equipment, or automatic sprinklers, or water spray systems. ... alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  1. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  2. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  3. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  4. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  5. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  6. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida participate in a training exercise at the Shuttle Landing Facility. Firefighters, wearing protective gear, use hoses to put out a fire burning close to a mock-up of a small plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  7. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida participate in a training exercise at the Shuttle Landing Facility. Firefighters, wearing protective gear, use hoses to put out a fire burning near the mock-up of a small plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  8. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida participate in a training exercise at the Shuttle Landing Facility. Firefighters, wearing protective gear, use hoses to put out a fire burning on a mock-up of a small plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  9. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida participate in a training exercise at the Shuttle Landing Facility. Firefighters use fire trucks and hoses to extinguish flames burning on and around a mock-up of a small plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  10. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - During a training exercise, Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida use hoses to put out a fire burning on a mock-up of a small plane at the Shuttle Landing Facility. They are wearing protective gear for the training exercise. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  11. 46 CFR 169.247 - Firefighting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... certification and periodic inspection and at such other times as considered necessary all fire-extinguishing... condition of the equipment. The inspector verifies that the tests and inspections required in Tables 169.247.... Table 169.247(a)(1)—Portable Extinguishers Type unit Test Foam Discharge. Clean hose and inside of...

  12. 46 CFR 169.247 - Firefighting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certification and periodic inspection and at such other times as considered necessary all fire-extinguishing... condition of the equipment. The inspector verifies that the tests and inspections required in Tables 169.247.... Table 169.247(a)(1)—Portable Extinguishers Type unit Test Foam Discharge. Clean hose and inside of...

  13. Firefighters from Mayport Naval Station train at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.

  14. Investigating Hastily-Formed Collaborative Networks

    DTIC Science & Technology

    2007-03-01

    support a minimum range of 250 meters since this is the minimum required length of a fire hose . • Jurisdiction Area Network (JAN): This is the main...but typical braided one-half inch polypropylene rope weighs less than two pounds per one hundred 4-19 feet and has tensile strengths greater than two

  15. 46 CFR 56.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) American Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY 10016-5990... (“ASME SA-675”), 56.60-2. (e) ASTM International (formerly American Society for Testing and Materials... 15540 Ships and Marine Technology-Fire Resistance of Hose Assemblies-Test Methods, First Edition (Aug. 1...

  16. KSC00pp1440

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.

  17. KSC-00pp1440

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- Firefighters hold their hoses on a burning simulated aircraft, creating a rainbow. Watching at right (red uniform) and in the foreground are trainers. The training exercises for firefighters with Fire and Emergency Services at Naval Station Mayport, Fla., are being held at Cape Canaveral Air Force Station Pad 30.

  18. The Elephants in the Fire Hoses

    ERIC Educational Resources Information Center

    Stevens, Vance

    2014-01-01

    In this article, Vance Stevens describes how access to what he calls "star performer educators" as either up-­and­-coming in their field, or experienced and polished practitioners, have changed with access to the internet. They are clearly passionate about what they do, and what they do has become second nature. They touch hearts and…

  19. 20. HANGAR BAY #2 FORWARD LOOKING AFT ON CENTERLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HANGAR BAY #2 - FORWARD LOOKING AFT ON CENTERLINE - STARBOARD SIDE SHOWING CONFLAGRATION STATION, UPTAKE SPACE AND DEHUMIDIFICATION MACHINES - PORT SIDE SHOWING VARIOUS DECK WINCHES, ROLLER DOORS, HANGAR DECK PLANE CONTROL STATION AND AQUEOUS FIRE FIGHTING FOAM HOSE REELS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  20. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida review procedures after participating in a training exercise at the Shuttle Landing Facility. During the training simulation, firefighters used fire trucks and hoses to extinguish flames burning on and around a mock-up of a small plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  1. Fire Rescue Exercise

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Special Rescue Operations firefighters with NASA Fire Rescue Services in the Protective Services Office at NASA’s Kennedy Space Center in Florida participate in a training exercise at the Shuttle Landing Facility. Firefighters, wearing protective gear, use hoses to put out a fire burning near the mock-up of a small plane as another firefighter checks inside the plane. Kennedy’s firefighters recently achieved Pro Board Certification in aerial fire truck operations and completed vehicle extrication training using the Jaws of Life. The Protective Services Office is one step closer to achieving certification in vehicle machinery extrication and other rescue skills. Kennedy’s firefighters are with G4S Government Solutions Inc., on the Kennedy Protective Services Contract. Photo credit: NASA/Kim Shiflett

  2. 77 FR 38468 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... was prompted by a report of a ground fire which was fed by oxygen escaping from a damaged third crew person oxygen line and had started in the vicinity of an electrical panel. This AD requires replacing and changing the routing of the flexible oxygen hose of the third crew person oxygen line and modifying the...

  3. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  4. Drinking from the Fire Hose: Why the Flight Management System Can Be Hard to Train and Difficult to Use

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael; Polson, Peter; Fennell, Karl

    2003-01-01

    The Flight Management Computer (FMC) and its interface, the Multi-function Control and Display Unit (MCDU) have been identified by researchers and airlines as difficult to train and use. Specifically, airline pilots have described the "drinking from the fire-hose" effect during training. Previous research has identified memorized action sequences as a major factor in a user s ability to learn and operate complex devices. This paper discusses the use of a method to examine the quantity of memorized action sequences required to perform a sample of 102 tasks, using features of the Boeing 777 Flight Management Computer Interface. The analysis identified a large number of memorized action sequences that must be learned during training and then recalled during line operations. Seventy-five percent of the tasks examined require recall of at least one memorized action sequence. Forty-five percent of the tasks require recall of a memorized action sequence and occur infrequently. The large number of memorized action sequences may provide an explanation for the difficulties in training and usage of the automation. Based on these findings, implications for training and the design of new user-interfaces are discussed.

  5. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  6. Drinking from a Fire Hose: A Study of Information Interactions in the Personal Offices of Members of Congress

    ERIC Educational Resources Information Center

    Weissmann, Deborah

    2010-01-01

    Although much as been written about information technologies and politics, less is known about how information is handled in congressional personal offices. What happens when a constituent sends an email to their Congressman? How does a Senator get information about the pros and cons of a proposed bill? A study was conducted to understand the…

  7. Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.

    DTIC Science & Technology

    1984-11-01

    209 S- ..-...-......... a nineteenth century one which had been developed for .he braiding of fire hoses . Project Results The program revealed...was found for protecting the drilling and position sensing optics from expelled metal particles. Process and work-material variables were optimized...HPT vane material. Hastelloy X is a nickel-chromium superalloy used in high temperature sheet metal applications, such as combustion liners and

  8. KSC-04pd1257

    NASA Image and Video Library

    2004-06-09

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Firefighter Chris Maupin (left) and Lt. Keith Abell demonstrate how the special aircraft firefighting vehicle (known as ARF) was used at the site of a recent fire in Brevard County, Fla. The firefighters sit inside the vehicle with a "driver" in the middle. They are able to direct the hoses to attack fires from above and below. The firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.

  9. The Logistics of Oil Spill Dispersant Application. Volume I. Logistics-Related Properties of Oil Spill Dispersants.

    DTIC Science & Technology

    1982-11-01

    time of application. Such designs were probably influenced by the ready availabilit " 51 of fire-fighting hoses on ships and tugs; the water stream not...8217 I I1 ---- i . . .. . IIII . . . I I PREFACE The use of chemicals for the dispersal of oil spilled on water has been the subject of discussion (and of...20 Oil Type, Weathering and Emulsification.. 20 Slick Thickness .......................... 28 Water Temperature

  10. Safer Pleasure Boats

    NASA Technical Reports Server (NTRS)

    1976-01-01

    'Flamarest' coating developed by Avco Corporation for NASA to protect fuel lines and tanks is sprayed on the interior of polyester boat hull in commercial application. About 30 mils of the coating prevented structural damage to hull during test in which a 13 minute interior gasoline fire was started. An unprotected hull would begin to burn in 30 seconds. Same material applied as tape to wrap fuel lines effectively insulates hose when charred while also reducing spread of flame.

  11. USU AFOSR University Engineering Design Challenge Proposal

    DTIC Science & Technology

    2015-01-02

    gauge, voltmeter, on/off switch Handle ◦ Aluminum, 7.5 in. wide Skirt ◦ EVA foam, abrasion resistant Friction strip ◦ Stealth Rubber 8 12/28/2014 5 Hose...0.962 Tensile Strength [Gpa] 3.2 2.9 1.103 Abrasion Resistance [cycles to failure] 286 83 3.446 Impact Resistance [Energy @ penetration, in-lbs] 125...combination of) terrain to extricate equipment and personnel in situations where the scene is actively on fire or burnt and have exposed sharp metallic

  12. Technology for the cities

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The activities of an organization for making the technology derived from NASA programs available for use by urban communities are discussed. Examples of technology utilization accomplished by the organization are: (1) self-contained breathing apparatus for firemen, (2) short range communication systems, (3) pavement marking, (4) protective clothing for firemen, (5) underground pipe and conduit locator, and (6) automatic fire hose flow regulator. The manner in which urban problems are identified and the designation of applicable technical developments are described.

  13. LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions

    NASA Astrophysics Data System (ADS)

    Astfalk, Patrick; Jenko, Frank

    2017-01-01

    Particle velocity distributions measured in collisionless space plasmas often show strong deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in space plasma environments such as the solar wind or Earth's magnetosphere is still mainly carried out using dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks. Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a first application of that kind.

  14. Flight Deck Refuelling Hose Failure HMCS Preserver

    DTIC Science & Technology

    2000-01-01

    hose and these were used as a basis for the investigation. Chemical analysis indicated that the inner tube and outer cover of the hose were as...Principal Results Chemical analysis indicated that the inner tube (poly(butadiene-acrylonitrile) rubber) and outer cover of the hose (poly( chloroprene... Analysis Py-GC/MS Instrumentation and Experimental Conditions Failed Titan Hose New Titan Hose German Hose Proof Tests Failed Titan Hose New

  15. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  16. KSC-04pd1256

    NASA Image and Video Library

    2004-06-09

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, KSC Firefighter Chris Maupin (left) watches as Lt. Keith Abell practices maneuvering apparatus on top of the firefighting vehicle with which they are able to direct the hoses to attack fires from above and below. The firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.

  17. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    NASA Astrophysics Data System (ADS)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.

  18. System to Repair Deformations in Elastomeric Hoses

    DTIC Science & Technology

    2017-01-05

    ability of the hose to transport liquid and gas as intended. Repairing and/or replacing these hoses can prove to be costly, time consuming, and labor...position, filling the hose with compressed gas and immersing the hose in the heated liquid . This can be performed on portions of the hose. [0022] Other...position against the buoyant gas -filled hose 12. Accordingly, cover 34 can be used to urge members 26 into the liquid with sufficient force to

  19. Firefighter safety and photovoltaic installations research project

    NASA Astrophysics Data System (ADS)

    Backstrom, Robert; Dini, Dave

    2012-10-01

    Under the United States Department of Homeland Security (DHS) Assistance to Fire Fighters grant, UL LLC examined fire service concerns of photovoltaic (PV) systems. These concerns included firefighter vulnerability to electrical and casualty hazards when mitigating a fire involving photovoltaic (PV) modules systems. Findings include: 1. The electric shock hazard due to application of water is dependent on voltage, water conductivity, distance and spray pattern of the suppression stream. 2. Outdoor weather exposure rated electrical enclosures are not resistant to water penetration by fire hose streams. 3. Firefighter's gloves and boots afford limited protection against electrical shock provided the insulating surface is intact and dry. 4. "Turning off" an array is not a simple matter of opening a disconnect switch. 5. Tarps offer varying degrees of effectiveness. 6. Fire equipment scene lighting and exposure fires may illuminate PV systems sufficiently to cause a lock-on hazard. 7. Severely damaged PV arrays are capable of producing hazardous conditions. 8. Damage to modules from tools may result in both electrical and fire hazards. 9. Severing of conductors in both metal and plastic conduit results in electrical and fire hazards. 10. Responding personnel must stay away from the roofline in the event of modules or sections of an array sliding off the roof. 11. Fires under an array but above the roof may breach roofing materials and decking allowing fire to propagate into the attic space. Several tactical considerations were developed utilizing the data from the experiments.

  20. Flexible collapse-resistant and length-stable vaccum hose

    DOEpatents

    Kashy, David H.

    2003-08-19

    A hose for containing a vacuum, which hose has an impermeable flexible tube capable of holding a vacuum and a braided or interwoven flexible interior wall, said wall providing support to said interior wall of said impermeable flexible tube. Optionally, an exterior braided or woven wall may be provided to the hose for protection or to allow the hose to be used as a pressure hose. The hose may delimit a vacuum space through which may travel a thermal transfer line containing, for example, cryogenic fluid.

  1. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  2. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  3. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  4. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  5. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  6. Investigation of Electrostatic Charge in Hose Lines

    DTIC Science & Technology

    2006-10-01

    of the system. A INSULATORINSULATOR Ir1 Q Q dH vH A INSULATORINSULATOR Ir2 Q dm dl 2 vm LmLH S1 S2 S3EXTERNAL WIRE BRAID ON HOSE vl 2vm dm Lm dl...sizes of fuel hoses , including hoses with and without integrally bonded grounding wire braid ; (4) Different lengths of hose test sections; (5...Different earth grounding contact conditions along the hose test section, such as: (i) Complete insulation from the ground; (ii) Wire braid conductor along

  7. Apparatus for Leak Testing Pressurized Hoses

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D. (Inventor); Garrison, Steve G. (Inventor); Gant, Bobby D. (Inventor); Palmer, John R. (Inventor)

    2015-01-01

    A hose-attaching apparatus for leak-testing a pressurized hose may include a hose-attaching member. A bore may extend through the hose-attaching member. An internal annular cavity may extend coaxially around the bore. At least one of a detector probe hole and a detector probe may be connected to the internal annular cavity. At least a portion of the bore may have a diameter which is at least one of substantially equal to and less than a diameter of a hose to be leak-tested.

  8. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  9. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... brake pedal, the pedal shall fall slightly when the engine is started, demonstrating integrity of the...

  10. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  11. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  12. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  13. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  14. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  15. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  16. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  17. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  18. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  19. 30 CFR 56.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  20. 30 CFR 56.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  1. 30 CFR 56.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  2. Observations of a pressurized hydraulic hose under lateral liquid impacts

    NASA Astrophysics Data System (ADS)

    Stewart, C. D.; Gorman, D. G.

    The effects of 'pin-hole' failure of one pressurized hydraulic hose on its neighbour are investigated. A pressurized test hose was inserted into a custom testing apparatus and subjected to a series of ten short duration liquid impacts simulating the pin-hole failure of an initial hose. Subsequent displacements of the hose were filmed and plotted with respect to time. Three distinct pattern groups emerged which were used to explain the resultant damage to the hose. It was observed that the middle pattern, corresponding to impacts 6 and 7, appears to be the point where the very damaging hydraulic penetration mechanism became dominant and the outer layer of the hose failed. On completion of the ten impact series it was observed that a small hole on the outer surface of the hose gave way to a relatively large damaged area in the strength bearing inner braid material.

  3. Braking, Wheeled Vehicles. Test Operations Procedure (TOP)

    DTIC Science & Technology

    2008-05-20

    actuated. 2. Hydraulic System Procedure: Visually inspect the lines, hoses , master cylinder and cap. Reject the vehicle if: • Lines and... hoses are leaking, welded, cracked, chafed, flattened, insecurely mounted or have restricted sections. • Repairs to lines and hoses have been made...608 20 May 2008 D-3 HAZARDOUS CONDITION • Any brake hose or line seeps or swells under pressure. • Any brake hose is cracked to the second

  4. Upper Mississippi River Headwaters Reservoirs Damsites Cultural Resources Investigation. Lake Winnibigoshish, Leech Lake, Pokegema Lake, Sandy Lake, Pine River and Gull Lake Reservoirs, Minnesota

    DTIC Science & Technology

    1988-02-01

    Anthony Falls Water Company, who deeded 1995 acres of land at Gull Lake for the purpose (Kane, 1966: 159). Despite the unique nature of the reservoir system...dwelling, laborers’ quarters, engineers’ quarters, a dining hall, an office building, an officer’s ho.se, a wood shed, a chicken coop, a barn, a...a barn, carpenter and blacksmith shops, two warehouses, a wood shed and a chicken coop (Figure 42). The "new" dwelling was destroyed by another fire

  5. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... power assist system. This test is not applicable to vehicles equipped with full power brake system as...

  6. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  7. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  8. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  9. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  10. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  11. 33 CFR 156.160 - Supervision by person in charge.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Supervision by person in charge. 156.160 Section 156.160 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 156.160 Supervision by person in charge. (a) No person may connect or disconnect a hose, top off...

  12. 33 CFR 156.160 - Supervision by person in charge.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Supervision by person in charge. 156.160 Section 156.160 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 156.160 Supervision by person in charge. (a) No person may connect or disconnect a hose, top off...

  13. 33 CFR 156.160 - Supervision by person in charge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Supervision by person in charge. 156.160 Section 156.160 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 156.160 Supervision by person in charge. (a) No person may connect or disconnect a hose, top off...

  14. 33 CFR 156.160 - Supervision by person in charge.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Supervision by person in charge. 156.160 Section 156.160 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 156.160 Supervision by person in charge. (a) No person may connect or disconnect a hose, top off...

  15. 33 CFR 156.160 - Supervision by person in charge.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Supervision by person in charge. 156.160 Section 156.160 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 156.160 Supervision by person in charge. (a) No person may connect or disconnect a hose, top off...

  16. 30 CFR 57.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  17. 30 CFR 57.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  18. 30 CFR 57.7806 - Oxygen intake coupling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it. ...

  19. 33 CFR 154.740 - Records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Records. 154.740 Section 154.740... TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.740 Records. Each facility operator... (e) and (g) except that marked on the hose; (e) The record of all examinations of the facility by the...

  20. 33 CFR 154.740 - Records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Records. 154.740 Section 154.740... TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.740 Records. Each facility operator... (e) and (g) except that marked on the hose; (e) The record of all examinations of the facility by the...

  1. 33 CFR 154.740 - Records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Records. 154.740 Section 154.740... TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.740 Records. Each facility operator... (e) and (g) except that marked on the hose; (e) The record of all examinations of the facility by the...

  2. 33 CFR 154.740 - Records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Records. 154.740 Section 154.740... TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.740 Records. Each facility operator... (e) and (g) except that marked on the hose; (e) The record of all examinations of the facility by the...

  3. 33 CFR 154.740 - Records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Records. 154.740 Section 154.740... TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.740 Records. Each facility operator... (e) and (g) except that marked on the hose; (e) The record of all examinations of the facility by the...

  4. Flammability and sensitivity of materials in oxygen-enriched atmospheres; Proceedings of the Fourth International Symposium, Las Cruces, NM, Apr. 11-13, 1989. Volume 4

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Editor); Benz, Frank J. (Editor); Stradling, Jack S. (Editor)

    1989-01-01

    The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.

  5. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  6. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  7. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  8. Your Garden Hose: A potential health risk due to Legionella spp. growth facilitated by free-living amoebae

    EPA Science Inventory

    Common garden hoses may generate aerosols of inhalable size (<10 um) during use. If aerosols are inhaled containing Legionella bacteria, Legionnaires' disease or Pontiac fever may result. Noting clinical cases have been linked to garden hose use. The hose environment is ideal ...

  9. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  10. Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TORRES, T.D.

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will bemore » exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation and the manufacturer's stated shelf life. In order to determine the transfer line service life this evaluation examines the certification of shelf life, the certification of chemical compatibility with waste, catalog information of ambient ratings and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials. During initial hose procurements, the hose-in-hose transfer line vendor River Bend Hose Specialty (RBHS) submitted a letter, dated 6/8/00, which recommended the service and shelf life of the hose to be seven years. In submittals for later hose procurements, RBHS submitted a letter, dated 11/6/00, which recommended the service life of the hose to be three years. This submittal was followed by documentation, on 2/14/01, which submitted new storage requirements and restated the seven year shelf life. RBHS revised their original hose service life estimate to a more conservative three years due to concerns over the effects of chemicals in transferred waste. The above mentioned submittals from RBHS are the primary drivers of the three year service life limit established by this document.« less

  11. 46 CFR 35.35-5 - Electric bonding-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electric bonding-TB/ALL. 35.35-5 Section 35.35-5... Electric bonding—TB/ALL. A tank vessel may be electrically connected to the shore piping, through which the cargo is to be transferred, prior to the connecting of a cargo hose. This electrical connection, if made...

  12. 46 CFR 35.35-5 - Electric bonding-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electric bonding-TB/ALL. 35.35-5 Section 35.35-5... Electric bonding—TB/ALL. A tank vessel may be electrically connected to the shore piping, through which the cargo is to be transferred, prior to the connecting of a cargo hose. This electrical connection, if made...

  13. 46 CFR 35.35-5 - Electric bonding-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electric bonding-TB/ALL. 35.35-5 Section 35.35-5... Electric bonding—TB/ALL. A tank vessel may be electrically connected to the shore piping, through which the cargo is to be transferred, prior to the connecting of a cargo hose. This electrical connection, if made...

  14. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  15. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  16. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  17. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  18. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  19. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  20. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  1. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  2. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  3. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  4. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  5. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  6. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  7. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  8. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  9. Evaluation of Hose in Hose transfer line service life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EAGLE, O.H.

    This document presents a determination for the amount of expected service life from Hose-in-Hose Transfer Lines based on vendor information and past HIHTL experience. Based on the information presented in this report and referenced documentation, we conclude the service life of the inner hose establishes the limits of service life for the finished assemblies. Since the process and environmental conditions to which the transfer line is subjected will not adversely affect the hose, the effective service life is that stated by the vendor--three years from the date of initial transfer. Transfer line assemblies have a shelf life of seven yearsmore » from the date of hose manufacture, if stored in accordance with Section 2.1. This evaluation provides documentation showing that a three year service life has been justified. In the event that transfer lines are to be operated after three years from the date of initial transfer and within the shelf life of seven years, they must be reevaluated for their ability to perform intended functions.« less

  10. Rubber hose surface defect detection system based on machine vision

    NASA Astrophysics Data System (ADS)

    Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng

    2018-01-01

    As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.

  11. Aircraft Crash Survival Design Guide. Volume 5. Aircraft Postcrash Survival

    DTIC Science & Technology

    1980-01-01

    The use of flexible hose armored with a steel- braided harness is strongly suggested in areas of anticipated dragging or structural impingement. In... Hose end coupling Metal tank fitting Breakaway valve Frangible section i ITEM LOWEST FAILURE LOAD (LB)* FAILURE MODE Flex hose 3000 Tensile breakage...61 21 Typical breakaway load calculation for in-line breakaway valve. . . . . . . . . 62 22 Standard hose fitting dimensions

  12. 46 CFR 154.1170 - Hand hose line: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting System: Dry Chemical § 154.1170 Hand hose line: General. Each dry chemical hand hose line must: (a...

  13. Vehicle Armor Structure and Testing for Future Combat System

    DTIC Science & Technology

    2013-06-03

    Attached Hose ........................................................................ 45  Figure 2.9-4: Time-Temperature Results for Test 3 in Table 2.9...is within t at allow the er to perform h hoses that ed hoses is Figure 2. he chamber chamber to the enviro attach to the shown in Fig 9-1...nd Attache stron Mach d Hose ine UNCLASSIFIED UNCLASSIFIED 46 Thermal studies were conducted to determine the time required to subject

  14. Development of a Lightweight, High Strength, Collapsible Hose

    DTIC Science & Technology

    1989-02-01

    they will erupt through the elastomer as the hose exits the extrusion head and result in blistering of the cover and/or the lining. The jacket is...not successful. Extreme blistering of the elastomer occurred as the hose exited the extrusion head. The conclusion was drawn that moisture was not...HIGH STRENGTH, COLLAPSIBLE HOSE ABSTRACT This report documents an exploratory development effort to produce a 6-inch diameter, lightweight, high strength

  15. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose

    NASA Astrophysics Data System (ADS)

    Su, Zikang; Wang, Honglun; Li, Na

    2018-05-01

    As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.

  16. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Technical Reports Server (NTRS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    1989-01-01

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  17. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Astrophysics Data System (ADS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  18. Failure analysis of braided U-shaped metal bellows flexible hoses

    NASA Astrophysics Data System (ADS)

    Pierce, Stephen O.

    Most of the research performed extensively reviews the effects of non-reinforced metal bellows and their pressurized characteristics. However, the majority of flex hoses are manufactured with reinforcement by the means of interweaved wire braids. For this research, the outer braid reinforced metal bellows flex hoses will be examined for their failure at differing lengths. The relationship with the bellows expansion joints is such that as the length of the flex hoses increases, the pressure at which squirm occurs decreases. As such, for the testing being performed, the same approach to failure is expected. As the length of the flex hose increases, it is predicted that the hose will fail at a decreasing pressure. Since the braid is the only thing that prevents the squirm from occurring, more of the load will be displaced from the bellows and into the braid. This will ultimately cause failure of the braid to occur at a lower pressure as the length of the hoses increase due to more of the load being transmitted from the bellows and into the braid.

  19. 46 CFR 76.10-90 - Installations contracted for prior to May 26, 1965.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Not over Minimum number of pumps Minimum hose and hydrant size, inches Nozzle orifice size, inches Length of hose, feet 100 4,000 2 1 11/2 1 5/8 1 50 4,000 3 1 11/2 1 5/8 1 50 1 May use 50 feet of 21/2-inch hose with 7/8-inch nozzles for exterior stations. May use 75 feet of 11/2-inch hose with 5/8-inch...

  20. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  1. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  2. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  3. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  4. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  5. Evaluation of oil-leakage of multi-layered resin-hose clamped with metal nipple and sleeve

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Okubo, Kazuya; Fujii, Toru; Nakamura, Chihiro; Fujishita, Yushi; Kusu, Fuko; Matsushita, Masato; Yoshihara, Ryota

    2018-03-01

    The purpose of this study is to investigate the path of occurred oil-leakage of multi-layered resin-hose as one of multifunctional materials around the caulked joint with a metal nipple and sleeve when excessive cyclic internal pressure was applied onto the hose. Equivalent cyclic axial tensile force was substitutively applied to the hose, where same degree of normal stress was produced in longitudinal direction. Excessive 3 and 5 times of the standard load was applied to the hose. Cyclic loading was paused at every 1000 and 10000 cycles and then designed internal pressure was applied to the hose by a hand-operated pump with water in order to check whether the leakage was occurred around the joint and surface of the hose for safety evaluation. Cyclic fatigue life was defined as the number of loading cycles in which the leakage and the initial damage which was the passage of the ultrasonic wave was observed on the cyclic test. Test results showed the fatigue life at which leakage of water was observed was increased 20 times in case of K=3 compared to that in case of K=5. The cycles of initial damage detected by the ultrasonic wave were passed was increased 3.3 times in case of K=3 compared to that in case of K=5. The fluorescent agent penetrated from the core layer of resin hose to the reinforcement layer in which a half cross section along longitudinal direction in failed specimens was observed after the leak test. The original specimens had the gap between the resin-hose and the nipple and then the gap extended and connected during fatigue cyclic. In this study, it was observed that oil was leaked through narrow gap between the nipple and core layer of resin hose.

  6. KSC-08pd0118

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload bay doors are closing on space shuttle Atlantis. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose (seen in the middle), part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers are using a hose assist tool designed to help guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  7. Identification and Evaluation of Deepwater Port Hose Inspection Methods

    DOT National Transportation Integrated Search

    1979-01-01

    The work contained in this report consists of a review of deepwater port hose failures to date, and the causes leading to these failures, as well as an evaluation of current hose inspection techniques and procedures, and an examination of available n...

  8. Impact Study of Synthetic and Alternative Fuel Usage in Army Aircraft Propulsion Systems.

    DTIC Science & Technology

    1981-07-01

    oil were Included for comparison. The elastomers tested represented all of the non- metallic materials found in aircraft fuel systems. The study on...a Buna N liner (adjacent to the fuel)surrounded by a wire braid and a special butyl-rubber outer hose . These hoses comformed to the following...or Stratoflex Incorporated. The hose usually has a nylon or wire braid on the outside conforming to MIL-C-83291 or MIL-C-83797. Two hose designs are

  9. Accurate modeling of the hose instability in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  10. 77 FR 2928 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... pressure hose and electrical wiring of the green electrical motor pump (EMP). This proposed AD would... for correct condition and installation of hydraulic pressure hoses, electrical conduits, feeder cables... detect and correct chafing of hydraulic pressure hoses and electrical wiring of the green EMPs, which in...

  11. LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PERES MW

    In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer viamore » the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.« less

  12. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  13. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  14. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  15. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  16. 46 CFR 182.720 - Nonmetallic piping materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...

  17. 77 FR 6518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... deck. This proposed AD would require replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the flight compartment. We are proposing this AD to prevent electrical current from passing through the low- pressure oxygen hose internal anti-collapse spring, which can cause the...

  18. Final Development, Testing, and Flight Preparation of the Rigidizable Get-Away-Special Experiment (RIGEX)

    DTIC Science & Technology

    2007-06-01

    threads connected to a steel braided hose with ¼” pipe ends. The steel braided hose is then connected to a ¼” 107 three-way union, which is...which can be switched back and forth, are connected to the nitrogen and vacuum source. The nitrogen source is connected through a steel braided hose ...from hot piping during hot runs. This is where most of the cryogenic piping and valves are mounted. The piping near the pump and the flex hose at

  19. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE PAGES

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; ...

    2018-05-20

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  20. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  1. 42 CFR 84.161 - Man test for gases and vapors; Type B and Type BE respirators; test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type B and Type BE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.161 Man test for gases and vapors; Type B and... 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man in the isoamyl...

  2. 42 CFR 84.161 - Man test for gases and vapors; Type B and Type BE respirators; test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type B and Type BE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.161 Man test for gases and vapors; Type B and... 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man in the isoamyl...

  3. 42 CFR 84.161 - Man test for gases and vapors; Type B and Type BE respirators; test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type B and Type BE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.161 Man test for gases and vapors; Type B and... 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man in the isoamyl...

  4. 42 CFR 84.160 - Man test for gases and vapors; Type A and Type AE respirators; test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type A and Type AE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.160 Man test for gases and vapors; Type A and... not more than 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man...

  5. 42 CFR 84.160 - Man test for gases and vapors; Type A and Type AE respirators; test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type A and Type AE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.160 Man test for gases and vapors; Type A and... not more than 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man...

  6. 42 CFR 84.160 - Man test for gases and vapors; Type A and Type AE respirators; test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type A and Type AE... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.160 Man test for gases and vapors; Type A and... not more than 25 percent of the hose length will be located in isoamyl acetate-free air. (b) The man...

  7. Technical Evaluation for the Determination of CGI Designation for Safety Class Items Incorporated in Hose-in-Hose Transfer Line Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUCHANAN, J.R.

    2000-05-16

    The purpose of this technical evaluation is to determine whether the secondary hoses are to be categorized as Commercial Grade Items (CGI) or Engineered Equipment. This determination will identify whether or not use of the CGI Dedication process is appropriate.

  8. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a... a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt..., as an integral part of the vehicle's original design, with a means of attaching the support to the...

  9. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a... a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt..., as an integral part of the vehicle's original design, with a means of attaching the support to the...

  10. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a... a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt..., as an integral part of the vehicle's original design, with a means of attaching the support to the...

  11. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a... a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt..., as an integral part of the vehicle's original design, with a means of attaching the support to the...

  12. 46 CFR 162.039-3 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fitted with hose of sufficient length to a nozzle or nozzles to provide for suitable application of the... the hose connection); shall weigh more than 55 pounds when fully charged; shall be self-contained, i.e... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which...

  13. 46 CFR 162.039-3 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fitted with hose of sufficient length to a nozzle or nozzles to provide for suitable application of the... the hose connection); shall weigh more than 55 pounds when fully charged; shall be self-contained, i.e... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which...

  14. 46 CFR 132.100 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subpart, a hand-operated pump and a hose capable of providing an effective stream of water to each part of the vessel. (c) A garden hose of nominal inside diameter of at least 16 millimeters (5/8-inch) complies with paragraph (b) of this section if the hose is— (1) Of good commercial grade and is constructed...

  15. 46 CFR 162.039-3 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fitted with hose of sufficient length to a nozzle or nozzles to provide for suitable application of the... the hose connection); shall weigh more than 55 pounds when fully charged; shall be self-contained, i.e... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which...

  16. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...). (2) Any portion of the drum or rotor missing or in danger of falling away. d. Brake Hose. (1) Hose... a reinforcement ply). (Thermoplastic nylon may have braid reinforcement or color difference between... pressure is applied. (3) Any audible leaks. (4) Two hoses improperly joined (such as a splice made by...

  17. 46 CFR 162.039-3 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fitted with hose of sufficient length to a nozzle or nozzles to provide for suitable application of the... the hose connection); shall weigh more than 55 pounds when fully charged; shall be self-contained, i.e... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which...

  18. 46 CFR 162.039-3 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fitted with hose of sufficient length to a nozzle or nozzles to provide for suitable application of the... the hose connection); shall weigh more than 55 pounds when fully charged; shall be self-contained, i.e... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which...

  19. Counting the cost of false alarms.

    PubMed

    2013-05-01

    While fire and rescue service personnel, the Government, those responsible for fire safety in the healthcare sector, the Health and Safety Executive, fire and rescue services, and indeed fire alarm and detection equipment manufacturers, must be pleased that the number of false fire alarms continues to fall, fire services still attended just under 585,000 fires or false alarm incidents across Great Britain in 2011/12. Of this total, 272,000 were actual fires, of which around 24,000 were in premises classified by the Department for Communities and Local Government (DCLG) as 'other buildings', i.e. not 'dwellings', a category that includes healthcare facilities (representing a 4% fall on 2010-2011). HEJ looks behind the statistics, and at the possibility that some fire services could, in future, charge healthcare providers that persistently report incidents that turn out to be false alarms.

  20. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    PubMed

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  1. Investigation of Materials for Ship-to-Shore Low Pressure Steam Hoses.

    DTIC Science & Technology

    1977-07-01

    t aging results in either softening or hardening of rubber prod u c ts used for tite tube , cover , and adhesion layers of steam l iose~ • In the...preliniinarv evaluation will be available after in-servile use . EPDM rubber is a l s o suitable for the cover of a steam hose ex c e p t where contact... rubber -lined Steam hoses were invi s t ig i ted At t he present si, itc 01 the art , the average lift for a steam hose is about (t mont hs to one

  2. False Fire Alarms: A Deviant Pattern of Seeking Help.

    ERIC Educational Resources Information Center

    Camblin, Louise; Weinland, Laura

    1987-01-01

    Discusses the phenomenon of false fire alarms, the deliberate, intentional false reporting of fires, by mentally troubled persons as a primitive kind of help-seeking behavior. Several common themes found by reviewing false alarm cases are presented. Suggests that identifying the intrapsychic dynamics of false alarm reporters could be useful in…

  3. Developing Standards to Qualify a Fine Water Mist Fire Extinguisher for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Graf, John

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen systems increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide, so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. Compared to the carbon dioxide based Portable Fire Extinguisher, the flight qualification of Fine Water Mist systems requires special care. Qualification of the CO2 based Portable Fire Extinguisher began with the assumption that any fire on ISS would be extinguished if the air in the fire environment reached a critical concentration of CO2. Qualification of a CO2 based system requires the developers to make assertions and assumptions about vehicle geometry and the ability of the extinguisher to deliver CO2 in different geometric configurations, but the developers did not need to make assertions or assumptions about the size of the fire, the temperature, or the heat generation rate. Fine Water Mist systems extinguish a fire predominantly by removing heat -- so qualification standards must evaluate geometry, but also temperature, heat transfer, and heat generation rate. This paper outlines and describes the methods used to develop standards used to qualify Fine Water Mist systems for a human spaceflight environment.

  4. 46 CFR 27.102 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Street, Suite 10, Annapolis, MD 21403 H-25-1986—Portable Fuel Systems for Flammable Liquids 27.211 H-33... Commonwealth Drive, Warrendale, PA 15096-0001 SAE J1475-1984—Hydraulic Hose Fitting for Marine Applications 27.211 SAE J1942-1989—Hose and Hose Assemblies for Marine Applications 27.211 [USCG-2000-6931, 69 FR...

  5. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipped with hose or pipe lines which are no longer than necessary. (b) Metal piping and/or hose between control valves and nozzles shall have a minimum bursting pressure of 500 p.s.i.g. (c) Hose shall be protected by wire braid or its equivalent. (d) Nozzles and reservoirs shall be sufficient in number to...

  6. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped with hose or pipe lines which are no longer than necessary. (b) Metal piping and/or hose between control valves and nozzles shall have a minimum bursting pressure of 500 p.s.i.g. (c) Hose shall be protected by wire braid or its equivalent. (d) Nozzles and reservoirs shall be sufficient in number to...

  7. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipped with hose or pipe lines which are no longer than necessary. (b) Metal piping and/or hose between control valves and nozzles shall have a minimum bursting pressure of 500 p.s.i.g. (c) Hose shall be protected by wire braid or its equivalent. (d) Nozzles and reservoirs shall be sufficient in number to...

  8. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipped with hose or pipe lines which are no longer than necessary. (b) Metal piping and/or hose between control valves and nozzles shall have a minimum bursting pressure of 500 p.s.i.g. (c) Hose shall be protected by wire braid or its equivalent. (d) Nozzles and reservoirs shall be sufficient in number to...

  9. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipped with hose or pipe lines which are no longer than necessary. (b) Metal piping and/or hose between control valves and nozzles shall have a minimum bursting pressure of 500 p.s.i.g. (c) Hose shall be protected by wire braid or its equivalent. (d) Nozzles and reservoirs shall be sufficient in number to...

  10. 46 CFR 162.028-3 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... which are subjected to pressure, exclusive of the hose, shall be at least five times the maximum working... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which will withstand a minimum bursting pressure of 5,000 p.s.i. The hose shall be constructed with either a...

  11. 46 CFR 162.028-3 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... which are subjected to pressure, exclusive of the hose, shall be at least five times the maximum working... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which will withstand a minimum bursting pressure of 5,000 p.s.i. The hose shall be constructed with either a...

  12. 46 CFR 162.028-3 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... which are subjected to pressure, exclusive of the hose, shall be at least five times the maximum working... which will withstand a minimum bursting pressure of 6,000 p.s.i., and a discharge hose or tube which will withstand a minimum bursting pressure of 5,000 p.s.i. The hose shall be constructed with either a...

  13. 33 CFR 183.558 - Hoses and connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The boat is in its static floating position, and (C) The fuel system is filled to the capacity market on the tank... minutes when: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The...

  14. Biofilms in shower hoses.

    PubMed

    Proctor, Caitlin R; Reimann, Mauro; Vriens, Bas; Hammes, Frederik

    2017-12-14

    Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 10 4 -5.8 × 10 8  cells/cm 2 ), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm 2 , 75 ng-Pb/cm 2 , and 460 ng-Cu/cm 2 ) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  16. Valiant load-balanced robust routing under hose model for WDM mesh networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoning; Li, Lemin; Wang, Sheng

    2006-09-01

    In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.

  17. [Wrong connection of a flexible medical air hose to a nitrous oxide outlet caused by a defective safety device].

    PubMed

    Nicaise, C; Robert, C; Ancellin, J; Cazalaà, J B

    1996-01-01

    When plugging the O2, N2O and air hoses into the corresponding wall sockets, the air hose was wrongly inserted into the N2O wall outlet. This was made possible because of faulty retaining clasps of the male coupler of the air probe. French "fail-safe" connections consist of a two-clasp male coupler for air, three clasps for O2 and four clasps for N2O hoses. Additionally the clasps of the air probe are broader then those of the N2O probe. However, the latter difference was lost due to wear. The incident was recognized without delay as the N2O hose could not be inserted into the air outlet. However, it could have remained unnoticed had there been two N2O wall outlets and could have resulted in severe adverse effects.

  18. [Effects of micro-sprinkling hose length and width on wheat field water condition and flag leaf chlorophyll fluorescence characteristics in different sampling districts].

    PubMed

    Xu, Ji Kun; Yu, Zhen Wen; Shi, Yu; Zhao, Jun Ye; Wang, Xi Zhi; Wang, Yu Qiu

    2017-11-01

    A two-year field experiment was conducted in 2014-2015 and 2015-2016 wheat growing seasons to study the effects of micro-sprinkling hose length and width on field water condition, and flag leaf chlorophyll fluorescence characteristics in different sampling districts (D 1 to D 6 along with the hose laying direction). Six micro-sprinkling hose treatments were set: 60 m (T 1 ), 80 m (T 2 ) and 100 m (T 3 ) lengths under 65 mm width; 60 m (T 4 ), 80 m (T 5 ) and 100 m (T 6 ) lengths under 80 mm width. The results showed that after irrigation at jointing, the Christiansen uniformity coefficient (C u ) of T 1 was significantly higher than T 2 and T 3 under 65 mm hose width. Under 80 mm hose width, T 4 and T 5 had the highest C u compared to T 6 . After irrigation at anthesis, the C u showed T 1 >T 2 >T 3 under 65 mm hose width, and T 4 >T 5 >T 6 under 80 mm hose width. Under 65 mm hose width, the average relative soil water content of 0-40 cm soil layers after irrigation at anthesis, flag leaf Φ PSII , NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling district did not differ in T 1 ; T 2 showed the order of D 1 , D 2 >D 3 >D 4 >D 5 ; T 3 showed D 1 , D 2 >D 3 >D 4 >D 5 , D 6 . The average Φ PSII , NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different sampling districts were presented as T 1 >T 2 , T 3 . Under 85 mm hose width, no significant differences were observed in the average relative soil water content of 0-40 cm soil layers after irrigation at ahthesis, flag leaf Φ PSII , NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling districts in T 4 ; in T 5 , the indexes mentioned above in D 1 , D 2 and D 3 sampling districts were significantly higher than those in D 4 and D 5 ; in T 6 , the decreasing order was D 1 , D 2 , D 3 >D 4 >D 5 >T 6 . The average Φ PSII , NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different districts showed the order of T 4 , T 5 >T 6 . The ave-rage grain yield and water use efficiency of T 1 , T 4 and T 5 were significantly higher than those in T 2 , T 3 and T 6 , T 1 and T 4 had a better irrigation benefit than T 5 . Under this experimental condition, T 1 treatment under 65 mm hose width, T 4 treatment under 80 mm hose width were the most recommendable treatments considering high yield and water saving, and T 5 treatment was also recommendable under 80 mm hose width.

  19. 33 CFR 183.540 - Hoses: Standards and markings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contain the following information in English: (1) The statement “USCG TYPE (insert A1 or A2 or B1 or B2).” (2) The year in which the hose was manufactured. (3) The manufacturer's name or registered trademark.... (h) Each marking must be permanent, legible, and on the outside of the hose at intervals of 12 inches...

  20. KSC-08pd0120

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload bay doors on space shuttle Atlantis are successfully closed for launch. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose (seen in the middle), part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers designed a tool to guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  1. KSC-08pd0116

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, an engineer checks the progress of payload bay doors closing on space shuttle Atlantis. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose, part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers designed a tool to guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  2. KSC-08pd0115

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- From the payload changeout room on Launch Pad 39A at NASA's Kennedy Space Center, engineers oversee the closing of space shuttle Atlantis' payload bay doors around the cargo -- the Columbus Laboratory seen here. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose, part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers designed a tool to guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  3. KSC-08pd0117

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload bay doors are closing on space shuttle Atlantis. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose (seen in the middle), part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers designed a tool to guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  4. KSC-08pd0119

    NASA Image and Video Library

    2008-02-03

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, engineers examine the fit of the payload bay doors on space shuttle Atlantis as they are closing. During launch preparations, technicians noticed a small section of a braided metal hose that was bent in a shape similar to the Greek letter Omega. The radiator retract hose (seen in the middle), part of the shuttle's cooling system that carries Freon, is designed to flex. Engineers designed a tool to guide the hose back into the storage box. During the starboard door closure, eight incremental stops were performed. After each stop, the aft hose was adjusted and seated in place utilizing the ladder and hose assist tool. The team was satisfied with the final placement of the hose at door closure. STS-122 is the 121st space shuttle flight, the 29th flight for Atlantis and the 24th flight to the International Space Station. The Columbus laboratory module, built by the European Space Agency, is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. Atlantis is scheduled to launch at 2:45 p.m. Feb. 7. Photo credit: NASA/Jack Pfaller

  5. Blocking performance of the hose model and the pipe model for VPN service provisioning over WDM optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Swee Poo, Gee

    2004-08-01

    We study the provisioning of virtual private network (VPN) service over WDM optical networks. For this purpose, we investigate the blocking performance of the hose model versus the pipe model for the provisioning. Two techniques are presented: an analytical queuing model and a discrete event simulation. The queuing model is developed from the multirate reduced-load approximation technique. The simulation is done with the OPNET simulator. Several experimental situations were used. The blocking probabilities calculated from the two approaches show a close match, indicating that the multirate reduced-load approximation technique is capable of predicting the blocking performance for the pipe model and the hose model in WDM networks. A comparison of the blocking behavior of the two models shows that the hose model has superior blocking performance as compared with pipe model. By and large, the blocking probability of the hose model is better than that of the pipe model by a few orders of magnitude, particularly at low load regions. The flexibility of the hose model allowing for the sharing of resources on a link among all connections accounts for its superior performance.

  6. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  7. Engineering Support for the Development of a Submersible Fish Cage for Open Ocean Aquaculture

    DTIC Science & Technology

    2007-01-01

    32 Appendix B: Feed Hose Buoy Components ................................................................. 33...ballasting systems (for test purposes) located in the upper rim section and airlift. Another component of the system includes a feed hose buoy used...to deliver pellets to fish in the cage while the system is submerged. Since the feed hose buoy was not critical in the development of the fish

  8. 75 FR 47208 - Airworthiness Directives; The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... flex-hoses of the crew oxygen system installed under the oxygen mask stowage boxes in the flight deck... results from reports of low-pressure flex- hoses of the crew oxygen system that burned through due to... prevent inadvertent electrical current, which can cause the low-pressure flex-hoses of the crew oxygen...

  9. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  10. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  11. JPRS Report. Soviet Union, International Affairs.

    DTIC Science & Technology

    1989-08-15

    dresses, jackets, and furniture uphol- stery, capacities to manufacture panty hose, shoes, paints, and toothpaste are being refitted. Clothing and...enterprises. As a result the annual production of knitted wear will increase by 22.5 million units, that of panty hose by 200 million pairs. Production of...new and high-fashion types of panty hose, knitted outer wear made from lighter linen, highly elastic bathing suits, and clothing for leisure and

  12. A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.

    PubMed

    Dame, Don

    1996-05-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.

  13. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    PubMed

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.

  14. KSC-02pd1715

    NASA Image and Video Library

    2002-11-14

    KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A inspect an oxygen flex hose fitting. Through manual inspection and using helium detectors, the flex hose was identified as the source of an oxygen leak in Endeavour's mid-body. Visual inspection found a deformity in the flex line braid where it connects to rigid tubing. The entire flex hose assembly and bulkhead fitting were removed early today, and work is under way to complete the installation of a replacement.

  15. KSC-02pd1714

    NASA Image and Video Library

    2002-11-14

    KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A inspect an oxygen flex hose fitting. Through manual inspection and using helium detectors, the flex hose was identified as the source of an oxygen leak in Endeavour's mid-body. Visual inspection found a deformity in the flex line braid where it connects to rigid tubing. The entire flex hose assembly and bulkhead fitting were removed early today, and work is under way to complete the installation of a replacement.

  16. Repair Types, Procedures - Part 2

    DTIC Science & Technology

    2010-05-01

    completely severed or severely damaged fuel lines, cut away the damaged section and use a piece of fuel- resistant rubber hose with an inner diameter...equal to the existing fuel line outer diameter to replace the damaged section. Ensure the repair hose extends far enough on each side of the damage to...accommodate two hose clamps, oriented 180° from one another. Flare the ends of the existing fuel line to improve the seal and prevent leakage

  17. Engineering Design Handbook. Electromagnetic Compatibility

    DTIC Science & Technology

    1977-03-01

    sliding action between turns. For more effective shielding, it may be covered with one or more layers of woven metal braid . The hose must be used in...shield. Details on this structure are given in Military Standards MS 51010 and 51011. In addition, flexible metal hoses of both braided and solid...signal cables. Flexible conduits for high- and low-voltage shield- ing usually consist of flexible metal hoses over which are wound one or more

  18. Pilot Fullerton in ejection escape suit (EES) on aft flight deck

    NASA Image and Video Library

    1982-03-30

    STS003-31-290 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST) and ejection escape suit (EES), holds flexible hose attached to his EES vent hose fitting and second hose for commander's EES while behind pilots ejection seat (S2) seat back on the aft flight deck. Forward flight deck control panels are visible in the background. Photo credit: NASA

  19. Prototype Salvage Foaming System.

    DTIC Science & Technology

    1985-11-04

    providing buoyancy to refloat sunken ships, the density and strength of polyurethane foam , combined with its compact pre-blown form , make it a very...is not a true solvent of polyol and MDI, polyurethane foam can form in the presence of DOP. In the full-scale machine, the head flushing chemical is...hose between the foaming machine and foaming gun, standard grade hydraulic hose is used. This type of hose is also much more resistant to kinking than

  20. Short communication: Snapshot of industry milk hauling practices in the western United States.

    PubMed

    Kuhn, Eva; Meunier-Goddik, Lisbeth; Waite-Cusic, Joy G

    2018-03-01

    The Pasteurized Milk Ordinance (PMO) mandates milk hauling sanitation and operational practices; however, the use of vague language (i.e., "as needed") and gaps in processes lead to variability in industry practices. Our aim was to characterize industry milk hauling practices and identify areas that may be an unexplained source of contamination in the dairy processing continuum, and communicate this information with industry to cultivate best practices. The objectives of this study were to (1) survey industry hauling sanitation and operation practices in the Pacific Northwest region of the United States, and (2) quantify microbial populations [aerobic plate count (APC), lactic acid bacteria, coliforms] on the internal surfaces of transfer hoses (tanker and receiving bay) to determine their potential contribution to the microbiological quality of raw milk. Eleven facilities (78% response rate) participated in our survey. All facilities surveyed were compliant with the PMO; however, overall milk reception layout, sanitation practices, and routine maintenance greatly varied between facilities. Farm hose samples (n = 115) had significantly higher microbial loads (APC: mean 4.7 log cfu/100 cm 2 ; median 5.1 log cfu/cm 2 ) than receiving hose samples (n = 57; APC: mean: 2.1 log cfu/100 cm 2 ; median 1.9 log cfu/100 cm 2 ). Microbial populations on transfer hose surfaces did not correlate with time since last cleaning for either tanker or receiving bay hoses. Microbial content of farm hoses is likely to reflect the microbial quality of the previous milk transferred through the hose, making on-farm management practices the primary consideration to maintain low microbiological counts downstream. Upon arrival at the processor, 10% of farm hoses were missing caps. Although this did not correlate with elevated microbiological counts, uncapped farm hoses are exposed to the farm environment, provide opportunity for contamination, and are in violation of the PMO. Through observations made during our studies, manual cleaning procedures appear to be a major weakness in hauling practices and need more attention. Recognizing and communicating variability and areas of weakness allows industry to elevate their hauling sanitation and operational practices to maintain optimum milk microbiological quality. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. The comparison between two airborne LiDAR datasets to analyse debris flow initiation in north-western Iceland

    NASA Astrophysics Data System (ADS)

    Morino, Costanza; Conway, Susan J.; Balme, Matthew R.; Jordan, Colm; Hillier, John; Sæmundsson, Þorsteinn; Argles, Tom

    2015-04-01

    A debris flow is a very rapid to extremely rapid flow (e.g., 0.8-28 ms-1) [1], that occurs when coarse and poorly-sorted debris, mixed with water and/or air, move down hill slopes in response to gravity [2]. Both the fluid and the solid have a strong influence on the movement of debris flows. They can be extremely destructive, due to their capability of transporting metre-size boulders [e.g., 3, 4]. There are two main ways in which a debris flow can be initiated: by slope failure or by the "fire hose" effect. The slope failure type is particularly common in alpine regions, where landslides can evolve into debris flows [5], triggered by the coalescence of different slope failures. Steep slope gradients, high pore-water pressures, heavy rainfall and/or snowmelt favour this process. The "fire hose" effect occurs when there is a high concentration of debris accumulated within a pre-existing channel; a surge of water through the channel can then develop into a debris flow by incorporating this debris [e.g. 5-7]. In this study, we examine the triggering style of debris flows above the town of Ísafjörður in the Westfjords of Iceland. The slope above the town is characterised by a large topographic bench upon which 20-35 m of glacial till is perched. The sediments are unstable at the bench margin and thus generate frequent, large, hillslope debris flows [8, 9]. In our new analysis, we report on the comparison between the two airborne LiDAR elevation models (collected in 2007 and 2013 by the UK Natural Environment Research Council Airborne Research and Survey Facility), which display several new debris flows and also related mass movements. From these analyses, we find that debris flows in the region are triggered by simple failure of the glacial till, as recognised before [8, 9]. However, debris flows may also be regenerated by the "fire hose" effect, when debris that has collapsed into chutes is remobilised by a later snowmelt or precipitation event. Comparing different airborne LiDAR datasets has proven to be a powerful tool, not just in the topographic analysis of landscape, but also in the discrimination of the causes of potentially disastrous phenomena. This suggests new possibilities for using remote sensing analysis to mitigate the effects of natural hazards. References: [1] Rickenmann, D., 1999. Natural Hazards, 19 (1), 47-77. [2] Iverson, R.M., 1997. Reviews of Geophysics, 35 (3), 245-296. [3] Clague, J.J., Evans, S.G., Blown, I.G., 1985. Journal of Earth Sciences, 22 (10), 1492-1502. [4] Kanji, M.A., Cruz, P.T., Massad, F., 2008. Landslides, 5 (1), 71-82. [5] Johnson, A.M. and Rodine, J. R. 1984. Slope Instability. Wiley, New York, 257-361. [6] Coe, J.A., Glancy, P.A., Whitney, J.W., 1997. Geomorphology, 20, 11-28. [7] Griffiths, P.G., Webb, R.H., Melis, T.S., 2004. Journal of Geophysical Research, 109, 321-336. [8] Conway, S. J., Decaulne, A., Balme, M. R., Murray, J. B., Towner, M. C., 2010. Geomorphology, 114 (4), 556-572. [9] Decaulne, A., Sæmundsson, Þ., Pétursson, O., 2005. Geografiska Annaler: Series A, Physical Geography, 87A, 487-500.

  2. Status of Plasma Electron Hose Instability Studies in FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; /U. Oslo; England, Robert Joel

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electronmore » hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.« less

  3. Saturation of the Hosing Instability in Quasilinear Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, R.; Schroeder, C. B.; Vay, J. -L.

    The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

  4. Saturation of the Hosing Instability in Quasilinear Plasma Accelerators

    DOE PAGES

    Lehe, R.; Schroeder, C. B.; Vay, J. -L.; ...

    2017-12-13

    The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

  5. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  6. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  7. Feasibility Study of a Precision Cast Loading Machine for Small Ammunition Items

    DTIC Science & Technology

    1975-05-01

    distribution unlimited. READ INStRUCTIONS BEFORE COMPLETING FORM 1. RECIPIENT’S CATALOG NUMBER S. TYRE OF REPORT « PERIOD COVERED S. PCRFORMINO ORO...through a short length rubber hose into the hemisphere. A clamp actuated by an air cylinder can close or open the rubber hose. Because of unknown... rubber hose in the recess on the face of the fixture, exposing opposite hole for observation by the TV monitor through the TV camera. 8. Release table

  8. Alternative Metal Hot Cutting Operations for Opacity

    DTIC Science & Technology

    2014-11-01

    Hydrogen regulator $232.00 1,250 $0.19 Cutting torch $453.00 1,250 $0.36 Fuel and oxygen hoses $148.00* 500 $0.30 Water hose & spray nozzle $56.00... spray nozzle $56* 500 $0.11 Black box $1088* 1,250 $0.87 4 Black box hoses $780* 500 $1.56 2 Full face respirator $310* 750 $0.42 Total: $3.22...compliance with air pollution and clean water requirements when used in combustion processes. To specifically investigate its visible PM emissions in

  9. STS-130 crew at Marshall

    NASA Image and Video Library

    2010-01-16

    JSC2010-E-014775 (15 Jan. 2010) --- Seen at Marshall Space Center building 4708 in the high-bay clean room, astronauts Nicholas Patrick (right) and Robert Behnken, both STS-130 mission specialists, accompanied by Eric Howell, Boeing Huntsville Chief Engineer for ISS, handle ammonia hoses to be installed during mission STS-130. The hoses are at 500 pounds per square inch pressure (psi) to give them a feel for how stiff the hoses would be at 500 psi if they had to handle them under pressure on orbit.

  10. Unmanned Evaluation of Select Commercially Available Open Circuit Scuba Regulators for Cold Water Diving

    DTIC Science & Technology

    2010-04-01

    Water Kit (dry system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user...diaphragm system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user adjustments...1st Stage Regulator with Abyss 2nd Stage and Integrated Intermediate Pressure Hose ..………………………….. A-2 A3 Modified Mares Proton Ice Extreme V32

  11. Development of a Quadcon Refrigerated Container with First Generation Prototype Solar Adsorption Refrigeration System

    DTIC Science & Technology

    2011-06-01

    From above the cut-out, connect the braided plastic hose from the pressure relief valves near the generators to the plastic T-coupling.  The... braided plastic hose that emerges from the rear of the QuadCon is connected to the water reservoir below the cut-out. Add approximately 60 liters of...above the generators.  Open both valves on either side of the connection.  Connect the steel- braided flexible hose from the evaporator suction line

  12. Axisymmetric Wave Transfer Functions of Flexible Tubes

    NASA Astrophysics Data System (ADS)

    Pinnington, R. J.

    1997-07-01

    The input and transfer impedances of fluid-filled pipes are calculated by using a wave approach. The pipe walls can have orthotropic elastic properties associated with braided rubber hose. The input and transfer impedances of a water-filled plain rubber hose are plotted for zero pressurization and positive and negative pressure. It is found that the pressure for this case does not greatly affect the stiffness. Input and transfer impedances are also plotted for a braided rubber hose which demonstrates the significant pressure stiffening effects found in practice.

  13. AAFES Gas Station at Creech Air Force Base Environmental Assessment

    DTIC Science & Technology

    2009-07-01

    Creech AFB with modern fuel refilling services. The AAFES Gas Station would include a one pump two hose filling station, a concrete slab, a 12,000...at both end of each hose , a shear valve at the base of the pump, and an electronic sensor in the dispenser to detect fuel leakage. In order to add...designed and built with leak prevention safety equipment. Shut- off valves would be installed at both ends of each hose . A shear valve would be

  14. STS-113 workers work on oxygen leak in Endeavor's mid-body

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A inspect an oxygen flex hose fitting. Through manual inspection and using helium detectors, the flex hose was identified as the source of an oxygen leak in Endeavour's mid-body. Visual inspection found a deformity in the flex line braid where it connects to rigid tubing. The entire flex hose assembly and bulkhead fitting were removed early today, and work is under way to complete the installation of a replacement.

  15. [Effects of irrigation with different length micro-sprinkling hoses on soil water distribution, water consumption characteristics of winter wheat, and its grain yield].

    PubMed

    Man, Jian-guo; Wang, Dong; Yu, Zhen-wen; Zhang, Yong-li; Shi, Yu

    2013-08-01

    Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.

  16. What can be done to reduce false alarms?

    PubMed

    Baillie, Jonathan

    2013-05-01

    Although (the Department for Communities and Local Government's 'Fire statistics' reveal) the number of such incidents has fallen every year since 2006/07, UK fire and rescue services still attended over 312,400 'false fire alarms,' i.e. instances where, on arriving at a site, they found no fire, in 2011/12. Such incidents have been a significant concern for healthcare facilities teams, and for the fire and rescue services serving them, for many years, and, although the past decade has seen determined efforts to substantially reduce the number bearing fruit, many believe far too many still occur. HEJ editor, Jonathan Baillie, reports on a recent London roundtable discussion staged by two leading fire detection and alarm equipment specialists, Apollo Fire Detectors, and Static Systems Group, with IHEEM, which brought together experts to discuss what more can be done to minimise false fire alarms.

  17. 30 CFR 56.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7802 Oxygen hose lines. Safety chains or other suitable locking devices...

  18. 30 CFR 56.7802 - Oxygen hose lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7802 Oxygen hose lines. Safety chains or other suitable locking devices...

  19. Prediction of flow-induced failures of braided flexible hoses and bellows

    NASA Technical Reports Server (NTRS)

    Sack, L. E.; Nelson, R. L.; Mason, D. R.; Cooper, R. A.

    1972-01-01

    Analytical techniques were developed to evaluate braided hoses and bellows for possibility of flow induced resonance. These techniques determine likelihood of high cycle fatigue failure when such resonance exists.

  20. 46 CFR 154.1155 - Hand hose line: Coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting System: Dry Chemical § 154.1155 Hand hose line: Coverage. The coverage for the area for a hand...

  1. Superconducting 3D Transmon Qubits for Analog Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Gargiulo, Oscar; Oleschko, Stefan; Muppalla, Phani; Dalmonte, Marcello; Zoller, Peter; Kirchmair, Gerhard

    We present an experimental investigation of the tunability of a 3D transmon qubit through the use of multiple magnetic fields. The 3D transmon is placed inside a copper cavity with sockets for coils and a hole for a magnetic hose. The magnetic hose is used to guide the magnetic field inside the cavity minimizing Eddy currents in the copper wall. As a first step we analyse the qubit tuning with static magnetic fields applied through the use of external coils. This allows us to set the qubit frequency to the desired bias point. Then we show that we can switch the magnetic field inside the cavity on fast time scales through the use of the magnetic hose. We also investigate the influence of the magnetic hose on the coherence time of the qubit.

  2. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with end fittings, shall be prototype tested to a pressure not less than five times its specified maximum working pressure. The hose temperature during this prototype test shall duplicate the intended...

  3. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  4. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  5. Cold Background, Flight Motion Simulator Mounted, Infrared Scene Projectors Developed for use in AMRDEC Hardware-in-the-Loop

    DTIC Science & Technology

    2004-01-01

    cooled below –40ºC with the ultra low temperature chiller operating at –50ºC. At these low temperatures, elastomer compounds (i.e. nylon hose and o...projector hardware. Consideration of steel braided Teflon hose or even a thin wall flexible steel hose will be made for future operation of the YUGO...Cajon VCR vacuum port on the bottom of the array using a metal gasket. This change eliminated one elastomer seal that was most likely to fail at low

  6. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can describe the concentrations of chemical species and of particulate matter as functions of time. A system of the present developmental type and a conventional fire detector were tested under both fire and false-alarm conditions in a Federal Aviation Administration cargo-compartment- testing facility. Both systems consistently detected fires. However, the conventional fire detector consistently generated false alarms, whereas the developmental system did not generate any false alarms.

  7. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. From a flight hardware design perspective, the fine water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface has been under development for several years. It has gone through several design iterations, and has been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements specifically for the tank. The nozzle requirements drive a tank pressure that is 2-5 times higher than any commercially available water mist systems. Microgravity requires deliberate separation of gas and water, facilitated by a bladder, a diaphragm, a piston, or separate tanks. This paper will describe the design details of the tank and the nozzle, and discuss the trade studies that informed the decisions to select the tank and nozzle configuration.

  8. 46 CFR 98.30-23 - Requirements for transfer; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transfer; (e) Each transfer hose has no loose covers, kinks, bulges, soft spots, and no gouges, cuts, or slashes that penetrate the hose reinforcement; (f) Each coupling meets the requirements of § 98.30-27; (g...

  9. 46 CFR 98.30-23 - Requirements for transfer; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transfer; (e) Each transfer hose has no loose covers, kinks, bulges, soft spots, and no gouges, cuts, or slashes that penetrate the hose reinforcement; (f) Each coupling meets the requirements of § 98.30-27; (g...

  10. 46 CFR 98.30-23 - Requirements for transfer; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transfer; (e) Each transfer hose has no loose covers, kinks, bulges, soft spots, and no gouges, cuts, or slashes that penetrate the hose reinforcement; (f) Each coupling meets the requirements of § 98.30-27; (g...

  11. 46 CFR 98.30-23 - Requirements for transfer; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transfer; (e) Each transfer hose has no loose covers, kinks, bulges, soft spots, and no gouges, cuts, or slashes that penetrate the hose reinforcement; (f) Each coupling meets the requirements of § 98.30-27; (g...

  12. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.532 Clips... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or “USCG...

  13. Astronaut Donald McMonagle checks drainage hose on his life raft in training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Donald R. McMonagle, STS-66 mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).

  14. Aerocoat 7 Replacement Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Kennedy Space Center has used Aerocoat 7 (AR-7) to protect stainless-steel flex hoses at Launch Complex (LC-39) and hydraulic lines of the Mobile Launcher Platform (MLP) because it provides excellent corrosion protection in low-temperature applications. The Sovereign Company produced AR-7 exclusively for NASA but discontinued production because the coating released high levels of volatile organic compounds (VOCs) and had a significant environmental impact. The purpose of this project was to select and evaluate potential replacement coatings for AR-7 that would be more environmentally sound. The physical and mechanical properties of commercially available coatings were investigated through the Internet. The ideal coating would be fluid enough to penetrate the outer mesh of a stainless-steel flex hose and coat the inner hose, and flexible enough to withstand the movement of the hose, as well as the expansion and contraction of its metal caused by changes in temperature.

  15. Apparatus and methods for splicing conduits and hoses subsea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slocum, Alexander Henry; Gutierrez, Luis Javier

    A hose connection system comprises a body including an internal cavity and a port in fluid communication with a portion of the internal cavity. In addition, the system comprises a hose end fitting positioned in the cavity. The hose end fitting includes an inner tubular member and an outer tubular member concentrically disposed about the inner tubular member. The outer tubular member includes a plurality of circumferentially spaced axial slits. Further, the system comprises a plurality of wedge members arranged circumferentially about the outer tubular member. Still further, the system comprises an annular piston movably disposed within the internal cavitymore » of the body. An end of the piston has an inner frustoconical surface that slidingly engages the plurality of wedge members. The piston is configured to move axially through the body and compress the wedge members and the outer tubular member radially inward.« less

  16. HLW Flexible jumper materials compatibility evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skidmore, T. E.

    H-Tank Farm Engineering tasked SRNL/Materials Science & Technology (MS&T) to evaluate the compatibility of Goodyear Viper® chemical transfer hose with HLW solutions. The hose is proposed as a flexible Safety Class jumper for up to six months service. SRNL/MS&T performed various tests to evaluate the effects of radiation, high pH chemistry and elevated temperature on the hose, particularly the inner liner. Test results suggest an upper dose limit of 50 Mrad for the hose. Room temperature burst pressure values at 50 Mrad are estimated at 600- 800 psi, providing a safety factor of 4.0-5.3X over the anticipated operating pressure ofmore » 150 psi and a safety factor of 3.0-4.0X over the working pressure of the hose (200 psi), independent of temperature effects. Radiation effects are minimal at doses less than 10 Mrad. Doses greater than 50 Mrad may be allowed, depending on operating conditions and required safety factors, but cannot be recommended at this time. At 250 Mrad, burst pressure values are reduced to the hose working pressure. At 300 Mrad, burst pressures are below 150 psi. At a bounding continuous dose rate of 57,870 rad/hr, the 50 Mrad dose limit is reached within 1.2 months. Actual dose rates may be lower, particularly during non-transfer periods. Refined dose calculations are therefore recommended to justify longer service. This report details the tests performed and interpretation of the results. Recommendations for shelf-life/storage, component quality verification, and post-service examination are provided.« less

  17. Thermochemical Processes | Bioenergy | NREL

    Science.gov Websites

    model catalysts appear on a montage of images of wood chips, liquid gasoline, a gas tanker truck, and a , pipes, and hoses, pouring a liquid from a large hose into a bucket. Integration, Scale-Up, and Piloting

  18. 6. DETAIL OF HIGHPRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF HIGH-PRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER OF SHIPPING AND RECEIVING ROOM (109) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Infrasound Sensor and Porous-Hose Filter Characterization Results

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Harris, J. M.

    2008-12-01

    The Ground-Based Nuclear Explosion Monitoring Research and Development (GNEM R&D) program at Sandia National Laboratories (SNL) is regarded as the primary center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for nuclear explosion monitoring. Over the past year much of our work has focused in the area of infrasound sensor characterization through the continuing development of an infrasound sensor characterization test-bed. Our main areas of focus have been in new sensor characterization and understanding the effects of porous-hose filters for reducing acoustic background signals. Three infrasound sensors were evaluated for characteristics of instrument response, linearity and self-noise. The sensors tested were Chaparral Physics model 2.5 low-gain, New Mexico Tech All-Sensor and the Inter-Mountain Labs model SS avalanche sensor. For the infrasound sensors tested, the test results allow us to conclude that two of the three sensors had sufficiently quiet noise floor to be at or below the Acoustic low-noise model from 0.1 to 7 Hz, which make those sensors suitable to explosion monitoring. The other area of focus has been to understand the characteristics of porous-hose filters used at some monitoring sites. For this, an experiment was designed in which two infrasound sensors were co- located. One sensor was connected to a typical porous-hose spatial filter consisting of eight individual hoses covering a 30m aperture and the second sensor was left open to unimpeded acoustic input. Data were collected for several days, power spectrum computed for two-hour windows and the relative gain of the porous-hose filters were estimated by dividing the power spectrum. The porous-hose filter appears to attenuate less than 3 dB (rel 1 Pa**2/Hz) below 0.1 Hz and as much as 25 dB at 1 Hz and between 20 to 10 dB above 10 Hz. Several more experiments will be designed to address the effects of different characteristics of the individual porous-hoses, such as length, number and geometric arrangement. This work directly impacts the Ground-Based Nuclear Explosion Monitoring mission by providing a facility, equipment, and personnel to give the operational monitoring agencies confidence in deployed instrumentation and capability for mission success.

  20. 46 CFR 35.35-30 - “Declaration of Inspection” for tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designated? (12) Is the inert gas system being operated as necessary to maintain an inert atmosphere in the... vapors through the hose material, and gouges, cuts, or slashes that penetrate the first layer of hose...

  1. 46 CFR 35.35-30 - “Declaration of Inspection” for tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designated? (12) Is the inert gas system being operated as necessary to maintain an inert atmosphere in the... vapors through the hose material, and gouges, cuts, or slashes that penetrate the first layer of hose...

  2. 46 CFR 35.35-30 - “Declaration of Inspection” for tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designated? (12) Is the inert gas system being operated as necessary to maintain an inert atmosphere in the... vapors through the hose material, and gouges, cuts, or slashes that penetrate the first layer of hose...

  3. 46 CFR 35.35-30 - “Declaration of Inspection” for tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designated? (12) Is the inert gas system being operated as necessary to maintain an inert atmosphere in the... vapors through the hose material, and gouges, cuts, or slashes that penetrate the first layer of hose...

  4. 46 CFR 35.35-30 - “Declaration of Inspection” for tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designated? (12) Is the inert gas system being operated as necessary to maintain an inert atmosphere in the... vapors through the hose material, and gouges, cuts, or slashes that penetrate the first layer of hose...

  5. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel shall be electrically bonded to the shore piping prior to connecting the cargo hose. This electrical bonding shall be maintained until after the cargo hose has been disconnected and any spillage has...

  6. Replacing E-K pre-treat container and hose in АСУ system

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08798 (29 Nov. 2006) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer, replaces the E-K pre-treat container and hose in the waste management system in the Zvezda Service Module of the International Space Station.

  7. 14 CFR 29.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems. 29.1195 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1195 Fire... inches must have a fire extinguishing system for the designated fire zones. The fire extinguishing system...

  8. 14 CFR 29.851 - Fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishers. 29.851 Section 29.851... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.851 Fire extinguishers. (a) Hand fire extinguishers. For hand fire extinguishers the following apply: (1) Each hand fire...

  9. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, David A.

    1993-01-01

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  10. Special pliers connect hose containing liquid under pressure

    NASA Technical Reports Server (NTRS)

    Blaydes, R. A.

    1964-01-01

    For speed and safety in handling disconnect fittings on a hose carrying liquid under pressure, special pliers have been constructed. A gear and rack mechanism is combined with two or more wide-opening U-shaped jaws which are placed over the quick-disconnect fittings.

  11. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, D.A.

    1993-04-20

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  12. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  13. Safety Modification of Cam-and-Groove Hose Coupling

    NASA Technical Reports Server (NTRS)

    Schwindt, Paul; Littlefield, Alan

    2008-01-01

    A modification has been made in the mating halves of a cam-and-groove hose coupling to prevent rapid separation of the halves in the event that the cam levers are released while the fluid in the hose is pressurized. The need for this modification arises because commercial off-the-shelf cam-and-groove hose-coupling halves do not incorporate safety features to prevent separation in the pressurized state. Especially when the pressurized fluid is compressible (e.g., steam or compressed air), the separated halves can be propelled with considerable energy, causing personal injury and/or property damage. Therefore, one purpose served by the modification is to provide for venting to release compressive energy in a contained and safe manner while preventing personal injury and/or property damage. Another purpose served by the modification, during the process of connecting the coupling halves, is to ensure that the coupling halves are properly aligned before the cam levers can be locked into position.

  14. Hand-arm vibration syndrome from exposure to high-pressure hoses.

    PubMed

    Cooke, R; House, R; Lawson, I J; Pelmear, P L; Wills, M

    2001-09-01

    Hand-arm vibration syndrome has been reported in the literature to occur following exposure to vibration from the use of many tools, but to date there have been no case reports of its occurrence in workers who have used high-pressure hoses, alone or with other tools. To remedy this, the case histories of nine subjects (two without mixed exposure) examined in the UK and Canada are presented, together with their severity classified according to the Stockholm scales. Attention is drawn to the need to use multiple diagnostic tests to establish the diagnosis and the need to implement vibration isolation and damping methodologies, as and when feasible, with respect to hose nozzles in order to minimize the hazard. The ultimate goal for tool manufacturers, hygienists and engineers should be to reduce workplace vibration levels to meet national and international guidelines and legislation, including UK Health & Safety Executive guidelines and European Economic Community directives. The respective risk levels are presented, together with vibration measurements on hoses used by some of the cases.

  15. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  16. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  17. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  18. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  19. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  20. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher ICES Abstract

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.; Carlile, Christie; Graf, John; Young, Gina

    2011-01-01

    NASA is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. FWM extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE. In addition, the NASA ISS specific fire standards will be described which were developed to establish acceptable extinguisher performance. The paper will also discuss the flight hardware design. The fin e water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface have been under development for several years. They have gone through several design iterations, and have been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements specifically for the tank. The nozzle requirements drive a tank pressure that is 2-5 times higher than any commercially available water mist systems. Microgravity requires deliberate separation of gas and water, facilitated by a bladder, a diaphragm, a piston, or separate tanks. This paper will describe status of the project to date, the design details of the tank and the nozzle, and discuss the trade studies that informed the decisions to select the tank and nozzle configuration.

Top