Sample records for family-based expression analysis

  1. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  2. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments.

    PubMed

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development.

  3. Genome-Wide Analysis of Soybean HD-Zip Gene Family and Expression Profiling under Salinity and Drought Treatments

    PubMed Central

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296

  4. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.)

    PubMed Central

    Zhao, Jie

    2010-01-01

    Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early nodulin-like AGPs (eNod-like AGPs), eight non-specific lipid transfer protein-like AGPs (nsLTP-like AGPs), and 27 fasciclin-like AGPs (FLAs). The results from expressed sequence tags, microarrays, and massively parallel signature sequencing tags are used to analyse the expression of AGP-encoding genes, which is confirmed by real-time PCR. The results reveal that several rice AGP-encoding genes are predominantly expressed in anthers and display differential expression patterns in response to abscisic acid, gibberellic acid, and abiotic stresses. Based on the results obtained from this analysis, an attempt has been made to link the protein structures and expression patterns of rice AGP-encoding genes to their functions. Taken together, the genome-wide identification and expression analysis of the rice AGP gene family might facilitate further functional studies of rice AGPs. PMID:20423940

  5. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-01-01

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts. PMID:26907269

  6. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    PubMed

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  7. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    PubMed

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  8. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa)

    PubMed Central

    Liu, Quangang; Wang, Zhanchao; Xu, Xuemei; Zhang, Haizhen; Li, Chenghao

    2015-01-01

    Background C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. Principal Findings Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. Conclusions This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus. PMID:26237514

  9. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.

  10. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  11. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize

    PubMed Central

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-01

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478

  12. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.).

    PubMed

    Li, Zhiqian; Zhang, Chen; Guo, Yurui; Niu, Weili; Wang, Yuejin; Xu, Yan

    2017-09-21

    The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.

  13. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions. PMID:24725365

  14. PNMA family: Protein interaction network and cell signalling pathways implicated in cancer and apoptosis.

    PubMed

    Pang, Siew Wai; Lahiri, Chandrajit; Poh, Chit Laa; Tan, Kuan Onn

    2018-05-01

    Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. TGFbeta and miRNA regulation in familial and sporadic breast cancer

    PubMed Central

    Pinto, Rosamaria; Pilato, Brunella; Palumbo, Orazio; Carella, Massimo; Popescu, Ondina; Digennaro, Maria; Lacalamita, Rosanna; Tommasi, Stefania

    2017-01-01

    The term ‘BRCAness’ was introduced to identify sporadic malignant tumors sharing characteristics similar to those germline BRCA-related. Among all mechanisms attributable to BRCA1 expression silencing, a major role has been assigned to microRNAs. MicroRNAs role in familial and sporadic breast cancer has been explored but few data are available about microRNAs involvement in homologous recombination repair control in these breast cancer subgroups. Our aim was to seek microRNAs associated to pathways underlying DNA repair dysfunction in breast cancer according to a family history of the disease. Affymetrix GeneChip microRNA Arrays were used to perform microRNA expression analysis in familial and sporadic breast cancer. Pathway enrichment analysis and microRNA target prediction was carried out using DIANA miRPath v.3 web-based computational tool and miRWalk v.2 database. We analyzed an external gene expression dataset (E-GEOD-49481), including both familial and sporadic breast cancers. For microRNA validation, an independent set of 19 familial and 10 sporadic breast cancers was used. Microarray analysis identified a signature of 28 deregulated miRNAs. For our validation analyses by real time PCR, we focused on miR-92a-1*, miR-1184 and miR-943 because associated to TGF-β signalling pathway, ATM and BRCA1 genes expression. Our results highlighted alterations in miR-92a-1*, miR-1184 and miR-943 expression levels suggesting their involvement in repair of DNA double-strand breaks through TGF-beta pathway control. PMID:28881597

  16. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  17. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  18. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV).

    PubMed

    Reyes-López, Felipe E; Romeo, Jose S; Vallejos-Vidal, Eva; Reyes-Cerpa, Sebastián; Sandino, Ana M; Tort, Lluis; Mackenzie, Simon; Imarai, Mónica

    2015-11-01

    This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Developmental and Environmental Regulation of Aquaporin Gene Expression across Populus Species: Divergence or Redundancy?

    PubMed Central

    Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène

    2013-01-01

    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected. PMID:23393587

  20. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    PubMed

    Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène

    2013-01-01

    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.

  1. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  2. A new variance stabilizing transformation for gene expression data analysis.

    PubMed

    Kelmansky, Diana M; Martínez, Elena J; Leiva, Víctor

    2013-12-01

    In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.

  3. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  4. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  5. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.

    PubMed

    Yu, Ming-Jiun; Miller, R Lance; Uawithya, Panapat; Rinschen, Markus M; Khositseth, Sookkasem; Braucht, Drew W W; Chou, Chung-Lin; Pisitkun, Trairak; Nelson, Raoul D; Knepper, Mark A

    2009-02-17

    We used a systems biology-based approach to investigate the basis of cell-specific expression of the water channel aquaporin-2 (AQP2) in the renal collecting duct. Computational analysis of the 5'-flanking region of the AQP2 gene (Genomatix) revealed 2 conserved clusters of putative transcriptional regulator (TR) binding elements (BEs) centered at -513 bp (corresponding to the SF1, NFAT, and FKHD TR families) and -224 bp (corresponding to the AP2, SRF, CREB, GATA, and HOX TR families). Three other conserved motifs corresponded to the ETS, EBOX, and RXR TR families. To identify TRs that potentially bind to these BEs, we carried out mRNA profiling (Affymetrix) in mouse mpkCCDc14 collecting duct cells, revealing expression of 25 TRs that are also expressed in native inner medullary collecting duct. One showed a significant positive correlation with AQP2 mRNA abundance among mpkCCD subclones (Ets1), and 2 showed a significant negative correlation (Elf1 and an orphan nuclear receptor Nr1h2). Transcriptomic profiling in native proximal tubules (PT), medullary thick ascending limbs (MTAL), and IMCDs from kidney identified 14 TRs (including Ets1 and HoxD3) expressed in the IMCD but not PT or MTAL (candidate AQP2 enhancer roles), and 5 TRs (including HoxA5, HoxA9 and HoxA10) expressed in PT and MTAL but not in IMCD (candidate AQP2 repressor roles). In luciferase reporter assays, overexpression of 3 ETS family TRs transactivated the mouse proximal AQP2 promoter. The results implicate ETS family TRs in cell-specific expression of AQP2 and point to HOX, RXR, CREB and GATA family TRs as playing likely additional roles.

  6. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process.

    PubMed

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.

  7. Exploring ambivalence in motivational interviewing with obese African American adolescents and their caregivers: A mixed methods analysis

    PubMed Central

    Carcone, April Idalski; Barton, Ellen; Eggly, Susan; Brogan Hartlieb, Kathryn E.; Thominet, Luke; Naar, Sylvie

    2016-01-01

    Objective We conducted an exploratory mixed methods study to describe the ambivalence African-American adolescents and their caregivers expressed during motivational interviewing sessions targeting weight loss. Methods We extracted ambivalence statements from 37 previously coded counseling sessions. We used directed content analysis to categorize ambivalence related to the target behaviors of nutrition, activity, or weight. We compared adolescent-caregiver dyads’ ambivalence using the paired sample t-test and Wilcoxon signed-rank test. We then used conventional content analysis to compare the specific content of adolescents’ and caregivers’ ambivalence statements. Results Adolescents and caregivers expressed the same number of ambivalence statements overall, related to activity and weight, but caregivers expressed more statements about nutrition. Content analysis revealed convergences and divergences in caregivers’ and adolescents’ ambivalence about weight loss. Conclusion Understanding divergences in adolescent-caregiver ambivalence about the specific behaviors to target may partially explain the limited success of family-based weight loss interventions targeting African American families and provides a unique opportunity for providers to enhance family communication, foster teamwork, and build self-efficacy to promote behavior change. Practice implications Clinicians working in family contexts should explore how adolescents and caregivers converge and diverge in their ambivalence in order to recommend weight loss strategies that best meet families’ needs. PMID:26916012

  8. Novel Variants in ZNF34 and Other Brain-Expressed Transcription Factors are Shared Among Early-Onset MDD Relatives

    PubMed Central

    Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.

    2018-01-01

    There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146

  9. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    PubMed Central

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708

  10. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    PubMed

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  11. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress.

    PubMed

    Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang

    2017-12-01

    Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.

  12. Comprehensive Genomic Analysis and Expression Profiling of Phospholipase C Gene Family during Abiotic Stresses and Development in Rice

    PubMed Central

    Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K.; Sopory, Sudhir K.; Kapoor, Sanjay; Pandey, Girdhar K.

    2013-01-01

    Background Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. Methodology/Principal Findings An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. Conclusion/Significance The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future. PMID:23638098

  13. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice.

    PubMed

    Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K; Sopory, Sudhir K; Kapoor, Sanjay; Pandey, Girdhar K

    2013-01-01

    Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future.

  14. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  15. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles

    PubMed Central

    Islam, Shiful; Rahman, Iffat Ara; Islam, Tahmina

    2017-01-01

    Glutathione S-transferase (GST) refers to one of the major detoxifying enzymes that plays an important role in different abiotic and biotic stress modulation pathways of plant. The present study aimed to a comprehensive genome-wide functional characterization of GST genes and proteins in tomato (Solanum lycopersicum L.). The whole genome sequence analysis revealed the presence of 90 GST genes in tomato, the largest GST gene family reported till date. Eight segmental duplicated gene pairs might contribute significantly to the expansion of SlGST gene family. Based on phylogenetic analysis of tomato, rice, and Arabidopsis GST proteins, GST family members could be further divided into ten classes. Members of each orthologous class showed high conservancy among themselves. Tau and lambda are the major classes of tomato; while tau and phi are the major classes for rice and Arabidopsis. Chromosomal localization revealed highly uneven distribution of SlGST genes in 13 different chromosomes, where chromosome 9 possessed the highest number of genes. Based on publicly available microarray data, expression analysis of 30 available SlGST genes exhibited a differential pattern in all the analyzed tissues and developmental stages. Moreover, most of the members showed highly induced expression in response to multiple biotic and abiotic stress inducers that could be harmonized with the increase in total GST enzyme activity under several stress conditions. Activity of tomato GST could be enhanced further by using some positive modulators (safeners) that have been predicted through molecular docking of SlGSTU5 and ligands. Moreover, tomato GST proteins are predicted to interact with a lot of other glutathione synthesizing and utilizing enzymes such as glutathione peroxidase, glutathione reductase, glutathione synthetase and γ-glutamyltransferase. This comprehensive genome-wide analysis and expression profiling would provide a rational platform and possibility to explore the versatile role of GST genes in crop engineering. PMID:29095889

  16. Fine mapping on chromosome 13q32-34 and brain expression analysis implicates MYO16 in schizophrenia.

    PubMed

    Rodriguez-Murillo, Laura; Xu, Bin; Roos, J Louw; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2014-03-01

    We previously reported linkage of schizophrenia and schizoaffective disorder to 13q32-34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32-34 linkage region. We used densely spaced SNPs to fine map the linkage peak region using both a discovery sample of 415 families and a meta-analysis incorporating two additional replication family samples. In a second phase of the study, we use one family-based data set with 237 families and independent case-control data sets for fine mapping of the common variant association signal using HapMap SNPs. We report a significant association with a genetic variant (rs9583277) within the gene encoding for the myosin heavy-chain Myr 8 (MYO16), which has been implicated in neuronal phosphoinositide 3-kinase signaling. Follow-up analysis of HapMap variation within MYO16 in a second set of Afrikaner families and additional case-control data sets of European descent highlighted a region across introns 2-6 as the most likely region to harbor common MYO16 risk variants. Expression analysis revealed a significant increase in the level of MYO16 expression in the brains of schizophrenia patients. Our results suggest that common variation within MYO16 may contribute to the genetic liability to schizophrenia.

  17. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn.

    PubMed Central

    Wang, Dan; Zhao, Jietang; Hu, Bing; Li, Jiaqi; Qin, Yaqi; Chen, Linhuan; Qin, Yonghua

    2018-01-01

    Sucrose phosphate synthase (SPS, EC 2.4.1.14) is a key enzyme that regulates sucrose biosynthesis in plants. SPS is encoded by different gene families which display differential expression patterns and functional divergence. Genome-wide identification and expression analyses of SPS gene families have been performed in Arabidopsis, rice, and sugarcane, but a comprehensive analysis of the SPS gene family in Litchi chinensis Sonn. has not yet been reported. In the current study, four SPS gene (LcSPS1, LcSPS2, LcSPS3, and LcSPS4) were isolated from litchi. The genomic organization analysis indicated the four litchi SPS genes have very similar exon-intron structures. Phylogenetic tree showed LcSPS1-4 were grouped into different SPS families (LcSPS1 and LcSPS2 in A family, LcSPS3 in B family, and LcSPS4 in C family). LcSPS1 and LcSPS4 were strongly expressed in the flowers, while LcSPS3 most expressed in mature leaves. RT-qPCR results showed that LcSPS genes expressed differentially during aril development between cultivars with different hexose/sucrose ratios. A higher level of expression of LcSPS genes was detected in Wuheli, which accumulates higher sucrose in the aril at mature. The tissue- and developmental stage-specific expression of LcSPS1-4 genes uncovered in this study increase our understanding of the important roles played by these genes in litchi fruits. PMID:29473005

  18. In silico characterization and expression analysis of the multigene family encoding the Bowman-Birk protease inhibitor in soybean.

    PubMed

    de Almeida Barros, Beatriz; da Silva, Wiliane Garcia; Moreira, Maurilio Alves; de Barros, Everaldo Gonçalves

    2012-01-01

    The Bowman-Birk (BBI) protease inhibitors can be used as source of sulfur amino acids, can regulate endogenous protease activity during seed germination and during the defense response of plants to pathogens. In soybean this family has not been fully described. The goal of this work was to characterize in silico and analyze the expression of the members of this family in soybean. We identified 11 potential BBI genes in the soybean genome. In each one of them at least a characteristic BBI conserved domain was detected in addition to a potential signal peptide. The sequences have been positioned in the soybean physical map and the promoter regions were analyzed with respect to known regulatory elements. Elements related to seed-specific expression and also to response to biotic and abiotic stresses have been identified. Based on the in silico analysis and also on quantitative RT-PCR data it was concluded that BBI-A, BBI-CII and BBI-DII are expressed specifically in the seed. The expression profiles of these three genes are similar along seed development. Their expressions reach a maximum in the intermediate stages and decrease as the seed matures. The BBI-DII transcripts are the most abundant ones followed by those of BBI-A and BBI-CII.

  19. Family Ratings of Communication Largely Reflect Expressive Language and Conversation-Level Ability in People With Aphasia.

    PubMed

    Fucetola, Robert; Tabor Connor, Lisa

    2015-11-01

    Family ratings of communication and social interactions represent an important source of information about people with aphasia. Because of the reliance on family/partner ratings as an outcome measure in many aphasia treatment studies and in the clinic, there is a great need for the validation of commonly used family/partner rating measures, and a better understanding of predictors of family ratings of communication. The communication ability of 130 individuals with aphasia due to neurologic illness was rated by family members/partners on the Communicative Effectiveness Index (CETI; Lomas et al., 1989). Information on aphasia severity, mood, quality of life, nonverbal cognitive functioning, and various demographic factors was collected. Principal component analysis confirmed a 2-factor model best represents the relationships among CETI rating items, and this model largely consists of a conversation-level ability factor. Family ratings were largely predicted by the patient's expressive (not receptive) language but also patient self-perceived quality of communication life. Family/partners typically rate the effectiveness of communication based largely on expressive language, despite the fact that other aspects of the aphasia (e.g., listening comprehension) are as important for everyday communication.

  20. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome.

    PubMed

    Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun

    2018-04-01

    The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.

  1. Gendered Family Lives through the Eyes of Young People: Diversity, Permanence and Change of Gender Representations in Portugal

    ERIC Educational Resources Information Center

    das Dores Guerreiro, Maria; Caetano, Ana; Rodrigues, Eduardo

    2014-01-01

    This article examines gender representations of family and parental roles among young people aged 11 to 14 years. It is based on the qualitative analysis of 792 essays written by Portuguese girls and boys attending compulsory education. The adolescents' texts express normative images and cultural representations about gender that are plural and…

  2. Genome-wide analysis of TCP family in tobacco.

    PubMed

    Chen, L; Chen, Y Q; Ding, A M; Chen, H; Xia, F; Wang, W F; Sun, Y H

    2016-05-23

    The TCP family is a transcription factor family, members of which are extensively involved in plant growth and development as well as in signal transduction in the response against many physiological and biochemical stimuli. In the present study, 61 TCP genes were identified in tobacco (Nicotiana tabacum) genome. Bioinformatic methods were employed for predicting and analyzing the gene structure, gene expression, phylogenetic analysis, and conserved domains of TCP proteins in tobacco. The 61 NtTCP genes were divided into three diverse groups, based on the division of TCP genes in tomato and Arabidopsis, and the results of the conserved domain and sequence analyses further confirmed the classification of the NtTCP genes. The expression pattern of NtTCP also demonstrated that majority of these genes play important roles in all the tissues, while some special genes exercise their functions only in specific tissues. In brief, the comprehensive and thorough study of the TCP family in other plants provides sufficient resources for studying the structure and functions of TCPs in tobacco.

  3. Hereditary family signature of facial expression

    PubMed Central

    Peleg, Gili; Katzir, Gadi; Peleg, Ofer; Kamara, Michal; Brodsky, Leonid; Hel-Or, Hagit; Keren, Daniel; Nevo, Eviatar

    2006-01-01

    Although facial expressions of emotion are universal, individual differences create a facial expression “signature” for each person; but, is there a unique family facial expression signature? Only a few family studies on the heredity of facial expressions have been performed, none of which compared the gestalt of movements in various emotional states; they compared only a few movements in one or two emotional states. No studies, to our knowledge, have compared movements of congenitally blind subjects with their relatives to our knowledge. Using two types of analyses, we show a correlation between movements of congenitally blind subjects with those of their relatives in think-concentrate, sadness, anger, disgust, joy, and surprise and provide evidence for a unique family facial expression signature. In the analysis “in-out family test,” a particular movement was compared each time across subjects. Results show that the frequency of occurrence of a movement of a congenitally blind subject in his family is significantly higher than that outside of his family in think-concentrate, sadness, and anger. In the analysis “the classification test,” in which congenitally blind subjects were classified to their families according to the gestalt of movements, results show 80% correct classification over the entire interview and 75% in anger. Analysis of the movements' frequencies in anger revealed a correlation between the movements' frequencies of congenitally blind individuals and those of their relatives. This study anticipates discovering genes that influence facial expressions, understanding their evolutionary significance, and elucidating repair mechanisms for syndromes lacking facial expression, such as autism. PMID:17043232

  4. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process

    PubMed Central

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses. PMID:26300904

  5. Effectiveness of family interventions on psychological distress and expressed emotion in family members of individuals diagnosed with first-episode psychosis: a systematic review.

    PubMed

    Napa, Wilai; Tungpunkom, Patraporn; Pothimas, Nisakorn

    2017-04-01

    A critical period for persons with first-episode psychosis is the first two years after diagnosis, when they are at high risk of suicide attempts, violent behaviors and substance abuse. This period also has a great impact on the psychological distress of family members, particularly caregivers who either provide care or live with ill family members. In addition, the families also report feelings of being overwhelmed when accessing service facilities at this critical point. These consequences impact on the affective tone/atmosphere in the family, also referred to as so-called expressed emotion. In addition, expressed emotion research has indicated that the family atmosphere contributes to recurrent psychosis and lengthy hospital stays for patients in the initial phase. Therefore, family interventions aimed at reducing psychological distress and improving expressed emotion in families during this critical time are very important. Modern research has yielded international evidence addressing these outcomes, but little is known about which interventions are the most effective. Therefore, this review aimed to evaluate the effectiveness of these interventions. The objective of this review was to examine the effectiveness of family interventions on psychological distress and expressed emotion in family members of persons with first-episode psychosis (FEP). Family members of persons with FEP and who had received treatment after being diagnosed within two years. Studies that examined interventions among family members of persons with FEP. Family interventions referred to any education, psychoeducation, communication, coping and problem-solving skills training and cognitive behavioral therapy that was provided to family members of persons with FEP. Psychological distress and expressed emotions of those family members. Randomized controlled trials, quasi-experimental studies, cohort studies and case-control studies. The preliminary search was conducted in MEDLINE and CINAHL with keywords containing the title, abstract and subject description analysis as the first identification of related studies. An extensive search was conducted in other databases including ProQuest Dissertations and Theses, ScienceDirect, Scopus, PsychINFO, ThaiLIS and Thai National research databases. In addition, searches of reference lists and other manual searches were undertaken. Studies were critically appraised by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute. Data were extracted using the standardized data extraction tools from the Joanna Briggs Institute. The mean score and standard deviation (SD) were extracted for targets outcomes relating to psychological distress and expressed emotion. Quantitative data could not be pooled due to the heterogeneity of the included studies. Data were synthesized based on the individual results from the three included studies and have been presented in a narrative format accompanied with tabulated data. Data synthesis of the three individual studies indicated that there were no statistically significant interventions that address psychological distress and expressed emotion in family members who live with and care for persons with FEP. There is insufficient evidence available to evaluate the effect sizes for pooled outcomes. Based on the results of this review, there is insufficient evidence to validate the effectiveness of family interventions on psychological distress and expressed emotion in family members who live with and care for persons with FEP. In addition, based on the individual primary studies, the implications for practice should be carefully considered.

  6. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species

    PubMed Central

    Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  7. Fine Mapping on Chromosome 13q32–34 and Brain Expression Analysis Implicates MYO16 in Schizophrenia

    PubMed Central

    Rodriguez-Murillo, Laura; Xu, Bin; Roos, J Louw; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2014-01-01

    We previously reported linkage of schizophrenia and schizoaffective disorder to 13q32–34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32–34 linkage region. We used densely spaced SNPs to fine map the linkage peak region using both a discovery sample of 415 families and a meta-analysis incorporating two additional replication family samples. In a second phase of the study, we use one family-based data set with 237 families and independent case–control data sets for fine mapping of the common variant association signal using HapMap SNPs. We report a significant association with a genetic variant (rs9583277) within the gene encoding for the myosin heavy-chain Myr 8 (MYO16), which has been implicated in neuronal phosphoinositide 3-kinase signaling. Follow-up analysis of HapMap variation within MYO16 in a second set of Afrikaner families and additional case–control data sets of European descent highlighted a region across introns 2–6 as the most likely region to harbor common MYO16 risk variants. Expression analysis revealed a significant increase in the level of MYO16 expression in the brains of schizophrenia patients. Our results suggest that common variation within MYO16 may contribute to the genetic liability to schizophrenia. PMID:24141571

  8. Expression and mutational analysis of Cip/Kip family in early glottic cancer.

    PubMed

    Kim, D-K; Lee, J H; Lee, O J; Park, C H

    2015-02-01

    Genetic alteration of cyclin-dependent kinase inhibitors has been associated with carcinogenesis mechanisms in various organs. This study aimed to evaluate the expression and mutational analysis of Cip/Kip family cyclin-dependent kinase inhibitors (p21CIP1/WAF1, p27KIP1 and p57KIP2) in early glottic cancer. Expressions of Cip/Kip family and p53 were determined by quantitative reverse transcription polymerase chain reaction and densitometry. For the analysis of p21 inactivation, sequence alteration was assessed using single-strand conformational polymorphism polymerase chain reaction. Additionally, the inactivation mechanism of p27 and p57 were investigated using DNA methylation analysis. Reduced expression of p27 and p57 were detected in all samples, whereas the expression of p21 was incompletely down-regulated in 6 of 11 samples. Additionally, single-strand conformational polymorphism polymerase chain reaction analysis showed the p53 mutation at exon 6. Methylation of p27 and p57 was detected by DNA methylation assay. Our results suggest that the Cip/Kip family may have a role as a molecular mechanism of carcinogenesis in early glottic cancer.

  9. Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons.

    PubMed

    Nagarajan, R; Hariharan, M; Satiyan, M

    2012-08-01

    Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.

  10. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    PubMed

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  11. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii

    PubMed Central

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C.; Zhang, Baohong

    2014-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence. PMID:25322260

  12. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  13. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family.

    PubMed

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  14. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  15. Key Elements of a Family Intervention for Schizophrenia: A Qualitative Analysis of an RCT.

    PubMed

    Grácio, Jaime; Gonçalves-Pereira, Manuel; Leff, Julian

    2018-03-01

    Schizophrenia is a complex biopsychosocial condition in which expressed emotion in family members is a robust predictor of relapse. Not surprisingly, family interventions are remarkably effective and thus recommended in current treatment guidelines. Their key elements seem to be common therapeutic factors, followed by education and coping skills training. However, few studies have explored these key elements and the process of the intervention itself. We conducted a qualitative and quantitative analysis of the records from a pioneering family intervention trial addressing expressed emotion, published by Leff and colleagues four decades ago. Records were analyzed into categories and data explored using descriptive statistics. This was complemented by a narrative evaluation using an inductive approach based on emotional markers and markers of change. The most used strategies in the intervention were addressing needs, followed by coping skills enhancement, advice, and emotional support. Dealing with overinvolvement and reframing were the next most frequent. Single-family home sessions seemed to augment the therapeutic work conducted in family groups. Overall the intervention seemed to promote cognitive and emotional change in the participants, and therapists were sensitive to the emotional trajectory of each subject. On the basis of our findings, we developed a longitudinal framework for better understanding the process of this treatment approach. © 2016 Family Process Institute.

  16. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes

    PubMed Central

    Hu, Wei; Xia, Zhiqiang; Yan, Yan; Ding, Zehong; Tie, Weiwei; Wang, Lianzhe; Zou, Meiling; Wei, Yunxie; Lu, Cheng; Hou, Xiaowan; Wang, Wenquan; Peng, Ming

    2015-01-01

    Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs) have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava. PMID:26579161

  17. Identification of a testis-enriched heat shock protein and fourteen members of Hsp70 family in the swamp eel.

    PubMed

    He, Yan; Luo, Majing; Yi, Minhan; Sheng, Yue; Cheng, Yibin; Zhou, Rongjia; Cheng, Hanhua

    2013-01-01

    Gonad differentiation is one of the most important developmental events in vertebrates. Some heat shock proteins are associated with gonad development. Heat shock protein 70 (Hsp70) in the teleost fish and its roles in sex differentiation are poorly understood. We have identified a testis-enriched heat shock protein Hspa8b2 in the swamp eel using Western blot analysis and Mass Spectrometry (MS). Fourteen Hsp70 family genes were further identified in this species based on transcriptome information. The phylogenetic tree of Hsp70 family was constructed using the Maximum Likelihood method and their expression patterns in the swamp eel gonads were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). There are fourteen gene members in the Hsp70 family in the swamp eel genome. Hsp70 family, particularly Hspa8, has expanded in the species. One of the family members Hspa8b2 is predominantly expressed in testis of the swamp eel.

  18. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.

    PubMed

    Danisman, Selahattin; van Dijk, Aalt D J; Bimbo, Andrea; van der Wal, Froukje; Hennig, Lars; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H

    2013-12-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.

  19. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    PubMed Central

    Danisman, Selahattin; de Folter, Stefan; Immink, Richard G. H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein–protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein–protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family. PMID:24129704

  20. Transcriptome-Wide Survey and Expression Profile Analysis of Putative Chrysanthemum HD-Zip I and II Genes

    PubMed Central

    Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong

    2016-01-01

    The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930

  1. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates.

    PubMed

    Jones, Grant D; Williams, Ernest P; Place, Allen R; Jagus, Rosemary; Bachvaroff, Tsvetan R

    2015-02-10

    Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in core dinoflagellates may provide a toolkit to enable selective translation as a strategy for controlling gene expression in these enigmatic eukaryotes.

  2. Comprehensive Genome-Wide Survey, Genomic Constitution and Expression Profiling of the NAC Transcription Factor Family in Foxtail Millet (Setaria italica L.)

    PubMed Central

    Puranik, Swati; Sahu, Pranav Pankaj; Mandal, Sambhu Nath; B., Venkata Suresh; Parida, Swarup Kumar; Prasad, Manoj

    2013-01-01

    The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants. PMID:23691254

  3. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).

    PubMed

    Puranik, Swati; Sahu, Pranav Pankaj; Mandal, Sambhu Nath; B, Venkata Suresh; Parida, Swarup Kumar; Prasad, Manoj

    2013-01-01

    The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.

  4. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Liu, Liqin; Shu, Bo; Wang, Yicheng; Xie, Jianghui; Liu, Chengming; Shi, Shengyou

    2018-03-15

    Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan ( Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes ( DlUBCs ), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar "Sijimi" (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.

  5. RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas.

    PubMed

    Melean, German; Velasco, Ana; Hernández-Imaz, Elisabete; Rodríguez-Álvarez, Francisco Javier; Martín, Yolanda; Valero, Ana; Hernández-Chico, Concepción

    2012-08-01

    Germline mutations in the SMARCB1 gene cause familial schwannomatosis, a condition characterized by the presence of multiple schwannomas, although mutations in SMARCB1 have also been associated with rhadboid tumor predisposition syndrome 1 (RTPS1). Both schwannomatosis and RTPS1 are autosomal dominant conditions that predispose individuals to develop distinct types of tumors. We clinically and genetically characterized two families with schwannomatosis associated with SMARCB1 mutations. Eight affected members of these families developed different numbers of schwannomas and/or meningiomas at distinct ages, evidence that meningiomas are variably expressed in this condition. We identified two germline mutations in SMARCB1 associated with the familial disease, c.233-1G>A and the novel c.207_208dupTA mutation, which both proved to affect the main SMARCB1 isoforms at the RNA level distinctly. Interestingly, the c.207_208dupTA mutation had no effect on the coding sequence, pre-mRNA splicing or the level of expression of the SMARCB1 isoform 2. Furthermore, SMARCB1 isoforms harboring a premature termination codon were largely eliminated via the nonsense-mediated mRNA decay pathway. Our results highlight the importance of RNA-based studies to characterize SMARCB1 germline mutations in order to determine their impact on protein expression and gain further insight into the genetic basis of conditions associated with SMARCB1 mutations.

  6. Increased expression of ADAM 9 and ADAM 15 mRNA in pancreatic cancer.

    PubMed

    Yamada, Daisuke; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Ohhashi, Seiji; Yu, Jun; Egami, Takuya; Fujita, Hayato; Nagai, Eishi; Tanaka, Masao

    2007-01-01

    A disintegrin and metalloproteases (ADAMs) comprise a multifunctional family of membrane-anchored proteins. ADAM 9 and ADAM 15 are involved in cell migration and invasion. Expression of ADAM 9 and ADAM 15 was reported to be altered in several types of cancer. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure the expression of ADAM 9 mRNA in bulk pancreatic tissues. Results showed no significant difference in the expression of ADAM 9 mRNA between pancreatic cancer and non-neoplastic pancreas. Primary cultured pancreatic fibroblasts also expressed ADAM 9 mRNA. Therefore, a laser microdissection and pressure catapulting technique was employed to isolate cancer cells from tumor tissues. The expression of ADAM 9 and ADAM 15 mRNA was measured in microdissected samples (cancer cells, n = 11; normal epithelial cells, n = 13 for ADAM 9; cancer cells, n = 9; normal epithelial cells, n = 9 for ADAM 15). Pancreatic cancer cells expressed significantly higher levels of ADAM 9 and ADAM 15 mRNA than did normal pancreatic epithelial cells (p = 0.016 for ADAM 9; p = 0.004 for ADAM 15). ADAM 9 and ADAM 15 are involved in pancreatic cancer. Microdissection-based analysis appears to be indispensable for the accurate analysis of the expression of certain ADAM family members in pancreatic cancer.

  7. Family Relationships and Psychosocial Dysfunction Among Family Caregivers of Patients With Advanced Cancer.

    PubMed

    Nissen, Kathrine G; Trevino, Kelly; Lange, Theis; Prigerson, Holly G

    2016-12-01

    Caring for a family member with advanced cancer strains family caregivers. Classification of family types has been shown to identify patients at risk of poor psychosocial function. However, little is known about how family relationships affect caregiver psychosocial function. To investigate family types identified by a cluster analysis and to examine the reproducibility of cluster analyses. We also sought to examine the relationship between family types and caregivers' psychosocial function. Data from 622 caregivers of advanced cancer patients (part of the Coping with Cancer Study) were analyzed using Gaussian Mixture Modeling as the primary method to identify family types based on the Family Relationship Index questionnaire. We then examined the relationship between family type and caregiver quality of life (Medical Outcome Survey Short Form), social support (Interpersonal Support Evaluation List), and perceived caregiver burden (Caregiving Burden Scale). Three family types emerged: low-expressive, detached, and supportive. Analyses of variance with post hoc comparisons showed that caregivers of detached and low-expressive family types experienced lower levels of quality of life and perceived social support in comparison to supportive family types. The study identified supportive, low-expressive, and detached family types among caregivers of advanced cancer patients. The supportive family type was associated with the best outcomes and detached with the worst. These findings indicate that family function is related to psychosocial function of caregivers of advanced cancer patients. Therefore, paying attention to family support and family members' ability to share feelings and manage conflicts may serve as an important tool to improve psychosocial function in families affected by cancer. Copyright © 2016 American Academy of Hospice and Palliative Medicine. All rights reserved.

  8. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    PubMed

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-12-29

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut.

  9. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress.

    PubMed

    Zhao, Peng; Wang, Dongdong; Wang, Ruoqiu; Kong, Nana; Zhang, Chao; Yang, Chenghui; Wu, Wentao; Ma, Haoli; Chen, Qin

    2018-01-18

    Heat shock proteins (Hsps) are essential components in plant tolerance mechanism under various abiotic stresses. Hsp20 is the major family of heat shock proteins, but little of Hsp20 family is known in potato (Solanum tuberosum), which is an important vegetable crop that is thermosensitive. To reveal the mechanisms of potato Hsp20s coping with abiotic stresses, analyses of the potato Hsp20 gene family were conducted using bioinformatics-based methods. In total, 48 putative potato Hsp20 genes (StHsp20s) were identified and named according to their chromosomal locations. A sequence analysis revealed that most StHsp20 genes (89.6%) possessed no, or only one, intron. A phylogenetic analysis indicated that all of the StHsp20 genes, except 10, were grouped into 12 subfamilies. The 48 StHsp20 genes were randomly distributed on 12 chromosomes. Nineteen tandem duplicated StHsp20s and one pair of segmental duplicated genes (StHsp20-15 and StHsp20-48) were identified. A cis-element analysis inferred that StHsp20s, except for StHsp20-41, possessed at least one stress response cis-element. A heatmap of the StHsp20 gene family showed that the genes, except for StHsp20-2 and StHsp20-45, were expressed in various tissues and organs. Real-time quantitative PCR was used to detect the expression level of StHsp20 genes and demonstrated that the genes responded to multiple abiotic stresses, such as heat, salt or drought stress. The relative expression levels of 14 StHsp20 genes (StHsp20-4, 6, 7, 9, 20, 21, 33, 34, 35, 37, 41, 43, 44 and 46) were significantly up-regulated (more than 100-fold) under heat stress. These results provide valuable information for clarifying the evolutionary relationship of the StHsp20 family and in aiding functional characterization of StHsp20 genes in further research.

  10. Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development.

    PubMed

    Niu, Jun; Bi, Quanxin; Deng, Shuya; Chen, Huiping; Yu, Haiyan; Wang, Libing; Lin, Shanzhi

    2018-01-24

    Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.

  11. JAK and STAT members in channel catfish: Identification, phylogenetic analysis and expression profiling after Edwardsiella ictaluri infection.

    PubMed

    Jin, Yulin; Zhou, Tao; Li, Ning; Liu, Shikai; Xu, Xiaoyan; Pan, Ying; Tan, Suxu; Shi, Huitong; Yang, Yujia; Yuan, Zihao; Wang, Wenwen; Luo, Jian; Gao, Dongya; Dunham, Rex; Liu, Zhanjiang

    2018-04-01

    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is one of the main pleiotropic cascades used to transmit information from extracellular receptors to the nucleus, which results in DNA transcription and expression of genes involved in immunity, proliferation, differentiation, migration, apoptosis, and cell survival. Members of JAK family and STAT family have been extensively studied in different mammalian species because of their important roles in innate and adaptive immune responses. However, they have not been systematically studied among teleost fish species. In this study, five JAK family members and eight STAT family members were identified and characterized from channel catfish. Phylogenetic analysis was conducted to properly annotate these genes. Syntenic analysis was also conducted to establish orthology, and confirm the results from phylogenetic analysis. Compared to mammals, more members of the JAK and STAT family were identified in channel catfish genome. Expression of JAK and STAT family members was detected in healthy catfish tissues, but was induced in gill, liver, and intestine after bacterial challenge. Notably, the significant upregulation of STAT1b gene in catfish liver, gill and intestine after Edwardsiella ictaluri infection supported the notion that high STAT1 expression are involved in defense against pathogens. Collectively, the increased expression of JAK and STAT members in tested tissues suggested their crucial function in defending the host against pathogen invasion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-04

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation.

    PubMed

    Shaw, Lindsay M; McIntyre, C Lynne; Gresshoff, Peter M; Xue, Gang-Ping

    2009-11-01

    DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.

  14. Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera)

    PubMed Central

    Zhou, Ying; Zhou, Yu; Yang, Jie

    2016-01-01

    The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nelumbo nucifera), analyzed their physical and chemical characteristics and performed phylogenetic analysis using the GRAS genes from eight representative plant species to show the evolution of GRAS genes in Planta. In addition, the gene structures and motifs of the sacred lotus GRAS proteins were characterized in detail. Comparative analysis identified 42 orthologous and 9 co-orthologous gene pairs between sacred lotus and Arabidopsis, and 35 orthologous and 22 co-orthologous gene pairs between sacred lotus and rice. Based on publically available RNA-seq data generated from leaf, petiole, rhizome and root, we found that most of the sacred lotus GRAS genes exhibited a tissue-specific expression pattern. Eight of the ten PAT1-clade GRAS genes, particularly NnuGRAS-05, NnuGRAS-10 and NnuGRAS-25, were preferentially expressed in rhizome and root. In summary, this is the first in silico analysis of the GRAS gene family in sacred lotus, which will provide valuable information for further molecular and biological analyses of this important gene family. PMID:27635351

  15. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori)

    PubMed Central

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-01-01

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family. PMID:27706106

  16. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    PubMed

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  17. Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus).

    PubMed

    Song, Qiuming; Li, Dayong; Dai, Yi; Liu, Shixia; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming

    2015-12-23

    Mitogen-activated protein kinase (MAPK) cascades, which consist of three functionally associated protein kinases, namely MEKKs, MKKs and MPKs, are universal signaling modules in all eukaryotes and have been shown to play critical roles in many physiological and biochemical processes in plants. However, little or nothing is known about the MPK and MKK families in watermelon. In the present study, we performed a systematic characterization of the ClMPK and ClMKK families including the identification and nomenclature, chromosomal localization, phylogenetic relationships, ClMPK-ClMKK interactions, expression patterns in different tissues and in response to abiotic and biotic stress and transient expression-based functional analysis for their roles in disease resistance. Genome-wide survey identified fifteen ClMPK and six ClMKK genes in watermelon genome and phylogenetic analysis revealed that both of the ClMPK and ClMKK families can be classified into four distinct groups. Yeast two-hybrid assays demonstrated significant interactions between members of the ClMPK and ClMKK families, defining putative ClMKK2-1/ClMKK6-ClMPK4-1/ClMPK4-2/ClMPK13 and ClMKK5-ClMPK6 cascades. Most of the members in the ClMPK and ClMKK families showed differential expression patterns in different tissues and in response to abiotic (e.g. drought, salt, cold and heat treatments) and biotic (e.g. infection of Fusarium oxysporum f. sp. niveum) stresses. Transient expression of ClMPK1, ClMPK4-2 and ClMPK7 in Nicotiana benthamiana resulted in enhanced resistance to Botrytis cinerea and upregulated expression of defense genes while transient expression of ClMPK6 and ClMKK2-2 led to increased susceptibility to B. cinerea. Furthermore, transient expression of ClMPK7 also led to hypersensitive response (HR)-like cell death and significant accumulation of H2O2 in N. benthamiana. We identified fifteen ClMPK and six ClMKK genes from watermelon and analyzed their phylogenetic relationships, expression patterns and protein-protein interactions and functions in disease resistance. Our results demonstrate that ClMPK1, ClMPK4-2 and ClMPK7 positively but ClMPK6 and ClMKK2-2 negatively regulate the resistance to B. cinerea when transiently expressed in N. benthamiana and that ClMPK7 functions as a regulator of HR-like cell death through modulating the generation of H2O2.

  18. Evolution of developmental regulation in the vertebrate FgfD subfamily.

    PubMed

    Jovelin, Richard; Yan, Yi-Lin; He, Xinjun; Catchen, Julian; Amores, Angel; Canestro, Cristian; Yokoi, Hayato; Postlethwait, John H

    2010-01-15

    Fibroblast growth factors (Fgfs) encode small signaling proteins that help regulate embryo patterning. Fgfs fall into seven families, including FgfD. Nonvertebrate chordates have a single FgfD gene; mammals have three (Fgf8, Fgf17, and Fgf18); and teleosts have six (fgf8a, fgf8b, fgf17, fgf18a, fgf18b, and fgf24). What are the evolutionary processes that led to the structural duplication and functional diversification of FgfD genes during vertebrate phylogeny? To study this question, we investigated conserved syntenies, patterns of gene expression, and the distribution of conserved noncoding elements (CNEs) in FgfD genes of stickleback and zebrafish, and compared them with data from cephalochordates, urochordates, and mammals. Genomic analysis suggests that Fgf8, Fgf17, Fgf18, and Fgf24 arose in two rounds of whole genome duplication at the base of the vertebrate radiation; that fgf8 and fgf18 duplications occurred at the base of the teleost radiation; and that Fgf24 is an ohnolog that was lost in the mammalian lineage. Expression analysis suggests that ancestral subfunctions partitioned between gene duplicates and points to the evolution of novel expression domains. Analysis of CNEs, at least some of which are candidate regulatory elements, suggests that ancestral CNEs partitioned between gene duplicates. These results help explain the evolutionary pathways by which the developmentally important family of FgfD molecules arose and the deduced principles that guided FgfD evolution are likely applicable to the evolution of developmental regulation in many vertebrate multigene families. (c) 2009 Wiley-Liss, Inc.

  19. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes

    PubMed Central

    2013-01-01

    Background Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Results Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Conclusion Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require further characterization. PMID:23701735

  20. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes.

    PubMed

    Hobson, Neil; Deyholos, Michael K

    2013-05-23

    Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require further characterization.

  1. Conveying empathy to hospice family caregivers: Team responses to caregiver empathic communication

    PubMed Central

    Wittenberg-Lyles, Elaine; Oliver, Debra Parker; Demiris, George; Rankin, Anna; Shaunfield, Sara; Kruse, Robin L.

    2012-01-01

    Objective The goal of this study was to explore empathic communication opportunities presented by family caregivers and responses from interdisciplinary hospice team members. Methods Empathic opportunities and hospice team responses were analyzed from biweekly web-based videoconferences between family caregivers and hospice teams. The authors coded the data using the Empathic Communication Coding System (ECCS) and identified themes within and among the coded data. Results Data analysis identified 270 empathic opportunity-team response sequences. Caregivers expressed statements of emotion and decline most frequently. Two-thirds of the hospice team responses were implicit acknowledgments of caregiver statements and only one-third of the team responses were explicit recognitions of caregiver empathic opportunities. Conclusion Although hospice team members frequently express emotional concerns with family caregivers during one-on-one visits, there is a need for more empathic communication during team meetings that involve caregivers. Practice implications Hospice clinicians should devote more time to discussing emotional issues with patients and their families to enhance patient-centered hospice care. Further consideration should be given to training clinicians to empathize with patients and family caregivers. PMID:22554387

  2. Conveying empathy to hospice family caregivers: team responses to caregiver empathic communication.

    PubMed

    Wittenberg-Lyles, Elaine; Debra, Parker Oliver; Demiris, George; Rankin, Anna; Shaunfield, Sara; Kruse, Robin L

    2012-10-01

    The goal of this study was to explore empathic communication opportunities presented by family caregivers and responses from interdisciplinary hospice team members. Empathic opportunities and hospice team responses were analyzed from bi-weekly web-based videoconferences between family caregivers and hospice teams. The authors coded the data using the Empathic Communication Coding System (ECCS) and identified themes within and among the coded data. Data analysis identified 270 empathic opportunity-team response sequences. Caregivers expressed statements of emotion and decline most frequently. Two-thirds of the hospice team responses were implicit acknowledgements of caregiver statements and only one-third of the team responses were explicit recognitions of caregiver empathic opportunities. Although hospice team members frequently express emotional concerns with family caregivers during one-on-one visits, there is a need for more empathic communication during team meetings that involve caregivers. Hospice clinicians should devote more time to discussing emotional issues with patients and their families to enhance patient-centered hospice care. Further consideration should be given to training clinicians to empathize with patients and family caregivers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A Genome-Wide Analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) Gene Family in Malus domestica with a Functional Characterization of MdLBD11

    PubMed Central

    Su, Ling; Liu, Xin; Hao, Yujin

    2013-01-01

    The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species. PMID:23468909

  4. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11.

    PubMed

    Wang, Xiaofei; Zhang, Shizhong; Su, Ling; Liu, Xin; Hao, Yujin

    2013-01-01

    The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

  5. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus.

    PubMed

    Yu, Youjian; Liang, Ying; Lv, Meiling; Wu, Jian; Lu, Gang; Cao, Jiashu

    2014-01-01

    Polygalacturonase (PG, EC3.2.1.15), one of the hydrolytic enzymes associated with the modification of pectin network in plant cell wall, has an important role in various cell-separation processes that are essential for plant development. PGs are encoded by a large gene family in plants. However, information on this gene family in plant development remains limited. In the present study, 53 and 62 putative members of the PG gene family in cucumber and watermelon genomes, respectively, were identified by genome-wide search to explore the composition, structure, and evolution of the PG family in Cucurbitaceae crops. The results showed that tandem duplication could be an important factor that contributes to the expansion of the PG genes in the two crops. The phylogenetic and evolutionary analyses suggested that PGs could be classified into seven clades, and that the exon/intron structures and intron phases were conserved within but divergent between clades. At least 24 ancestral PGs were detected in the common ancestor of Arabidopsis and Cucumis sativus. Expression profile analysis by quantitative real-time polymerase chain reaction demonstrated that most CsPGs exhibit specific or high expression pattern in one of the organs/tissues. The 16 CsPGs associated with fruit development could be divided into three subsets based on their specific expression patterns and the cis-elements of fruit-specific, endosperm/seed-specific, and ethylene-responsive exhibited in their promoter regions. Our comparative analysis provided some basic information on the PG gene family, which would be valuable for further functional analysis of the PG genes during plant development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  7. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck.

    PubMed

    Licciardello, Concetta; D'Agostino, Nunzio; Traini, Alessandra; Recupero, Giuseppe Reforgiato; Frusciante, Luigi; Chiusano, Maria Luisa

    2014-02-03

    Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar.

  8. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple.

    PubMed

    Xu, Ruirui; Liu, Caiyun; Li, Ning; Zhang, Shizhong

    2016-12-01

    Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.

  9. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection.

    PubMed

    Han, Ying-Li; Hou, Cong-Cong; Du, Chen; Zhu, Jun-Quan

    2017-01-01

    Heat shock proteins 70 (HSP70s) are molecular chaperones that aid in protection against environmental stress. In this study, we cloned and characterized five members of the HSP70 family (designated as HSPa1a, HSC70-1, HSC70-2, HSPa4 and HSPa14) from Lateolabrax maculatus using rapid amplification cDNA ends (RACE). Multiple sequence alignment and structural analysis revealed that all members of the HSP70 family had a conserved domain architecture, with some distinguishing features unique to each HSP70. Quantitative real-time (qPCR) analysis revealed that all members of the HSP70 family were ubiquitously and differentially expressed in all major types of tissues, including testicular tissue. This indicated that HSP70s have vital and conserved biological functions, and may also function in the development of germinal cells. The expression of mRNA of the five HSP70 family members mRNA expression was significantly increased in the head kidney, intestine and gill after Vibrio harveyi challenge, suggesting that HSP70s play an important role in the immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Who Should We Target? The Impact of Individual and Family Characteristics on the Expressed Need for Community-Based Treatment Support in HIV Patients in South Africa.

    PubMed

    Wouters, Edwin; Booysen, Frederik le Roux; Masquillier, Caroline

    2016-01-01

    Reviews of impact evaluations of community-based health workers and peer support groups highlight the considerable variability in the effectiveness of such support in improving antiretroviral treatment (ART) outcomes. Evidence indicates that community-based support interventions targeting patients known to be at risk will probably display better results than generic interventions aimed at the entire population of people living with HIV. It is however difficult to identify these at-risk populations, rendering knowledge on the characteristics of patients groups who are in need of community-based support a clear research priority. The current study aims to address the knowledge gap by exploring the predictors of the willingness to (1) receive the support from a community-based health worker or (2) to participate in a support group in public sector ART programme of the Free State Province of South Africa. Based on the Individual-Family-Community framework for HIV research, the study employs a comprehensive approach by not only testing classical individual-level but also family-level predictors of the willingness to receive community-based support. In addition to individual-level predictors-such as age, health status and coping styles-our analysis demonstrated the importance of family characteristics. The results indicated that discrepancies in the family's changeability level were an important predictor of the demand for community-based support services. Conversely, the findings indicated that patients living in a family more flexible than deemed ideal are more likely to require the support of a community health worker. The current study expands theory by indicating the need to acknowledge all social ecological levels in the study of chronic HIV care. The detection of both individual level and family level determinants of the expressed need for community-based support can inform health policy to devise strategies to target scarce resources to those vulnerable patients who report the greatest need for this support. In this way, the study results are a first step in an attempt to move away from generic, broad based community-based interventions towards community support that is tailored to the patient needs at both the individual and family level.

  11. Genome-wide annotation of cuticular proteins in the oriental fruit fly (Bactrocera dorsalis), changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses.

    PubMed

    Chen, Er-Hu; Hou, Qiu-Li; Dou, Wei; Wei, Dan-Dan; Yue, Yong; Yang, Rui-Lin; Yang, Pei-Jin; Yu, Shuai-Feng; De Schutter, Kristof; Smagghe, Guy; Wang, Jin-Jun

    2018-06-01

    Cuticular proteins (CPs) are essential components of the insect cuticle as they create a structural and protective shield and may have a role in insect development. In this paper, we studied the CPs in the oriental fruit fly (Bactrocera dorsalis), one of the most economically important pests in the Tephritidae family around the world. The availability of a complete genome sequence (NCBI Assembly: ASM78921v2) allowed the identification of 164 CP genes in B. dorsalis. Comparative analysis of the CPs in B. dorsalis with those in the model insect Drosophila melanogaster and the closely related Ceratitis capitata, and CPs from mosquitoes, Lepidoptera, Hymenoptera and Coleoptera identified Diptera-specific genes and cuticle development patterns. Analysis of their evolutionary relationship revealed that some CP families had evolved according to the phylogeny of the different insect species, while others shared a closer relationship based on domain architecture. Subsequently, transcriptome analysis showed that while most of the CPs (60-100% of the family members) are expressed in the epidermis, some were also present in internal organs such as the fat body and the reproductive organs. Furthermore, the study of the expression profiles throughout development revealed a profound change in the expression of CPs during the formation of the puparium (pupariation). Further analysis of the expression profiles of the CPAP3 genes under various environmental stresses revealed them to be involved in the response to pesticides and arid and extreme temperatures conditions. In conclusion, the data provide a particular overview of CPs and their evolutionary and transcriptional dynamics, and in turn they lay a molecular foundation to explore their roles in the unique developmental process of insect metamorphosis and stress responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Clinician Telephone Training to Reduce Family Tobacco Use: Analysis of Transcribed Recordings

    PubMed Central

    Walters, Bethany Hipple; Ossip, Deborah J.; Drehmer, Jeremy E.; Nabi-Burza, Emara; Whitmore, Regina; Gorzkowski, Julie; Winickoff, Jonathan P.

    2018-01-01

    Background Family tobacco use and exposure are significant threats to the health of children and their families. However, few pediatric clinicians address family tobacco use and exposure in a routine and effective manner. The Clinical Effort Against Secondhand Smoke Exposure (CEASE) intervention was developed to tackle this gap between clinical need and clinical practice. Objective To review the main considerations and questions that clinicians and office staff expressed during telephone training to participate in CEASE. Methods This study was conducted in pediatric practices in 5 US states. Practices were recruited by the American Academy of Pediatrics (10 intervention, 10 control). Ten training calls were recorded and transcribed. The data was then coded inductively based on themes found in the transcripts. Results The data revealed that clinicians and staff were concerned about prescribing, dosing, and insurance coverage of nicotine replacement therapy; motivation for and methods to help families become tobacco-free; and the impact of the intervention on practice operations. Conclusion While the majority of clinicians and office staff were interested and enthusiastic about helping families become tobacco-free, they expressed concerns that could threaten implementation of family tobacco control strategies. PMID:29497272

  13. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  14. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

  15. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  16. Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bcl-X and Mcl-1, in human peripheral blood and lymphoid tissues.

    PubMed

    Ohta, K; Iwai, K; Kasahara, Y; Taniguchi, N; Krajewski, S; Reed, J C; Miyawaki, T

    1995-11-01

    The ability of Bcl-2 to inhibit apoptotic cell death is well established. Several homologues of the bcl-2 gene, such as bax, bcl-x or mcl-1, have recently been identified. Like Bcl-2, both Bcl-XL and Mcl-1 appear to function as repressors of apoptotic cell death, whereas Bax facilitates it, indicating possible interactions among them in the control of cellular survival. To investigate the in vivo role of expression of bcl-2 gene family products, immunoblot analysis using corresponding specific antisera was performed for peripheral blood cells and some lymphoid tissues in humans. We demonstrated that all Bcl-2 family proteins were expressed at various levels in hematolymphoid cell subpopulations isolated from peripheral blood, tonsil, spleen and thymus. Lymphoid expression of Bcl-2 family proteins tended to increase following activation, but declined with time in culture. Loss of Bcl-2 in cultured lymphoid cells was especially marked. Sole expression of Bax, but not other members of the Bcl-2 family, was observed on neutrophils, seemingly reflecting their shortest life-span among blood leukocytes. The results support the notion that a balance of expression of Bcl-2 family proteins may regulate the life and death of hematolymphoid cells at different stages of cell differentiation and activation.

  17. Characterization and Comparison of the CPK Gene Family in the Apple (Malus × domestica) and Other Rosaceae Species and Its Response to Alternaria alternata Infection.

    PubMed

    Wei, Menghan; Wang, Sanhong; Dong, Hui; Cai, Binhua; Tao, Jianmin

    2016-01-01

    As one of the Ca2+ sensors, calcium-dependent protein kinase (CPK) plays vital roles in immune and stress signaling, growth and development, and hormone responses, etc. Recently, the whole genome of apple (Malus × domestica), pear (Pyrus communis), peach (Prunus persica), plum (Prunus mume) and strawberry (Fragaria vesca) in Rosaceae family has been fully sequenced. However, little is known about the CPK gene family in these Rosaceae species. In this study, 123 CPK genes were identified from five Rosaceae species, including 37 apple CPKs, 37 pear CPKs, 17 peach CPKs, 16 strawberry CPKs, and 16 plum CPKs. Based on the phylogenetic tree topology and structural characteristics, we divided the CPK gene family into 4 distinct subfamilies: Group I, II, III, and IV. Whole-genome duplication (WGD) or segmental duplication played vital roles in the expansion of the CPK in these Rosaceae species. Most of segmental duplication pairs in peach and plum may have arisen from the γ triplication (~140 million years ago [MYA]), while in apple genome, many duplicated genes may have been derived from a recent WGD (30~45 MYA). Purifying selection also played a critical role in the function evolution of CPK family genes. Expression of apple CPK genes in response to apple pathotype of Alternaria alternata was verified by analysis of quantitative real-time RT-PCR (qPCR). Expression data demonstrated that CPK genes in apple might have evolved independently in different biological contexts. The analysis of evolution history and expression profile laid a foundation for further examining the function and complexity of the CPK gene family in Rosaceae.

  18. Characterization and Comparison of the CPK Gene Family in the Apple (Malus × domestica) and Other Rosaceae Species and Its Response to Alternaria alternata Infection

    PubMed Central

    Wei, Menghan; Wang, Sanhong; Dong, Hui; Cai, Binhua; Tao, Jianmin

    2016-01-01

    As one of the Ca2+ sensors, calcium-dependent protein kinase (CPK) plays vital roles in immune and stress signaling, growth and development, and hormone responses, etc. Recently, the whole genome of apple (Malus × domestica), pear (Pyrus communis), peach (Prunus persica), plum (Prunus mume) and strawberry (Fragaria vesca) in Rosaceae family has been fully sequenced. However, little is known about the CPK gene family in these Rosaceae species. In this study, 123 CPK genes were identified from five Rosaceae species, including 37 apple CPKs, 37 pear CPKs, 17 peach CPKs, 16 strawberry CPKs, and 16 plum CPKs. Based on the phylogenetic tree topology and structural characteristics, we divided the CPK gene family into 4 distinct subfamilies: Group I, II, III, and IV. Whole-genome duplication (WGD) or segmental duplication played vital roles in the expansion of the CPK in these Rosaceae species. Most of segmental duplication pairs in peach and plum may have arisen from the γ triplication (~140 million years ago [MYA]), while in apple genome, many duplicated genes may have been derived from a recent WGD (30~45 MYA). Purifying selection also played a critical role in the function evolution of CPK family genes. Expression of apple CPK genes in response to apple pathotype of Alternaria alternata was verified by analysis of quantitative real-time RT-PCR (qPCR). Expression data demonstrated that CPK genes in apple might have evolved independently in different biological contexts. The analysis of evolution history and expression profile laid a foundation for further examining the function and complexity of the CPK gene family in Rosaceae. PMID:27186637

  19. Family needs of parents of children and youth with cerebral palsy.

    PubMed

    Palisano, R J; Almarsi, N; Chiarello, L A; Orlin, M N; Bagley, A; Maggs, J

    2010-01-01

    Understanding the needs of families of children and youth with cerebral palsy (CP) is important for family-centred services. The aims of this study were to identify: (1) differences in the number and types of family needs expressed by parents based on the age and gross motor function level of their children with CP; (2) the most frequent family needs; and (3) needs that differ on gross motor function level. A total of 501 parents (77.6% mothers) of children and youth with CP completed a modified version of a Family Needs Survey and a demographic questionnaire. Children's gross motor function level was classified using the Gross Motor Function Classification System. Total number of family needs differed based on gross motor function level (P < 0.001) but not age. Parents of children/youth who use wheeled mobility expressed the highest number of family needs, while parents of children/youth who walk without restrictions expressed the fewest needs. Family needs for Information (P= 0.001), Support (P= 0.001), Community Services (P < 0.001) and Finances (P < 0.001) differed based on children's gross motor function level. Over 50% of parents expressed family needs for information on current and future services, planning for the future, help in locating community activities and more personal time. Parents of children and youth who use wheeled mobility were more likely to express the need for help in paying for home modifications, equipment, services and locating sitters, respite care providers and community activities. The gross motor function of children/youth with CP has implications for collaboration with families to identify needs and co-ordinate services. Health professionals have a role to assist families with information needs and locating community services and leisure activities. Family needs for future planning suggest that health professionals should assist families to prepare for key periods in the lives of their children with CP.

  20. qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development.

    PubMed

    Chen, Si; Weddell, Jared; Gupta, Pavan; Conard, Grace; Parkin, James; Imoukhuede, Princess I

    2017-01-01

    Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.

  1. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts

    PubMed Central

    Irum, Bushra; Khan, Arif O.; Wang, Qiwei; Li, David; Khan, Asma A.; Husnain, Tayyab; Akram, Javed; Riazuddin, Sheikh

    2016-01-01

    Purpose This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families. Methods Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays. Results The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD) scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg) in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10). We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15), and expression remained relatively steady throughout development. Conclusion Here, we report a common ancestral mutation in CRYBB3 associated with autosomal recessive congenital cataracts identified in four familial cases of Pakistani origin. PMID:27326458

  2. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  3. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  4. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses.

    PubMed

    Zhang, Jin; Liu, Bobin; Li, Jianbo; Zhang, Li; Wang, Yan; Zheng, Huanquan; Lu, Mengzhu; Chen, Jun

    2015-03-14

    Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.

  5. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress.

    PubMed

    Ye, Jianqiu; Yang, Hai; Shi, Haitao; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Yan, Yan; Luo, Ying; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Li, Kaimian; Zhang, He; Hu, Wei

    2017-11-02

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H 2 O 2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.

  6. A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress

    USDA-ARS?s Scientific Manuscript database

    Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations a...

  7. Soybean kinome: functional classification and gene expression patterns

    PubMed Central

    Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek

    2015-01-01

    The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662

  8. The importance of family support in pediatrics and its impact on healthcare satisfaction.

    PubMed

    Sigurdardottir, Anna Olafia; Garwick, Ann W; Svavarsdottir, Erla Kolbrun

    2017-06-01

    To evaluate predictors of healthcare satisfaction for parents whose children received hospital-based healthcare services at the Children's hospital at Landspitali University Hospital. In this cross-sectional study, data on perceived family support, family quality of life, expressive family functioning, coping strategies and healthcare satisfaction were collected from 159 mothers and 60 fathers (N = 177 families) of children and adolescents from 2011 to 2012. Logistic regression analysis revealed that, for mothers, 38.8% of the variance in satisfaction with healthcare services was predicted by perceived family support and their coping strategies, while for fathers, 59.9% of the variance of their satisfaction with healthcare service was predicted by perceived family support, family quality of life and whether the child had been hospitalised before. Perceived family support was the one factor that was found to predict both the mothers' and the fathers' satisfaction with healthcare services. Knowing which factors predict satisfaction with health care among parents of hospitalised children with different chronic illnesses and health issues can inform the delivery of effective family-focused interventions and evidence-based practice to families. © 2016 Nordic College of Caring Science.

  9. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis)

    PubMed Central

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process. PMID:25870601

  10. Selection and Validation of Reference Genes for Quantitative Real-Time PCR in Buckwheat (Fagopyrum esculentum) Based on Transcriptome Sequence Data

    PubMed Central

    Demidenko, Natalia V.; Logacheva, Maria D.; Penin, Aleksey A.

    2011-01-01

    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species. PMID:21589908

  11. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea

    PubMed Central

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F.; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  12. Genome-wide identification of the potato WRKY transcription factor family.

    PubMed

    Zhang, Chao; Wang, Dongdong; Yang, Chenghui; Kong, Nana; Shi, Zheng; Zhao, Peng; Nan, Yunyou; Nie, Tengkun; Wang, Ruoqiu; Ma, Haoli; Chen, Qin

    2017-01-01

    WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research.

  13. Genome-wide identification of the potato WRKY transcription factor family

    PubMed Central

    Kong, Nana; Shi, Zheng; Zhao, Peng; Nan, Yunyou; Nie, Tengkun; Wang, Ruoqiu; Ma, Haoli

    2017-01-01

    WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research. PMID:28727761

  14. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  15. Genome-Wide Identification and Transcriptional Expression Analysis of Cucumber Superoxide Dismutase (SOD) Family in Response to Various Abiotic Stresses

    PubMed Central

    Zhou, Yong; Hu, Lifang; Wu, Hao; Jiang, Lunwei

    2017-01-01

    Superoxide dismutase (SOD) proteins are widely present in the plant kingdom and play important roles in different biological processes. However, little is known about the SOD genes in cucumber. In this study, night SOD genes were identified from cucumber (Cucumis sativus) using bioinformatics-based methods, including 5 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. Gene structure and motif analysis indicated that most of the SOD genes have relatively conserved exon/intron arrangement and motif composition. Phylogenetic analyses with SODs from cucumber and several other species revealed that these SOD proteins can be traced back to two ancestral SODs before the divergence of monocot and dicot plants. Many cis-elements related to stress responses and plant hormones were found in the promoter sequence of each CsSOD gene. Gene expression analysis revealed that most of the CsSOD genes are expressed in almost all the tested tissues. qRT-PCR analysis of 8 selected CsSOD genes showed that these genes could respond to heat, cold, osmotic, and salt stresses. Our results provide a basis for further functional research on SOD gene family in cucumber and facilitate their potential applications in the genetic improvement of cucumber. PMID:28808654

  16. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans

    PubMed Central

    2010-01-01

    Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor. PMID:21054859

  17. Identification and characterization of the grape WRKY family.

    PubMed

    Zhang, Ying; Feng, Jian Can

    2014-01-01

    WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grape WRKY genes were classified into three groups (groups 1-3). Analysis of WRKY genes expression profiles indicated that 28 WRKY genes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA). In that 16 WRKY genes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.

  18. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    PubMed Central

    2010-01-01

    Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process. PMID:21171999

  19. Fostering Family-Centered Practices through a Family-Created Portfolio

    ERIC Educational Resources Information Center

    Gregg, Katy; Rugg, Mary; Souto-Manning, Mariana

    2011-01-01

    When a child has disabilities, families and professionals must communicate their concerns and goals for the child. Often these concerns are expressed as weaknesses within a deficits-based framework. The use of a strengths-based, family-created portfolio is a communication strategy for reconceptualizing a child from the family's perspective in…

  20. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.

    PubMed

    Shi, Pibiao; Guy, Kateta Malangisha; Wu, Weifang; Fang, Bingsheng; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-04-12

    The plant-specific TCP transcription factor family, which is involved in the regulation of cell growth and proliferation, performs diverse functions in multiple aspects of plant growth and development. However, no comprehensive analysis of the TCP family in watermelon (Citrullus lanatus) has been undertaken previously. A total of 27 watermelon TCP encoding genes distributed on nine chromosomes were identified. Phylogenetic analysis clustered the genes into 11 distinct subgroups. Furthermore, phylogenetic and structural analyses distinguished two homology classes within the ClTCP family, designated Class I and Class II. The Class II genes were differentiated into two subclasses, the CIN subclass and the CYC/TB1 subclass. The expression patterns of all members were determined by semi-quantitative PCR. The functions of two ClTCP genes, ClTCP14a and ClTCP15, in regulating plant height were confirmed by ectopic expression in Arabidopsis wild-type and ortholog mutants. This study represents the first genome-wide analysis of the watermelon TCP gene family, which provides valuable information for understanding the classification and functions of the TCP genes in watermelon.

  1. Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.

    PubMed

    Guo, D; Li, H L; Tang, X; Peng, S Q

    2014-12-18

    In plants, homeodomain proteins play a critical role in regulating various aspects of plant growth and development. KNOX proteins are members of the homeodomain protein family. The KNOX transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of cassava (Manihot esculenta Krantz) has allowed a genome-wide search for M. esculenta KNOX (MeKNOX) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. In the present study, we identified 12 MeKNOX genes in the cassava genome and grouped them into two distinct subfamilies based on their domain composition and phylogenetic analysis. Furthermore, semi-quantitative reverse transcription polymerase chain reaction analysis was performed to elucidate the expression profiles of these genes in different tissues and during various stages of root development. The analysis of MeKNOX expression profiles of indicated that 12 MeKNOX genes display differential expressions either in their transcript abundance or expression patterns.

  2. Two Paralogous Families of a Two-Gene Subtilisin Operon Are Widely Distributed in Oral Treponemes

    PubMed Central

    Correia, Frederick F.; Plummer, Alvin R.; Ellen, Richard P.; Wyss, Chris; Boches, Susan K.; Galvin, Jamie L.; Paster, Bruce J.; Dewhirst, Floyd E.

    2003-01-01

    Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, “Treponema vincentii,” and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5′ hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes. PMID:14617650

  3. Familial or Sporadic Idiopathic Scoliosis – classification based on artificial neural network and GAPDH and ACTB transcription profile

    PubMed Central

    2013-01-01

    Background Importance of hereditary factors in the etiology of Idiopathic Scoliosis is widely accepted. In clinical practice some of the IS patients present with positive familial history of the deformity and some do not. Traditionally about 90% of patients have been considered as sporadic cases without familial recurrence. However the exact proportion of Familial and Sporadic Idiopathic Scoliosis is still unknown. Housekeeping genes encode proteins that are usually essential for the maintenance of basic cellular functions. ACTB and GAPDH are two housekeeping genes encoding respectively a cytoskeletal protein β-actin, and glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolysis. Although their expression levels can fluctuate between different tissues and persons, human housekeeping genes seem to exhibit a preserved tissue-wide expression ranking order. It was hypothesized that expression ranking order of two representative housekeeping genes ACTB and GAPDH might be disturbed in the tissues of patients with Familial Idiopathic Scoliosis (with positive family history of idiopathic scoliosis) opposed to the patients with no family members affected (Sporadic Idiopathic Scoliosis). An artificial neural network (ANN) was developed that could serve to differentiate between familial and sporadic cases of idiopathic scoliosis based on the expression levels of ACTB and GAPDH in different tissues of scoliotic patients. The aim of the study was to investigate whether the expression levels of ACTB and GAPDH in different tissues of idiopathic scoliosis patients could be used as a source of data for specially developed artificial neural network in order to predict the positive family history of index patient. Results The comparison of developed models showed, that the most satisfactory classification accuracy was achieved for ANN model with 18 nodes in the first hidden layer and 16 nodes in the second hidden layer. The classification accuracy for positive Idiopathic Scoliosis anamnesis only with the expression measurements of ACTB and GAPDH with the use of ANN based on 6-18-16-1 architecture was 8 of 9 (88%). Only in one case the prediction was ambiguous. Conclusions Specially designed artificial neural network model proved possible association between expression level of ACTB, GAPDH and positive familial history of Idiopathic Scoliosis. PMID:23289769

  4. The effect of diet on the expression of lipase genes in the midgut of the lightbrown apple moth (Epiphyas postvittana Walker; Tortricidae).

    PubMed

    Christeller, J T; Poulton, J; Markwick, N M; Simpson, R M

    2010-02-01

    We have identified lipase-like genes from an Epiphyas postvittana larval midgut EST library. Of the 10 pancreatic lipase family genes, six appear to encode active lipases and four encode inactive lipases, based on the presence/absence of essential catalytic residues. The four gastric lipase family genes appear to encode active proteins. Phylogenetic analysis of 54 lepidopteran pancreatic lipase proteins resolved the clade into five groups of midgut origin and a sixth of non-midgut lipases. The inactive proteins formed two separate groups with highly conserved mutations. The lepidopteran midgut lipases formed a ninth subfamily of pancreatic lipases. Eighteen insect and human gastric lipases were analysed phylogenetically with only very weak support for any groupings. Gene expression was measured in the larval midgut following feeding on five artificial diets and on apple leaves. The artificial diets contained different levels of triacylglycerol, linoleic acid and cholesterol. Significant changes in gene expression (more than 100-fold for active pancreatic lipases) were observed. All the inactive lipases were also highly expressed. The gastric lipase genes were expressed at lower levels and suppressed in larvae feeding on leaves. Together, protein motif analysis and the gene expression data suggest that, in phytophagous lepidopteran larvae, the pancreatic lipases may function in vivo as galactolipases and phospholipases whereas the gastric lipases may function as triacylglycerol hydrolases.

  5. Using Social Network Analysis to Investigate Positive EOL Communication.

    PubMed

    Xu, Jiayun; Yang, Rumei; Wilson, Andrew; Reblin, Maija; Clayton, Margaret F; Ellington, Lee

    2018-04-30

    End of life (EOL) communication is a complex process involving the whole family and multiple care providers. Applications of analysis techniques that account for communication beyond the patient and patient/provider, will improve clinical understanding of EOL communication. To introduce the use of social network analysis to EOL communication data, and to provide an example of applying social network analysis to home hospice interactions. We provide a description of social network analysis using social network analysis to model communication patterns during home hospice nursing visits. We describe three social network attributes (i.e. magnitude, directionality, and reciprocity) in the expression of positive emotion among hospice nurses, family caregivers, and hospice cancer patients. Differences in communication structure by primary family caregiver gender and across time were also examined. Magnitude (frequency) in the expression of positive emotion occurred most often between nurses and caregivers or nurses and patients. Female caregivers directed more positive emotion to nurses, and nurses directed more positive emotion to other family caregivers when the primary family caregiver was male. Reciprocity (mutuality) in positive emotion declined towards day of death, but increased on day of actual patient death. There was variation in reciprocity by the type of positive emotion expressed. Our example demonstrates that social network analysis can be used to better understand the process of EOL communication. Social network analysis can be expanded to other areas of EOL research, such as EOL decision-making and health care teamwork. Copyright © 2018. Published by Elsevier Inc.

  6. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress

    PubMed Central

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  7. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    PubMed

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  8. Profiling analysis of FOX gene family members identified FOXE1 as potential regulator of NSCLC development.

    PubMed

    Ji, G H; Cui, Y; Yu, H; Cui, X B

    2016-09-30

    Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.

  9. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.

    PubMed

    Chen, Dan; Chen, Zujian; Jin, Yi; Dragas, Dragan; Zhang, Leitao; Adjei, Barima S; Wang, Anxun; Dai, Yang; Zhou, Xiaofeng

    2013-01-01

    The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during physiological disease processes, such as dermal wound healing and tumorigenesis.

  10. Prognostic roles for fibroblast growth factor receptor family members in malignant peripheral nerve sheath tumor.

    PubMed

    Zhou, Wenya; Du, Xiaoling; Song, Fengju; Zheng, Hong; Chen, Kexin; Zhang, Wei; Yang, Jilong

    2016-04-19

    Malignant peripheral nerve sheath tumors (MPNST) are rare, highly malignant, and poorly understood sarcomas. The often poor outcome of MPNST highlights the necessity of identifying prognostic predictors for this aggressive sarcoma. Here, we investigate the role of fibroblast growth factor receptor (FGFR) family members in human MPNSTs. aCGH and bioinformatics analysis identified frequent amplification of the FGFR1 gene. FISH analysis revealed that 26.9% MPNST samples had amplification of FGFR1, with both focal and polysomy patterns observed. IHC identified that FGFR1 protein expression was positively correlated with FGFR1 gene amplification. High expression of FGFR1 protein was associated with better overall survival (OS) and was an independent prognostic predictor for OS of MPNST patients. Additionally, combined expression of FGFR1 and FGFR2 protein characterized a subtype of MPNST with better OS. FGFR4 protein was expressed 82.3% of MPNST samples, and was associated with poor disease-free survival. We performed microarray-based comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center and 26 patients from Tianjin Medical University Cancer Institute and Hospital. Fluorescence in situ hybridization (FISH) was used to validate the gene amplification detected by aCGH analysis. Another cohort of 63 formalin-fixed paraffin-embedded MPNST samples (including 52 samples for FISH assay) was obtained to explore FGFR1, 2, 3, and 4 protein expression by immunohistochemical (IHC) analysis. Our integrated genomic and molecular studies provide evidence that FGFRs play different prognostic roles in MPNST.

  11. Genome-Wide Analysis of bZIP-Encoding Genes in Maize

    PubMed Central

    Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin

    2012-01-01

    In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471

  12. The Perceptions and Experiences of Taiwanese Parents Who Have Children with an Intellectual Disability

    ERIC Educational Resources Information Center

    Chang, Mei-Ying; McConkey, Roy

    2008-01-01

    Most research into family care-giving has been undertaken in western, English-speaking societies with little cognisance taken of possible differences across cultures. Home-based interviews were conducted with 117 mothers and fathers in Taipei City, Taiwan and five main themes were identified using content analysis. Three themes expressed the…

  13. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  14. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.

  15. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice.

    PubMed

    Yin, Hengfu; Gao, Peng; Liu, Chengwu; Yang, Jun; Liu, Zhongchi; Luo, Da

    2013-01-01

    In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.

  16. Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz).

    PubMed

    Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei

    2018-01-01

    KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.

  17. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  18. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells.

    PubMed

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-02-01

    Islet-associated protein-2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the expression of the IA-2 family of PTPs in the rat gastrointestinal tract. In the stomach, IA-2 and IA-2β were expressed in GECs that secrete serotonin, somatostatin, and cholecystokinin/gastrin-1. In addition to these hormones, secretin, gastric inhibitory polypeptide (also known as the glucose-dependent insulinotropic peptide), glucagon-like peptide-1, and glucagon, but not ghrelin were coexpressed with IA-2 or IA-2β in duodenal GECs. Pancreatic islet cells that secrete gut hormones expressed the IA-2 family of PTPs. The expression patterns of IA-2 and IA-2β were comparable. These results reveal that the IA-2 family of PTPs is expressed in a cell type-specific manner in rat GECs. The extensive expression of the IA-2 family of PTPs in pancreo-gastrointestinal endocrine cells and in the enteric plexus suggests their systemic contribution to nutritional control through a neuroendocrine signaling network.

  19. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development

    PubMed Central

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-01-01

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches. PMID:28216603

  20. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development.

    PubMed

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-02-14

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.

  1. Genome-wide identification and characterisation of F-box family in maize.

    PubMed

    Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao

    2013-11-01

    F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.

  2. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress

    PubMed Central

    Jiang, Chunmiao; Shen, Qingxi J.; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight. PMID:29190793

  3. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    PubMed

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.

  4. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck

    PubMed Central

    2014-01-01

    Background Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). Results We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. Conclusions This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar. PMID:24490620

  5. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    PubMed

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  6. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.

    PubMed

    Abécassis, V; Pompon, D; Truan, G

    2000-10-15

    The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.

  7. NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression

    PubMed Central

    Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.

    2014-01-01

    Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505

  8. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission.

  9. Family environment of bipolar families: a UK study.

    PubMed

    Barron, Evelyn; Sharma, Aditya; Le Couteur, James; Rushton, Stephen; Close, Andrew; Kelly, Thomas; Grunze, Heinz; Nicol Ferrier, Ian; Le Couteur, Ann

    2014-01-01

    Aspects of family environment (FE) such as family support, organisational structure and levels of conflict can increase risk of Bipolar Disorder (BD) in offspring of BD parents. The family environment of 16 BD and 23 healthy control (HC) families was assessed using the Family Environment Scale (FES). Canonical Correspondence Analysis (CCA) was used to determine the degree of variation in scores on the FES dimensions within each family and a Generalised Linear Modelling (GLM) approach was used to investigate the extent to which scores on the different FES dimensions differed between families. On the FES, BD families experienced an environment with higher levels of conflict and lower levels of expressiveness, organisation, intellectual-cultural orientation and active-recreational orientation than healthy control families. Differences in FES scores were driven by presence of parental BD and total number of children in the family. However, socio-economic status (SES) was not found to have an effect in this study. As an American instrument the FES may not have been sensitive enough to the cultural context of a UK sample. The relatively small sample size used may have limited the statistical power of the study. Greater numbers of children have the same effect on levels of conflict as the presence of BD, while SES does not appear to be as important a factor in FE as previously thought. Our results suggest that family based interventions focusing on psychoeducation and improved communication within these families may address issues of conflict, organisation and expressiveness. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  10. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    PubMed Central

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-01-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089

  11. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    PubMed

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  12. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  13. Early intervention in South Africa: moving beyond hearing screening.

    PubMed

    Storbeck, Claudine; Pittman, Paula

    2008-01-01

    Since little information is available on the outcome of early hearing intervention programs in South Africa, this article examines data on infants and families registered with a family-centred, home-based intervention program (HI HOPES) over a 12-month period in order to track the effectiveness of the holistic unbiased support to families of infants and toddlers with a hearing-loss. The aim of HI HOPES, which is based on the SKI-HI model of early intervention in the USA, is to ensure that families are enabled to make informed choices for their unique infant. Data were gathered on 32 infants ages birth to three years and their families using both qualitative and quantitative measures which included analysis of demographic data, quarterly language assessments, and parent satisfaction surveys. The report on the pilot year of this early intervention program shows that, though the sample is small, there is significant improvement in infant receptive and expressive language for infants identified before seven months of age, as well as a high level of satisfaction from families who have received services.

  14. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    PubMed

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  15. Genome-Wide Evolutionary Characterization and Expression Analyses of WRKY Family Genes in Brachypodium distachyon

    PubMed Central

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-01-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. PMID:24453041

  16. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    PubMed

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  17. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Wang, Meng; Yue, Hong; Feng, Kewei; Deng, Pingchuan; Song, Weining; Nie, Xiaojun

    2016-08-22

    Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the important components of MAPK cascades, which play the crucial role in plant growth and development as well as in response to diverse stresses. Although this family has been systematically studied in many plant species, little is known about MAPKKK genes in wheat (Triticum aestivum L.), especially those involved in the regulatory network of stress processes. In this study, we identified 155 wheat MAPKKK genes through a genome-wide search method based on the latest available wheat genome information, of which 29 belonged to MEKK, 11 to ZIK and 115 to Raf subfamily, respectively. Then, chromosome localization, gene structure and conserved protein motifs and phylogenetic relationship as well as regulatory network of these TaMAPKKKs were systematically investigated and results supported the prediction. Furthermore, a total of 11 homologous groups between A, B and D sub-genome and 24 duplication pairs among them were detected, which contributed to the expansion of wheat MAPKKK gene family. Finally, the expression profiles of these MAPKKKs during development and under different abiotic stresses were investigated using the RNA-seq data. Additionally, 10 tissue-specific and 4 salt-responsive TaMAPKKK genes were selected to validate their expression level through qRT-PCR analysis. This study for the first time reported the genome organization, evolutionary features and expression profiles of the wheat MAPKKK gene family, which laid the foundation for further functional analysis of wheat MAPKKK genes, and contributed to better understanding the roles and regulatory mechanism of MAPKKKs in wheat.

  18. Proteomic Profiling and Differential Messenger RNA Expression Correlate HSP27 and Serpin Family B Member 1 to Apical Periodontitis Outcomes.

    PubMed

    Cavalla, Franco; Biguetti, Claudia; Jain, Sameer; Johnson, Cleverick; Letra, Ariadne; Garlet, Gustavo Pompermaier; Silva, Renato Menezes

    2017-09-01

    Understanding protein expression profiles of apical periodontitis may contribute to the discovery of novel diagnostic or therapeutic molecular targets. Periapical tissue samples (n = 5) of patients with lesions characterized as nonhealing were submitted for proteomic analysis. Two differentially expressed proteins (heat shock protein 27 [HSP27] and serpin family B member 1 [SERPINB1]) were selected for characterization, localization by immunofluorescence, and association with known biomarkers of acute inflammatory response in human apical periodontitis (n = 110) and healthy periodontal ligaments (n = 26). Apical periodontitis samples were categorized as stable/inactive (n = 70) or progressive/active (n = 40) based on the ratio of expression of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG). Next, the expression of HSP27, SERPINB1, C-X-C motif Chemokine Receptor 1 (CXCR1), matrix metalloproteinase 8 (MMP8), myeloperoxidase (MPO), and cathepsin G (CTSG) messenger RNA was evaluated using real-time polymerase chain reaction. Data analysis was performed using the Shapiro-Wilk test, analysis of variance, and the Pearson test. P values <.05 were considered statistically significant. Proteomic analysis revealed 48 proteins as differentially expressed in apical periodontitis compared with a healthy periodontium, with 30 of these proteins found to be expressed in all 4 lesions. The expression of HSP27 and SERPINB1 was ∼2-fold higher in apical periodontitis. Next, an increased expression of HSP27 was detected in epithelial cells, whereas SERPINB1 expression was noted in neutrophils and epithelial cells. HSP27 and SERPINB1 transcripts were highly expressed in stable/inactive lesions (P < .05). Significant negative correlations were found between the expression of HSP27 and SERPINB1 with biomarkers of acute inflammation including CXCR1, MPO, and CTSG. Our data suggest HSP27 and SERPINB1 as potential regulators of the inflammatory response in apical periodontitis. Additional functional studies should be performed to further characterize the role of these molecules during the development/progression of apical periodontitis. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family.

    PubMed

    Zhang, Zhongbao; Zhang, Jiewei; Chen, Yajuan; Li, Ruifen; Wang, Hongzhi; Ding, Liping; Wei, Jianhua

    2014-09-01

    Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.

  20. Association between Adult Romantic Attachment Styles and Family-of-Origin Expressive Atmosphere

    ERIC Educational Resources Information Center

    Smith, Shannon D.; Ng, Kok-Mun

    2009-01-01

    This study examined the associations between attachment quality and perceived family-of-origin expressive atmosphere (FOEA) in a convenience sample of 279 participants. Multivariate analysis of variance (MAN-OVA) was used to examine the associations between attachment style and FOEA, and hierarchical regression was used to analyze FOEA as a…

  1. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis

    PubMed Central

    Pereira, Filipe; Duarte-Pereira, Sara; Silva, Raquel M.; da Costa, Luís Teixeira; Pereira-Castro, Isabel

    2016-01-01

    The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease. PMID:27929068

  3. Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System

    PubMed Central

    Clémençon, Benjamin; Lüscher, Benjamin P.; Fine, Michael; Baumann, Marc U.; Surbek, Daniel V.; Bonny, Olivier; Hediger, Matthias A.

    2014-01-01

    The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies. PMID:25286413

  4. The antioxidant property of chitosan green tea polyphenols complex induces transglutaminase activation in wound healing.

    PubMed

    Qin, Yao; Guo, Xing Wei; Li, Lei; Wang, Hong Wei; Kim, Wook

    2013-06-01

    The present study examined, for the first time, the in vitro wound healing potential of chitosan green tea polyphenols (CGP) complex based on the activation of transglutaminase (TGM) genes in epidermal morphogenesis. Response surface methodology was applied to determine the optimal processing condition that gave maximum extraction of green tea polyphenols. The antioxidant activity, scavenging ability, and chelating ability were studied and expressed as average EC50 values of CGP and other treatments. In silico analysis and gene coexpression network was subjected to the TGM sequences analysis. The temporal expressions of TGMs were profiled by semi-quantitative reverse transcription (RT)-PCR technology within 10 days after wounding and 2 days postwounding. CGP showed the effectiveness of antioxidant properties, and the observations of histopathological photography showed advanced tissue granulation and epithelialization formation by CGP treatment. In silico and coexpression analysis confirmed the regulation via TGM gene family in dermatological tissues. RT-PCR demonstrated increased levels of TGM1-3 expression induced by CGP treatment. The efficacy of CGP in wound healing based on these results may be ascribed to its antioxidant properties and activation of the expression of TGMs, and is, thus, essential for the facilitated repair of skin injury.

  5. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. Conclusion/significance The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia. PMID:28114328

  6. A Typology of Family Social Environments for Institutionalized Juvenile Delinquents: Implications for Research and Treatment.

    ERIC Educational Resources Information Center

    Veneziano, Carol; Veneziano, Louis

    1992-01-01

    Family functioning of 411 incarcerated male juvenile delinquents (aged 12-16 years) was studied using the Family Environmental Scale. A typology of family social environments was developed using cluster analysis. Delinquents with the most serious behavioral difficulties come from family environments with few strengths and openly expressed conflict…

  7. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize

    NASA Technical Reports Server (NTRS)

    Wu, Y.; Meeley, R. B.; Cosgrove, D. J.

    2001-01-01

    Expansins comprise a multigene family of proteins in maize (Zea mays). We isolated and characterized 13 different maize expansin cDNAs, five of which are alpha-expansins and eight of which are beta-expansins. This paper presents an analysis of these 13 expansins, as well as an expression analysis by northern blotting with materials from young and mature maize plants. Some expansins were expressed in restricted regions, such as the beta-expansins ExpB1 (specifically expressed in maize pollen) and ExpB4 (expressed principally in young husks). Other expansins such as alpha-expansin Exp1 and beta-expansin ExpB2 were expressed in several organs. The expression of yet a third group was not detected in the selected organs and tissues. An analysis of expansin sequences from the maize expressed sequence tag collection is also presented. Our results indicate that expansin genes may have general, overlapping expression in some instances, whereas in other cases the expression may be highly specific and limited to a single organ or cell type. In contrast to the situation in Arabidopsis, beta-expansins in maize seem to be more numerous and more highly expressed than are alpha-expansins. The results support the concept that beta-expansins multiplied and evolved special functions in the grasses.

  8. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    PubMed

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  9. The role of family expressed emotion and perceived social support in predicting addiction relapse.

    PubMed

    Atadokht, Akbar; Hajloo, Nader; Karimi, Masoud; Narimani, Mohammad

    2015-03-01

    Emotional conditions governing the family and patients' perceived social support play important roles in the treatment or relapse process of the chronic disease. The current study aimed to investigate the role of family expressed emotion and perceived social support in prediction of addiction relapse. The descriptive-correlation method was used in the current study. The study population consisted of the individuals referred to the addiction treatment centers in Ardabil from October 2013 to January 2014. The subjects (n = 80) were randomly selected using cluster sampling method. To collect data, expressed emotion test by Cole and Kazaryan, and Multidimensional Scale of Perceived Social Support (MSPSS) were used, and the obtained data was analyzed using the Pearson's correlation coefficient and multiple regression analyses. Results showed a positive relationship between family expressed emotions and the frequency of relapse (r = 0.26, P = 0.011) and a significant negative relationship between perceived social support and the frequency of relapse (r = -0.34, P = 0.001). Multiple regression analysis also showed that perceived social support from family and the family expressed emotions significantly explained 12% of the total variance of relapse frequency. These results have implications for addicted people, their families and professionals working in addiction centers to use the emotional potential of families especially their expressed emotions and the perceived social support of addicts to increase the success rate of addiction treatment.

  10. Health hybrid concept analysis in old people.

    PubMed

    Asadi Noughabi, Ahmadali; Alhani, Fatemeh; Piravi, Hamid

    2013-10-31

    It seems necessary to study the health status of this age group to promote their health and prevent disease as well as care planning. In order to achieve this goal, a clear definition of the concept of elderly health is essential. Hybrid concept analysis, our research design, utilizes both theoretical analysis of literature and empirical observation to define a concept. We chose the hybrid concept analysis method because its inclusion of old people perspectives enriches the limited health research literature. The method consists of three phases: theory, fieldwork, and analysis. In comparison, we can conclude that health in the elderly people is something more than the absence of illness and 4 physical, mental, social and spiritual domains which are referred to in the definition of a theoretical stage are supported by the findings. The relative health was also proposed against the complete welfare and comfort for the elderly and it showed that their expectations are less than their ages. In addition, the elderly have expressed the family as a preference and the researcher believes that this theme is context based because it has emerged following the interview. Since the family has a special place according to the Iranian culture and religion and the family health is a priority in their health. In addition, the daily activities have been raised as a major theme that can be considered as the physical health but the elderly have expressed it apart from the physical health. Health among the old is a concept that is affected by genetic, environmental, healthcare services and lifestyle-related factors and involves proportional physical, mental, social, familial, spiritual, and economical welfare along with the ability to handle daily life activities which is measurable through medical and functional approaches.

  11. Health Hybrid Concept Analysis in Old People

    PubMed Central

    Noghabi, Ahamadali Asadi; Alhani, Fatemeh; Peyrovi, Hamid

    2013-01-01

    Background: It seems necessary to study the health status of this age group to promote their health and prevent disease as well as care planning. In order to achieve this goal, a clear definition of the concept of elderly health is essential. Method: Hybrid concept analysis, our research design, utilizes both theoretical analysis of literature and empirical observation to define a concept. We chose the hybrid concept analysis method because its inclusion of old people perspectives enriches the limited health research literature. The method consists of three phases theory, fieldwork, and analysis. Results: In comparison, we can conclude that health in the elderly people is something more than the absence of illness and 4 physical, mental, social and spiritual domains which are referred to in the definition of a theoretical stage are supported by the findings. The relative health was also proposed against the complete welfare and comfort for the elderly and it showed that their expectations are less than their ages. In addition, the elderly have expressed the family as a preference and the researcher believes that this theme is context based because it has emerged following the interview. Since the family has a special place according to the Iranian culture and religion and the family health is a priority in their health. In addition, the daily activities have been raised as a major theme that can be considered as the physical health but the elderly have expressed it apart from the physical health. Conclusion: Health among the old is a concept that is affected by genetic, environmental, healthcare services and lifestyle-related factors and involves proportional physical, mental, social, familial, spiritual, and economical welfare along with the ability to handle daily life activities which is measurable through medical and functional approaches. PMID:24171892

  12. Pulling Apart: A State-by-State Analysis of Income Trends.

    ERIC Educational Resources Information Center

    Bernstein, Jared; McNichol, Elizabeth C.; Mishel, Lawrence; Zahradnik, Robert

    This report examines trends in income distribution from the late 1970s to the late 1990s in the 50 states. It is based on before-tax income for families from the Census Bureau's March Current Population Survey public use files. All figures are expressed in 1997 dollars and adjusted for inflation. The paper examines the long term trend from the…

  13. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Zhao; Ge, Xiaoyang; Yang, Zuoren; Zhang, Chaojun; Zhao, Ge; Chen, Eryong; Liu, Ji; Zhang, Xueyan; Li, Fuguang

    2017-06-12

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase family involved in the abscisic acid (ABA) signaling pathway and responds to osmotic stress. A genome-wide analysis of this protein family has been conducted previously in some plant species, but little is known about SnRK2 genes in upland cotton (Gossypium hirsutum L.). The recent release of the G. hirsutum genome sequence provides an opportunity to identify and characterize the SnRK2 kinase family in upland cotton. We identified 20 putative SnRK2 sequences in the G. hirsutum genome, designated as GhSnRK2.1 to GhSnRK2.20. All of the sequences encoded hydrophilic proteins. Phylogenetic analysis showed that the GhSnRK2 genes were classifiable into three groups. The chromosomal location and phylogenetic analysis of the cotton SnRK2 genes indicated that segmental duplication likely contributed to the diversification and evolution of the genes. The gene structure and motif composition of the cotton SnRK2 genes were analyzed. Nine exons were conserved in length among all members of the GhSnRK2 family. Although the C-terminus was divergent, seven conserved motifs were present. All GhSnRK2s genes showed expression patterns under abiotic stress based on transcriptome data. The expression profiles of five selected genes were verified in various tissues by quantitative real-time RT-PCR (qRT-PCR). Transcript levels of some family members were up-regulated in response to drought, salinity or ABA treatments, consistent with potential roles in response to abiotic stress. This study is the first comprehensive analysis of SnRK2 genes in upland cotton. Our results provide the fundamental information for the functional dissection of GhSnRK2s and vital availability for the improvement of plant stress tolerance using GhSnRK2s.

  14. Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür)

    PubMed Central

    An, Xing-Kui; Sun, Liang; Liu, Hang-Wei; Liu, Dan-Feng; Ding, Yu-Xiao; Li, Le-Mei; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-01-01

    Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes. PMID:27892490

  15. Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa.

    PubMed

    Du, Jiancan; Hu, Simin; Yu, Qin; Wang, Chongde; Yang, Yunqiang; Sun, Hang; Yang, Yongping; Sun, Xudong

    2017-01-01

    The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips ( Brassica rapa ssp. rapa ). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.

  16. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    PubMed

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  17. Genome-wide analysis of the WRKY gene family in cotton.

    PubMed

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  18. Genome-Wide Identification of Jatropha curcas Aquaporin Genes and the Comparative Analysis Provides Insights into the Gene Family Expansion and Evolution in Hevea brasiliensis

    PubMed Central

    Zou, Zhi; Yang, Lifu; Gong, Jun; Mo, Yeyong; Wang, Jikun; Cao, Jianhua; An, Feng; Xie, Guishui

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae), an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.). Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., nine plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and four small basic intrinsic proteins (SIPs). Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger's positions, and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species. PMID:27066041

  19. Who Should We Target? The Impact of Individual and Family Characteristics on the Expressed Need for Community-Based Treatment Support in HIV Patients in South Africa

    PubMed Central

    Wouters, Edwin; Booysen, Frederik le Roux; Masquillier, Caroline

    2016-01-01

    Reviews of impact evaluations of community-based health workers and peer support groups highlight the considerable variability in the effectiveness of such support in improving antiretroviral treatment (ART) outcomes. Evidence indicates that community-based support interventions targeting patients known to be at risk will probably display better results than generic interventions aimed at the entire population of people living with HIV. It is however difficult to identify these at-risk populations, rendering knowledge on the characteristics of patients groups who are in need of community-based support a clear research priority. The current study aims to address the knowledge gap by exploring the predictors of the willingness to (1) receive the support from a community-based health worker or (2) to participate in a support group in public sector ART programme of the Free State Province of South Africa. Based on the Individual-Family-Community framework for HIV research, the study employs a comprehensive approach by not only testing classical individual-level but also family-level predictors of the willingness to receive community-based support. In addition to individual-level predictors—such as age, health status and coping styles—our analysis demonstrated the importance of family characteristics. The results indicated that discrepancies in the family’s changeability level were an important predictor of the demand for community-based support services. Conversely, the findings indicated that patients living in a family more flexible than deemed ideal are more likely to require the support of a community health worker. The current study expands theory by indicating the need to acknowledge all social ecological levels in the study of chronic HIV care. The detection of both individual level and family level determinants of the expressed need for community-based support can inform health policy to devise strategies to target scarce resources to those vulnerable patients who report the greatest need for this support. In this way, the study results are a first step in an attempt to move away from generic, broad based community-based interventions towards community support that is tailored to the patient needs at both the individual and family level. PMID:27741239

  20. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods.

    PubMed

    Wang, Liming; Zhu, L; Luan, R; Wang, L; Fu, J; Wang, X; Sui, L

    2016-10-10

    Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.

  1. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods

    PubMed Central

    Wang, Liming; Zhu, L.; Luan, R.; Wang, L.; Fu, J.; Wang, X.; Sui, L.

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM. PMID:27737314

  2. A SImplified method for Segregation Analysis (SISA) to determine penetrance and expression of a genetic variant in a family.

    PubMed

    Møller, Pål; Clark, Neal; Mæhle, Lovise

    2011-05-01

    A method for SImplified rapid Segregation Analysis (SISA) to assess penetrance and expression of genetic variants in pedigrees of any complexity is presented. For this purpose the probability for recombination between the variant and the gene is zero. An assumption is that the variant of undetermined significance (VUS) is introduced into the family once only. If so, all family members in between two members demonstrated to carry a VUS, are obligate carriers. Probabilities for cosegregation of disease and VUS by chance, penetrance, and expression, may be calculated. SISA return values do not include person identifiers and need no explicit informed consent. There will be no ethical complications in submitting SISA return values to central databases. Values for several families may be combined. Values for a family may be updated by the contributor. SISA is used to consider penetrance whenever sequencing demonstrates a VUS in the known cancer-predisposing genes. Any family structure at hand in a genetic clinic may be used. One may include an extended lineage in a family through demonstrating the same VUS in a distant relative, and thereby identifying all obligate carriers in between. Such extension is a way to escape the selection biases through expanding the families outside the clusters used to select the families. © 2011 Wiley-Liss, Inc.

  3. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane.

    PubMed

    Wang, Liming; Zheng, Yuexia; Ding, Shihui; Zhang, Qing; Chen, Youqiang; Zhang, Jisen

    2017-06-23

    Invertases (INVs) are key enzymes regulating sucrose metabolism and are here revealed to be involved in responses to environmental stress in plants. To date, individual members of the invertase gene family and their expression patterns are unknown in sugarcane due to its complex genome despite their significance in sucrose metabolism. In this study, based on comparative genomics, eleven cDNA and twelve DNA sequences belonging to 14 non-redundant members of the invertase gene family were successfully cloned from sugarcane. A comprehensive analysis of the invertase gene family was carried out, including gene structures, phylogenetic relationships, functional domains, conserved motifs of proteins. The results revealed that the 14 invertase members from sugarcane could be clustered into three subfamilies, including 6 neutral/alkaline invertases (ShN/AINVs), and 8 acid invertases (ShAINVs). Faster divergence occurred in acid INVs than in neutral/alkaline INVs after the split of sugarcane and sorghum. At least a one-time gene duplication event was observed to have occurred in the four groups of acid INVs, whereas ShN/AINV1 and ShN/AINV2 in the β8 lineage were revealed to be the most recently duplicated genes among their paralogous genes in the β group of N/AINVs. Furthermore, comprehensive expression analysis of these genes was performed in sugarcane seedlings subjected to five abiotic stresses (drought, low temperature, glucose, fructose, and sucrose) using Quantitative Real-time PCR. The results suggested a functional divergence of INVs and their potential role in response to the five different treatments. Enzymatic activity in sugarcane seedlings was detected under five abiotic stresses treatments, and showed that the activities of all INVs were significantly inhibited in response to five different abiotic stresses, and that the neutral/alkaline INVs played a more prominent role in abiotic stresses than the acid INVs. In this study, we determined the INV gene family members of sugarcane by PCR cloning using sorghum as a reference, providing the first study of the INV gene family in sugarcane. Combining existing INV gene data from 7 plants with a comparative approach including a series of comprehensive analyses to isolate and identify INV gene family members proved to be highly successful. Moreover, the expression levels of INV genes and the variation of enzymatic activities associated with drought, low temperature, glucose, fructose, and sucrose are reported in sugarcane for the first time. The results offered useful foundation and framework for future research for understanding the physiological roles of INVs for sucrose accumulation in sugarcane.

  4. Ras-like family small GTPases genes in Nilaparvata lugens: Identification, phylogenetic analysis, gene expression and function in nymphal development

    PubMed Central

    Wang, Weixia; Li, Kailong; Wan, Pinjun; Lai, Fengxiang; Fu, Qiang; Zhu, Tingheng

    2017-01-01

    Twenty-nine cDNAs encoding Ras-like family small GTPases (RSGs) were cloned and sequenced from Nilaparvata lugens. Twenty-eight proteins are described here: 3 from Rho, 2 from Ras, 9 from Arf and 14 from Rabs. These RSGs from N.lugens have five conserved G-loop motifs and displayed a higher degree of sequence conservation with orthologues from insects. RT-qPCR analysis revealed NlRSGs expressed at all life stages and the highest expression was observed in hemolymph, gut or wing for most of NlRSGs. RNAi demonstrated that eighteen NlRSGs play a crucial role in nymphal development. Nymphs with silenced NlRSGs failed to molt, eclosion or development arrest. The qRT-PCR analysis verified the correlation between mortality and the down-regulation of the target genes. The expression level of nuclear receptors, Kr-h1, Hr3, FTZ-F1 and E93 involved in 20E and JH signal pathway was impacted in nymphs with silenced twelve NlRSGs individually. The expression of two halloween genes, Cyp314a1 and Cyp315a1 involved in ecdysone synthesis, decreased in nymphs with silenced NlSar1 or NlArf1. Cyp307a1 increased in nymphs with silenced NlArf6. In N.lugens with silenced NlSRβ, NlSar1 and NlRab2 at 9th day individually, 0.0% eclosion rate and almost 100.0% mortality was demonstrated. Further analysis showed NlSRβ could be served as a candidate target for dsRNA-based pesticides for N.lugens control. PMID:28241066

  5. Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus.

    PubMed

    Antony, B; Johny, J; Aldosari, S A; Abdelazim, M M

    2017-08-01

    Plant cell wall degrading enzymes (PCWDEs) from insects were recently identified as a multigene family of proteins that consist primarily of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) and play essential roles in the degradation of the cellulose/hemicellulose/pectin network in the invaded host plant. Here we applied transcriptomic and degenerate PCR approaches to identify the PCWDEs from a destructive pest of palm trees, Rhynchophorus ferrugineus, followed by a gut-specific and stage-specific differential expression analysis. We identified a total of 27 transcripts encoding GH family members and three transcripts of the CE family with cellulase, hemicellulase and pectinase activities. We also identified two GH9 candidates, which have not previously been reported from Curculionidae. The gut-specific quantitative expression analysis identified key cellulases, hemicellulases and pectinases from R. ferrugineus. The expression analysis revealed a pectin methylesterase, RferCE8u02, and a cellulase, GH45c34485, which showed the highest gut enriched expression. Comparison of PCWDE expression patterns revealed that cellulases and pectinases are significantly upregulated in the adult stages, and we observed specific high expression of the hemicellulase RferGH16c4170. Overall, our study revealed the potential of PCWDEs from R. ferrugineus, which may be useful in biotechnological applications and may represent new tools in R. ferrugineus pest management strategies. © 2017 The Royal Entomological Society.

  6. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  7. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  8. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    PubMed

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  9. Pathway-based outlier method reveals heterogeneous genomic structure of autism in blood transcriptome

    PubMed Central

    2013-01-01

    Background Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is heterogeneous. However, most published studies focus on group differences between cases and controls. In contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways for which individuals are outliers rather than pathways representative of shared group differences of the ASD diagnosis. Methods Two previously published blood gene expression data sets – the Translational Genetics Research Institute (TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221 probands and 191 unaffected family members) – were analyzed. All individuals of each dataset were projected to biological pathways, and each sample’s Mahalanobis distance from a pooled centroid was calculated to compare the number of case and control outliers for each pathway. Results Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways, which could not be identified using group comparison or gene-level outlier methods. In an independently collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance of this effect was marginal (Chi squared P < 0.09). Conclusions Unlike group difference approaches, our analysis identified the samples within the case and control groups that manifested each expression signal, and showed that outlier groups were distinct for each implicated pathway. Moreover, our results suggest that by seeking heterogeneity, pathway-based outlier analysis can reveal expression signals that are not apparent when considering only shared group differences. PMID:24063311

  10. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    PubMed

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  11. Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Qi, Weiping; Ma, Xiaoli; He, Weiyi; Chen, Wei; Zou, Mingmin; Gurr, Geoff M; Vasseur, Liette; You, Minsheng

    2016-09-27

    ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins. A total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut. This is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with the evolutionary capacity of this species to develop resistance to a wide range of insecticides and biological toxins. Our findings provide a solid foundation for future functional studies on specific ABC transporter genes in P. xylostella, and for further understanding of their physiological roles and regulatory pathways in insecticide resistance.

  12. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  13. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    PubMed

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association.

    PubMed

    Vetro, Annalisa; Iascone, Maria; Limongelli, Ivan; Ameziane, Najim; Gana, Simone; Della Mina, Erika; Giussani, Ursula; Ciccone, Roberto; Forlino, Antonella; Pezzoli, Laura; Rooimans, Martin A; van Essen, Antoni J; Messa, Jole; Rizzuti, Tommaso; Bianchi, Paolo; Dorsman, Josephine; de Winter, Johan P; Lalatta, Faustina; Zuffardi, Orsetta

    2015-05-01

    The diagnosis of VACTERL syndrome can be elusive, especially in the prenatal life, due to the presence of malformations that overlap those present in other genetic conditions, including the Fanconi anemia (FA). We report on three VACTERL cases within two families, where the two who arrived to be born died shortly after birth due to severe organs' malformations. The suspicion of VACTERL association was based on prenatal ultrasound assessment and postnatal features. Subsequent chromosome breakage analysis suggested the diagnosis of FA. Finally, by next-generation sequencing based on the analysis of the exome in one family and of a panel of Fanconi genes in the second one, we identified novel FANCL truncating mutations in both families. We used ectopic expression of wild-type FANCL to functionally correct the cellular FA phenotype for both mutations. Our study emphasizes that the diagnosis of FA should be considered when VACTERL association is suspected. Furthermore, we show that loss-of-function mutations in FANCL result in a severe clinical phenotype characterized by early postnatal death. © 2015 WILEY PERIODICALS, INC.

  15. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija

    Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset ofmore » genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.« less

  16. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation.

    PubMed

    Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Lainé, Éric; Davin, Laurence B; Cort, John R; Lewis, Norman G; Hano, Christophe

    2018-05-01

    Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.

  17. Patterns of Interaction in Family Relationships and the Development of Identity Exploration in Adolescence.

    ERIC Educational Resources Information Center

    Grotevant, Harold D.; Cooper, Catherine R.

    1985-01-01

    Developed a model of individuation in family relationships focused on communicative processes. Expressions of four dimensions of the model (self-esteem, separateness, permeability, and mutuality) were predicted to be positively associated with identity exploration in adolescents. Analysis of observations of families in a Family Interaction Task…

  18. Healthy Family Sexuality: Positive Principles for Educators and Clinicians.

    ERIC Educational Resources Information Center

    Maddock, James W.

    1989-01-01

    Presents criteria for judging sexual health of families, based on ecosystemic model of family sexuality that emphasizes dialectical balance among certain influential family interaction variables. Concludes that professionals need to be able to help family members work toward positive expressions of sexuality as well as avoid sex-related problems.…

  19. Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae

    PubMed Central

    Udatha, D. B. R. K. Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Background Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. Methodology/Principal Findings The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Conclusions/Significance Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post-processing docking results to remove false positives. Our study exemplifies how computational predictions can complement to the information obtained through experimental methods. PMID:22745763

  20. Common and distant structural characteristics of feruloyl esterase families from Aspergillus oryzae.

    PubMed

    Udatha, D B R K Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post-processing docking results to remove false positives. Our study exemplifies how computational predictions can complement to the information obtained through experimental methods.

  1. Forkhead-box series expression network is associated with outcome of clear-cell renal cell carcinoma.

    PubMed

    Jia, Zhongwei; Wan, Fangning; Zhu, Yao; Shi, Guohai; Zhang, Hailiang; Dai, Bo; Ye, Dingwei

    2018-06-01

    Previous studies have demonstrated that several members of the Forkhead-box (FOX) family of genes are associated with tumor progression and metastasis. The objective of the current study was to screen candidate FOX family genes identified from analysis of molecular networks in clear cell renal cell carcinoma (ccRCC). The expression of FOX family genes as well as FOX family-associated genes was examined, and Kaplan-Meier survival analysis was performed in The Cancer Genome Atlas (TCGA) cohort (n=525). Patient characteristics, including sex, age, tumor diameter, laterality, tumor-node-metastasis, tumor grade, stage, white blood cell count, platelet count, the levels of hemoglobin, overall survival (OS) and disease-free survival (DFS), were collected for univariate and multivariate Cox proportional hazards ratio analyses. A total of seven candidate FOX family genes were selected from the TCGA database subsequent to univariate and multivariate Cox proportional hazards ratio analyses. FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 were associated with poor OS time, while FOXA1, FOXA2, FOXD1 and FOXK2 were associated with poor DFS time (P<0.05). FOXN2 was associated with favorable outcomes for overall and disease-free survival (P<0.05). In the gene cluster network analysis, the expression of FOX family-associated genes, including nuclear receptor coactivator ( NCOA ) 1 , NADH-ubiquinone oxidoreductase flavoprotein 3 ( NDUFV3 ), phosphatidylserine decarboxylase ( PISD ) and pyruvate kinase liver and red blood cell ( PKLR ), were independent prognostic factors for OS in patients with ccRCC. Results of the present study revealed that the expression of FOX family genes, including FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 , and FOX family-associated genes, including NCOA1, NDUFV3, PISD and PKLR , are independent prognostic factors for patients with ccRCC.

  2. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.

    PubMed

    Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume

    2017-02-28

    A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.

  3. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).

    PubMed

    Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping

    2013-09-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Spatial localization of EGF family ligands and receptors in the zebrafish ovarian follicle and their expression profiles during folliculogenesis.

    PubMed

    Tse, Anna Chung-Kwan; Ge, Wei

    2010-07-01

    The roles of epidermal growth factor (EGF) family in the ovary have received increasing attention recently. Despite this, the production sites of EGF family members in the ovarian follicle still remain controversial. Using zebrafish as the model, the present study investigated spatial distribution of several EGF family ligands and receptors in the follicle as well as their temporal expression profiles during folliculogenesis. RT-PCR analysis on the somatic follicle layer and oocyte revealed that all EGF family ligands examined (egf, tgfa, btc and hbegf) were mostly or exclusively expressed in the oocyte. In contrast, their common receptor (egfr) was expressed exclusively in the follicle layer. By comparison, members of activin family showed an opposite pattern of distribution. Activin subunits (inhbaa and inhbb) were both expressed exclusively in the follicle layer whereas activin receptors and follistatin were abundantly present in the oocyte. During folliculogenesis, egf, tgfa and hbegf increased their expression together with egfr in the fast secondary growth phase. The developmental profiles of EGF family during embryogenesis appeared to argue for an important role for EGF family in folliculogenesis rather than embryogenesis as maternal molecules. The present study provided clear evidence for the existence of two paracrine pathways in the follicle, the oocyte-derived EGF family ligands and follicle cell-derived activins, which may mediate oocyte-to-follicle cell and follicle cell-to-oocyte communications, respectively. The functional relationship between these two signaling systems in the follicle is suggested by the observation that all four EGFR ligands examined significantly stimulated activin subunit expression in cultured follicle cells. (c) 2009 Elsevier Inc. All rights reserved.

  5. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA

    PubMed Central

    Hashemipetroudi, Seyyed Hamidreza; Nematzadeh, Ghorbanali; Ahmadian, Gholamreza; Yamchi, Ahad; Kuhlmann, Markus

    2018-01-01

    One method extensively used for the quantification of gene expression changes and transcript abundances is reverse-transcription quantitative real-time PCR (RT-qPCR). It provides accurate, sensitive, reliable, and reproducible results. Several factors can affect the sensitivity and specificity of RT-qPCR. Residual genomic DNA (gDNA) contaminating RNA samples is one of them. In gene expression analysis, non-specific amplification due to gDNA contamination will overestimate the abundance of transcript levels and can affect the RT-qPCR results. Generally, gDNA is detected by qRT-PCR using primer pairs annealing to intergenic regions or an intron of the gene of interest. Unfortunately, intron/exon annotations are not yet known for all genes from vertebrate, bacteria, protist, fungi, plant, and invertebrate metazoan species. Here we present a protocol for detection of gDNA contamination in RNA samples by using ribosomal DNA (rDNA)-based primers. The method is based on the unique features of rDNA: their multigene nature, highly conserved sequences, and high frequency in the genome. Also as a case study, a unique set of primers were designed based on the conserved region of ribosomal DNA (rDNA) in the Poaceae family. The universality of these primer pairs was tested by melt curve analysis and agarose gel electrophoresis. Although our method explains how rDNA-based primers can be applied for the gDNA contamination assay in the Poaceae family, it could be easily used to other prokaryote and eukaryote species PMID:29443017

  6. Genomics Analysis of Genes Expressed in Maize Endosperm Identifies Novel Seed Proteins and Clarifies Patterns of Zein Gene Expression

    PubMed Central

    Woo, Young-Min; Hu, David Wang-Nan; Larkins, Brian A.; Jung, Rudolf

    2001-01-01

    We analyzed cDNA libraries from developing endosperm of the B73 maize inbred line to evaluate the expression of storage protein genes. This study showed that zeins are by far the most highly expressed genes in the endosperm, but we found an inverse relationship between the number of zein genes and the relative amount of specific mRNAs. Although α-zeins are encoded by large multigene families, only a few of these genes are transcribed at high or detectable levels. In contrast, relatively small gene families encode the γ- and δ-zeins, and members of these gene families, especially the γ-zeins, are highly expressed. Knowledge of expressed storage protein genes allowed the development of DNA and antibody probes that distinguish between closely related gene family members. Using in situ hybridization, we found differences in the temporal and spatial expression of the α-, γ-, and δ-zein gene families, which provides evidence that γ-zeins are synthesized throughout the endosperm before α- and δ-zeins. This observation is consistent with earlier studies that suggested that γ-zeins play an important role in prolamin protein body assembly. Analysis of endosperm cDNAs also revealed several previously unidentified proteins, including a 50-kD γ-zein, an 18-kD α-globulin, and a legumin-related protein. Immunolocalization of the 50-kD γ-zein showed this protein to be located at the surface of prolamin-containing protein bodies, similar to other γ-zeins. The 18-kD α-globulin, however, is deposited in novel, vacuole-like organelles that were not described previously in maize endosperm. PMID:11595803

  7. Genome-Wide Identification of the PHD-Finger Family Genes and Their Responses to Environmental Stresses in Oryza sativa L.

    PubMed Central

    Sun, Mingzhe; Yang, Junkai; Cui, Na; Zhu, Yanming

    2017-01-01

    The PHD-finger family has been demonstrated to be involved in regulating plant growth and development. However, little information is given for its role in environmental stress responses. Here, we identified a total of 59 PHD family genes in the rice genome. These OsPHDs genes were located on eleven chromosomes and synteny analysis only revealed nine duplicated pairs within the rice PHD family. Phylogenetic analysis of all OsPHDs and PHDs from other species revealed that they could be grouped into two major clusters. Furthermore, OsPHDs were clustered into eight groups and members from different groups displayed a great divergence in terms of gene structure, functional domains and conserved motifs. We also found that with the exception of OsPHD6, all OsPHDs were expressed in at least one of the ten tested tissues and OsPHDs from certain groups were expressed in specific tissues. Moreover, our results also uncovered differential responses of OsPHDs expression to environmental stresses, including ABA (abscisic acid), water deficit, cold and high Cd. By using quantitative real-time PCR, we further confirmed the differential expression of OsPHDs under these stresses. OsPHD1/7/8/13/33 were differentially expressed under water deficit and Cd stresses, while OsPHD5/17 showed altered expression under water deficit and cold stresses. Moreover, OsPHD3/44/28 displayed differential expression under ABA and Cd stresses. In conclusion, our results provide valuable information on the rice PHD family in plant responses to environmental stress, which will be helpful for further characterizing their biological roles in responding to environmental stresses.

  8. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Alok, Anshu; Kaur, Navneet; Sharma, Shivani; Lakhwani, Deepika; Asif, Mehar H.; Tiwari, Siddharth; Trivedi, Prabodh K.

    2016-01-01

    The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs. PMID:26870050

  9. The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy.

    PubMed

    Lin, Yong; Deng, Wanyu; Pang, Jinke; Kemper, Thekla; Hu, Jing; Yin, Jian; Zhang, Jiming; Lu, Mengji

    2017-05-01

    MicroRNAs are small highly conserved noncoding RNAs that are widely expressed in multicellular organisms and participate in the regulation of various cellular processes including autophagy and viral replication. Evidently, microRNAs are able to modulate host gene expression and thereby inhibit or enhance hepatitis B virus (HBV) replication. The miR-99 family members are highly expressed in the liver. Interestingly, the plasma levels of miR-99 family in the peripheral blood correspond with HBV DNA loads. Thus, we asked whether the miR-99 family regulated HBV replication and analyzed the underlying molecular mechanism. Compared with primary hepatocytes, miR-99 family expression was downregulated in hepatoma cells. Transfection of miR-99a, miR-99b, and miR-100 markedly increased HBV replication, progeny secretion, and antigen expression in hepatoma cells. However, miR-99 family had no effect on HBV transcription and HBV promoter activities, suggesting that they regulate HBV replication at posttranscriptional steps. Consistent with bioinformatic analysis and recent reports, ectopic expression of miR-99 family attenuated IGF-1R/Akt/mTOR pathway signaling and repressed insulin-stimulated activation in hepatoma cells. Moreover, the experimental data demonstrated that the miR-99 family promoted autophagy through mTOR/ULK1 signaling and thereby enhanced HBV replication. In conclusion, the miR-99 family promotes HBV replication posttranscriptionally through IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. © 2016 John Wiley & Sons Ltd.

  10. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri).

    PubMed

    Wang, Guo-Ming; Yin, Hao; Qiao, Xin; Tan, Xu; Gu, Chao; Wang, Bao-Hua; Cheng, Rui; Wang, Ying-Zhen; Zhang, Shao-Ling

    2016-12-01

    F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Co-occurrence of m.1555A>G and m.11778G>A mitochondrial DNA mutations in two Indian families with strikingly different clinical penetrance of Leber hereditary optic neuropathy

    PubMed Central

    Khan, Nahid Akhtar; Govindaraj, Periyasamy; Jyothi, Vuskamalla; Meena, Angamuthu K

    2013-01-01

    Background Mitochondrial DNA (mtDNA) mutations are known to cause Leber hereditary optic neuropathy (LHON). However, the co-occurrence of double pathogenic mutations with different pathological significance in pedigrees is a rare event. Methods Detailed clinical investigation and complete mtDNA sequencing analysis was performed for two Indian families with LHON. The haplogroup was constructed based on evolutionarily important mtDNA variants. Results We observed the existence of double pathogenic mutations (m.11778G>A and m.1555A>G) in two Indian LHON families, who are from different haplogroup backgrounds (M5a and U2e1), with different clinical penetrance of the disease (visual impairment). The m.11778G>A mutation in the MT-ND4 gene is associated primarily with LHON; whereas, m.1555A>G in the 12S rRNA gene has been reported with aminoglycoside-induced non-syndromic hearing loss. Conclusions The absence of hearing abnormality and widely varying clinical expression of LHON suggest additional nuclear modifier genes, environmental factors, and population heterogeneity might play an important role in the expression of visual impairment in these families. PMID:23805034

  12. Characterization and expression of the ABC family (G group) in 'Dangshansuli' pear (Pyrus bretschneideri Rehd.) and its russet mutant.

    PubMed

    Hou, Zhaoqi; Jia, Bing; Li, Fei; Liu, Pu; Liu, Li; Ye, Zhenfeng; Zhu, Liwu; Wang, Qi; Heng, Wei

    2018-01-01

    The plant genes encoding ABCGs that have been identified to date play a role in suberin formation in response to abiotic and biotic stress. In the present study, 80 ABCG genes were identified in 'Dangshansuli' Chinese white pear and designated as PbABCGs. Based on the structural characteristics and phylogenetic analysis, the PbABCG family genes could be classified into seven main groups: classes A-G. Segmental and dispersed duplications were the primary forces underlying the PbABCG gene family expansion in 'Dangshansuli' pear. Most of the PbABCG duplicated gene pairs date to the recent whole-genome duplication that occurred 30~45 million years ago. Purifying selection has also played a critical role in the evolution of the ABCG genes. Ten PbABCG genes screened in the transcriptome of 'Dangshansuli' pear and its russet mutant 'Xiusu' were validated, and the expression levels of the PbABCG genes exhibited significant differences at different stages. The results presented here will undoubtedly be useful for better understanding of the complexity of the PbABCG gene family and will facilitate the functional characterization of suberin formation in the russet mutant.

  13. Defining key features of the broad autism phenotype: a comparison across parents of multiple- and single-incidence autism families.

    PubMed

    Losh, Molly; Childress, Debra; Lam, Kristen; Piven, Joseph

    2008-06-05

    This study examined the frequency of personality, language, and social-behavioral characteristics believed to comprise the broad autism phenotype (BAP), across families differing in genetic liability to autism. We hypothesized that within this unique sample comprised of multiple-incidence autism families (MIAF), single-incidence autism families (SIAF), and control Down syndrome families (DWNS), a graded expression would be observed for the principal characteristics conferring genetic susceptibility to autism, in which such features would express most profoundly among parents from MIAFs, less strongly among SIAFs, and least of all among comparison parents from DWNS families, who should display population base rates. Analyses detected linear expression of traits in line with hypotheses, and further suggested differential intrafamilial expression across family types. In the vast majority of MIAFs both parents displayed BAP characteristics, whereas within SIAFs, it was equally likely that one, both, or neither parent show BAP features. The significance of these findings is discussed in relation to etiologic mechanisms in autism and relevance to molecular genetic studies. (c) 2007 Wiley-Liss, Inc.

  14. Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp. mali.

    PubMed

    Huang, Kaihui; Zhong, Yan; Li, Yingjun; Zheng, Dan; Cheng, Zong-Ming

    2016-10-01

    The ABA/water stress/ripening-induced (ASR) gene family exists universally in higher plants, and many ASR genes are up-regulated during periods of environmental stress and fruit ripening. Although a considerable amount of research has been performed investigating ASR gene response to abiotic stresses, relatively little is known about their roles in response to biotic stresses. In this report, we identified five ASR genes in apple (Malus × domestica) and explored their phylogenetic relationship, duplication events, and selective pressure. Five apple ASR genes (Md-ASR) were divided into two clades based on phylogenetic analysis. Species-specific duplication was detected in M. domestica ASR genes. Leaves of 'Golden delicious' and 'Starking' were infected with Alternaria alternata f. sp. mali, which causes apple blotch disease, and examined for the expression of the ASR genes in lesion areas during the first 72 h after inoculation. Md-ASR genes showed different expression patterns at different sampling times in 'Golden delicious' and 'Starking'. The activities of stress-related enzymes, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), and polyphenoloxidase (PPO), and the content of malondialdehyde (MDA) were also measured in different stages of disease development in two cultivars. The ASR gene expression patterns and theses physiological indexes for disease resistance suggested that Md-ASR genes are involved in biotic stress responses in apple.

  15. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer.

    PubMed

    Yin, Rui; Zhao, Mingzhu; Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi; Zhang, Meiping

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species.

  16. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer

    PubMed Central

    Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species. PMID:28727829

  17. HSP86 and HSP84 exhibit cellular specificity of expression and co-precipitate with an HSP70 family member in the murine testis

    NASA Technical Reports Server (NTRS)

    Gruppi, C. M.; Wolgemuth, D. J.

    1993-01-01

    This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells.

  18. Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.).

    PubMed

    Chen, Jianqing; Yin, Hao; Gu, Jinping; Li, Leiting; Liu, Zhe; Jiang, Xueting; Zhou, Hongsheng; Wei, Shuwei; Zhang, Shaoling; Wu, Juyou

    2015-01-01

    The cyclic nucleotide-gated channel (CNGC) family is involved in the uptake of various cations, such as Ca(2+), to regulate plant growth and respond to biotic and abiotic stresses. However, there is far less information about this family in woody plants such as pear. Here, we provided a genome-wide identification and analysis of the CNGC gene family in pear. Phylogenetic analysis showed that the 21 pear CNGC genes could be divided into five groups (I, II, III, IVA and IVB). The majority of gene duplications in pear appeared to have been caused by segmental duplication and occurred 32.94-39.14 million years ago. Evolutionary analysis showed that positive selection had driven the evolution of pear CNGCs. Motif analyses showed that Group I CNGCs generally contained 26 motifs, which was the greatest number of motifs in all CNGC groups. Among these, eight motifs were shared by each group, suggesting that these domains play a conservative role in CNGC activity. Tissue-specific expression analysis indicated that functional diversification of the duplicated CNGC genes was a major feature of long-term evolution. Our results also suggested that the P-S6 and PBC & hinge domains had co-evolved during the evolution. These results provide valuable information to increase our understanding of the function, evolution and expression analyses of the CNGC gene family in higher plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.

  20. Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica).

    PubMed

    Chen, Hongfei; Zuo, Xiya; Shao, Hongxia; Fan, Sheng; Ma, Juanjuan; Zhang, Dong; Zhao, Caiping; Yan, Xiangyan; Liu, Xiaojie; Han, Mingyu

    2018-02-01

    Carotenoid cleavage oxygenases (CCOs) are able to cleave carotenoids to produce apocarotenoids and their derivatives, which are important for plant growth and development. In this study, 21 apple CCO genes were identified and divided into six groups based on their phylogenetic relationships. We further characterized the apple CCO genes in terms of chromosomal distribution, structure and the presence of cis-elements in the promoter. We also predicted the cellular localization of the encoded proteins. An analysis of the synteny within the apple genome revealed that tandem, segmental, and whole-genome duplication events likely contributed to the expansion of the apple carotenoid oxygenase gene family. An additional integrated synteny analysis identified orthologous carotenoid oxygenase genes between apple and Arabidopsis thaliana, which served as references for the functional analysis of the apple CCO genes. The net photosynthetic rate, transpiration rate, and stomatal conductance of leaves decreased, while leaf stomatal density increased under drought and saline conditions. Tissue-specific gene expression analyses revealed diverse spatiotemporal expression patterns. Finally, hormone and abiotic stress treatments indicated that many apple CCO genes are responsive to various phytohormones as well as drought and salinity stresses. The genome-wide identification of apple CCO genes and the analyses of their expression patterns described herein may provide a solid foundation for future studies examining the regulation and functions of this gene family. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses

    PubMed Central

    Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming

    2014-01-01

    WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. PMID:25249073

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Junpeng; Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi 712100; Cao, Xiaoli

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles ofmore » StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. - Highlights: • A systematic analysis of the potato AUX/IAA gene family were performed. • StIAA genes were related to auxin perception and signal transduction. • Candidate StIAA genes likely related to tuber initiation and expansion were screened.« less

  3. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    PubMed

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  4. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    PubMed Central

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana

    2017-01-01

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393

  5. Integrated microRNA and mRNA signatures in peripheral blood lymphocytes of familial epithelial ovarian cancer.

    PubMed

    Dou, Yun-De; Huang, Tao; Wang, Qun; Shu, Xin; Zhao, Shi-Gang; Li, Lei; Liu, Tao; Lu, Gang; Chan, Wai-Yee; Liu, Hong-Bin

    2018-01-29

    Characterization of the genetic landscapes of familial ovarian cancer through integrated analysis of microRNA and mRNA by partial least squares (PLS) and Monte Carlo technique based on genome-wide association studies (GWAS). The miRNA and mRNA transcriptional data in familial ovarian cancer were characterized from the Gene Expression Omnibus (GEO) database. The miRNA and mRNA expression profiles in peripheral blood lymphocytes (PBLs) of 74 familial ovarian cancer patients and 47 control subjects were analyzed with the integration of partial least squares (PLS) and Monte Carlo techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. Total of 16 miRNA-mRNA pairs were identified with the target gene prediction results of miRNAs and mRNAs. An innovated miRNA-mRNA integrated network was constructed in which 6 downregulated miRNAs and 1 upregulated miRNAs were included. KEGG and GO pathway enrichment analysis revealed over-representation of dysregulated miRNAs in various biological processes especially in cancer pathology. Hsa-miR-34b played a pivotal role in this network and interacted with other miRNAs. Hsa-miR-136 and hsa-miR-335 were associated with p53 and Erk1/2 pathways and tumor suppressors, such as PTEN. The results from this research provide insights on miRNA-mRNA networks and offer new tools for studying transcriptional variants in familial ovarian cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Urotensin-II System in Genetic Control of Blood Pressure and Renal Function

    PubMed Central

    Debiec, Radoslaw; Christofidou, Paraskevi; Denniff, Matthew; Bloomer, Lisa D.; Bogdanski, Pawel; Wojnar, Lukasz; Musialik, Katarzyna; Charchar, Fadi J.; Thompson, John R.; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Samani, Nilesh J.; Lambert, David; Tomaszewski, Maciej

    2013-01-01

    Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates. PMID:24391740

  7. Genome-Wide Identification and Expression Analysis of the Cation Diffusion Facilitator Gene Family in Turnip Under Diverse Metal Ion Stresses.

    PubMed

    Li, Xiong; Wu, Yuansheng; Li, Boqun; He, Wenqi; Yang, Yonghong; Yang, Yongping

    2018-01-01

    The cation diffusion facilitator (CDF) family is one of the gene families involved in metal ion uptake and transport in plants, but the understanding of the definite roles and mechanisms of most CDF genes remain limited. In the present study, we identified 18 candidate CDF genes from the turnip genome and named them BrrMTP1.1 - BrrMTP12 . Then, we performed a comparative genomic analysis on the phylogenetic relationships, gene structures and chromosome distributions, conserved domains, and motifs of turnip CDFs. The constructed phylogenetic tree indicated that the BrrMTPs were divided into seven groups (groups 1, 5, 6, 7, 8, 9, and 12) and formed three major clusters (Zn-CDFs, Fe/Zn-CDFs, and Mn-CDFs). Moreover, the structural characteristics of the BrrMTP members in the same group were similar but varied among groups. To investigate the potential roles of BrrMTPs in turnip, we conducted an expression analysis on all BrrMTP genes under Mg, Zn, Cu, Mn, Fe, Co, Na, and Cd stresses. Results showed that the expression levels of all BrrMTP members were induced by at least one metal ion, indicating that these genes may be related to the tolerance or transport of those metal ions. Based on the roles of different metal ions for plants, we hypothesized that BrrMTP genes are possibly involved in heavy metal accumulation and tolerance to salt stress apart from their roles in the maintenance of mineral nutrient homeostasis in turnip. These findings are helpful to understand the roles of MTPs in plants and provide preliminary information for the study of the functions of BrrMTP genes.

  8. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment

    PubMed Central

    Zhao, Shu-Ping; Xu, Zhao-Shi; Zheng, Wei-Jun; Zhao, Wan; Wang, Yan-Xia; Yu, Tai-Fei; Chen, Ming; Zhou, Yong-Bin; Min, Dong-Hong; Ma, You-Zhi; Chai, Shou-Cheng; Zhang, Xiao-Hong

    2017-01-01

    Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean. PMID:28634481

  9. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  10. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE PAGES

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik; ...

    2014-12-31

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  11. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  12. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  13. Genome-Wide Prediction of the Polymorphic Ser Gene Family in Tetrahymena thermophila Based on Motif Analysis

    PubMed Central

    Ponsuwanna, Patrath; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2014-01-01

    Even though antigenic variation is employed among parasitic protozoa for host immune evasion, Tetrahymena thermophila, a free-living ciliate, can also change its surface protein antigens. These cysteine-rich glycosylphosphatidylinositol (GPI)-linked surface proteins are encoded by a family of polymorphic Ser genes. Despite the availability of T. thermophila genome, a comprehensive analysis of the Ser family is limited by its high degree of polymorphism. In order to overcome this problem, a new approach was adopted by searching for Ser candidates with common motif sequences, namely length-specific repetitive cysteine pattern and GPI anchor site. The candidate genes were phylogenetically compared with the previously identified Ser genes and classified into subtypes. Ser candidates were often found to be located as tandem arrays of the same subtypes on several chromosomal scaffolds. Certain Ser candidates located in the same chromosomal arrays were transcriptionally expressed at specific T. thermophila developmental stages. These Ser candidates selected by the motif analysis approach can form the foundation for a systematic identification of the entire Ser gene family, which will contribute to the understanding of their function and the basis of T. thermophila antigenic variation. PMID:25133747

  14. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis.

    PubMed

    Wang, Wenzhao; Zhou, Yihui; Wu, Yingling; Dai, Xinlong; Liu, Yajun; Qian, Yumei; Li, Mingzhuo; Jiang, Xiaolan; Wang, Yunsheng; Gao, Liping; Xia, Tao

    2018-04-25

    Tea is an important economic crop with a 3.02 Gb genome. It accumulates various bioactive compounds, especially catechins, which are closely associated with tea flavor and quality. Catechins are biosynthesized through the phenylpropanoid and flavonoid pathways, with 12 structural genes being involved in their synthesis. However, we found that in Camellia sinensis the understanding of the basic profile of catechins biosynthesis is still unclear. The gene structure, locus, transcript number, transcriptional variation, and function of multigene families have not yet been clarified. Our previous studies demonstrated that the accumulation of flavonoids in tea is species, tissue, and induction specific, which indicates that gene coexpression patterns may be involved in tea catechins and flavonoids biosynthesis. In this paper, we screened candidate genes of multigene families involved in the phenylpropanoid and flavonoid pathways based on an analysis of genome and transcriptome sequence data. The authenticity of candidate genes was verified by PCR cloning, and their function was validated by reverse genetic methods. In the present study, 36 genes from 12 gene families were identified and were accessed in the NCBI database. During this process, some intron retention events of the CsCHI and CsDFR genes were found. Furthermore, the transcriptome sequencing of various tea tissues and subcellular location assays revealed coexpression and colocalization patterns. The correlation analysis showed that CsCHIc, CsF3'H, and CsANRb expression levels are associated significantly with the concentration of soluble PA as well as the expression levels of CsPALc and CsPALf with the concentration of insoluble PA. This work provides insights into catechins metabolism in tea and provides a foundation for future studies.

  15. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    PubMed

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

  16. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.

  17. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Family environment, expressed emotion and adolescent self-harm: a review of conceptual, empirical, cross-cultural and clinical perspectives.

    PubMed

    Michelson, Daniel; Bhugra, Dinesh

    2012-04-01

    Self-harm in young people is a complex and pervasive problem with a number of co-existing risk factors. Although research has implicated a range of family variables in understanding the onset, maintenance and prevention of adolescent self-harm, relatively little attention has been given to the expressed emotion (EE) construct. Based on a narrative review and synthesis of peer-reviewed literature up to and including 2011, this paper considers the conceptual background and empirical evidence for the role of family environment in the expression of adolescent self-harm, with a particular focus on EE. The clinical implications of this literature for working with young people and families from different cultures are also addressed. In summary, the surveyed research provides insufficient evidence for a direct causal link between family environment and adolescent self-harm, with questions raised about the temporal sequencing of measured variables, specificity of implicated family risk factors, and the nature and role of protective factors in families. Emerging evidence for an association between high EE and adolescent self-harm requires replication in well-controlled, prospective studies. There is also a lack of empirically-supported, family-based treatment modalities for adolescents who self-harm. Intervention strategies should be guided by personalised formulation, taking into account individual vulnerabilities, strengths and social contexts, as well as cultural norms for family environment.

  19. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development

    PubMed Central

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858

  1. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  2. Bone-related gene profiles in developing calvaria.

    PubMed

    Cho, Je-Yoel; Lee, Won-Bong; Kim, Hyun-Jung; Mi Woo, Kyung; Baek, Jeong-Hwa; Choi, Je-Yong; Hur, Cheol-Gu; Ryoo, Hyun-Mo

    2006-05-10

    Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.

  3. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions.

  4. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875

  5. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-03-07

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  6. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504

  7. Genome-wide classification, evolutionary analysis and gene expression patterns of the kinome in Gossypium

    PubMed Central

    Yan, Jun; Li, Guilin; Guo, Xingqi; Li, Yang; Cao, Xuecheng

    2018-01-01

    The protein kinase (PK, kinome) family is one of the largest families in plants and regulates almost all aspects of plant processes, including plant development and stress responses. Despite their important functions, comprehensive functional classification, evolutionary analysis and expression patterns of the cotton PK gene family has yet to be performed on PK genes. In this study, we identified the cotton kinomes in the Gossypium raimondii, Gossypium arboretum, Gossypium hirsutum and Gossypium barbadense genomes and classified them into 7 groups and 122–24 subfamilies using software HMMER v3.0 scanning and neighbor-joining (NJ) phylogenetic analysis. Some conserved exon-intron structures were identified not only in cotton species but also in primitive plants, ferns and moss, suggesting the significant function and ancient origination of these PK genes. Collinearity analysis revealed that 16.6 million years ago (Mya) cotton-specific whole genome duplication (WGD) events may have played a partial role in the expansion of the cotton kinomes, whereas tandem duplication (TD) events mainly contributed to the expansion of the cotton RLK group. Synteny analysis revealed that tetraploidization of G. hirsutum and G. barbadense contributed to the expansion of G. hirsutum and G. barbadense PKs. Global expression analysis of cotton PKs revealed stress-specific and fiber development-related expression patterns, suggesting that many cotton PKs might be involved in the regulation of the stress response and fiber development processes. This study provides foundational information for further studies on the evolution and molecular function of cotton PKs. PMID:29768506

  8. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    PubMed

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.

  9. Genome-wide identification of the SWEET gene family in wheat.

    PubMed

    Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu

    2018-02-05

    The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification

    PubMed Central

    Zhang, Hailing; Cao, Yingping; Shang, Chen; Li, Jikai; Wang, Jianli; Wu, Zhenying; Ma, Lichao; Qi, Tianxiong; Fu, Chunxiang; Hu, Baozhong

    2017-01-01

    The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions. PMID:28945786

  11. Family intervention for schizophrenia

    PubMed Central

    Pharoah, Fiona; Mari, Jair; Rathbone, John; Wong, Winson

    2014-01-01

    Background People with schizophrenia from families that express high levels of criticism, hostility, or over involvement, have more frequent relapses than people with similar problems from families that tend to be less expressive of emotions. Forms of psychosocial intervention, designed to reduce these levels of expressed emotions within families, are now widely used. Objectives To estimate the effects of family psychosocial interventions in community settings for people with schizophrenia or schizophrenia-like conditions compared with standard care. Search strategy We updated previous searches by searching the Cochrane Schizophrenia Group Trials Register (September 2008). Selection criteria We selected randomised or quasi-randomised studies focusing primarily on families of people with schizophrenia or schizoaffective disorder that compared community-orientated family-based psychosocial intervention with standard care. Data collection and analysis We independently extracted data and calculated fixed-effect relative risk (RR), the 95% confidence intervals (CI) for binary data, and, where appropriate, the number needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). Main results This 2009-10 update adds 21 additional studies, with a total of 53 randomised controlled trials included. Family intervention may decrease the frequency of relapse (n = 2981, 32 RCTs, RR 0.55 CI 0.5 to 0.6, NNT 7 CI 6 to 8), although some small but negative studies might not have been identified by the search. Family intervention may also reduce hospital admission (n = 481, 8 RCTs, RR 0.78 CI 0.6 to 1.0, NNT 8 CI 6 to 13) and encourage compliance with medication (n = 695, 10 RCTs, RR 0.60 CI 0.5 to 0.7, NNT 6 CI 5 to 9) but it does not obviously affect the tendency of individuals/families to leave care (n = 733, 10 RCTs, RR 0.74 CI 0.5 to 1.0). Family intervention also seems to improve general social impairment and the levels of expressed emotion within the family. We did not find data to suggest that family intervention either prevents or promotes suicide. Authors’ conclusions Family intervention may reduce the number of relapse events and hospitalisations and would therefore be of interest to people with schizophrenia, clinicians and policy makers. However, the treatment effects of these trials may be overestimated due to the poor methodological quality. Further data from trials that describe the methods of randomisation, test the blindness of the study evaluators, and implement the CONSORT guidelines would enable greater confidence in these findings. PMID:21154340

  12. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  13. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  14. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    NASA Technical Reports Server (NTRS)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  15. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  16. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Expressions of cultural safety in public health nursing practice.

    PubMed

    Richardson, Anna; Yarwood, Judy; Richardson, Sandra

    2017-01-01

    Cultural safety is an essential concept within New Zealand nursing that is formally linked to registration and competency-based practice certification. Despite its centrality to New Zealand nursing philosophies and the stated expectation of cultural safety as a practice element, there is limited evidence of its application in the literature. This research presents insight into public health nurse's (PHN) experiences, demonstrating the integration of cultural safety principles into practice. These findings emerged following secondary analysis of data from a collaborative, educative research project where PHNs explored the use of family assessment tools. In particular, the 15-minute interview tool was introduced and used by the PHNs when working with families. Critical analysis of transcribed data from PHN interviews, utilising a cultural safety lens, illuminated practical ways in which cultural safety concepts infused PHN practice with families. The themes that emerged reflected the interweaving of the principles of cultural safety with the application of the five components of the 15-minute interview. This highlights elements of PHN work with individuals and families not previously acknowledged. Examples of culturally safe nursing practice resonated throughout the PHN conversations as they grappled with the increasing complexity of working with a diverse range of families. © 2016 John Wiley & Sons Ltd.

  18. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.

    PubMed

    Huang, Yen-Tsung; Liang, Liming; Moffatt, Miriam F; Cookson, William O C M; Lin, Xihong

    2015-07-01

    Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful. © 2015 WILEY PERIODICALS, INC.

  19. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae).

    PubMed

    Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S

    2016-03-26

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on the autosomes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Shame and guilt/self-blame as predictors of expressed emotion in family members of patients with schizophrenia

    PubMed Central

    Wasserman, Stephanie; Weisman de Mamani, Amy; Suro, Giulia

    2012-01-01

    Expressed emotion (EE) is a measure of the family environment reflecting the amount of criticism and emotional over-involvement expressed by a key relative towards a family member with a disorder or impairment. Patients from high EE homes have a poorer illness prognosis than do patients from low EE homes. Despite EE's well-established predictive validity, questions remain regarding why some family members express high levels of EE attitudes while others do not. Based on indirect evidence from previous research, the current study tested whether shame and guilt/self-blame about having a relative with schizophrenia serve as predictors of EE. A sample of 72 family members of patients with schizophrenia completed the Five Minute Speech Sample to measure EE, along with questionnaires assessing self-directed emotions. In line with the hypotheses, higher levels of both shame and guilt/self-blame about having a relative with schizophrenia predicted high EE. Results of the current study elucidate the EE construct and have implications for working with families of patients with schizophrenia. PMID:22357355

  1. An omnibus test for family-based association studies with multiple SNPs and multiple phenotypes.

    PubMed

    Lasky-Su, Jessica; Murphy, Amy; McQueen, Matthew B; Weiss, Scott; Lange, Christoph

    2010-06-01

    We propose an omnibus family-based association test (MFBAT) that can be applied to multiple markers and multiple phenotypes and that has only one degree of freedom. The proposed test statistic extends current FBAT methodology to incorporate multiple markers as well as multiple phenotypes. Using simulation studies, power estimates for the proposed methodology are compared with the standard methodologies. On the basis of these simulations, we find that MFBAT substantially outperforms other methods, including haplotypic approaches and doing multiple tests with single single-nucleotide polymorphisms (SNPs) and single phenotypes. The practical relevance of the approach is illustrated by an application to asthma in which SNP/phenotype combinations are identified and reach overall significance that would not have been identified using other approaches. This methodology is directly applicable to cases in which there are multiple SNPs, such as candidate gene studies, cases in which there are multiple phenotypes, such as expression data, and cases in which there are multiple phenotypes and genotypes, such as genome-wide association studies that incorporate expression profiles as phenotypes. This program is available in the PBAT analysis package.

  2. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions.

    PubMed

    Kumar, Smita; Asif, Mehar Hasan; Chakrabarty, Debasis; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar

    2011-06-01

    Sulphur, an essential nutrient required for plant growth and development, is mainly taken up by the plants as inorganic sulphate from the soil and assimilated into the sulphur reductive pathway. The uptake and transport of sulphate in plants is carried out by transporters encoded by the sulphate transporter gene family. Plant sulphate transporters have been classified with respect to their protein sequences, kinetic properties and tissue-specific localization in Arabidopsis. Though sulphate transporter genes from few other plants have also been characterized, no detailed study with respect to the structure and expression of this family from rice has been carried out. Here, we present genome-wide identification, structural and expression analyses of the rice sulphate transporter gene family. Our analysis using microarray data and MPSS database suggests that 14 rice sulphate transporters are differentially expressed during growth and development in various tissues and during biotic and abiotic stresses. Our analysis also suggests differential accumulation of splice variants of OsSultr1;1 and OsSultr4;1 transcripts during these processes. Apart from known spliced variants, we report an unusual alternative splicing of OsSultr1;1 transcript related to sulphur supply in growth medium and during stress response. Taken together, our study suggests that differential expression and alternative splicing of members of the sulphate transporter family plays an important role in regulating cellular sulphur status required for growth and development and during stress conditions. These findings significantly advance our understanding of the posttranscriptional regulatory mechanisms operating to regulate sulphur demand by the plant.

  3. WHAM!: a web-based visualization suite for user-defined analysis of metagenomic shotgun sequencing data.

    PubMed

    Devlin, Joseph C; Battaglia, Thomas; Blaser, Martin J; Ruggles, Kelly V

    2018-06-25

    Exploration of large data sets, such as shotgun metagenomic sequence or expression data, by biomedical experts and medical professionals remains as a major bottleneck in the scientific discovery process. Although tools for this purpose exist for 16S ribosomal RNA sequencing analysis, there is a growing but still insufficient number of user-friendly interactive visualization workflows for easy data exploration and figure generation. The development of such platforms for this purpose is necessary to accelerate and streamline microbiome laboratory research. We developed the Workflow Hub for Automated Metagenomic Exploration (WHAM!) as a web-based interactive tool capable of user-directed data visualization and statistical analysis of annotated shotgun metagenomic and metatranscriptomic data sets. WHAM! includes exploratory and hypothesis-based gene and taxa search modules for visualizing differences in microbial taxa and gene family expression across experimental groups, and for creating publication quality figures without the need for command line interface or in-house bioinformatics. WHAM! is an interactive and customizable tool for downstream metagenomic and metatranscriptomic analysis providing a user-friendly interface allowing for easy data exploration by microbiome and ecological experts to facilitate discovery in multi-dimensional and large-scale data sets.

  4. miR-30 Family Members Negatively Regulate Osteoblast Differentiation*

    PubMed Central

    Wu, Tingting; Zhou, Haibo; Hong, Yongfeng; Li, Jing; Jiang, Xinquan; Huang, Hui

    2012-01-01

    miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3′ untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation. PMID:22253433

  5. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    PubMed

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Teenage goals and self-efficacy beliefs as precursors of adult career and family outcomes

    PubMed Central

    Lee, Bora; Vondracek, Fred W.

    2014-01-01

    The present study identified and examined patterns of goal importance and self-efficacy beliefs in mid- and late adolescence as predictors of work and family outcomes in adulthood. A pattern approach was applied to appropriately identify relationships among work- and family-related goal importance and self-efficacy beliefs. Using a sample of 995 individuals, five distinct patterns of work-family goal importance and self-efficacy beliefs emerged. Individuals who assigned comparable importance to work and family goals and expressed corresponding self-efficacy beliefs in adolescence were more likely to achieve career and family outcomes in adulthood than individuals who expressed a strong preference for one domain over the other. The results supported the idea that work and family can be coordinated for mutual benefit. Furthermore, findings from the pattern approach provided an integrative view of work-family motivation and goal achievement complementing findings from traditional methods such as regression analysis. PMID:25242815

  7. Teenage goals and self-efficacy beliefs as precursors of adult career and family outcomes.

    PubMed

    Lee, Bora; Vondracek, Fred W

    2014-10-01

    The present study identified and examined patterns of goal importance and self-efficacy beliefs in mid- and late adolescence as predictors of work and family outcomes in adulthood. A pattern approach was applied to appropriately identify relationships among work- and family-related goal importance and self-efficacy beliefs. Using a sample of 995 individuals, five distinct patterns of work-family goal importance and self-efficacy beliefs emerged. Individuals who assigned comparable importance to work and family goals and expressed corresponding self-efficacy beliefs in adolescence were more likely to achieve career and family outcomes in adulthood than individuals who expressed a strong preference for one domain over the other. The results supported the idea that work and family can be coordinated for mutual benefit. Furthermore, findings from the pattern approach provided an integrative view of work-family motivation and goal achievement complementing findings from traditional methods such as regression analysis.

  8. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress.

    PubMed

    Meng, Dong; Li, Yuanyuan; Bai, Yang; Li, Mingjun; Cheng, Lailiang

    2016-06-01

    As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation

    PubMed Central

    Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren; Geng, Chuandong; Chew, Sue Anne; Foley, Christopher; Shah, Shrijal S.; Shou, John; Mohamed, Junaith S.; O'Malley, Bert W.

    2015-01-01

    The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and “master regulators” of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3′-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer. PMID:26066330

  10. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    PubMed

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  11. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    PubMed

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  12. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato.

    PubMed

    Cai, Bingbing; Li, Qiang; Xu, Yongchao; Yang, Long; Bi, Huangai; Ai, Xizhen

    2016-11-01

    Fructose 1,6-bisphosphate aldolase (FBA) is a key enzyme in plants that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. FBA genes play significant roles in biotic and abiotic stress responses and also regulate growth and development. Despite the importance of FBA genes, little is known about it in tomato. In this study, we identified 8 FBA genes in tomato and classified them into 2 subgroups based on a phylogenetic tree, gene structures, and conserved motifs. Five (SlFBA1, 2, 3, 4 and 5) and three (SlFBA6, 7, and 8) SlFBA proteins were predicted to be localized in chloroplasts and cytoplasm, respectively. The phylogenetic analysis of FBAs from tomato, Arabidopsis, rice, and other organisms suggested that SlFBA shared the highest protein homology with FBAs from other plants. Synteny analysis indicated that segmental duplication events contributed to the expansion of the tomato FBA family. The expression profiles revealed that all SlFBAs were involved in the response to low and high temperature stresses. SlFBA7 overexpression increased the expression and activities of other main enzymes in Calvin cycle, net photosynthetic rate (Pn), seed size and stem diameter. SlFBA7 overexpression enhanced tolerances in seed germination under suboptimal temperature stresses. Taken together, comprehensive analyses of SlFBAs would provide a basis for understanding of evolution and function of SlFBA family. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Analysis of genetic association in Listeria and Diabetes using Hierarchical Clustering and Silhouette Index

    NASA Astrophysics Data System (ADS)

    Pagnuco, Inti A.; Pastore, Juan I.; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L.

    2016-04-01

    It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, where significative groups of genes are defined based on some criteria. This task is usually performed by clustering algorithms, where the whole family of genes, or a subset of them, are clustered into meaningful groups based on their expression values in a set of experiment. In this work we used a methodology based on the Silhouette index as a measure of cluster quality for individual gene groups, and a combination of several variants of hierarchical clustering to generate the candidate groups, to obtain sets of co-expressed genes for two real data examples. We analyzed the quality of the best ranked groups, obtained by the algorithm, using an online bioinformatics tool that provides network information for the selected genes. Moreover, to verify the performance of the algorithm, considering the fact that it doesn’t find all possible subsets, we compared its results against a full search, to determine the amount of good co-regulated sets not detected.

  14. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco.

    PubMed

    Yang, Yuping; Yan, Pengcheng; Yi, Che; Li, Wenzheng; Chai, Yuhui; Fei, Lingling; Gao, Ping; Zhao, Heping; Wang, Yingdian; Timko, Michael P; Wang, Bingwu; Han, Shengcheng

    2017-08-01

    Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. A new mutation within the porphobilinogen deaminase gene leading to a truncated protein as a cause of acute intermittent porphyria in an extended Indian family.

    PubMed

    Flachsová, E; Verma, I C; Ulbrichová, D; Saxena, R; Zeman, J; Saudek, V; Raman, C S; Martásek, P

    2007-01-01

    Based on Internet search, we were contacted by a 50-year-old man suffering from severe abdominal pain. Acute hepatic porphyria was considered from positive Watson-Schwartz test. He, not being a health professional, searched for centres with ability to do molecular diagnosis and for information about therapeutic possibilities. He asked his physician for haem-arginate (Normosang, Orphan Europe, Paris) treatment, arranged sending his blood to our laboratory and mediated genetic counselling for him and his family. Molecular analyses of the PBGD gene revealed a novel mutation in exon 15, the 973insG. Subsequently, genetic analysis was performed in 18 members of the proband's extensive family. In 12 members of the family, the same mutation was found. The mutation, which consisted of one nucleotide insertion, resulted in addition of four different amino acids leading to a protein that is prematurely truncated by the stop codon. The effect of this mutation was investigated by expression of the wildtype and mutated PBGD in a prokaryotic expression system. The mutation resulted in instability of the protein and loss of enzymatic function. The increasing access to a number of disease- and symptom-oriented web pages presents a new and unusual venue for gaining knowledge and enabling self-diagnosis and self-help. It is, therefore, important that diseaseoriented Internet pages for public use should be designed with clarity and accurate current knowledge based background.

  16. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a Dutch population-based sample.

    PubMed

    Rademakers, Rosa; Cruts, Marc; Sleegers, Kristel; Dermaut, Bart; Theuns, Jessie; Aulchenko, Yurii; Weckx, Stefan; De Pooter, Tim; Van den Broeck, Marleen; Corsmit, Ellen; De Rijk, Peter; Del-Favero, Jurgen; van Swieten, John; van Duijn, Cornelia M; Van Broeckhoven, Christine

    2005-10-01

    We obtained conclusive linkage of Alzheimer disease (AD) with a candidate region of 19.7 cM at 7q36 in an extended multiplex family, family 1270, ascertained in a population-based study of early-onset AD in the northern Netherlands. Single-nucleotide polymorphism and haplotype association analyses of a Dutch patient-control sample further supported the linkage at 7q36. In addition, we identified a shared haplotype at 7q36 between family 1270 and three of six multiplex AD-affected families from the same geographical region, which is indicative of a founder effect and defines a priority region of 9.3 cM. Mutation analysis of coding exons of 29 candidate genes identified one linked synonymous mutation, g.38030G-->C in exon 10, that affected codon 626 of the PAX transactivation domain interacting protein gene (PAXIP1). It remains to be determined whether PAXIP1 has a functional role in the expression of AD in family 1270 or whether another mutation at this locus explains the observed linkage and sharing. Together, our linkage data from the informative family 1270 and the association data in the population-based early-onset AD patient-control sample strongly support the identification of a novel AD locus at 7q36 and re-emphasize the genetic heterogeneity of AD.

  17. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  18. Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan

    2013-07-01

    Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.

  19. Identification of ARF and AUX/IAA gene families in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Elias, Nur Atiqah Mohd; Goh, Hoe-Han; Isa, Nurulhikma Md; Wan, Kiew-Lian

    2016-11-01

    Rafflesia is a unique plant that produces the largest flowers in the world. It has a short blooming period of 6 to 7 days. Due to its rarity and limited accessibility, little is known about the growth and developmental process in the Rafflesia plant. In all plant species, auxin is the key hormone that is involved in growth and development. The auxin signal transduction involves members of the ARF transcription factor and AUX/IAA regulator families, which activate or inhibit the regulation of auxin response genes, thereby control the developmental process in plants. To gain a better understanding of molecular regulations in the Rafflesia plant development during flowering, members of the ARF and AUX/IAA gene families were identified from the transcriptome data of flower blooming stages in Rafflesia cantleyi. Based on Rafflesia unique transcripts (UTs) against the Arabidopsis TAIR database using BLASTX search, a total of nine UTs were identified as ARF transcription factors, while another seven UTs were identified as AUX/IAA regulators. These genes were found to be expressed in all three R. cantleyi flower stages i.e. days 1 (F1), 3 (F2), and 5 (F3). Gene expression analysis identified three genes that are differentially expressed in stage F1 vs. F2 i.e. IAA4 is upregulated while IAA8 and ARF3 are downregulated. These genes may be involved in the activation and/or inhibition of the auxin signal transduction pathway. Further analysis of these genes may unravel their function in the phenotypic development of the Rafflesia plant.

  20. Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    PubMed Central

    Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui

    2008-01-01

    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727

  1. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer.

    PubMed

    Rimkus, C; Martini, M; Friederichs, J; Rosenberg, R; Doll, D; Siewert, J R; Holzmann, B; Janssen, K P

    2006-11-20

    The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein-protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer.

  2. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer

    PubMed Central

    Rimkus, C; Martini, M; Friederichs, J; Rosenberg, R; Doll, D; Siewert, J R; Holzmann, B; Janssen, K P

    2006-01-01

    The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein–protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer. PMID:17088907

  3. Dmrta1 regulates proneural gene expression downstream of Pax6 in the mammalian telencephalon.

    PubMed

    Kikkawa, Takako; Obayashi, Takeshi; Takahashi, Masanori; Fukuzaki-Dohi, Urara; Numayama-Tsuruta, Keiko; Osumi, Noriko

    2013-08-01

    The transcription factor Pax6 balances cell proliferation and neuronal differentiation in the mammalian developing neocortex by regulating the expression of target genes. Using microarray analysis, we observed the down-regulation of Dmrta1 (doublesex and mab-3-related transcription factor-like family A1) in the telencephalon of Pax6 homozygous mutant rats (rSey(2) /rSey(2) ). Dmrta1 expression was restricted to the neural stem/progenitor cells of the dorsal telencephalon. Overexpression of Dmrta1 induced the expression of the proneural gene Neurogenin2 (Neurog2) and conversely repressed Ascl1 (Mash1), a proneural gene expressed in the ventral telencephalon. We found that another Dmrt family molecule, Dmrt3, induced Neurog2 expression in the dorsal telencephalon. Our novel findings suggest that dual regulation of proneural genes mediated by Pax6 and Dmrt family members is crucial for cortical neurogenesis. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  4. Molecular profiling of tumor progression in head and neck cancer.

    PubMed

    Belbin, Thomas J; Singh, Bhuvanesh; Smith, Richard V; Socci, Nicholas D; Wreesmann, Volkert B; Sanchez-Carbayo, Marta; Masterson, Jessica; Patel, Snehal; Cordon-Cardo, Carlos; Prystowsky, Michael B; Childs, Geoffrey

    2005-01-01

    To assess gene expression changes associated with tumor progression in patients with squamous cell carcinoma of the oral cavity. A microarray containing 17 840 complementary DNA clones was used to measure gene expression changes associated with tumor progression in 9 patients with squamous cell carcinoma of the oral cavity. Samples were taken for analysis from the primary tumor, nodal metastasis, and "normal" mucosa from the patients' oral cavity. Tertiary care facility. Patients Nine patients with stage III or stage IV untreated oral cavity squamous cell carcinoma. Our analysis to categorize genes based on their expression patterns has identified 140 genes that consistently increased in expression during progression from normal tissue to invasive tumor and subsequently to metastatic node (in at least 4 of the 9 cases studied). A similar list of 94 genes has been identified that decreased in expression during tumor progression and metastasis. We validated this gene discovery approach by selecting moesin (a member of the ezrin/radixin/moesin [ERM] family of cytoskeletal proteins) and one of the genes that consistently increased in expression during tumor progression for subsequent immunohistochemical analysis using a head and neck squamous cell carcinoma tissue array. A distinct pattern of gene expression, with progressive up- or down-regulation of expression, is found during the progression from histologically normal tissue to primary carcinoma and to nodal metastasis.

  5. Genome-wide identification, classification and expression analysis in fungal-plant interactions of cutinase gene family and functional analysis of a putative ClCUT7 in Curvularia lunata.

    PubMed

    Liu, Tong; Hou, Jumei; Wang, Yuying; Jin, Yazhong; Borth, Wayne; Zhao, Fengzhou; Liu, Zheng; Hu, John; Zuo, Yuhu

    2016-06-01

    Cutinase is described as playing various roles in fungal-plant pathogen interactions, such as eliciting host-derived signals, fungal spore attachment and carbon acquisition during saprophytic growth. However, the characteristics of the cutinase genes, their expression in compatible interactions and their roles in pathogenesis have not been reported in Curvularia lunata, an important leaf spot pathogen of maize in China. Therefore, a cutinase gene family analysis could have profound significance. In this study, we identified 13 cutinase genes (ClCUT1 to ClCUT13) in the C. lunata genome. Multiple sequence alignment showed that most fungal cutinase proteins had one highly conserved GYSQG motif and a similar DxVCxG[ST]-[LIVMF](3)-x(3)H motif. Gene structure analyses of the cutinases revealed a complex intron-exon pattern with differences in the position and number of introns and exons. Based on phylogenetic relationship analysis, C. lunata cutinases and 78 known cutinase proteins from other fungi were classified into four groups with subgroups, but the C. lunata cutinases clustered in only three of the four groups. Motif analyses showed that each group of cutinases from C. lunata had a common motif. Real-time PCR indicated that transcript levels of the cutinase genes in a compatible interaction between pathogen and host had varied expression patterns. Interestingly, the transcript levels of ClCUT7 gradually increased during early pathogenesis with the most significant up-regulation at 3 h post-inoculation. When ClCUT7 was deleted, pathogenicity of the mutant decreased on unwounded maize (Zea mays) leaves. On wounded maize leaves, however, the mutant caused symptoms similar to the wild-type strain. Moreover, the ClCUT7 mutant had an approximately 10 % reduction in growth rate when cutin was the sole carbon source. In conclusion, we identified and characterized the cutinase family genes of C. lunata, analyzed their expression patterns in a compatible host-pathogen interaction, and explored the role of ClCUT7 in pathogenicity. This work will increase our understanding of cutinase genes in other fungal-plant pathogens.

  6. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.).

    PubMed

    Chen, Zhu; Chen, Ming; Xu, Zhao-shi; Li, Lian-cheng; Chen, Xue-ping; Ma, You-zhi

    2014-01-01

    Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional roles of foxtail millet ALDH genes in stress responses.

  7. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple.

  8. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-11-01

    Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission.

  9. Comprehensive analysis of GASA family members in the Malus domestica genome: identification, characterization, and their expressions in response to apple flower induction.

    PubMed

    Fan, Sheng; Zhang, Dong; Zhang, Lizhi; Gao, Cai; Xin, Mingzhi; Tahir, Muhammad Mobeen; Li, Youmei; Ma, Juanjuan; Han, Mingyu

    2017-10-27

    The plant-specific gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant development. However, little is known about these genes, particularly in fruit tree species. We identified 15 putative Arabidopsis thaliana GASA (AtGASA) and 26 apple GASA (MdGASA) genes. The identified genes were then characterized (e.g., chromosomal location, structure, and evolutionary relationships). All of the identified A. thaliana and apple GASA proteins included a conserved GASA domain and exhibited similar characteristics. Specifically, the MdGASA expression levels in various tissues and organs were analyzed based on an online gene expression profile and by qRT-PCR. These genes were more highly expressed in the leaves, buds, and fruits compared with the seeds, roots, and seedlings. MdGASA genes were also responsive to gibberellic acid (GA 3 ) and abscisic acid treatments. Additionally, transcriptome sequencing results revealed seven potential flowering-related MdGASA genes. We analyzed the expression levels of these genes in response to flowering-related treatments (GA 3 , 6-benzylaminopurine, and sugar) and in apple varieties that differed in terms of flowering ('Nagafu No. 2' and 'Yanfu No. 6') during the flower induction period. These candidate MdGASA genes exhibited diverse expression patterns. The expression levels of six MdGASA genes were inhibited by GA 3 , while the expression of one gene was up-regulated. Additionally, there were expression-level differences induced by the 6-benzylaminopurine and sugar treatments during the flower induction stage, as well as in the different flowering varieties. This study represents the first comprehensive investigation of the A. thaliana and apple GASA gene families. Our data may provide useful clues for future studies and may support the hypotheses regarding the role of GASA proteins during the flower induction stage in fruit tree species.

  10. Place-Based Partnerships on Behalf of Children, Families and Communities: Energy Express.

    ERIC Educational Resources Information Center

    Butera, Gretchen; Richason, Dan; Phillips, Ruthellen

    Energy Express is an 8-week summer nutrition and literacy program in low-income West Virginia communities. Multi-age groups of eight children in grades 1-6 work with college student mentors for 3 1/2 hours each day, eating breakfast and lunch served family-style and creating print-rich environments that support their emerging literacy. The program…

  11. Expression analysis of genes encoding double B-box zinc finger proteins in maize.

    PubMed

    Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong

    2017-11-01

    The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.

  12. The sugar transporter inventory of tomato: genome-wide identification and expression analysis.

    PubMed

    Reuscher, Stefan; Akiyama, Masahito; Yasuda, Tomohide; Makino, Haruko; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2014-06-01

    The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.

    PubMed

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-08-29

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.

  14. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes

    PubMed Central

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-01-01

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/. PMID:28850115

  15. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  16. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  17. Genetic Resources for Maize Cell Wall Biology1[C][W][OA

    PubMed Central

    Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.

    2009-01-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802

  18. Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors

    PubMed Central

    Tang, Kai; Dong, Chun-Juan; Liu, Jin-Yuan

    2016-01-01

    In this study, 40 phospholipase D (PLD) genes were identified from allotetraploid cotton Gossypium hirsutum, and 20 PLD genes were examined in diploid cotton Gossypium raimondii. Combining with 19 previously identified Gossypium arboreum PLD genes, a comparative analysis was performed among the PLD gene families among allotetraploid and two diploid cottons. Based on the orthologous relationships, we found that almost each G. hirsutum PLD had a corresponding homolog in the G. arboreum and G. raimondii genomes, except for GhPLDβ3A, whose homolog GaPLDβ3 may have been lost during the evolution of G. arboreum after the interspecific hybridization. Phylogenetic analysis showed that all of the cotton PLDs were unevenly classified into six numbered subgroups: α, β/γ, δ, ε, ζ and φ. An N-terminal C2 domain was found in the α, β/γ, δ and ε subgroups, while phox homology (PX) and pleckstrin homology (PH) domains were identified in the ζ subgroup. The subgroup φ possessed a single peptide instead of a functional domain. In each phylogenetic subgroup, the PLDs showed high conservation in gene structure and amino acid sequences in functional domains. The expansion of GhPLD and GrPLD gene families were mainly attributed to segmental duplication and partly attributed to tandem duplication. Furthermore, purifying selection played a critical role in the evolution of PLD genes in cotton. Quantitative RT-PCR documented that allotetraploid cotton PLD genes were broadly expressed and each had a unique spatial and developmental expression pattern, indicating their functional diversification in cotton growth and development. Further analysis of cis-regulatory elements elucidated transcriptional regulations and potential functions. Our comparative analysis provided valuable information for understanding the putative functions of the PLD genes in cotton fiber. PMID:27213891

  19. In silico identification and characterization of the MAPK family members of unicellular model eukaryote Tetrahymena thermophila.

    PubMed

    Yıldız, Mehmet Taha; Arslanyolu, Muhittin

    2014-10-01

    The biological function and evolutionary diversity of the mitogen-activated protein kinase (MAPK) family have mostly been studied in fungi, animals and plants, with very limited information from lower eukaryotes. This study aimed to describe the MAPKs of unicellular Tetrahymena thermophila. Eight members of the T. thermophila MAPK (TtMPK) gene family, in addition to previously reported TtMPK1, TtMPK2 and TtMPK3, were identified bioinformatically using a T. thermophila genome database. Phylogenetic analysis assigned the TtMPKs into two major groups, ERK1/2-like (TtMPK1, 2, 3, 5, 6, 7, 8, and 9) as stress-responsive MAPKs for biotic and abiotic stresses, and ERK7/8-like (TtMPK4, 10, and 11) as cell-cycle-associated protein kinases for biotic factors. Semi-quantitative RT-PCR analysis of the TtMPKs showed high mRNA expression at 30°C; however, only TtMPK5 and TtMPK6 showed high expression at 37°C. Osmotic shock by 100mM NaCl only increased the expression of TtMPK2, whereas 20mM NaCl reduced the expression of all MPKs to almost zero. The results suggested that T. thermophila MAPKs are among the closest representatives of the ancestors of the eukaryotic MAPK family. Although no functional characterization of MPKs was performed, this study is the first report of the genome-wide MAPK family in T. thermophila. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  1. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica

    PubMed Central

    Fan, Sheng; Zhang, Dong; Gao, Cai; Zhao, Ming; Wu, Haiqin; Li, Youmei; Shen, Yawen; Han, Mingyu

    2017-01-01

    GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees. PMID:28503152

  2. Evolution of Daily Gene Co-expression Patterns from Algae to Plants

    PubMed Central

    de los Reyes, Pedro; Romero-Campero, Francisco J.; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico

    2017-01-01

    Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot Arabidopsis thaliana and the microalgae Chlamydomonas reinhardtii and Ostreococcus tauri have been integrated and analyzed using gene co-expression networks. This analysis revealed a reduction in the size of the daily rhythmic transcriptome from around 90% in Ostreococcus, being heavily influenced by light transitions, to around 40% in Arabidopsis, where a certain independence from light transitions can be observed. A novel Multiple Bidirectional Best Hit (MBBH) algorithm was applied to associate single genes with a family of potential orthologues from evolutionary distant species. Gene duplication, amplification and divergence of rhythmic expression profiles seems to have played a central role in the evolution of gene families in the green lineage such as Pseudo Response Regulators (PRRs), CONSTANS-Likes (COLs), and DNA-binding with One Finger (DOFs). Gene clustering and functional enrichment have been used to identify groups of genes with similar rhythmic gene expression patterns. The comparison of gene clusters between species based on potential orthologous relationships has unveiled a low to moderate level of conservation of daily rhythmic expression patterns. However, a strikingly high conservation was found for the gene clusters exhibiting their highest and/or lowest expression value during the light transitions. PMID:28751903

  3. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica.

    PubMed

    Fan, Sheng; Zhang, Dong; Gao, Cai; Zhao, Ming; Wu, Haiqin; Li, Youmei; Shen, Yawen; Han, Mingyu

    2017-01-01

    GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple ( Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS ( MdGRAS6, 26, 28, 44, 53, 64, 107 , and 122 ) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA 3 , 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees.

  4. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry

    PubMed Central

    Qi, Yanxiang; Liu, Xiaomei; Pu, Jinji

    2018-01-01

    The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry. PMID:29897926

  5. New TFII-I family target genes involved in embryonic development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-09-04

    Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.

  6. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera.

    PubMed

    Liu, Nai-Yong; Xu, Wei; Dong, Shuang-Lin; Zhu, Jia-Ying; Xu, Yu-Xing; Anderson, Alisha

    2018-05-22

    The functions of the Ionotropic Receptor (IR) family have been well studied in Drosophila melanogaster, but only limited information is available in Lepidoptera. Here, we conducted a large-scale genome-wide analysis of the IR gene repertoire in 13 moths and 16 butterflies. Combining a homology-based approach and manual efforts, totally 996 IR candidates are identified including 31 pseudogenes and 825 full-length sequences, representing the most current comprehensive annotation in lepidopteran species. The phylogeny, expression and sequence characteristics classify Lepidoptera IRs into three sub-families: antennal IRs (A-IRs), divergent IRs (D-IRs) and Lepidoptera-specific IRs (LS-IRs), which is distinct from the case of Drosophila IRs. In comparison to LS-IRs and D-IRs, A-IRs members share a higher degree of protein identity and are distinguished into 16 orthologous groups in the phylogeny, showing conservation of gene structure. Analysis of selective forces on 27 orthologous groups reveals that these lepidopteran IRs have evolved under strong purifying selection (dN/dS≪1). Most notably, lineage-specific gene duplications that contribute primarily to gene number variations across Lepidoptera not only exist in D-IRs, but are present in the two other sub-families including members of IR41a, 76b, 87a, 100a and 100b. Expression profiling analysis reveals that over 80% (21/26) of Helicoverpa armigera A-IRs are expressed more highly in antennae of adults or larvae than other tissues, consistent with its proposed function in olfaction. However, some are also detected in taste organs like proboscises and legs. These results suggest that some A-IRs in H. armigera likely bear a dual function with their involvement in olfaction and gustation. Results from mating experiments show that two HarmIRs (IR1.2 and IR75d) expression is significantly up-regulated in antennae of mated female moths. However, no expression difference is observed between unmated female and male adults, suggesting an association with female host-searching behaviors. Our current study has greatly extended the IR gene repertoire resource in Lepidoptera, and more importantly, identifies potential IR candidates for olfactory, gustatory and oviposition behaviors in the cotton bollworm. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet

    PubMed Central

    2011-01-01

    Background Efforts towards utilisation of diets without fish meal (FM) or fish oil (FO) in finfish aquaculture have been being made for more than two decades. Metabolic responses to substitution of fishery products have been shown to impact growth performance and immune system of fish as well as their subsequent nutritional value, particularly in marine fish species, which exhibit low capacity for biosynthesis of long-chain poly-unsaturated fatty acids (LC-PUFA). The main objective of the present study was to analyse the effects of a plant-based diet on the hepatic transcriptome of European sea bass (Dicentrarchus labrax). Results We report the first results obtained using a transcriptomic approach on the liver of two half-sibfamilies of the European sea bass that exhibit similar growth rates when fed a fish-based diet (FD), but significantly different growth rates when fed an all-plant diet (VD). Overall gene expression was analysed using oligo DNA microarrays (GPL9663). Statistical analysis identified 582 unique annotated genes differentially expressed between groups of fish fed the two diets, 199 genes regulated by genetic factors, and 72 genes that exhibited diet-family interactions. The expression of several genes involved in the LC-PUFA and cholesterol biosynthetic pathways was found to be up-regulated in fish fed VD, suggesting a stimulation of the lipogenic pathways. No significant diet-family interaction for the regulation of LC-PUFA biosynthesis pathways could be detected by microarray analysis. This result was in agreement with LC-PUFA profiles, which were found to be similar in the flesh of the two half-sibfamilies. In addition, the combination of our transcriptomic data with an analysis of plasmatic immune parameters revealed a stimulation of complement activity associated with an immunodeficiency in the fish fed VD, and different inflammatory status between the two half-sibfamilies. Biological processes related to protein catabolism, amino acid transaminations, RNA splicing and blood coagulation were also found to be regulated by diet, while the expression of genes involved in protein and ATP synthesis differed between the half-sibfamilies. Conclusions Overall, the combined gene expression, compositional and biochemical studies demonstrated a large panel of metabolic and physiological effects induced by total substitution of both FM and FO in the diets of European sea bass and revealed physiological characteristics associated with the two half-sibfamilies. PMID:22017880

  8. Expression of the ERBB Family of Ligands and Receptors in Gastric Cancer.

    PubMed

    Byeon, Sun-Ju; Lee, Hye Seung; Kim, Min-A; Lee, Byung Lan; Kim, Woo Ho

    2017-01-01

    Gastric cancer (GC) is the second most common cancer and the third leading cause of cancer-related death in Korea. Alterations in the ERBB (homology to the erythroblastoma viral gene product, v-erbB) receptor family and ERBB-related signaling pathways are frequently observed in GC. However, the roles of the ERBB receptors and their ligands in GC are not well established. We evaluated the expression levels of various ERBB receptor ligands (i.e., heparin-binding epidermal growth factor-like growth factor [HBEGF], transforming growth factor-α [TGFA], amphiregulin [AREG], epiregulin [EREG], epidermal growth factor [EGF], and betacellulin [BTC]) and 3 ERBB family receptors (i.e., epidermal growth factor receptor [EGFR], human EGFR2 [HER2], and ERBB3) in 313 cases of GC using immunohistochemistry, fluorescence in situ hybridization, and mRNA in situ hybridization. A high expression of EGFR, HER2, and ERBB3 was observed in 30, 32, and 27 cases, respectively. A high expression of HBEGF, TGFA, AREG, EREG, EGF, and BTC was observed in 91, 97, 151, 74, 26, and 37 cases, respectively. A high expression of TGFA was associated with better survival, while a high expression of BTC was associated with worse survival. These results were confirmed using Cox proportional hazards analysis. HBEGF, TGFA, AREG, tumor-node-metastasis classification, Lauren's classification, and ERBB3 were significant survival parameters in multivariate analysis. Among the ERBB family receptors and ligands examined, 3 ligands (i.e., TGFA, HBEGF, and AREG) and ERBB3 had a prognostic impact. © 2017 S. Karger AG, Basel.

  9. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.).

    PubMed

    Liu, Kaidong; Yuan, Changchun; Feng, Shaoxian; Zhong, Shuting; Li, Haili; Zhong, Jundi; Shen, Chenjia; Liu, Jinxiang

    2017-05-05

    Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.

  10. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes

    PubMed Central

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554

  11. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes.

    PubMed

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

  12. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  13. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance. PMID:21303543

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLetchie, D.N.; Tuskan, G.A.

    Gender, the expression of maleness or femaleness, in dioecious plants has been associated with changes in morphology, physiology, ecological position, and commercial importance of several species, including members of the Salicaceae family. Various mechanisms have been proposed to explain the expression of gender in Salicaceae, including sex chromosomes, simple Mendelian genes, quantitative genes, environment, and genotype-by-environment interactions. Published reports would favor a genetic basis for gender. The objective of this study was to identify molecular markers associated with gender in a segregating family of hybrid poplars. Bulked segregant analysis and chi-squared analysis were used to test for the occurrence ofmore » sex chromosomes, individual loci, and chromosome ratios (i.e., ploidy levels) as the mechanisms for gender determination. Examination of 2488 PCR based RAPD markers from 1219 primers revealed nine polymorphic bands between male and female bulked samples. However, linkage analysis indicated that none of these markers were significantly associated with gender. Chisquared results for difference in male-to-female ratios between diploid and triploid genotypes also revealed no significant differences. These findings suggest gender is not controlled via sex chromosomes, simple Mendelian loci or ratios of autosome to gender-determining loci. It is possible that gender is determined genetically by regions of the genome not sampled by the tested markers or by a complex of loci operating in an additive threshold manner or in an epistatic manner. It is also possible that gender is determined environmentally at an early zygote stage, canalizing gender expression.« less

  15. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses.

    PubMed

    Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming

    2014-12-01

    WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    PubMed

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  17. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    PubMed

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  18. [Renal glycosuria: dominant or recessive autosome anomaly? Mode of hereditary transmission based on the analysis of a 3-generation family tree].

    PubMed

    De Marchi, S; Proto, G; Jengo, A; Collinassi, P; Basile, A

    1983-02-25

    Assessment of the pedigree of 7 persons in 3 generations showed that interpretation of the transmission modality of renal glycosuria may be influenced by the diagnostic criteria employed. Analysis of renal glucose curves and evaluation of glycosuria after an oral glucose tolerance test made it clear that albeit slight detects could be detected in family members who would be regarded as healthy according to the criteria of Marble. Distribution of the character pointed to dominant transmission, as opposed to the recessive autosomal transmission favoured in the literature. Variations in the clinical gravity of the tubular defect may be ascribable to a difference in the expressiveness of the abnormal gene or to genetic heterogeneity. Persons homozygous and heterozygous for the gene were present in the pedigree concerned.

  19. Genome-wide Identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton.

    PubMed

    Mu, Min; Lu, Xu-Ke; Wang, Jun-Juan; Wang, De-Long; Yin, Zu-Jun; Wang, Shuai; Fan, Wei-Li; Ye, Wu-Wei

    2016-03-18

    Trehalose (a-D-glucopyranosyl a-D-glucopyranoside) is a nonreducing disaccharide and is widely distributed in bacteria, fungi, algae, plants and invertebrates. In the study, the identification of trehalose-6-phosphate synthase (TPS) genes stress-related in cotton, and the genetic structure analysis and molecular evolution analysis of TPSs were conducted with bioinformatics methods, which could lay a foundation for further research of TPS functions in cotton. The genome information of Gossypium raimondii (group D), G. arboreum L. (group A), and G. hirsutum L. (group AD) was used in the study. Fifty-three TPSs were identified comprising 15 genes in group D, 14 in group A, and 24 in group AD. Bioinformatics methods were used to analyze the genetic structure and molecular evolution of TPSs. Real-time PCR analysis was performed to investigate the expression patterns of gene family members. All TPS family members in cotton can be divided into two subfamilies: Class I and Class II. The similarity of the TPS sequence is high within the same species and close within their family relatives. The genetic structures of two TPS subfamily members are different, with more introns and a more complicated gene structure in Class I. There is a TPS domain(Glyco transf_20) at the N-terminal in all TPS family members and a TPP domain(Trehalose_PPase) at the C-terminal in all except GrTPS6, GhTPS4, and GhTPS9. All Class II members contain a UDP-forming domain. The responses to environmental stresses showed that stresses could induce the expression of TPSs but the expression patterns vary with different stresses. The distribution of TPSs varies with different species but is relatively uniform on chromosomes. Genetic structure varies with different gene members, and expression levels vary with different stresses and exhibit tissue specificity. The upregulated genes in upland cotton TM-1 is significantly more than that in G. raimondii and G. arboreum L. Shixiya 1.

  20. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Jian, Hongju; Lu, Kun; Yang, Bo; Wang, Tengyue; Zhang, Li; Zhang, Aoxiang; Wang, Jia; Liu, Liezhao; Qu, Cunmin; Li, Jiana

    2016-01-01

    Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus) genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analyzed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of “ZS11” and the expression of 9 BnSUC and 7 BnSWEET genes in “ZS11” under various conditions, including biotic stress (Sclerotinia sclerotiorum), abiotic stresses (drought, salt and heat), and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin, and salicylic acid). In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape. PMID:27733861

  1. Transcriptome Wide Identification and Validation of Calcium Sensor Gene Family in the Developing Spikes of Finger Millet Genotypes for Elucidating Its Role in Grain Calcium Accumulation

    PubMed Central

    Singh, Uma M.; Chandra, Muktesh; Shankhdhar, Shailesh C.; Kumar, Anil

    2014-01-01

    Background In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. Principal Finding In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. Conclusion Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of gene family in non-model species. PMID:25157851

  2. Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation.

    PubMed

    Singh, Uma M; Chandra, Muktesh; Shankhdhar, Shailesh C; Kumar, Anil

    2014-01-01

    In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of gene family in non-model species.

  3. ["What you will": Results of an Empirical Analysis of the Need to Improve Work-life Balance for Physicians].

    PubMed

    Jerg-Bretzke, L; Krüsmann, P; Traue, H C; Limbrecht-Ecklundt, K

    2018-01-01

    This study assessed the perceived need for clinics to improve work-life balance of physicians. Hospitals are increasingly facing demands to offer physicians working conditions that allow greater balance between family life and pursuit of career. Simultaneously, hospitals could consider this an opportunity to stand out as attractive employers. N=120 doctors of the medical faculty and N=679 medical students in their premedical and clinical training participated online. The results of the Work-Family/Family-Work Conflict Scale (WFC/FWC) showed physicians to have a decreased work/life balance when starting to work professionally, especially with a child. Ninety percent of the respondents considered the following arrangements to be especially helpful: temporary work interruptions in an emergency, part-time positions or emergency childcare. The doctors also expressed their wish to be actively supported by their supervisors on the topic of work/life balance. This analysis on work-family balance shows the need for change in the studied samples. Based on the measures that were determined to be helpful, hospitals can make conclusions about what concrete steps of action can be taken. Additionally, WFC/FWC could be used as a standardized analysis measure to assess the load imposed on physicians by family on work place and vice versa. © Georg Thieme Verlag KG Stuttgart · New York.

  4. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    PubMed Central

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  5. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  6. Listening to Families' Views Regarding Institutionalization & Deinstitutionalization.

    ERIC Educational Resources Information Center

    Tabatabainia, Mohammad Mehdi

    2003-01-01

    A study of 22 Australian families whose relatives were living in an institution found families expressed their opposition to deinstitutionalization for the following reasons: adverse effects on themselves and on their relatives with intellectual disabilities; inadequate community-based residential settings; and provision of good services by the…

  7. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    PubMed

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  8. Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

    PubMed Central

    Hu, Ruibo; Chi, Xiaoyuan; Chai, Guohua; Kong, Yingzhen; He, Guo; Wang, Xiaoyu; Shi, Dachuan; Zhang, Dongyuan; Zhou, Gongke

    2012-01-01

    Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles. PMID:22359569

  9. Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun.1[w

    PubMed Central

    Tapia, Gerardo; Verdugo, Isabel; Yañez, Mónica; Ahumada, Iván; Theoduloz, Cristina; Cordero, Cecilia; Poblete, Fernando; González, Enrique; Ruiz-Lara, Simón

    2005-01-01

    The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stress-associated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5′-LTR region of this element can drive stress-induced transcriptional activation of the β-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethylene-induced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the β-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense. PMID:16040666

  10. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.

    PubMed

    Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin

    2018-03-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.

  11. Cross-reactivity of antigens and antibodies belonging to different pathogenic types of human papillomaviruses.

    PubMed

    Salyaev, R K; Rekoslavskaya, N I; Stolbikov, A S

    2017-11-01

    The analysis of the properties of a quadrivalent peroral vaccine against the cervical cancer, which was created in a plant expression system on the base of transgenic tomato fruits, by immunoassay and Western blot hybridization showed that the antibodies against human papilloma virus 16 L1 (HPV16 L1) actively interacted not only with the antigenic proteins HPV18 L1, HPV31 L1, and HPV45 L1, but also with the antigenic protein HPV6 L1, which belongs to another HPV family. Thus, new data on the possibility of crossreactivity between antibodies and antigens belonging to remote HPV families were obtained.

  12. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress

    PubMed Central

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-01-01

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911

  13. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.

    PubMed

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-04-12

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.

  14. Duplicated Enhancer Region Increases Expression of CTSB and Segregates with Keratolytic Winter Erythema in South African and Norwegian Families.

    PubMed

    Ngcungcu, Thandiswa; Oti, Martin; Sitek, Jan C; Haukanes, Bjørn I; Linghu, Bolan; Bruccoleri, Robert; Stokowy, Tomasz; Oakeley, Edward J; Yang, Fan; Zhu, Jiang; Sultan, Marc; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne M J J; von der Lippe, Charlotte; Brunner, Han G; Ersland, Kari M; Grayson, Wayne; Buechmann-Moller, Stine; Sundnes, Olav; Nirmala, Nanguneri; Morgan, Thomas M; van Bokhoven, Hans; Steen, Vidar M; Hull, Peter R; Szustakowski, Joseph; Staedtler, Frank; Zhou, Huiqing; Fiskerstrand, Torunn; Ramsay, Michele

    2017-05-04

    Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    PubMed Central

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Background Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Conclusions Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development. PMID:22164299

  16. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize.

    PubMed

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development.

  17. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor.

    PubMed

    Chen, Xin; Xia, Jing; Xia, Zhiqiang; Zhang, Hefang; Zeng, Changying; Lu, Cheng; Zhang, Weixiong; Wang, Wenquan

    2015-02-04

    MicroRNAs (miRNAs) are small (approximately 21 nucleotide) non-coding RNAs that are key post-transcriptional gene regulators in eukaryotic organisms. More than 100 cassava miRNAs have been identified in a conservation analysis and a repertoire of cassava miRNAs have also been characterised by next-generation sequencing (NGS) in recent studies. Here, using NGS, we profiled small non-coding RNAs and mRNA genes in two cassava cultivars and their wild progenitor to identify and characterise miRNAs that are potentially involved in plant growth and starch biosynthesis. Six small RNA and six mRNA libraries from leaves and roots of the two cultivars, KU50 and Arg7, and their wild progenitor, W14, were subjected to NGS. Analysis of the sequencing data revealed 29 conserved miRNA families and 33 new miRNA families. Together, these miRNAs potentially targeted a total of 360 putative target genes. Whereas 16 miRNA families were highly expressed in cultivar leaves, another 13 miRNA families were highly expressed in storage roots of cultivars. Co-expression analysis revealed that the expression level of some targets had negative relationship with their corresponding miRNAs in storage roots and leaves; these targets included MYB33, ARF10, GRF1, RD19, APL2, NF-YA3 and SPL2, which are known to be involved in plant development, starch biosynthesis and response to environmental stimuli. The identified miRNAs, target mRNAs and target gene ontology annotation all shed light on the possible functions of miRNAs in Manihot species. The differential expression of miRNAs between cultivars and their wild progenitor, together with our analysis of GO annotation and confirmation of miRNA: target pairs, might provide insight into know the differences between wild progenitor and cultivated cassava.

  18. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

    PubMed

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-06-24

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.

  19. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

    PubMed

    Wu, Jing; Wang, Lanfen; Wang, Shumin

    2016-09-07

    Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

  20. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters

    PubMed Central

    Yordem, Burcu K.; Conte, Sarah S.; Ma, Jian Feng; Yokosho, Kengo; Vasques, Kenneth A.; Gopalsamy, Srinivasa N.; Walker, Elsbeth L.

    2011-01-01

    Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency. Methods The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography. Key Results Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated. Conclusions PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis. PMID:21831857

  1. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development.

    PubMed

    Auden, Alana; Caddy, Jacinta; Wilanowski, Tomasz; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2006-10-01

    The Drosophila transcription factor Grainyhead (grh) is expressed in ectoderm-derived tissues where it regulates several key developmental events including cuticle formation, tracheal elongation and dorsal closure. Our laboratory has recently identified three novel mammalian homologues of the grh gene, Grainyhead-like 1, -2 and -3 (Grhl1-3) that rewrite the phylogeny of this family. Using gene targeting in mice, we have shown that Grhl3 is essential for neural tube closure, skin barrier formation and wound healing. Despite their extensive sequence homology, Grhl1 and Grhl2 are unable to compensate for loss of Grhl3 in these developmental processes. To explore this lack of redundancy, and to gain further insights into the functions of this gene family in mammalian development we have performed an extensive in situ hybridisation analysis. We demonstrate that, although all three Grhl genes are highly expressed in the developing epidermis, they display subtle differences in the timing and level of expression. Surprisingly, we also demonstrate differential expression patterns in non-ectoderm-derived tissues, including the heart, the lung, and the metanephric kidney. These findings expand our understanding of the unique role of Grhl3 in neurulation and epidermal morphogenesis, and provide a focus for further functional analysis of the Grhl genes during mouse embryogenesis.

  2. Immunohistochemical and Image Analysis-Based Study Shows That Several Immune Checkpoints are Co-expressed in Non-Small Cell Lung Carcinoma Tumors.

    PubMed

    Parra, Edwin Roger; Villalobos, Pamela; Zhang, Jiexin; Behrens, Carmen; Mino, Barbara; Swisher, Stephen; Sepesi, Boris; Weissferdt, Annika; Kalhor, Neda; Heymach, John Victor; Moran, Cesar; Zhang, Jianjun; Lee, Jack; Rodriguez-Canales, Jaime; Gibbons, Don; Wistuba, Ignacio I

    2018-06-01

    The understanding of immune checkpoint molecules' co-expression in non-small cell lung carcinoma (NCLC) is important to potentially design combinatorial immunotherapy approaches. We studied 225 formalin-fixed, paraffin-embedded tumor tissues from stage I-III NCLCs - 142 adenocarcinomas (ADCs) and 83 squamous cell carcinomas (SCCs) - placed in tissue microarrays. Nine immune checkpoint markers were evaluated; four (programmed death ligand 1 [PD-L1], B7-H3, B7-H4, and indoleamine 2,3-dioxygenase 1 [IDO-1]) expressed predominantly in malignant cells (MCs) and five (inducible T cell costimulator, V-set immunoregulatory receptor, T-cell immunoglobulin mucin family member 3, lymphocyte activating 3, and OX40) expressed mostly in stromal tumor-associated inflammatory cells (TAICs). All markers were examined using a quantitative image analysis and correlated with clinicopathologic features, TAICs, and molecular characteristics. Using above the median value as positive expression in MCs and high density of TAICs expressing those markers, we identified higher expression of immune checkpoints in SCC than ADC. Common simultaneous expression by MCs was PD-L1 + B7-H3 + IDO-1 in ADC and PD-L1 + B7-H3, or B7-H3 + B7-H4, in SCC. TAICs expressing checkpoint were significantly higher in current smokers than in never smokers. Almost all the immune checkpoint markers showed positive correlation with TAICs expressing inflammatory cell markers. KRAS-mutant ADC specimens showed higher expression of PD-L1 in MCs and of B7-H3, T-cell immunoglobulin mucin family member 3, and IDO-1 in TAICs than wild type. Kaplan-Meier survival curves showed worse prognosis in ADC patients with higher B7-H4 expression by MCs. We found frequent immunohistochemical co-expression of immune checkpoints in surgically resected NCLC tumors and correlated with tumor histology, smoking history, tumor size, and the density of inflammatory cells and tumor mutational status. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Regulation of the cellular localization and function of human transient receptor potential channel 1 by other members of the TRPC family.

    PubMed

    Alfonso, Salgado; Benito, Ordaz; Alicia, Sampieri; Angélica, Zepeda; Patricia, Glazebrook; Diana, Kunze; Vaca, Luis; Luis, Vaca

    2008-04-01

    Members of the Canonical Transient Receptor Potential (TRPC) family of ionic channels are able to form homo- and heterotetrameric channels. Depending on the study, TRPC1 has been detected on both the surface and inside the cell, probably in the endoplasmic reticulum (ER). Likewise, TRPC1 has been described both as a store-operated channel and as one unable to function when forming a homotetramer. It is possible that the apparent differences in the expression and function of TRPC1 are due to its association with other proteins, possibly from the same TRPC family. In the present study we used confocal microscopy and a fluorescently tagged TRPC1 to examine the localization of this protein when co-expressed with other members of the TRPC family. Whole-cell and single channel electrophysiological recordings were conducted to study the function of TRPC1 expressed alone or co-expressed with other members of the TRPC family. A FRET-based calcium sensor fused to TRPC1 was used to assess the functionality of the intracellular TRPC1. Our results showed that TRPC4 and TRPC5 were able to increase the amount of membrane-expressed TRPC1 as evaluated by confocal microscopy and patch clamp recordings. The FRET-based calcium sensor fused to TRPC1 strongly suggests that this protein forms ER-expressed functional homotetrameric channels activated by agonists coupled to the IP(3) cascade. These results indicate that TRPC1 is a multifunctional protein able to form intracellular calcium release channels when expressed alone, and plasma membrane channels when co-expressed with TRPC4 or TRPC5, but not TRPC3 or TRPC6. Both (ER and plasma membrane) forms of the channel are activated upon addition of agonists coupled to the IP(3) cascade.

  5. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6.

    PubMed

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-07-15

    To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection.

  6. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6

    PubMed Central

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-01-01

    AIM: To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. METHODS: Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. RESULTS: Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. CONCLUSION: MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection. PMID:27559432

  7. Genome-Wide Expression Analysis Suggests Hypoxia-Triggered Hyper-Coagulation Leading to Venous Thrombosis at High Altitude.

    PubMed

    Jha, Prabhash Kumar; Sahu, Anita; Prabhakar, Amit; Tyagi, Tarun; Chatterjee, Tathagata; Arvind, Prathima; Nair, Jiny; Gupta, Neha; Kumari, Babita; Nair, Velu; Bajaj, Nitin; Shanker, Jayashree; Sharma, Manish; Kumar, Bhuvnesh; Ashraf, Mohammad Zahid

    2018-06-04

    Venous thromboembolism (VTE), a multi-factorial disease, is the third most common cardiovascular disease. Established genetic and acquired risk factors are responsible for the onset of VTE. High altitude (HA) also poses as an additional risk factor, predisposing individuals to VTE; however, its molecular mechanism remains elusive. This study aimed to identify genes/pathways associated with the pathophysiology of deep vein thrombosis (DVT) at HA. Gene expression profiling of DVT patients, who developed the disease, either at sea level or at HA-DVT locations, resulted in differential expression of 378 and 875 genes, respectively. Gene expression profiles were subjected to bioinformatic analysis, followed by technical and biological validation of selected genes using quantitative reverse transcription-polymerase chain reaction. Both gene ontology and pathway analysis showed enrichment of genes involved in haemostasis and platelet activation in HA-DVT patients with the most relevant pathway being 'response to hypoxia'. Thus, given the environmental condition the differential expression of hypoxia-responsive genes (angiogenin, ribonuclease, RNase A family, 5; early growth response 1; lamin A; matrix metallopeptidase 14 [membrane-inserted]; neurofibromin 1; PDZ and LIM domain 1; procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1; solute carrier family 6 [neurotransmitter transporter, serotonin], member 4; solute carrier family 9 [sodium/hydrogen exchanger], member 1; and TEK tyrosine kinase, endothelial) in HA-DVT could be a determining factor to understand the pathophysiology of DVT at HA. Schattauer GmbH Stuttgart.

  8. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    PubMed

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  9. Genome-Wide Classification and Evolutionary and Expression Analyses of Citrus MYB Transcription Factor Families in Sweet Orange

    PubMed Central

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus. PMID:25375352

  10. ATP13A2 variability in Parkinson disease

    PubMed Central

    Vilariño-Güell, Carles; Soto, Alexandra I.; Lincoln, Sarah J.; Yahmed, Samia Ben; Kefi, Mounir; Heckman, Michael G.; Hulihan, Mary M.; Chai, Hua; Diehl, Nancy N.; Amouri, Rim; Rajput, Alex; Mash, Deborah C.; Dickson, Dennis W.; Middleton, Lefkos T.; Gibson, Rachel A.; Hentati, Faycal; Farrer, Matthew J.

    2008-01-01

    Recessively inherited mutations in ATP13A2 result in Kufor-Rakeb syndrome, whereas genetic variability and elevated ATP13A2 expression have been implicated in Parkinson disease (PD). Given this background, ATP13A2 was comprehensively assessed to support or refute its contribution to PD. Sequencing of ATP13A2 exons and intron-exon boundaries was performed in 89 probands with familial parkinsonism from Tunisia. The segregation of mutations with parkinsonism was subsequently assessed within pedigrees. The frequency of genetic variants and evidence for association was also examined in 240 patients with non-familial PD and 372 healthy controls. ATP13A2 mRNA expression was also quantified in brain tissues from 38 patients with non-familial PD and 38 healthy subjects from the US. Sequencing analysis revealed 37 new variants; seven missense, six silent and 24 that were noncoding. However, no single ATP13A2 mutation segregated with familial parkinsonism in either a dominant or recessive manner. Four markers showed marginal association with non-familial PD, prior to correction for multiple testing. ATP13A2 mRNA expression was marginally decreased in PD brains compared with tissue from control subjects. In conclusion, neither ATP13A2 genetic variability nor quantitative gene expression in brain appears to contribute to familial parkinsonism or non-familial PD. PMID:19085912

  11. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    PubMed

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rice Phospholipase A Superfamily: Organization, Phylogenetic and Expression Analysis during Abiotic Stresses and Development

    PubMed Central

    Singh, Amarjeet; Baranwal, Vinay; Shankar, Alka; Kanwar, Poonam; Ranjan, Rajeev; Yadav, Sandeep; Pandey, Amita; Kapoor, Sanjay; Pandey, Girdhar K.

    2012-01-01

    Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants. PMID:22363522

  13. Genomewide analysis of TCP transcription factor gene family in Malus domestica.

    PubMed

    Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang

    2014-12-01

    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.

  14. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Identification and expression analyses of two genes encoding putative low-affinity nitrate transporters from Nicotiana plumbaginifolia.

    PubMed

    Fraisier, V; Dorbe, M F; Daniel-Vedele, F

    2001-01-01

    Higher plants have both high- and low-affinity nitrate uptake systems (HATS and LATS respectively). Here we report the isolation and characterization of two genes, NpNRT1.1 and NpNRT1.2, from Nicotiana plumbaginifolia whose structural features suggest that they both belong to the NRT1 gene family, which is involved in the LATS. Amino acid sequence alignment showed that the N. plumbaginifolia proteins have greater similarity to their corresponding tomato homologues than to each other. Genomic Southern blot analysis indicates that there are probably more than two members of this family in N. plumbaginifolia. Northern blot analysis shows that NpNRT1.2 expression is restricted strictly to roots, whereas NpNRT1.1, in addition to roots, is expressed at a basal level in all other plant organs. Likewise, differential expression in response to external treatments with various N sources was observed for these two genes: NpNRT1.1 can be considered as a constitutively expressed gene whereas NpNRT1.2 expression is dependent strictly on high nitrate concentrations. Finally, over-expression of a gene involved in the HATS does not lead to any modification of LATS gene expression.

  16. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  17. Homez, a homeobox leucine zipper gene specific to the vertebrate lineage.

    PubMed

    Bayarsaihan, Dashzeveg; Enkhmandakh, Badam; Makeyev, Aleksandr; Greally, John M; Leckman, James F; Ruddle, Frank H

    2003-09-02

    This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development. Genomic analysis revealed that human and mouse genes are located at 14q11.2 and 14C, respectively, and are composed of two exons. The zebrafish and pufferfish homologs share high similarity to mammalian sequences, particularly within the homeodomain sequences. Based on homology of homeodomains and on the similarity in overall protein structure, we delineate Homez and members of ZHX family of zinc finger homeodomain factors as a subset within the superfamily of homeobox-containing proteins. The type and composition of homeodomains in the Homez subfamily are vertebrate-specific. Phylogenetic analysis indicates that Homez lineage was separated from related genes >400 million years ago before separation of ray- and lobe-finned fishes. We apply a duplication-degeneration-complementation model to explain how this family of genes has evolved.

  18. Genome-Wide Screening and Characterization of the Dof Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wang, Peipei; Li, Jing; Gao, Xiaoyang; Zhang, Di; Li, Anlin; Liu, Changning

    2018-05-29

    Physic nut ( Jatropha curcas L.) is a species of flowering plant with great potential for biofuel production and as an emerging model organism for functional genomic analysis, particularly in the Euphorbiaceae family. DNA binding with one finger (Dof) transcription factors play critical roles in numerous biological processes in plants. Nevertheless, the knowledge about members, and the evolutionary and functional characteristics of the Dof gene family in physic nut is insufficient. Therefore, we performed a genome-wide screening and characterization of the Dof gene family within the physic nut draft genome. In total, 24 JcDof genes (encoding 33 JcDof proteins) were identified. All the JcDof genes were divided into three major groups based on phylogenetic inference, which was further validated by the subsequent gene structure and motif analysis. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcDof gene family, and gene expansion was mainly subjected to positive selection. The expression profile demonstrated the broad involvement of JcDof genes in response to various abiotic stresses, hormonal treatments and functional divergence. This study provides valuable information for better understanding the evolution of JcDof genes, and lays a foundation for future functional exploration of JcDof genes.

  19. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  20. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    PubMed

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought stress. Our results presented here may aid in the selection of appropriate candidate genes for further characterization of their biological functions in poplar.

  1. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  2. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-07-01

    Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    PubMed

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    PubMed

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  5. Molecular Cloning, Bioinformatic Analysis, and Expression of Bombyx mori Lebocin 5 Gene Related to Beauveria bassiana Infection.

    PubMed

    Lü, Dingding; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Chen, Tian; Guo, Xijie

    2017-01-01

    A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori , by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana , the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.

  6. Lipopolysaccharide-induced innate immune factors in the bottlenose dolphin (Tursiops truncatus) detected in expression sequence tag analysis.

    PubMed

    Ohishi, Kazue; Shishido, Reiko; Iwata, Yasunao; Saitoh, Masafumi; Takenaka, Ryota; Ohtsu, Dai; Okutsu, Kenji; Maruyama, Tadashi

    2011-11-01

    EST analysis based on the megaclone-megasorting method was performed using leukocytes from the bottlenose dolphin (Tursiops truncatus) with or without LPS stimulation. A total of 849 upregulated and 384 downregulated EST clones were sequenced, annotated, and functionally classified. Ferritin heavy peptide I was the most abundant upregulated transcript, suggesting that LPS stimulation induced high production of reactive oxygen species, which were sequestered in ferritin. Among the immune factors, the transcripts coding for an IL-1Ra, homologs to bovine serum amyloid A3, and canine intercellular adhesion molecule-1 were highly expressed. Markedly downregulated transcripts of immune factors were those for homologs of calcium-binding proteins belonging to the S100 family, S100A12, S100A8, and S100A6. Time-course experiments on the expression of some immune factors including IL-1Ra suggested that these factors interact and control cetacean innate immunity. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  7. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.

    PubMed

    Magwanga, Richard Odongo; Lu, Pu; Kirungu, Joy Nyangasi; Lu, Hejun; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Zhang, Zhenmei; Salih, Haron; Wang, Kunbo; Liu, Fang

    2018-01-15

    Late embryogenesis abundant (LEA) proteins are large groups of hydrophilic proteins with major role in drought and other abiotic stresses tolerance in plants. In-depth study and characterization of LEA protein families have been carried out in other plants, but not in upland cotton. The main aim of this research work was to characterize the late embryogenesis abundant (LEA) protein families and to carry out gene expression analysis to determine their potential role in drought stress tolerance in upland cotton. Increased cotton production in the face of declining precipitation and availability of fresh water for agriculture use is the focus for breeders, cotton being the backbone of textile industries and a cash crop for many countries globally. In this work, a total of 242, 136 and 142 LEA genes were identified in G. hirsutum, G. arboreum and G. raimondii respectively. The identified genes were classified into eight groups based on their conserved domain and phylogenetic tree analysis. LEA 2 were the most abundant, this could be attributed to their hydrophobic character. Upland cotton LEA genes have fewer introns and are distributed in all chromosomes. Majority of the duplicated LEA genes were segmental. Syntenic analysis showed that greater percentages of LEA genes are conserved. Segmental gene duplication played a key role in the expansion of LEA genes. Sixty three miRNAs were found to target 89 genes, such as miR164, ghr-miR394 among others. Gene ontology analysis revealed that LEA genes are involved in desiccation and defense responses. Almost all the LEA genes in their promoters contained ABRE, MBS, W-Box and TAC-elements, functionally known to be involved in drought stress and other stress responses. Majority of the LEA genes were involved in secretory pathways. Expression profile analysis indicated that most of the LEA genes were highly expressed in drought tolerant cultivars Gossypium tomentosum as opposed to drought susceptible, G. hirsutum. The tolerant genotypes have a greater ability to modulate genes under drought stress than the more susceptible upland cotton cultivars. The finding provides comprehensive information on LEA genes in upland cotton, G. hirsutum and possible function in plants under drought stress.

  8. Identification, Localization, and Functional Implications of the Microdomain-Forming Stomatin Family in the Ciliated Protozoan Paramecium tetraurelia

    PubMed Central

    Stuermer, Claudia A. O.; Plattner, Helmut

    2013-01-01

    The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure). PMID:23376944

  9. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila.

    PubMed

    Dolezal, Tomas; Gazi, Michal; Zurovec, Michal; Bryant, Peter J

    2003-10-01

    Many Drosophila genes exist as members of multigene families and within each family the members can be functionally redundant, making it difficult to identify them by classical mutagenesis techniques based on phenotypic screening. We have addressed this problem in a genetic analysis of a novel family of six adenosine deaminase-related growth factors (ADGFs). We used ends-in targeting to introduce mutations into five of the six ADGF genes, taking advantage of the fact that five of the family members are encoded by a three-gene cluster and a two-gene cluster. We used two targeting constructs to introduce loss-of-function mutations into all five genes, as well as to isolate different combinations of multiple mutations, independent of phenotypic consequences. The results show that (1) it is possible to use ends-in targeting to disrupt gene clusters; (2) gene conversion, which is usually considered a complication in gene targeting, can be used to help recover different mutant combinations in a single screening procedure; (3) the reduction of duplication to a single copy by induction of a double-strand break is better explained by the single-strand annealing mechanism than by simple crossing over between repeats; and (4) loss of function of the most abundantly expressed family member (ADGF-A) leads to disintegration of the fat body and the development of melanotic tumors in mutant larvae.

  10. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status.

    PubMed

    Meiyalaghan, Sathiyamoorthy; Thomson, Susan J; Fiers, Mark W E J; Barrell, Philippa J; Latimer, Julie M; Mohan, Sara; Jones, E Eirian; Conner, Anthony J; Jacobs, Jeanne M E

    2014-01-02

    GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses.

  11. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  12. Analysis of the floral transcriptome of Tarenaya hassleriana (Cleomaceae), a member of the sister group to the Brassicaceae: towards understanding the base of morphological diversity in Brassicales

    PubMed Central

    2014-01-01

    Background Arabidopsis thaliana, a member of the Brassicaceae family is the dominant genetic model plant. However, while the flowers within the Brassicaceae members are rather uniform, mainly radially symmetrical, mostly white with fixed organ numbers, species within the Cleomaceae, the sister family to the Brassicaceae show a more variable floral morphology. We were interested in understanding the molecular basis for these morphological differences. To this end, the floral transcriptome of a hybrid Tarenaya hassleriana, a Cleomaceae with monosymmetric, bright purple flowers was sequenced, annotated and analyzed in respect to floral regulators. Results We obtained a comprehensive floral transcriptome with high depth and coverage close to saturation analyzed using rarefaction analysis a method well known in biodiversity studies. Gene expression was analyzed by calculating reads per kilobase gene model per million reads (RPKM) and for selected genes in silico expression data was corroborated by qRT-PCR analysis. Candidate transcription factors were identified based on differences in expression pattern between A. thaliana and T. hassleriana, which are likely key regulators of the T. hassleriana specific floral characters such as coloration and male sterility in the hybrid plant used. Analysis of lineage specific genes was carried out with members of the fabids and malvids. Conclusions The floral transcriptome of T. hassleriana provides insights into key pathways involved in the regulation of late anthocyanin biosynthesis, male fertility, flowering time and organ growth regulation which are unique traits compared the model organism A. thaliana. Analysis of lineage specific genes carried out with members of the fabids and malvids suggests an extensive gene birth rate in the lineage leading to core Brassicales while only few genes were potentially lost during core Brassicales evolution, which possibly reflects the result of the At-β whole genome duplication. Our analysis should facilitate further analyses into the molecular mechanisms of floral morphogenesis and pigmentation and the mechanisms underlying the rather diverse floral morphologies in the Cleomaceae. PMID:24548348

  13. Function of Protein Phosphatase 2A in Control of Proliferation: Isolation and Analysis of Dominant-Defective Mutants

    DTIC Science & Technology

    1999-06-01

    subunits are expressed ubiquitously and appear to be encoded by small and quite homogeneous gene families. In plants , however, A and C subunit gene...1996). In both plants and animals, different B subunit isoforms are encoded by two or more unrelated gene families, some of which are expressed in a...PP2A functions in whole plants and in mammalian tissue culture cells. This genetic system may also prove useful for analyzing interactions between

  14. Transcriptional response after exposure to domoic acid-producing Pseudo-nitzschia in the digestive gland of the mussel Mytilus galloprovincialis.

    PubMed

    Pazos, Antonio J; Ventoso, Pablo; Martínez-Escauriaza, Roi; Pérez-Parallé, M Luz; Blanco, Juan; Triviño, Juan C; Sánchez, José L

    2017-12-15

    Bivalve molluscs are filter feeding species that can accumulate biotoxins in their body tissues during harmful algal blooms. Amnesic Shellfish Poisoning (ASP) is caused by species of the diatom genus Pseudo-nitzschia, which produces the toxin domoic acid. The Mytilus galloprovincialis digestive gland transcriptome was de novo assembled based on the sequencing of 12 cDNA libraries, six obtained from control mussels and six from mussels naturally exposed to domoic acid-producing diatom Pseudo-nitzschia australis. After de novo assembly 94,727 transcripts were obtained, with an average length of 1015 bp and a N50 length of 761 bp. The assembled transcripts were clustered (homology > 90%) into 69,294 unigenes. Differential gene expression analysis was performed (DESeq2 algorithm) in the digestive gland following exposure to the toxic algae. A total of 1158 differentially expressed unigenes (absolute fold change > 1.5 and p-value < 0.05) were detected: 686 up-regulated and 472 down-regulated. Several membrane transporters belonging to the family of the SLC (solute carriers) were over-expressed in exposed mussels. Functional enrichment was performed using Pfam annotations obtained from the genes differentially expressed, 37 Pfam families were found to be significantly (FDR adjusted p-value < 0.1) enriched. Some of these families (sulfotransferases, aldo/keto reductases, carboxylesterases, C1q domain and fibrinogen C-terminal globular domain) could be putatively involved in detoxification processes, in the response against of the oxidative stress and in immunological processes. Protein network analysis with STRING algorithm found alteration of the Notch signaling pathway under the action of domoic acid-producing Pseudo-nitzschia. In conclusion, this study provides a high quality reference transcriptome of M. galloprovincialis digestive gland and identifies potential genes involved in the response to domoic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. PSMB5 plays a dual role in cancer development and immunosuppression

    PubMed Central

    Wang, Chih-Yang; Li, Chung-Yen; Hsu, Hui-Ping; Cho, Chien-Yu; Yen, Meng-Chi; Weng, Tzu-Yang; Chen, Wei-Ching; Hung, Yu-Hsuan; Lee, Kuo-Ting; Hung, Jui-Hsiang; Chen, Yi-Ling; Lai, Ming-Derg

    2017-01-01

    Tumor progression and metastasis are dependent on the intrinsic properties of tumor cells and the influence of microenvironment including the immune system. It would be important to identify target drug that can inhibit cancer cell and activate immune cells. Proteasome β subunits (PSMB) family, one component of the ubiquitin-proteasome system, has been demonstrated to play an important role in tumor cells and immune cells. Therefore, we used a bioinformatics approach to examine the potential role of PSMB family. Analysis of breast TCGA and METABRIC database revealed that high expression of PSMB5 was observed in breast cancer tissue and that high expression of PSMB5 predicted worse survival. In addition, high expression of PSMB5 was observed in M2 macrophages. Based on our bioinformatics analysis, we hypothesized that PSMB5 contained immunosuppressive and oncogenic characteristics. To study the effects of PSMB5 on the cancer cell and macrophage in vitro, we silenced PSMB5 expression with shRNA in THP-1 monocytes and MDA-MB-231 cells respectively. Knockdown of PSMB5 promoted human THP-1 monocyte differentiation into M1 macrophage. On the other hand, knockdown PSMB5 gene expression inhibited MDA-MB-231 cell growth and migration by colony formation assay and boyden chamber. Collectively, our data demonstrated that delivery of PSMB5 shRNA suppressed cell growth and activated defensive M1 macrophages in vitro. Furthermore, lentiviral delivery of PSMB5 shRNA significantly decreased tumor growth in a subcutaneous mouse model. In conclusion, our bioinformatics study and functional experiments revealed that PSMB5 served as novel cancer therapeutic targets. These results also demonstrated a novel translational approach to improve cancer immunotherapy. PMID:29218236

  16. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    PubMed

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  17. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  18. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes.

    PubMed

    Wang, Zhihui; Cheng, Ke; Wan, Liyun; Yan, Liying; Jiang, Huifang; Liu, Shengyi; Lei, Yong; Liao, Boshou

    2015-12-10

    Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.

  19. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases.

    PubMed

    Gan, Xiao-Ning; Luo, Jie; Tang, Rui-Xue; Wang, Han-Lin; Zhou, Hong; Qin, Hui; Gan, Ting-Qing; Chen, Gang

    2017-05-01

    The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.

  20. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system.

    PubMed

    Ratzka, Andreas; Baron, Olga; Grothe, Claudia

    2011-01-01

    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in dissociated E11.5 VM cell cultures, however, such a continuous exposure had no influence on the yield of dopaminergic neurons in vitro.

  1. Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica.

    PubMed

    Zhao, Yan; Weng, Qiaoyun; Song, Jinhui; Ma, Hailian; Yuan, Jincheng; Dong, Zhiping; Liu, Yinghui

    2016-06-01

    In plants, resistance (R) genes are involved in pathogen recognition and subsequent activation of innate immune responses. The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes family forms the largest R-gene family among plant genomes and play an important role in plant disease resistance. In this paper, comprehensive analysis of NBS-encoding genes is performed in the whole Setaria italica genome. A total of 96 NBS-LRR genes are identified, and comprehensive overview of the NBS-LRR genes is undertaken, including phylogenetic analysis, chromosome locations, conserved motifs of proteins, and gene expression. Based on the domain, these genes are divided into two groups and distributed in all Setaria italica chromosomes. Most NBS-LRR genes are located at the distal tip of the long arms of the chromosomes. Setaria italica NBS-LRR proteins share at least one nucleotide-biding domain and one leucine-rich repeat domain. Our results also show the duplication of NBS-LRR genes in Setaria italica is related to their gene structure.

  2. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    PubMed

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    PubMed

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  4. Mutations in the novel gene FOPV are associated with familial autosomal dominant and non-familial obliterative portal venopathy.

    PubMed

    Besmond, Claude; Valla, Dominique; Hubert, Laurence; Poirier, Karine; Grosse, Brigitte; Guettier, Catherine; Bernard, Olivier; Gonzales, Emmanuel; Jacquemin, Emmanuel

    2018-02-01

    Obliterative portal venopathy (OPV) is characterized by lesions of portal vein intrahepatic branches and is thought to be responsible for many cases of portal hypertension in the absence of cirrhosis or obstruction of large portal or hepatic veins. In most cases the cause of OPV remains unknown. The aim was to identify a candidate gene of OPV. Whole exome sequencing was performed in two families, including 6 patients with OPV. Identified mutations were confirmed by Sanger sequencing and expression of candidate gene transcript was studied by real time qPCR in human tissues. In both families, no mutations were identified in genes previously reported to be associated with OPV. In each family, we identified a heterozygous mutation (c.1783G>A, p.Gly595Arg and c.4895C>T, p.Thr1632Ile) in a novel gene located on chromosome 4, that we called FOPV (Familial Obliterative Portal Venopathy), and having a cDNA coding for 1793 amino acids. The FOPV mutations segregated with the disease in families and the pattern of inheritance was suggestive of autosomal dominant inherited OPV, with incomplete penetrance and variable expressivity. In silico analysis predicted a deleterious effect of each mutant and mutations concerned highly conserved amino acids in mammals. A deleterious heterozygous FOPV missense mutation (c.4244T>C, p.Phe1415Ser) was also identified in a patient with non-familial OPV. Expression study in liver veins showed that FOPV transcript was mainly expressed in intrahepatic portal vein. This report suggests that FOPV mutations may have a pathogenic role in some cases of familial and non-familial OPV. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication. PMID:22808219

  6. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  7. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects.

    PubMed

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le

    2017-06-01

    The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.

  8. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects

    PubMed Central

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling

    2017-01-01

    Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351

  9. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    PubMed Central

    Ren, Wen; Yang, Fengling; He, Hang; Zhao, Jiuran

    2015-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize. PMID:26599013

  10. Krüppel Like Factors Family Expression in Cervical Cancer Cells.

    PubMed

    Marrero-Rodríguez, Daniel; la Cruz, Hugo Arreola-De; Taniguchi-Ponciano, Keiko; Gomez-Virgilio, Laura; Huerta-Padilla, Victor; Ponce-Navarrete, Gustavo; Andonegui-Elguera, Sergio; Jimenez-Vega, Florinda; Romero-Morelos, Pablo; Rodriguez-Esquivel, Miriam; Meraz-Rios, Marco; Figueroa-Corona, Ma Del Pilar; Monroy, Alberto; Pérez-González, Oscar; Salcedo, Mauricio

    2017-05-01

    Krüppel Like Factors (KLF) refers to a family of seventeen members of transcription factors. Involved in several cellular processes. As other cancer types, Cervical Cancer (CC) presents molecular deregulations in transcription factors, but especially Human Papilloma Virus (HPV) sequences. Here in this work we analyzed the mRNA expression of all KLF family members in CC-derived cell lines and CC tissues. The cell lines used were HeLa, INBL, RoVa, C4-I, Ms751, ViPa, CaLo, SiHa, CaSki, C33a and ViBo and the non-tumorigenic HaCaT. mRNA expression was analyzed by means of expression microarray and RT-PCR, and KLF5 protein by immunofluorescence. The cell lines were grouped according to HPV genotype as HPV16, HPV18 positive or HPV negative cells. Heterogeneous expression was observed among the cell lines. Despite the heterogeneous expression profile, KLF3, -5, -12, -15 and -16 transcripts were present in all cell lines, KLF4 and -10 which were not expressed in CaSki; KLF11 and 13 were not expressed by Vipa and C4-I, and KLF7 was not expressed by C4-I and Rova. The CC tissue analysis shows expression of most of the KLF members, such as KLF5. KLF5 immunosignal was positive in the three cell lines analyzed. We suggest that KLF expression could not be related to HPV presence/genotype, at least at transcriptional level, and the expression of KLF family members may be necessary in the biology of the CC cells. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta).

    PubMed

    Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan

    2018-03-26

    The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.

  12. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.

  13. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  14. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    PubMed

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  15. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    PubMed

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  16. Attitudes towards people with mental illness among psychiatrists, psychiatric nurses, involved family members and the general population in a large city in Guangzhou, China.

    PubMed

    Sun, Bin; Fan, Ni; Nie, Sha; Zhang, Minglin; Huang, Xini; He, Hongbo; Rosenheck, Robert A

    2014-01-01

    Stigma towards people with mental illness is believed to be widespread in low and middle income countries. This study assessed the attitudes towards people with mental illness among psychiatrists, psychiatric nurses, involved family members of patients in a psychiatric facility and the general public using a standard 43-item survey (N = 535). Exploratory factor analysis identified four distinctive attitudes which were then compared using Analysis of Covariance (ANCOVA) among the four groups, all with ties to the largest psychiatric facility in Guangzhou, China, adjusting for sociodemographic differences. Four uncorrelated factors expressed preferences for 1) community-based treatment, social integration and a biopsychosocial model of causation, 2) direct personal relationships with people with mental illness, 3) a lack of fear and positive views of personal interactions with people with mental illness, 4) disbelief in superstitious explanations of mental illness. Statistically significant differences favored community-based treatment and biopsychosocial causation (factor 1) among professional groups (psychiatrists and nurses) as compared with family members and the general public (p < 0.001); while family members, unexpectedly, showed far weaker personal preferences for direct personal relationships with people with mental illness than all three other groups (p < 0.001). Both psychiatrists and nurses showed greater support for social integration and biopsychosocial understandings of mental illness than the lay public, most likely because of their training and experience, while family members showed the least positive attitudes towards direct personal relationships with people with mental illness. These findings suggest support for a more extensive, formal system of care that gives family members some distance from the problems of their relatives and support in their care.

  17. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  18. Characterization of X Chromosome Inactivation Using Integrated Analysis of Whole-Exome and mRNA Sequencing

    PubMed Central

    Szelinger, Szabolcs; Malenica, Ivana; Corneveaux, Jason J.; Siniard, Ashley L.; Kurdoglu, Ahmet A.; Ramsey, Keri M.; Schrauwen, Isabelle; Trent, Jeffrey M.; Narayanan, Vinodh; Huentelman, Matthew J.; Craig, David W.

    2014-01-01

    In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation. PMID:25503791

  19. Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family.

    PubMed

    Yang, Jinhua; Gao, Min; Huang, Li; Wang, Yaqiong; van Nocker, Steve; Wan, Ran; Guo, Chunlei; Wang, Xiping; Gao, Hua

    2017-02-09

    Basic helix-loop-helix (bHLH) proteins, which are characterized by a conserved bHLH domain, comprise one of the largest families of transcription factors in both plants and animals, and have been shown to have a wide range of biological functions. However, there have been very few studies of bHLH proteins from perennial tree species. We describe here the identification and characterization of 175 bHLH transcription factors from apple (Malus × domestica). Phylogenetic analysis of apple bHLH (MdbHLH) genes and their Arabidopsis thaliana (Arabidopsis) orthologs indicated that they can be classified into 23 subgroups. Moreover, integrated synteny analysis suggested that the large-scale expansion of the bHLH transcription factor family occurred before the divergence of apple and Arabidopsis. An analysis of the exon/intron structure and protein domains was conducted to suggest their functional roles. Finally, we observed that MdbHLH subgroup III and IV genes displayed diverse expression profiles in various organs, as well as in response to abiotic stresses and various hormone treatments. Taken together, these data provide new information regarding the composition and diversity of the apple bHLH transcription factor family that will provide a platform for future targeted functional characterization.

  20. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects.

    PubMed

    Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  2. Temporal changes in the expression of avian β-defensins in the chicken vagina during sexual maturation and Salmonella infection.

    PubMed

    Anastasiadou, Maria; Avdi, Melpomeni; Theodoridis, Alexandros; Michailidis, Georgios

    2013-06-01

    Avian β-defensins (AvβDs) constitute a family of antimicrobial peptides that are critical to innate immunity in chickens, providing protection against microbial pathogens including Salmonella Enteritidis (SE). As apart from the digestive tract another main route of SE colonization in birds is via infection of the oviduct and specifically of the vagina, the aim of this study was to investigate the expression of the complete family of AvβDs, in the chicken vagina in vivo, to determine whether sexual maturation affects their mRNA abundance and to investigate whether SE infection alters the vaginal AvβDs expression. Expression analysis revealed that 11 members of the AvβD family were expressed in the chicken vagina. Quantitative real-time PCR analysis revealed that the mRNA abundance of five AvβDs was up regulated and of one AvβD was down regulated with respect to sexual maturation. In addition SE infection resulted in a significant induction of AvβD5, 7, 10, 11, 12 and 14 in the vagina of sexually mature birds, and in a significant induction of AvβD5 and 11 in the vagina of aged birds. These findings provide strong evidence to suggest that an AvβD-mediated immune response mechanism exists in the chicken vagina providing protection against bacterial pathogens including Salmonella species.

  3. The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32, SLC36, and SLC38.

    PubMed

    Sundberg, Björn E; Wååg, Elin; Jacobsson, Josefin A; Stephansson, Olga; Rumaks, Juris; Svirskis, Simons; Alsiö, Johan; Roman, Erika; Ebendal, Ted; Klusa, Vija; Fredriksson, Robert

    2008-06-01

    Members of the solute carrier families (SLC) 32, 36, and 38, together also designated the beta-group of SLCs, are known to transport neutral amino acids. In this paper, we show that these three families were present before the split of the animal lineage and that they are likely to share a common decent. We also show that the APF transporters found in plants are most likely homologous to the mammalian beta-group, suggesting that this type of transporters arouse early in the evolution of eukaryotes. We performed detailed tissue expression analysis of all the members of the beta-group in rat and found several examples of highly specific expression patterns, with SLC38A7 being exclusively found in liver, SLC38A5 in blood, and SLC38A4 in muscle and liver. Moreover, we found that SLC38A10 is expressed in several endocrine organs. We also found that SLC38A1 is highly up regulated in the cortex from rats treated with diazepam and that SLC38A2 is significantly down regulated in the same tissue. In addition, we performed a detailed expression analysis of SLC38A1 and SLC38A6 in mouse brain using in situ hybridization, which showed that both these transporters are widely expressed in the brain.

  4. Population-Specific Haplotype Association of the Postsynaptic Density Gene DLG4 with Schizophrenia, in Family-Based Association Studies

    PubMed Central

    Balan, Shabeesh; Yamada, Kazuo; Hattori, Eiji; Iwayama, Yoshimi; Toyota, Tomoko; Ohnishi, Tetsuo; Maekawa, Motoko; Toyoshima, Manabu; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Yoshikawa, Takeo

    2013-01-01

    The post-synaptic density (PSD) of glutamatergic synapses harbors a multitude of proteins critical for maintaining synaptic dynamics. Alteration of protein expression levels in this matrix is a marked phenomenon of neuropsychiatric disorders including schizophrenia, where cognitive functions are impaired. To investigate the genetic relationship of genes expressed in the PSD with schizophrenia, a family-based association analysis of genetic variants in PSD genes such as DLG4, DLG1, PICK1 and MDM2, was performed, using Japanese samples (124 pedigrees, n = 376 subjects). Results showed a significant association of the rs17203281 variant from the DLG4 gene, with preferential transmission of the C allele (p = 0.02), although significance disappeared after correction for multiple testing. Replication analysis of this variant, found no association in a Chinese schizophrenia cohort (293 pedigrees, n = 1163 subjects) or in a Japanese case-control sample (n = 4182 subjects). The DLG4 expression levels between postmortem brain samples from schizophrenia patients showed no significant changes from controls. Interestingly, a five marker haplotype in DLG4, involving rs2242449, rs17203281, rs390200, rs222853 and rs222837, was enriched in a population specific manner, where the sequences A-C-C-C-A and G-C-C-C-A accumulated in Japanese (p = 0.0009) and Chinese (p = 0.0007) schizophrenia pedigree samples, respectively. However, this could not be replicated in case-control samples. None of the variants in other examined candidate genes showed any significant association in these samples. The current study highlights a putative role for DLG4 in schizophrenia pathogenesis, evidenced by haplotype association, and warrants further dense screening for variants within these haplotypes. PMID:23936182

  5. Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica.

    PubMed

    Liu, Zhao-liang; Luo, Cong; Dong, Long; Van Toan, Can; Wei, Peng-xiao; He, Xin-hua

    2014-04-25

    The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984bp and contained an open reading frame of 600bp, which encoded a 200 amino acid protein with a molecular weight of 21.83kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  7. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants.

    PubMed

    Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong

    2015-01-01

    Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.

  8. Identification and Expression Analysis of MATE Genes Involved in Flavonoid Transport in Blueberry Plants

    PubMed Central

    Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong

    2015-01-01

    Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477–517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10–12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1–84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars. PMID:25781331

  9. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  10. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    PubMed

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative-to-reproductive phase transition. Petunia genome contains at least 21 SPL genes, and most of the genes are expressed in different tissues. The PhSPL genes may play conserved and diverse roles in plant growth and development, including flowering regulation, leaf initiation, axillary bud and inflorescence development. This work provides a comprehensive understanding of the SBP-box gene family in Petunia and lays a significant foundation for future studies on the function and evolution of SPL genes in petunia.

  11. Fear, opposition, ambivalence, and omission: Results from a follow-up study on unmet need for family planning in Ghana.

    PubMed

    Staveteig, Sarah

    2017-01-01

    Despite a relatively strong family planning program and regionally modest levels of fertility, Ghana recorded one of the highest levels of unmet need for family planning on the African continent in 2008. Unmet need for family planning is a composite measure based on apparent contradictions between women's reproductive preferences and practices. Women who want to space or limit births but are not using contraception are considered to have an unmet need for family planning. The study sought to understand the reasons behind high levels of unmet need for family planning in Ghana. A mixed methods follow-up study was embedded within the stratified, two-stage cluster sample of the 2014 Ghana Demographic and Health Survey (GDHS). Women in 13 survey clusters who were identified as having unmet need, along with a reference group of current family planning users, were approached to be reinterviewed within an average of three weeks from their GDHS interview. Follow-up respondents were asked a combination of closed- and open-ended questions about fertility preferences and contraceptive use. Closed-ended responses were compared against the original survey; transcripts were thematically coded and analyzed using qualitative analysis software. Among fecund women identified by the 2014 GDHS as having unmet need, follow-up interviews revealed substantial underreporting of method use, particularly traditional methods. Complete postpartum abstinence was sometimes the intended method of family planning but was overlooked during questions about method use. Other respondents classified as having unmet need had ambivalent fertility preferences. In several cases, respondents expressed revised fertility preferences upon follow-up that would have made them ineligible for inclusion in the unmet need category. The reference group of family planning users also expressed unstable fertility preferences. Aversion to modern method use was generally more substantial than reported in the GDHS, particularly the risk of menstrual side effects, personal or partner opposition to family planning, and religious opposition to contraception.

  12. Fear, opposition, ambivalence, and omission: Results from a follow-up study on unmet need for family planning in Ghana

    PubMed Central

    2017-01-01

    Introduction Despite a relatively strong family planning program and regionally modest levels of fertility, Ghana recorded one of the highest levels of unmet need for family planning on the African continent in 2008. Unmet need for family planning is a composite measure based on apparent contradictions between women’s reproductive preferences and practices. Women who want to space or limit births but are not using contraception are considered to have an unmet need for family planning. The study sought to understand the reasons behind high levels of unmet need for family planning in Ghana. Methods A mixed methods follow-up study was embedded within the stratified, two-stage cluster sample of the 2014 Ghana Demographic and Health Survey (GDHS). Women in 13 survey clusters who were identified as having unmet need, along with a reference group of current family planning users, were approached to be reinterviewed within an average of three weeks from their GDHS interview. Follow-up respondents were asked a combination of closed- and open-ended questions about fertility preferences and contraceptive use. Closed-ended responses were compared against the original survey; transcripts were thematically coded and analyzed using qualitative analysis software. Results Among fecund women identified by the 2014 GDHS as having unmet need, follow-up interviews revealed substantial underreporting of method use, particularly traditional methods. Complete postpartum abstinence was sometimes the intended method of family planning but was overlooked during questions about method use. Other respondents classified as having unmet need had ambivalent fertility preferences. In several cases, respondents expressed revised fertility preferences upon follow-up that would have made them ineligible for inclusion in the unmet need category. The reference group of family planning users also expressed unstable fertility preferences. Aversion to modern method use was generally more substantial than reported in the GDHS, particularly the risk of menstrual side effects, personal or partner opposition to family planning, and religious opposition to contraception. PMID:28759624

  13. Clinical relevance of apolipoprotein E genotyping based on a family history of Alzheimer's disease.

    PubMed

    Luckhoff, Hilmar K; Brand, Theresa; van Velden, Dawid P; Kidd, Martin; Fisher, Leslie R; van Rensburg, Susan J; Kotze, Maritha J

    2015-01-01

    Having a family history of Alzheimer' s disease (AD) may potentiate cumulative risk associated with phenotypic expression of the ε-4 allele of the apolipoprotein E (APOE) gene. In this study, we compared the genotype distribution and allele frequencies of APOE ε-2 (rs7412) and ε -4 (rs429358) in 537 South African individuals participating in a chronic disease screening program, in order to establish whether AD family history modulates the expression of their dyslipidemic effects. Significant differences in the genotype distribution for APOE ε-2 (p=0.034) as well as APOE ε-4 (p=0.038) were found between study participants with (n=67) and without (n=470) a family history of AD. LDL cholesterol levels were inversely associated with physical activity in the study group with a positive family history of AD (p<0.001) but not in those with a negative family history of AD (p=0.257). Similar to its existing use in the diagnosis of monogenic dyslipidemias such as familial hypercholesterolemia, clinical inquiry regarding family history was identified as an important determinant of eligibility for APOE genotyping performed in the context of chronic disease risk management. To our knowledge, this is the first study to demonstrate the modulating influence of AD family history on expression of a dyslipidemic phenotype associated with the APOE ε-4 allele. Our findings provide the scientific rationale supporting a novel clinical application for APOE genotyping as a means of identifying a genetic subgroup of dyslipidemic patients set to derive the greatest benefit from early lifestyle-based interventions aimed at decreasing cumulative risk for cardiovascular disease and prevention of AD later in life.

  14. A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs1[w

    PubMed Central

    Mergaert, Peter; Nikovics, Krisztina; Kelemen, Zsolt; Maunoury, Nicolas; Vaubert, Danièle; Kondorosi, Adam; Kondorosi, Eva

    2003-01-01

    Transcriptome analysis of Medicago truncatula nodules has led to the discovery of a gene family named NCR (nodule-specific cysteine rich) with more than 300 members. The encoded polypeptides were short (60–90 amino acids), carried a conserved signal peptide, and, except for a conserved cysteine motif, displayed otherwise extensive sequence divergence. Family members were found in pea (Pisum sativum), broad bean (Vicia faba), white clover (Trifolium repens), and Galega orientalis but not in other plants, including other legumes, suggesting that the family might be specific for galegoid legumes forming indeterminate nodules. Gene expression of all family members was restricted to nodules except for two, also expressed in mycorrhizal roots. NCR genes exhibited distinct temporal and spatial expression patterns in nodules and, thus, were coupled to different stages of development. The signal peptide targeted the polypeptides in the secretory pathway, as shown by green fluorescent protein fusions expressed in onion (Allium cepa) epidermal cells. Coregulation of certain NCR genes with genes coding for a potentially secreted calmodulin-like protein and for a signal peptide peptidase suggests a concerted action in nodule development. Potential functions of the NCR polypeptides in cell-to-cell signaling and creation of a defense system are discussed. PMID:12746522

  15. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits

    PubMed Central

    Matas-Arroyo, Antonio J.; Caballero, José Luis; Muñoz-Blanco, Juan

    2018-01-01

    NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications. PMID:29723301

  16. A generalized least-squares framework for rare-variant analysis in family data.

    PubMed

    Li, Dalin; Rotter, Jerome I; Guo, Xiuqing

    2014-01-01

    Rare variants may, in part, explain some of the hereditability missing in current genome-wide association studies. Many gene-based rare-variant analysis approaches proposed in recent years are aimed at population-based samples, although analysis strategies for family-based samples are clearly warranted since the family-based design has the potential to enhance our ability to enrich for rare causal variants. We have recently developed the generalized least squares, sequence kernel association test, or GLS-SKAT, approach for the rare-variant analyses in family samples, in which the kinship matrix that was computed from the high dimension genetic data was used to decorrelate the family structure. We then applied the SKAT-O approach for gene-/region-based inference in the decorrelated data. In this study, we applied this GLS-SKAT method to the systolic blood pressure data in the simulated family sample distributed by the Genetic Analysis Workshop 18. We compared the GLS-SKAT approach to the rare-variant analysis approach implemented in family-based association test-v1 and demonstrated that the GLS-SKAT approach provides superior power and good control of type I error rate.

  17. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis.

    PubMed

    Du, Pingzhou; Kumar, Manoj; Yao, Yuan; Xie, Qiaoli; Wang, Jinyan; Zhang, Baolong; Gan, Siming; Wang, Yuqi; Wu, Ai-Min

    2016-11-24

    The Xklp2 (TPX2) proteins belong to the microtubule-associated (MAP) family of proteins. All members of the family contain the conserved TPX2 motif, which can interact with microtubules, regulate microtubule dynamics or assist with different microtubule functions, for example, maintenance of cell morphology or regulation of cell growth and development. However, the role of members of the TPX family have not been studied in the model tree species Eucalyptus to date. Here, we report the identification of the members of the TPX2 family in Eucalyptus grandis (Eg) and analyse the expression patterns and functions of these genes. In present study, a comprehensive analysis of the plant TPX2 family proteins was performed. Phylogenetic analyses indicated that the genes can be classified into 6 distinct subfamilies. A genome-wide survey identified 12 members of the TPX2 family in the sequenced genome of Eucalyptus grandis. The basic genetic properties of the TPX2 family in Eucalyptus were analysed. Our results suggest that the TPX2 family proteins within different sub-groups are relatively conserved but there are important differences between groups. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression levels of the genes in different tissues. The results showed that in the whole plant, the levels of EgWDL5 transcript are the highest, followed by those of EgWDL4. Compared with other tissues, the level of the EgMAP20 transcript is the highest in the root. Over-expression of EgMAP20 in Arabidopsis resulted in organ twisting. The cotyledon petioles showed left-handed twisting while the hypocotyl epidermal cells produced right-handed helical twisting. Finally, EgMAP20, EgWDL3 and EgWDL3L were all able to decorate microtubules. Plant TPX2 family proteins were systematically analysed using bioinformatics methods. There are 12 TPX2 family proteins in Eucalyptus. We have performed an initial characterization of the functions of several members of the TPX2 family. We found that the gene products are localized to the microtubule cytoskeleton. Our results lay the foundation for future efforts to reveal the biological significance of TPX2 family proteins in Eucalyptus.

  18. Integrative Module-Based Family Therapy: A Model for Training and Treatment in a Multidisciplinary Mental Health Setting

    ERIC Educational Resources Information Center

    Wendel, Richard; Gouze, Karen R.; Lake, MaryBeth

    2005-01-01

    Thirty years ago, leaders in psychiatry expressed hope for more interdisciplinary collaboration with family therapy. Since then marriage and family therapy (MFT) has entered the mainstream of clinical practice in psychiatry and psychology. It is mandated for training in psychiatry and psychology. We propose a model for collaboration, training, and…

  19. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  20. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  1. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar

    PubMed Central

    Zhang, Jin; Jia, Huixia; Li, Jianbo; Li, Yu; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Heat shock transcription factor (Hsf) family is one of the most important regulators in the plant kingdom. Hsf has been demonstrated to be involved in various processes associated with plant growth, development as well as in response to hormone and abiotic stresses. In this study, we carried out a comprehensive analysis of Hsf family in desert poplar, Populus euphratica. Total of 32 genes encoding Hsf were identified and they were classified into three main classes (A, B, and C). Gene structure and conserved motif analyses indicated that the members in each class were relatively conserved. Total of 10 paralogous pairs were identified in PeuHsf family, in which nine pairs were generated by whole genome duplication events. Ka/Ks analysis showed that PeuHsfs underwent purifying selection pressure. In addition, various cis-acting elements involved in hormone and stress responses located in the promoter regions of PeuHsfs. Gene expression analysis indicated that several PeuHsfs were tissue-specific expression. Compared to Arabidopsis, more PeuHsf genes were significantly induced by heat, drought, and salt stresses (21, 19, and 22 PeuHsfs, respectively). Our findings are helpful in understanding the distinguished adaptability of P. euphratica to extreme environment and providing a basis for functional analysis of PeuHsfs in the future. PMID:27425424

  2. Na+/K+/2Cl- cotransporter and CFTR gill expression after seawater transfer in smolts (0+) of different Atlantic salmon (Salmo salar) families

    USGS Publications Warehouse

    Mackie, P.M.; Gharbi, K.; Ballantyne, J.S.; McCormick, S.D.; Wright, P.A.

    2007-01-01

    Smoltification involves morphological and physiological changes in the gills that prepare anadromous salmonids to osmoregulate efficiently in seawater. In a previous study, we found that different families of Atlantic salmon (Salmo salar) smolts vary in their ability to osmoregulate when abruptly transferred to cold seawater and that these differences are correlated with gill Na+/K+ ATPase activity. Here we extend these findings to test whether other key transport proteins, namely Na+/K+/2Cl- contransporter (NKCC) and the Cl- channel or cystic fibrosis transmembrane conductance regulator (CFTR), play a significant role in osmoregulatory differences between families. To facilitate molecular analysis of NKCC, we first isolated a gill cDNA containing the complete coding region (1147 aa) of an isoform previously reported as a partial sequence. Phylogenetic analysis showed that this isoform is most closely related to isoforms of the NKCC1a subfamily found in European eel and Mozambique tilapia. In a second step, we quantified NKCC protein abundance as well as mRNA expression levels for NKCC1a and two CFTR isoforms (CFTRI and CFTRII) in 0+ smolts from three families prior to and following seawater transfer. The family with the lowest salinity tolerance also showed significant increases in gill NKCC1a mRNA after seawater transfer. Taken together with our previous study, these data indicate that family differences in expression of transport proteins are in part related to salinity tolerance, although the best indicator of osmoregulatory performance between families may be gill Na+/K+ ATPase activity and CFTR I mRNA levels, rather than Na+/K+ ATPase and NKCC1a mRNA levels or NKCC protein abundance. ?? 2007 Elsevier B.V. All rights reserved.

  3. Regional expression patterns of taste receptors and gustducin in the mouse tongue.

    PubMed

    Kim, Mi-Ryung; Kusakabe, Yuko; Miura, Hirohito; Shindo, Yoichiro; Ninomiya, Yuzo; Hino, Akihiro

    2003-12-12

    In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns. The most striking difference between fungiform and circumvallate papillae was observed in their co-expression patterns of T1r2, T1r3, and gustducin. T1r2-positive cells in fungiform papillae co-expressed T1r3 and gustducin, whereas T1r2 and T1r3 double-positive cells in circumvallate papillae merely expressed gustducin. These results suggested that in fungiform papillae, gustducin might play a role in the sweet taste signal transduction cascade mediated by a sweet receptor based on the T1r2 and T1r3 combination, in fungiform papillae.

  4. Analysis of Cytoskeletal and Motility Proteins in the Sea Urchin Genome Assembly

    PubMed Central

    RL, Morris; MP, Hoffman; RA, Obar; SS, McCafferty; IR, Gibbons; AD, Leone; J, Cool; EL, Allgood; AM, Musante; KM, Judkins; BJ, Rossetti; AP, Rawson; DR, Burgess

    2007-01-01

    The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development. PMID:17027957

  5. BCoR-L1 variation and breast cancer.

    PubMed

    Lose, Felicity; Arnold, Jeremy; Young, David B; Brown, Carolyn J; Mann, Graham J; Pupo, Gulietta M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Spurdle, Amanda B

    2007-01-01

    BRCA1 is involved in numerous essential processes in the cell, and the effects of BRCA1 dysfunction in breast cancer carcinogenesis are well described. Many of the breast cancer susceptibility genes such as BRCA2, p53, ATM, CHEK2, and BRIP1 encode proteins that interact with BRCA1. BCL6 corepressor-like 1 (BCoR-L1) is a newly described BRCA1-interacting protein that displays high homology to several proteins known to be involved in the fundamental processes of DNA damage repair and transcription regulation. BCoR-L1 has been shown to play a role in transcription corepression, and expression of the X-linked BCoR-L1 gene has been reported to be dysregulated in breast cancer subjects. BCoR-L1 is located on the X chromosome and is subject to X inactivation. We performed mutation analysis of 38 BRCA1/2 mutation-negative breast cancer families with male breast cancer, prostate cancer, and/or haplotype sharing around BCoR-L1 to determine whether there is a role for BCoR-L1 as a high-risk breast cancer predisposition gene. In addition, we conducted quantitative real-time PCR (qRT-PCR) on lymphoblastoid cell lines (LCLs) from the index cases from these families and a number of cancer cell lines to assess the role of BCoR-L1 dysregulation in cancer and cancer families. Very little variation was detected in the coding region, and qRT-PCR analysis revealed that BCoR-L1 expression is highly variable in cancer-free subjects, high-risk breast cancer patients, and cancer cell lines. We also report the investigation of a new expression control, DIDO1 (death inducer-obliterator 1), that is superior to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and UBC (ubiquitin C) for analysis of expression in LCLs. Our results suggest that BCoR-L1 expression does not play a large role in predisposition to familial breast cancer.

  6. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.

    PubMed

    Li, Dayong; Zhang, Huijuan; Song, Qiuming; Wang, Lu; Liu, Shixia; Hong, Yongbo; Huang, Lei; Song, Fengming

    2015-06-14

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.

  7. Regulatory role of AINTEGUMENTA in organ initiation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krizek, Beth Allyn; Lebioda, Lukasz

    2005-03-01

    Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less

  8. [Low expression of activin A in mouse and human embryonic teratocarcinoma cells].

    PubMed

    Gordeeva, O F

    2014-01-01

    TGFP3 family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFbeta family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGF@[beta] family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty 1, TGFbeta1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFbeta family (ACTIVINA, NODAL, LEFTY 1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells: Thus, in mouse and human nullipotent teratocarcinoma cells, theexpression of ActivinA is significantly reduced com- pared ivith embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.

  9. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.

    PubMed

    Aumiller, Verena; Strobel, Benjamin; Romeike, Merrit; Schuler, Michael; Stierstorfer, Birgit E; Kreuz, Sebastian

    2017-03-10

    Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.

  10. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    PubMed

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  11. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L.

    PubMed

    Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong

    2014-08-10

    In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.).

    PubMed

    Ariani, Andrea; Gepts, Paul

    2015-10-01

    Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.

  13. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  14. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, J.D.; Nelson, L.D.; Conner, B.J.

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B,more » twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.« less

  15. [Cloning and bioinformatic analysis and expression analysis of beta-glucuronidase in Scutellaria baicalensis].

    PubMed

    Guo, Shuang-shuang; Cheng, Lin; Yang, Li-min; Han, Mei

    2015-11-01

    The β-Glucuronidase gene (sbGUS) cDNA firstly from Scutellari abaicalensis leaf was cloned by RT-PCR, with GenBank accession number KR364726. The full length cDNA of sbGUS was 1 584 bp with an open reading frame (ORF), encoding an unstable protein with 527 amino acids. The bioinformatic analysis showed that the sbGUS encoding protein had isoelectric point (pI) of 5.55 and a calculated molecular weight about 58.724 8 kDa, with a transmembrane regions and signal peptide, had conserved domains of glycoside hydrolase super family and unintegrated trans-glycosidase catalytic structure. In the secondary structure, the percentage of alpha helix, extended strand, β-extended and random coil were 25.62%, 28.84%, 13.28% and 32.26%, respectively. The homologous analysis indicated the nucleotide sequence 98.93% similarity and the amino acid sequence 98.29% similarity with S. baicalensis (BAA97804.1), in the nine positions were different. The expression level of sGUS was the highest in root based on a real-time PCR analysis, followed by flower and stem, and the lowest was in stem. The results provide a foundation for exploring the molecular function of sbGUS involved in baicalcin biosynthesis based on synthetic biology approach in S. baicalensis plants.

  16. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications.

    PubMed

    Muhammad, Izhar; Jing, Xiu-Qing; Shalmani, Abdullah; Ali, Muhammad; Yi, Shi; Gan, Peng-Fei; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming

    2018-05-12

    The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.

  17. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis

    PubMed Central

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D.; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-01-01

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree. PMID:27339202

  18. Typology of perceived family functioning in an American sample of patients with advanced cancer.

    PubMed

    Schuler, Tammy A; Zaider, Talia I; Li, Yuelin; Hichenberg, Shira; Masterson, Melissa; Kissane, David W

    2014-08-01

    Poor family functioning affects psychosocial adjustment and the occurrence of morbidity following bereavement in the context of a family's coping with advanced cancer. Family functioning typologies assist with targeted family-centered assessment and intervention to offset these complications in the palliative care setting. Our objective was to identify the number and nature of potential types in an American palliative care patient sample. Data from patients with advanced cancer (N = 1809) screened for eligibility for a larger randomized clinical trial were used. Cluster analyses determined whether patients could be classified into clinically meaningful and coherent groups, based on similarities in their perceptions of family functioning across the cohesiveness, expressiveness, and conflict resolution subscales of the Family Relations Index. Patients' reports of perceived family functioning yielded a model containing five meaningful family types. Cohesiveness, expressiveness, and conflict resolution appear to be useful dimensions by which to classify patient perceptions of family functioning. "At risk" American families may include those we have called hostile, low-communicating, and less-involved. Such families may benefit from adjuvant family-centered psychosocial services, such as family therapy. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  19. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  20. Genome-Wide Comparative In Silico Analysis of the RNA Helicase Gene Family in Zea mays and Glycine max: A Comparison with Arabidopsis and Oryza sativa

    PubMed Central

    Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development. PMID:24265739

  1. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    PubMed

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development.

  2. Computational analysis and functional expression of ancestral copepod luciferase.

    PubMed

    Takenaka, Yasuhiro; Noda-Ogura, Akiko; Imanishi, Tadashi; Yamaguchi, Atsushi; Gojobori, Takashi; Shigeri, Yasushi

    2013-10-10

    We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species. © 2013.

  3. Anger expression, partner support, and quality of life in cancer patients.

    PubMed

    Julkunen, Juhani; Gustavsson-Lilius, Mila; Hietanen, Päivi

    2009-03-01

    Family members are the most important source of social support for cancer patients. The determinants of family support, however, are not well understood. In this study, the associations of anger-expression styles of both patients and their partners with patient-perceived partner support and the impact of these variables on long-term health-related quality of life (HRQL) of the patient were examined. The baseline data were collected at the time of diagnosis; a follow-up survey was conducted at 8 months. Questionnaires included the Spielberger AX scale, the Family Support scale, and the RAND-36 Health Survey. The sample comprised 153 patients and their partners. The theoretical model was tested with a path analysis using structural equation modeling, and gender differences were tested using multivariate analysis of covariance. Path analyses indicated that partner support was an important mediator, partly explaining the associations between anger-expression styles and HRQL. As hypothesized, anger control had a positive relationship with perceived partner support, while habitual inhibition of anger (anger-in) showed a negative correlation with partner support. Analyses by gender revealed some clear differences: for the male patients, the wife's high level of anger expression (anger-out) was significantly positively related to patient mental HRQL, whereas for the female patients, their husband's anger-out was negatively correlated with the patient's mental HRQL. In addition, patient's own anger-out had a more pronounced negative effect on HRQL for women as compared to men. The anger-expression styles of both patients and their partners seem to modify the family atmosphere, and together, they are important determinants of the long-term quality of life of the cancer patients. Interventions for couples facing cancer should include a focus on ways of dealing with anger and thereby support dyadic coping with cancer.

  4. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Childhood-Onset Essential Hypertension and the Family Structure.

    PubMed

    Gupta-Malhotra, Monesha; Hashmi, Syed Shahrukh; Barratt, Michelle S; Milewicz, Dianna M; Shete, Sanjay

    2016-05-01

    The prevalence and effect of single-parent families in childhood-onset essential hypertension (EH) is unknown. Children with EH and age-, sex-, and ethnicity-matched controls were enrolled. Family structure data were obtained by in-person interview. A total of 148 families (76 hypertension probands, 72 control probands; median 14 years) were prospective-ly enrolled in the study. Single-parent status was seen in 42% of the families--with and without EH (38% vs 46%, P=.41; odds ratio, 0.7; 95% confidence interval, 0.4-1.4). After multivariable analysis, a statistically significant sociofamilial contributor to the development of childhood-onset EH was not identified. A significant number of single-parent families (42%), the majority with single mothers, were found in our pedigree study. Sociofamilial factors are known to contribute to the expression of adult-onset EH, but findings in our study suggest that they appear to contribute less in the expression of childhood-onset EH. ©2015 Wiley Periodicals, Inc.

  6. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm.

    PubMed

    Roongsattham, Peerapat; Morcillo, Fabienne; Jantasuriyarat, Chatchawan; Pizot, Maxime; Moussu, Steven; Jayaweera, Dasuni; Collin, Myriam; Gonzalez-Carranza, Zinnia H; Amblard, Philippe; Tregear, James W; Tragoonrung, Somvong; Verdeil, Jean-Luc; Tranbarger, Timothy J

    2012-08-25

    Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700-5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species.

  7. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm

    PubMed Central

    2012-01-01

    Background Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. Results The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700–5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. Conclusions The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species. PMID:22920238

  8. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment.

    PubMed

    Li, Xinxin; Zhao, Jing; Walk, Thomas C; Liao, Hong

    2014-03-01

    Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.

  9. Expressive social support buffers the impact of care-related work interruptions on caregivers' depressive symptoms.

    PubMed

    Ang, Shannon; Malhotra, Rahul

    2018-06-01

    To assess if expressive and instrumental social support from family and friends moderate the association of care-related work interruptions (e.g. leaving work for the older adult's doctor appointment) with depressive symptoms among working family caregivers of older adults. Data were from the Singapore Survey on Informal Caregiving (SSIC). A subsample of 662 dyads, each comprising an older care-recipient [home-dwelling Singaporean aged 75 and older receiving human assistance for at least one activity of daily living (ADL)] and his/her working family caregiver, was analysed. Caregiver depressive symptoms were assessed using the Center for Epidemiologic Studies Depression scale. Care-related work interruptions were scaled through the Mokken scaling procedure. Expressive social support was assessed using a scale by Pearlin and co-workers. Instrumental social support was based on the hours of ADL help provided to the care-recipient by any family member or friend, on behalf of the primary caregiver. A linear regression model, with interaction terms, assessed expressive and instrumental social support as moderators of the association of care-related work interruptions with caregiver depressive symptoms. More care-related work interruptions were associated with more caregiver depressive symptoms. And, this association was moderated by expressive, but not instrumental, social support. Our findings conform to previous qualitative work suggesting that caregivers' mental health may not benefit from instrumental support, but from receiving expressive support instead. Initiatives for improving the care experience of working caregivers of older adults should focus on promoting expressive support from their friends and family.

  10. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.).

    PubMed

    Muthamilarasan, Mehanathan; Khandelwal, Rohit; Yadav, Chandra Bhan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  11. Model-based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing

    2013-08-22

    The HER/ErbB family of receptor tyrosine kinases drive critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panelmore » of human mammary epithelial cells expressing varying levels of EGFR, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of epithelial cells lines with known HER expression levels. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1/1 and HER1/2 dimers, and not HER1/3 dimers, ii) HER1/2 and HER2/3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2/3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.« less

  12. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression.

    PubMed

    Lintas, C; Sacco, R; Garbett, K; Mirnics, K; Militerni, R; Bravaccio, C; Curatolo, P; Manzi, B; Schneider, C; Melmed, R; Elia, M; Pascucci, T; Puglisi-Allegra, S; Reichelt, K-L; Persico, A M

    2009-07-01

    Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.

  13. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca)

    PubMed Central

    Lin-Wang, Kui; McGhie, Tony K.; Wang, Mindy; Liu, Yuhui; Warren, Benjamin; Storey, Roy; Espley, Richard V.; Allan, Andrew C.

    2014-01-01

    The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33) did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin, and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH, and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10's activation of biosynthetic steps is inhibited by the strawberry repressor MYB1. PMID:25477896

  14. Field Evaluation of a Fluorogenic Probe-Based PCR Assay for Identification of a Visceral Leishmaniasis Gene Target

    DTIC Science & Technology

    2004-06-01

    encodes protein required for amastigote development, which can ultimately be expressed in humans as VL (3, 4, 5). The leishmaniasises are also expressed ...Leishmania surveillance at Tallil Air Base, south central Iraq, expressed concern of a potential leishmaniasis outbreak situation. In response, we...site. That L. donovani promastigote-to-amastigote development, and VL pathogenesis, requires an A2 gene family encoded factor defines this protein

  15. Testing the Psychometric Properties of a Chinese Version of the Level of Expressed Emotion Scale

    PubMed Central

    Chien, Wai Tong; Chan, Zenobia Chung-Yee; Chan, Sally Wai-Chi

    2014-01-01

    This study tested the psychometric properties of a Chinese version of the level of expressed emotion scale in Hong Kong Chinese patients with severe mental illness and their family caregivers. First, the semantic equivalence with the original English version and test-retest reliability at 2-week interval of the Chinese version was examined. After that, the reproducibility, construct validity, and internal consistency of the Chinese version were tested. The Chinese version indicated good semantic equivalence with the English version (kappa values = 0.76–0.95 and ICC = 0.81–0.92), test-retest reliability (r = 0.89–0.95, P < 0.01), and internal consistency (Cronbach's α = 0.86–0.92). Among 262 patients with severe mental illness and their caregivers, the 50-item Chinese version had substantial loadings on one of the four factors identified (intrusiveness/hostility, attitude towards patient, tolerance, and emotional involvement), accounting for 71.8% of the total variance of expressed emotion. In confirmatory factor analysis, the identified four-factor model showed the best fit based on all fit indices (χ 2/df = 1.93, P = 0.75; AGFI = 0.96; TLI = 1.02; RMSEA = 0.031; WRMR = 0.78) to the collected data. The four-factor Chinese version also indicated a good concurrent validity with significant correlations with family functioning (r = −0.54) and family burden (r = 0.49) and a satisfactory reproducibility over six months (intraclass correlation coefficient of 0.90). The mean scores of the overall and subscale of the Chinese version in patients with unipolar disorder were higher than in other illness groups (schizophrenia, psychotic disorders, and bipolar disorder; P < 0.01). The Chinese version demonstrates sound psychometric properties to measure families' expressed emotion in Chinese patients with severe mental illness, which are found varied across countries. PMID:24511302

  16. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. Conclusions Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study. PMID:22793791

  17. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in cucumber (Cucumis sativus).

    PubMed

    Zhou, Yong; Hu, Lifang; Jiang, Lunwei; Liu, Shiqiang

    2018-06-01

    YTH domain-containing RNA-binding proteins are involved in post-transcriptional regulation and play important roles in the growth and development as well as abiotic stress responses of plants. However, YTH genes have not been previously studied in cucumber (Cucumis sativus). In this study, a total of five YTH genes (CsYTH1-CsYTH5) were identified in cucumber, which could be mapped on three out of the seven cucumber chromosomes. All CsYTH proteins had highly conserved C-terminal YTH domains, and two of them (CsYTH1 and CsYTH4) harbored extra CCCH and P/Q/N-rich domains. The phylogenesis, conserved motifs and exon-intron structure of YTH genes from cucumber, Arabidopsis and rice were also analyzed. The phylogenetically closely clustered YTHs shared similar gene structures and conserved motifs. An analysis of the cis-acting regulatory elements in the upstream region of these genes resulted in the identification of many cis-elements related to stress, hormone and development. Expression analysis based on the transcriptome data showed that some CsYTHs had development- or tissue-specific expression. In addition, their expression levels were altered under various stresses such as salt, drought, cold, and abscisic acid (ABA) treatments. These findings lay the foundation for the functional analysis of CsYTHs in the future.

  18. Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia.

    PubMed

    Shao, Yun; Qin, Yuan; Zou, Yangjun; Ma, Fengwang

    2014-11-15

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) constitutes a small plant-specific serine/threonine kinase family with essential roles in the abscisic acid (ABA) signal pathway and in responses to osmotic stress. Although a genome-wide analysis of this family has been conducted in some species, little is known about SnRK2 genes in apple (Malus domestica). We identified 14 putative sequences encoding 12 deduced SnRK2 proteins within the apple genome. Gene chromosomal location and synteny analysis of the apple SnRK2 genes indicated that tandem and segmental duplications have likely contributed to the expansion and evolution of these genes. All 12 full-length coding sequences were confirmed by cloning from Malus prunifolia. The gene structure and motif compositions of the apple SnRK2 genes were analyzed. Phylogenetic analysis showed that MpSnRK2s could be classified into four groups. Profiling of these genes presented differential patterns of expression in various tissues. Under stress conditions, transcript levels for some family members were up-regulated in the leaves in response to drought, salinity, or ABA treatments. This suggested their possible roles in plant response to abiotic stress. Our findings provide essential information about SnRK2 genes in apple and will contribute to further functional dissection of this gene family. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Correlation between mutations and mRNA expression of APC and MUTYH genes: new insight into hereditary colorectal polyposis predisposition.

    PubMed

    Aceto, Gitana Maria; Fantini, Fabiana; De Iure, Sabrina; Di Nicola, Marta; Palka, Giandomenico; Valanzano, Rosa; Di Gregorio, Patrizia; Stigliano, Vittoria; Genuardi, Maurizio; Battista, Pasquale; Cama, Alessandro; Curia, Maria Cristina

    2015-10-28

    Transcript dosage imbalance may influence the transcriptome. To gain insight into the role of altered gene expression in hereditary colorectal polyposis predisposition, in the present study we analyzed absolute and allele-specific expression (ASE) of adenomatous polyposis coli (APC) and mutY Homolog (MUTYH) genes. We analyzed DNA and RNA extracted from peripheral blood mononuclear cells (PBMC) of 49 familial polyposis patients and 42 healthy blood donors selected according similar gender and age. Patients were studied for germline alterations in both genes using dHPLC, MLPA and automated sequencing. APC and MUTYH mRNA expression levels were investigated by quantitative Real-Time PCR (qRT-PCR) analysis using TaqMan assay and by ASE assays using dHPLC-based primer extension. Twenty out of 49 patients showed germline mutations: 14 in APC gene and six in MUTYH gene. Twenty-nine patients did not show mutations in both genes. Results from qRT-PCR indicated that gene expression of both APC and MUTYH was reduced in patients analyzed. In particular, a significant reduction in APC expression was observed in patients without APC germline mutation vs control group (P < 0.05) while APC expression in the mutation carrier patients, although lower compared to control individuals, did not show statistical significance. On the other hand a significant reduced MUTYH expression was detected in patients with MUTYH mutations vs control group (P < 0.05). Altered ASE of APC was detected in four out of eight APC mutation carriers. In particular one case showed a complete loss of one allele. Among APC mutation negative cases, 4 out of 13 showed a moderate ASE. ASE of MUTYH did not show any altered expression in the cases analyzed. Spearman's Rho Test analysis showed a positive and significant correlation between APC and MUTYH genes both in cases and in controls (P = 0.020 and P < 0.001). APC and MUTYH showed a reduced germline expression, not always corresponding to gene mutation. Expression of APC is decreased in mutation negative cases and this appears to be a promising indicator of FAP predisposition, while for MUTYH gene, mutation is associated to reduced mRNA expression. This study could improve the predictive genetic diagnosis of at-risk individuals belonging to families with reduced mRNA expression regardless of presence of mutation.

  20. Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma.

    PubMed

    Sendín-Hernández, María Paz; Ávila-Zarza, Carmelo; Sanz, Catalina; García-Sánchez, Asunción; Marcos-Vadillo, Elena; Muñoz-Bellido, Francisco J; Laffond, Elena; Domingo, Christian; Isidoro-García, María; Dávila, Ignacio

    Asthma is a heterogeneous chronic disease with different clinical expressions and responses to treatment. In recent years, several unbiased approaches based on clinical, physiological, and molecular features have described several phenotypes of asthma. Some phenotypes are allergic, but little is known about whether these phenotypes can be further subdivided. We aimed to phenotype patients with allergic asthma using an unbiased approach based on multivariate classification techniques (unsupervised hierarchical cluster analysis). From a total of 54 variables of 225 patients with well-characterized allergic asthma diagnosed following American Thoracic Society (ATS) recommendation, positive skin prick test to aeroallergens, and concordant symptoms, we finally selected 19 variables by multiple correspondence analyses. Then a cluster analysis was performed. Three groups were identified. Cluster 1 was constituted by patients with intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis. This group showed the lowest total IgE levels. Cluster 2 was constituted by patients with mild asthma with a family history of atopy, asthma, or rhinitis. Total IgE levels were intermediate. Cluster 3 included patients with moderate or severe persistent asthma that needed treatment with corticosteroids and long-acting β-agonists. This group showed the highest total IgE levels. We identified 3 phenotypes of allergic asthma in our population. Furthermore, we described 2 phenotypes of mild atopic asthma mainly differentiated by a family history of allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Estrogen receptor-α, progesterone receptor, and c-erbB/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer

    PubMed Central

    Kabir, Farruk M. Lutful; DeInnocentes, Patricia; Agarwal, Payal; Mill, Christopher P.; Riese, David J.

    2017-01-01

    Well characterized, stable, p16-defective canine mammary cancer (CMT) cell lines and normal canine mammary epithelial cells were used to investigate expression of the major breast cancer-specific hormone receptors estrogen receptor alpha (ER1) and progesterone receptor (PR) as well as luminal epithelial-specific proto-oncogenes encoding c-erbB-1 (epidermal growth factor receptor/EGFr), c-erbB-2/HER2, c-erbB-3, and c-erbB-4 receptors. The investigation developed and validated quantitative reverse transcriptase polymerase chain reaction assays for each transcript to provide rapid assessment of breast cancer phenotypes for canine cancers, based on ER1, PR, and c-erbB-2/HER2 expressions, similar to those in human disease. Roles for relatively underexplored c-erbB-3 and c-erbB-4 receptor expressions in each of these breast cancer phenotypes were also evaluated. Each quantitative assay was validated by assessment of amplicon size and DNA sequencing following amplification. Differential expression of ER1, PR, and c-erbB-2 in CMT cell lines clearly defined distinct human-like breast cancer phenotypes for a selection of CMT-derived cell lines. Expression profiles for EGFr family genes c-erbB-3 and c-erbB-4 in CMT models also provided an enriched classification of canine breast cancer identifying new extended phenotypes beyond the conventional luminal-basal characterization used in human breast cancer. PMID:27515268

  2. Comprehensive analysis of CLE polypeptide signaling gene expression and over-expression activity in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis thaliana, only a few families of extracellular signaling molecules have been discovered and their biological roles are lar...

  3. Integrative analysis of RUNX1 downstream pathways and target genes

    PubMed Central

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications. PMID:18671852

  4. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues.

    PubMed

    Guerriero, Gea; Mangeot-Peter, Lauralie; Legay, Sylvain; Behr, Marc; Lutts, Stanley; Siddiqui, Khawar Sohail; Hausman, Jean-Francois

    2017-09-20

    The fasciclin-like arabinogalactan proteins (FLAs) belong to the arabinogalactan protein (AGP) superfamily and are known to play different physiological roles in plants. This class of proteins was shown to participate in plant growth, development, defense against abiotic stresses and, notably, cell wall biosynthesis. Although some studies are available on the characterization of FLA genes from different species, both woody and herbaceous, no detailed information is available on the FLA family of textile hemp (Cannabis sativa L.), an economically important fibre crop. By searching the Cannabis genome and EST databases, 23 CsaFLAs have been here identified which are divided into four phylogenetic groups. A real-time qPCR analysis performed on stem tissues (isolated bast fibres and shivs sampled at three heights), hypocotyls (6-9-12-15-17-20 days-old), whole seedlings, roots, leaves and female/male flowers of the monoecious fibre variety Santhica 27, indicates that the identified FLA genes are differentially expressed. Interestingly, some hemp FLAs are expressed during early phases of fibre growth (elongation), while others are more expressed in the middle and base of the stem and thus potentially involved in secondary cell wall formation (fibre thickening). The bioinformatic analysis of the promoter regions shows that the FLAs upregulated in the younger regions of the stem share a conserved motif related to flowering control and regulation of photoperiod perception. The promoters of the FLA genes expressed at higher levels in the older stem regions, instead, share a motif putatively recognized by MYB3, a transcriptional repressor belonging to the MYB family subgroup S4. These results point to the existence of a transcriptional network fine-tuning the expression of FLA genes in the older and younger regions of the stem, as well as in the bast fibres/shivs of textile hemp. In summary, our study paves the way for future analyses on the biological functions of FLAs in an industrially relevant fibre crop.

  5. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    PubMed

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  6. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution.

    PubMed

    Sharma, Bharti; Guo, Chunce; Kong, Hongzhi; Kramer, Elena M

    2011-08-01

    • The petals of the lower eudicot family Ranunculaceae are thought to have been derived many times independently from stamens. However, investigation of the genetic basis of their identity has suggested an alternative hypothesis: that they share a commonly inherited petal identity program. This theory is based on the fact that an ancient paralogous lineage of APETALA3 (AP3) in the Ranunculaceae appears to have a conserved, petal-specific expression pattern. • Here, we have used a combination of approaches, including RNAi, comparative gene expression and molecular evolutionary studies, to understand the function of this petal-specific AP3 lineage. • Functional analysis of the Aquilegia locus AqAP3-3 has demonstrated that the paralog is required for petal identity with little contribution to the identity of the other floral organs. Expanded expression studies and analyses of molecular evolutionary patterns provide further evidence that orthologs of AqAP3-3 are primarily expressed in petals and are under higher purifying selection across the family than the other AP3 paralogs. • Taken together, these findings suggest that the AqAP3-3 lineage underwent progressive subfunctionalization within the order Ranunculales, ultimately yielding a specific role in petal identity that has probably been conserved, in stark contrast with the multiple independent origins predicted by botanical theories. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. Expression of cytoprotective proteins, heat shock protein 70and metallothioneins, in tissues ofOstrea edulis exposed to heat andheavy metals

    PubMed Central

    Piano, Annamaria; Valbonesi, Paola; Fabbri, Elena

    2004-01-01

    Heat shock proteins (Hsps) are constitutively expressed in cells and involved in protein folding, assembly, degradation, intracellular localization, etc, acting as molecular chaperones. However, their overexpression represents a ubiquitous molecular mechanism to cope with stress. Hsps are classified into families, and among them the Hsp70 family appears to be the most evolutionary preserved and distributed in animals. In this study, the expression of Hsp70 and the related messenger ribonucleic acid (mRNA) has been studied in Ostrea edulis after exposure to heat and heavy metals; moreover, levels of metallothioneins (MTs), another class of stress-induced proteins, have contemporaneously been assessed in the same animals. Thermal stress caused the expression of a 69-kDa inducible isoform in gills of O edulis but not in the digestive gland. Northern dot blot analysis confirmed that the transcription of Hsp69-mRNA occurs within 3 hours of stress recovery after oyster exposure at 32 and 35°C. Hsp69-mRNA transcripts were not present in the gills of animals exposed to 38°C after 3 hours of poststress recovery, but they were detected after 24 hours. The expression of the 69-kDa protein in O edulis exposed to 38°C was rather low or totally absent, suggesting that the biochemical machinery at the base of the heat shock response is compromised. Together with the expected increase in MT content, the oysters exposed to Cd showed a significant enhancement of Hsp70, although there was no clear appearance of Hsp69. Interestingly, the levels of MT were significantly increased in the tissues of individuals exposed to thermal stress. Unlike oysters, heat did not provoke the expression of inducible Hsp isoforms in Mytilus galloprovincialis, Tapes philippinarum, and Scapharca inaequivalvis, although it significantly enhanced the expression of constitutive proteins of the 70-kDa family. The expression of newly synthesized Hsp70 isoforms does not seem therefore a common feature in bivalves exposed to thermal stress. PMID:15497500

  8. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  9. [Phylogenetic analysis and expression patterns of tropomyosin in amphioxus].

    PubMed

    Li, Xin-Yi; Lin, Yu-Shuang; Zhang, Hong-Wei

    2012-08-01

    In amphioxus, we found a mesoderm related gene, tropomyosin, which encodes a protein comprising 284 amino acid residues, sharing high identities with other known Tropomyosin proteins both in vertebrates and invertebrates. Phylogenetically, amphioxus Tropomyosin fell outside the invertebrate clade and was at the base of the vertebrate protein family clade, indicating that it may represent an independent branch. From the early neurula to the larva stage, whole-mount in situ hybridization and histological sections found transcripts of amphioxus tropomyosin gene. Weak tropomyosin expression was first detected in the wall of the archenteron at about 10 hours-post-fertilization neurula stage, while intense expression was revealed in the differentiating presumptive notochord and the muscle. Transcripts of tropomyosin were then expressed in the formed notochord and somites. Gene expression seemed to continue in these developing organs throughout the neurular stages and remained till 72-hours, during the early larval stages. In situ study still showed tropomyosin was also expressed in the neural tube, hepatic diverticulum, notochord and the spaces between myotomes in adult amphioxus. Our results indicated that tropomyosin may play an important role in both embryonic development and adult life.

  10. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products.

    PubMed

    Matsui, H; Nakamura, G; Ishiga, Y; Toshima, H; Inagaki, Y; Toyoda, K; Shiraishi, T; Ichinose, Y

    2004-02-01

    Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.

  11. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.

    PubMed

    Dai, Shutao; Hou, Jinna; Long, Yan; Wang, Jing; Li, Cong; Xiao, Qinqin; Jiang, Xiaoxue; Zou, Xiaoxiao; Zou, Jun; Meng, Jinling

    2015-06-19

    Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.

  12. Comprehensive Analysis of ETS Family Members in Melanoma by Fluorescence In Situ Hybridization Reveals Recurrent ETV1 Amplification

    PubMed Central

    Mehra, Rohit; Dhanasekaran, Saravana M; Palanisamy, Nallasivam; Vats, Pankaj; Cao, Xuhong; Kim, Jung H; Kim, David SL; Johnson, Timothy; Fullen, Douglas R; Chinnaiyan, Arul M

    2013-01-01

    E26 transformation-specific (ETS) transcription factors are known to be involved in gene aberrations in various malignancies including prostate cancer; however, their role in melanoma oncogenesis has yet to be fully explored. We have completed a comprehensive fluorescence in situ hybridization (FISH)-based screen for all 27 members of the ETS transcription factor family on two melanoma tissue microarrays, representing 223 melanomas, 10 nevi, and 5 normal skin tissues. None of the melanoma cases demonstrated ETS fusions; however, 6 of 114 (5.3%) melanomas were amplified for ETV1 using a break-apart FISH probe. For the six positive cases, locus-controlled FISH probes revealed that two of six cases were amplified for the ETV1 region, whereas four cases showed copy gains of the entire chromosome 7. The remaining 26 ETS family members showed no chromosomal aberrations by FISH. Quantitative polymerase chain reaction showed an average 3.4-fold (P value = .00218) increased expression of ETV1 in melanomas, including the FISH ETV1-amplified cases, when compared to other malignancies (prostate, breast, and bladder carcinomas). These data suggest that a subset of melanomas overexpresses ETV1 and amplification of ETV1 may be one mechanism for achieving high gene expression. PMID:23908683

  13. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  14. Commentary on "predicting metastasized seminoma using gene expression." Ruf CG, Linbecker M, Port M, Riecke A, Schmelz HU, Wagner W, Meineke V, Abend M, Department of Urology, Federal Armed Forces Hospital, Hamburg, Germany: BJU Int 2012;110:E14.

    PubMed

    Richie, Jerome

    2013-02-01

    Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue (n = 36). The RNA was then converted into cDNA and real-time quantitative polymerase chain reaction was run on 94 candidate genes selected from previous work. Normalised gene expression of these genes and histological variables, e.g. tumour size and rete testis infiltration, were analysed using logistic regression analysis. Expression of two genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2], P = 0.005 and 0.024 in separate analysis and P = 0.004 and 0.016 when combining both genes, respectively) made it possible to significantly discriminate the metastasis status. Concordance increased from 77.9% (DRD1) and 72.3% (FAM71F2) in separate analysis and up to 87.7% when combining both genes in one model. Only primary tumour size in separate analysis (continuous or categorical with tumour size>6cm) was significantly associated with metastasis (P = 0.039/P = 0.02), but concordance was lower (61%). When we combined tumour size with our two genes in one model there was no further statistical improvement or increased concordance. Based on gene expression analysis our study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    PubMed Central

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.

    2013-01-01

    Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification. PMID:23986771

  16. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing.

    PubMed

    Jain, Mukesh; Chevala, V V S Narayana; Garg, Rohini

    2014-11-01

    MicroRNAs (miRNAs) are essential components of complex gene regulatory networks that orchestrate plant development. Although several genomic resources have been developed for the legume crop chickpea, miRNAs have not been discovered until now. For genome-wide discovery of miRNAs in chickpea (Cicer arietinum), we sequenced the small RNA content from seven major tissues/organs employing Illumina technology. About 154 million reads were generated, which represented more than 20 million distinct small RNA sequences. We identified a total of 440 conserved miRNAs in chickpea based on sequence similarity with known miRNAs in other plants. In addition, 178 novel miRNAs were identified using a miRDeep pipeline with plant-specific scoring. Some of the conserved and novel miRNAs with significant sequence similarity were grouped into families. The chickpea miRNAs targeted a wide range of mRNAs involved in diverse cellular processes, including transcriptional regulation (transcription factors), protein modification and turnover, signal transduction, and metabolism. Our analysis revealed several miRNAs with differential spatial expression. Many of the chickpea miRNAs were expressed in a tissue-specific manner. The conserved and differential expression of members of the same miRNA family in different tissues was also observed. Some of the same family members were predicted to target different chickpea mRNAs, which suggested the specificity and complexity of miRNA-mediated developmental regulation. This study, for the first time, reveals a comprehensive set of conserved and novel miRNAs along with their expression patterns and putative targets in chickpea, and provides a framework for understanding regulation of developmental processes in legumes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    PubMed Central

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  18. Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions

    PubMed Central

    Jasrapuria, Sinu; Specht, Charles A.; Kramer, Karl J.; Beeman, Richard W.; Muthukrishnan, Subbaratnam

    2012-01-01

    The functional characterization of an entire class of 17 genes from the red flour beetle, Tribolium castaneum, which encode two families of Cuticular Proteins Analogous to Peritrophins (CPAPs) has been carried out. CPAP genes in T. castaneum are expressed exclusively in cuticle-forming tissues and have been classified into two families, CPAP1 and CPAP3, based on whether the proteins contain either one (CPAP1), or three copies (CPAP3) of the chitin-binding domain, ChtBD2, with its six characteristically spaced cysteine residues. Individual members of the TcCPAP1 and TcCPAP3 gene families have distinct developmental patterns of expression. Many of these proteins serve essential and non-redundant functions in maintaining the structural integrity of the cuticle in different parts of the insect anatomy. Three genes of the TcCPAP1 family and five genes of the TcCPAP3 family are essential for insect development, molting, cuticle integrity, proper locomotion or fecundity. RNA interference (RNAi) targeting TcCPAP1-C, TcCPAP1-H, TcCPAP1-J or TcCPAP3-C transcripts resulted in death at the pharate adult stage of development. RNAi for TcCPAP3-A1, TcCPAP3-B, TcCPAP3-D1 or TcCPAP3-D2 genes resulted in different developmental defects, including adult/embryonic mortality, abnormal elytra or hindwings, or an abnormal ‘stiff-jointed’ gait. These results provide experimental support for specialization in the functions of CPAP proteins in T. castaneum and a biological rationale for the conservation of CPAP orthologs in other orders of insects. This is the first comprehensive functional analysis of an entire class of cuticular proteins with one or more ChtBD2 domains in any insect species. PMID:23185457

  19. Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions.

    PubMed

    Jasrapuria, Sinu; Specht, Charles A; Kramer, Karl J; Beeman, Richard W; Muthukrishnan, Subbaratnam

    2012-01-01

    The functional characterization of an entire class of 17 genes from the red flour beetle, Tribolium castaneum, which encode two families of Cuticular Proteins Analogous to Peritrophins (CPAPs) has been carried out. CPAP genes in T. castaneum are expressed exclusively in cuticle-forming tissues and have been classified into two families, CPAP1 and CPAP3, based on whether the proteins contain either one (CPAP1), or three copies (CPAP3) of the chitin-binding domain, ChtBD2, with its six characteristically spaced cysteine residues. Individual members of the TcCPAP1 and TcCPAP3 gene families have distinct developmental patterns of expression. Many of these proteins serve essential and non-redundant functions in maintaining the structural integrity of the cuticle in different parts of the insect anatomy. Three genes of the TcCPAP1 family and five genes of the TcCPAP3 family are essential for insect development, molting, cuticle integrity, proper locomotion or fecundity. RNA interference (RNAi) targeting TcCPAP1-C, TcCPAP1-H, TcCPAP1-J or TcCPAP3-C transcripts resulted in death at the pharate adult stage of development. RNAi for TcCPAP3-A1, TcCPAP3-B, TcCPAP3-D1 or TcCPAP3-D2 genes resulted in different developmental defects, including adult/embryonic mortality, abnormal elytra or hindwings, or an abnormal 'stiff-jointed' gait. These results provide experimental support for specialization in the functions of CPAP proteins in T. castaneum and a biological rationale for the conservation of CPAP orthologs in other orders of insects. This is the first comprehensive functional analysis of an entire class of cuticular proteins with one or more ChtBD2 domains in any insect species.

  20. What is a 'secure base' when death is approaching? A study applying attachment theory to adult patients' and family members' experiences of palliative home care.

    PubMed

    Milberg, A; Wåhlberg, R; Jakobsson, M; Olsson, E-C; Olsson, M; Friedrichsen, M

    2012-08-01

    Attachment theory has received much interest lately in relation to how adults cope with stress and severe illness. The aim of this study was using the experiences of patients and family members to explore palliative home care as a 'secure base' (a central concept within the theory). Twelve patients and 14 family members were interviewed during ongoing palliative home care. The interviews were analysed with deductive qualitative content analysis. Informants expressed the relevance of sensing security during palliative home care because death and dying were threats that contributed to vulnerability. Palliative home care could foster a feeling of security and provide a secure base. This was facilitated when informants had trust in staff (e.g. due to availability and competence in providing symptom relief), felt recognised as individuals and welcomed to contact the team in times of needs. Being comfortable, informed and having an everyday life also contributed to a perception of palliative home care as a secure base. Family members stressed the importance of being relieved from responsibilities that were too heavy. The underlying meanings of experiencing palliative home care as a secure base involved gaining a sense of control and of inner peace, perceiving that despite a demanding and changed life situation, one could continue partially being oneself and having something to hope for, even if this no longer concerned cure for the ill person. Important aspects of palliative home care as providing a secure base were identified and these have implications for clinical practice. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Genome-Wide Analysis of the NADK Gene Family in Plants

    PubMed Central

    Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming

    2014-01-01

    Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants. PMID:24968225

  2. Genetic analysis of familial non-syndromic primary failure of eruption

    PubMed Central

    Frazier-Bowers, S.; Simmons, D; Koehler, K; Zhou, J

    2009-01-01

    Objectives While some eruption disorders occur as part of a medical syndrome, primary failure of eruption (PFE) – defined as a localized failure of secondary tooth eruption -exists without systemic involvement. Recent studies support that heredity may play an important role in the pathogenesis of PFE. The objective of our human genetic study is to investigate the genetic contribution to PFE. Materials and Methods Four candidate genes POSTN, RUNX2, AMELX, and AMBN) were investigated due to their relationship to tooth eruption or putative relationship to each other. Families and individuals were ascertained based on the clinical diagnosis of PFE. Pedigrees were constructed and analyzed by inspection to determine the mode of inheritance in 4 families. The candidate genes were directly sequenced for both unrelated affected individuals and unaffected individuals. A genome wide scan using 500 microsatellite markers followed by linkage analysis was carried out for one family. Results Pedigree analysis of families suggests an autosomal dominant inheritance pattern with complete penetrance and variable expressivity. Sequence analysis revealed 2 non-functional polymorphisms in the POSTN gene and no other sequence variations in the remaining candidate genes. Genotyping and linkage analysis of one family yielded a LOD score of 1.51 for markers D13S272; D15S118 and D17S831 on chromosomes 13, 15 and 17 respectively. Conclusions While LOD scores were not significant evidence of linkage, extension of current pedigrees and novel SNP chip technology holds great promise for identification of a causative locus for PFE. Clinical Relevance When the process of normal tooth eruption fails, it may result in a clinically guarded or hopeless prognosis. Our studies aim to understand the etiological basis of Primary Failure of Eruption (PFE) toward the development of future orthodontic or pharmocologic interventions that will successfully treat this problem. PMID:19419450

  3. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    PubMed

    Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang

    2013-01-01

    Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  4. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase.

    PubMed Central

    Brown, S M; Crouch, M L

    1990-01-01

    We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. PMID:2152116

  5. Expression of Inwardly Rectifying Potassium Channel Subunits in Native Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Zhang, Xiaoming; Hughes, Bret A.

    2008-01-01

    Previously, we demonstrated that the inwardly rectifying K+ (Kir) channel subunit Kir7.1 is highly expressed in bovine and human retinal pigment epithelium (RPE). The purpose of this study was to determine whether any of the 14 other members of the Kir gene family are expressed in native human RPE. Conventional reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that in addition to Kir7.1, 7 other Kir channel subunits (Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2 and Kir6.1) are expressed in the RPE, whereas in neural retina, all 14 of the Kir channel subunits examined are expressed. The identities of RT-PCR products in the RPE were confirmed by DNA sequencing. Real-time RT-PCR analysis showed, however, that transcripts of these channels are significantly less abundant than Kir7.1 in the RPE. Western blot analysis of the Kir channel subunits detected in the RPE by RT-PCR revealed the expression of Kir2.1, Kir3.1, Kir3.4, Kir4.2, Kir6.1, and possibly Kir2.2, but not Kir1.1, in both human RPE and neural retina. Our results indicate that human RPE expresses at least 5 other Kir channel subtypes in addition to Kir7.1, suggesting that multiple members of the Kir channel family may function in this epithelium. PMID:18653180

  6. Patients' and family members' views on how clinicians enact and how they should enact incident disclosure: the "100 patient stories" qualitative study.

    PubMed

    Iedema, Rick; Allen, Suellen; Britton, Kate; Piper, Donella; Baker, Andrew; Grbich, Carol; Allan, Alfred; Jones, Liz; Tuckett, Anthony; Williams, Allison; Manias, Elizabeth; Gallagher, Thomas H

    2011-07-25

    To investigate patients' and family members' perceptions and experiences of disclosure of healthcare incidents and to derive principles of effective disclosure. Retrospective qualitative study based on 100 semi-structured, in depth interviews with patients and family members. Nationwide multisite survey across Australia. 39 patients and 80 family members who were involved in high severity healthcare incidents (leading to death, permanent disability, or long term harm) and incident disclosure. Recruitment was via national newspapers (43%), health services where the incidents occurred (28%), two internet marketing companies (27%), and consumer organisations (2%). Participants' recurrent experiences and concerns expressed in interviews. Most patients and family members felt that the health service incident disclosure rarely met their needs and expectations. They expected better preparation for incident disclosure, more shared dialogue about what went wrong, more follow-up support, input into when the time was ripe for closure, and more information about subsequent improvement in process. This analysis provided the basis for the formulation of a set of principles of effective incident disclosure. Despite growing prominence of open disclosure, discussion about healthcare incidents still falls short of patient and family member expectations. Healthcare organisations and providers should strengthen their efforts to meet patients' (and family members') needs and expectations.

  7. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development.

    PubMed

    Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura

    2017-12-08

    Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.

  8. Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists.

    PubMed

    Avsian-Kretchmer, Orna; Hsueh, Aaron J W

    2004-01-01

    TGF-beta family proteins with a cystine knot motif serve as ligands for diverse families of plasma membrane receptors. Bone morphogenetic protein (BMP) antagonists represent a subgroup of these proteins, some of which bind BMPs and antagonize their actions during development and morphogenesis. Availability of completed genome sequences from diverse organisms allows bioinformatic analysis of the evolution of BMP antagonists and facilitates their classification. Using a regular expression algorithm (http://BioRegEx.stanford.edu), an exhaustive search of the human genome identified all cystine knot-containing BMP antagonists. Based on the size of the cystine ring, these proteins were divided into three subfamilies: CAN (eight-membered ring), twisted gastrulation (nine-membered ring), as well as chordin and noggin (10-membered ring). The CAN family can be divided further into four subgroups based on a conserved arrangement of additional cysteine residues-gremlin and PRDC, cerberus and coco, and DAN, together with USAG-1 and sclerostin. We searched for orthologs of human BMP antagonists in the genomes of model organisms and analyzed their phylogenetic relationship. New human paralogs were identified together with the verification of orthologous relationships of known genes. We also discuss the physiological roles of the CAN subfamily of BMP antagonists and the associated genetic defects. Based on the known three-dimensional structure of key cystine knot proteins, we postulated disulfide bondings for eight-membered ring BMP antagonists to predict their potential folding and dimerization.

  9. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  10. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  11. Educational technology: a facilitating instrument for the elderly care.

    PubMed

    Cardoso, Rachel da Silva Serejo; Sá, Selma Petra Chaves; Domingos, Ana Maria; Sabóia, Vera Maria; Maia, Tauan Nunes; Padilha, Joviria Marcia Ferreira de Oliveira; Nogueira, Glycia de Almeida

    2018-01-01

    To develop educational technology with caregivers of older people based on the needs, difficulties and concerns related to the elderly care expressed by the caregivers themselves. Research of qualitative nature, with participant observation, based on concepts used by Paulo Freire. Data collection and analysis used the "World Cafe" methodology and the thematic content analysis, respectively. The needs of these caregivers refer to their training and information on aging. The difficulties highlighted are deterrents to quality assistance to older adults, such as: insufficient resources, environmental factor and relationship with the family. The interests are evident in relation to the care and to its more subjective relationship. Final considerations: Educational technologies, printed matter and media, developed along with the caregivers, contribute to orientation and information of caregiver, population and professionals as facilitating instruments, regarding elderly care.

  12. Genome-Wide Investigation and Expression Profiling of HD-Zip Transcription Factors in Foxtail Millet (Setaria italica L.).

    PubMed

    Chai, Wenbo; Si, Weina; Ji, Wei; Qin, Qianqian; Zhao, Manli; Jiang, Haiyang

    2018-01-01

    HD-Zip proteins represent the major transcription factors in higher plants, playing essential roles in plant development and stress responses. Foxtail millet is a crop to investigate the systems biology of millet and biofuel grasses and the HD-Zip gene family has not been studied in foxtail millet. For further investigation of the expression profile of the HD-Zip gene family in foxtail millet, a comprehensive genome-wide expression analysis was conducted in this study. We found 47 protein-encoding genes in foxtail millet using BLAST search tools; the putative proteins were classified into four subfamilies, namely, subfamilies I, II, III, and IV. Gene structure and motif analysis indicate that the genes in one subfamily were conserved. Promotor analysis showed that HD-Zip gene was involved in abiotic stress. Duplication analysis revealed that 8 (~17%) hdz genes were tandemly duplicated and 28 (58%) were segmentally duplicated; purifying duplication plays important roles in gene expansion. Microsynteny analysis revealed the maximum relationship in foxtail millet-sorghum and foxtail millet-rice. Expression profiling upon the abiotic stresses of drought and high salinity and the biotic stress of ABA revealed that some genes regulated responses to drought and salinity stresses via an ABA-dependent process, especially sihdz29 and sihdz45. Our study provides new insight into evolutionary and functional analyses of HD-Zip genes involved in environmental stress responses in foxtail millet.

  13. Male perceptions on female sterilization: a community-based study in rural Central India.

    PubMed

    Char, Arundhati; Saavala, Minna; Kulmala, Teija

    2009-09-01

    Use of modern contraceptive methods has increased fourfold in India since the 1970s, characterized by a predominance of female sterilization. There has been considerable investigation about women's choice of female sterilization, but little from the male perspective. Seven focus group discussions were conducted among 58 men currently married to women aged 15-45, followed by a cross-sectional survey among 793 men currently married to same-aged women. Bivariate analysis was used for the survey data, and content analysis was used for the qualitative data. Men's primary source of reproductive health information was mass media, although they expressed interest in getting information through discussion with knowledgeable sources. Men understood family planning and contraception to be two separate issues: Men viewed "family planning" as synonymous with female sterilization, whereas they saw "contraception" as referring to spacing methods, knowledge of which was limited. Thirty-four percent of men reported that their wives had been sterilized; 79% of men who did not rely on any permanent method said they wanted their wives to be sterilized. In focus group discussions, most men reported themselves as their family's sole decision maker about reproductive health; however, only one-third of survey respondents did so. Men are interested in acquiring family planning information, but lack knowledge about available information sources, which hampers their ability to make informed family planning choices. Family planning service providers and program planners need to be aware of males' knowledge and perceptions pertaining to family planning, and make appropriate modifications to communication strategies.

  14. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins. PMID:24098485

  15. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica).

    PubMed

    Ceasar, S Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  16. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  17. Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica)

    PubMed Central

    Ceasar, S. Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A.

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet. PMID:25251671

  18. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Pan, Feng; Wang, Yue; Liu, Huanglong; Wu, Min; Chu, Wenyuan; Chen, Danmei; Xiang, Yan

    2017-06-27

    The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.

  19. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  20. Genetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae

    PubMed Central

    Chapman, Mark A.; Tang, Shunxue; Draeger, Dörthe; Nambeesan, Savithri; Shaffer, Hunter; Barb, Jessica G.; Knapp, Steven J.; Burke, John M.

    2012-01-01

    The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae. PMID:22479210

Top