Science.gov

Sample records for fan case materials

  1. Material development for fan blade containment casing

    NASA Astrophysics Data System (ADS)

    McMillan, A.

    2008-03-01

    This paper describes the physics reasoning and the engineering development process for the structured material system adopted for the containment system of the Trent 900 engine. This is the Rolls-Royce engine that powers the Airbus A380 double-decker aeroplane, which is on the point of entering service. The fan blade containment casing is the near cylindrical casing that surrounds the fan blades at the front of the engine. The fan blades provide the main part of the thrust of the engine; the power to the fan is provided through a shaft from the turbine. The fan is approximately three meters in diameter, with the tips of the blade travelling at a little over Mach speed. The purpose of the containment system is to catch and contain a blade in the extremely unlikely event of a part or whole blade becoming detached. This is known as a ''Fan Blade Off (FBO)'' event. The requirement is that no high-energy fragments should escape the containment system; this is essential to prevent damage to other engines or to the fuselage of the aircraft. Traditionally the containment system philosophy has been to provide a sufficiently thick solid metallic skin that the blade cannot penetrate. Obviously, this is heavy. A good choice of metal in this case is a highly ductile steel, which arrests the kinetic energy of the blade through plastic deformation, and possibly, a controlled amount of cracking. This is known as ''hard wall'' containment. More recently, to reduce weight, containment systems have incorporated a Kevlar fibre wrap. In this case, the thinner metallic wall provides some containment, which is backed up by the stretching of the Kevlar fibres. This is known as ''soft wall'' containment; but it suffers the disadvantage of requiring a large empty volume in the nacelle in to which to expand. For the Trent 900 engine, there was a requirement to make a substantial weight saving while still adopting a hard wall style of containment system. To achieve this, a hollow structured

  2. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  3. Characterization of Composite Fan Case Resins

    NASA Technical Reports Server (NTRS)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  4. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  5. Advanced laser shearography inspection of turbo-fan engine composite fan cases

    NASA Astrophysics Data System (ADS)

    Lape, Dale; Newman, John W.; Craig, David

    1995-07-01

    Shearography inspection techniques have been developed and implemented for the inspection of aluminum honeycomb turbofan aircraft engine fan cases for the JT15D-5D. Shearography has yielded improved sensitivity to unbonds and throughput over ultrasonic techniques formerly used in the production inspection. This paper discusses vacuum stress shearography, test method verification on the JT15D-5D fan case and shearography data correlation with destructive evaluation of test parts.

  6. A case study on exhaust fan - FEM analysis

    NASA Astrophysics Data System (ADS)

    Damian, I.; Paleu, V.

    2016-08-01

    This paper presents a case study for an exhaust fan rotor made from elements assembled through bolted joints. For this design of the rotor and normal operating conditions the fan achieve the field of resonance, conducting to the failure of rotor bearing assembly, and finally of the entire fan. The finite element method (FEM) is used to study the stress, strain and natural frequencies of the fan rotor. The FEM analysis proves that a rotor with welded construction eliminates the disadvantage of the resonance phenomenon occurrence in the range of the normal operating speed.

  7. Damage-Tolerant Fan Casings for Jet Engines

    NASA Technical Reports Server (NTRS)

    2006-01-01

    All turbofan engines work on the same principle. A large fan at the front of the engine draws air in. A portion of the air enters the compressor, but a greater portion passes on the outside of the engine this is called bypass air. The air that enters the compressor then passes through several stages of rotating fan blades that compress the air more, and then it passes into the combustor. In the combustor, fuel is injected into the airstream, and the fuel-air mixture is ignited. The hot gasses produced expand rapidly to the rear, and the engine reacts by moving forward. If there is a flaw in the system, such as an unexpected obstruction, the fan blade can break, spin off, and harm other engine components. Fan casings, therefore, need to be strong enough to contain errant blades and damage-tolerant to withstand the punishment of a loose blade-turned-projectile. NASA has spearheaded research into improving jet engine fan casings, ultimately discovering a cost-effective approach to manufacturing damage-tolerant fan cases that also boast significant weight reduction. In an aircraft, weight reduction translates directly into fuel burn savings, increased payload, and greater aircraft range. This technology increases safety and structural integrity; is an attractive, viable option for engine manufacturers, because of the low-cost manufacturing; and it is a practical alternative for customers, as it has the added cost saving benefits of the weight reduction.

  8. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  9. Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures

    NASA Technical Reports Server (NTRS)

    Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.

    2015-01-01

    FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.

  10. Alluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Ventra, D.; Lorenz, R. D.; Farr, T. G.; Kirk, R. L.; Hayes, A.; Malaska, M. J.; Birch, S.; Liu, Z. Y. C.; Lunine, J. I.; Barnes, J. W.; Le Gall, A. A.; Lopes, R. M. C.; Stofan, E. R.; Wall, S. D.; Paillou, P.

    2015-12-01

    Alluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini's Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan's surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary

  11. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  12. A case study of acoustics and vibration of mine fans

    SciTech Connect

    Novak, T.; Vitton, S.J.

    1995-11-01

    In December 1991, several residents of Hueytown, AL, began hearing what they referred to as a mysterious sound. This sound, which became known as the Hueytown Hum, was alleged to be so disruptive that one resident claimed it made it impossible to hold a prayer meeting in this house. Bathroom pipes were said to rattle, and the sound would quickly come and go. This phenomenon attracted considerable attention from the news media, including ABC Evening News, CNN, The New York times, A Current Affair, and others. Jim Walter Resources Inc. (JWR) owns and operates a large underground coal mine in the vicinity of Hueytown, and city officials were quick to blame the mysterious sound on a mine-ventilation fan which was installed at approximately the same time the noise began.To address the concerns of the city officials, JWR contracted with The University of Alabama to perform a study to determine if the ventilation fans were a contributing factor to the Hueytown Hum. The purpose of this study was to investigate the acoustical and vibrational characteristics of the JWR fans operating in the Hueytown area. This paper presents the findings of this investigation.

  13. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  14. Effect of casing treatment on performance of a two-stage high-pressure-ratio fan

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.

    1979-01-01

    A two-stage fan, previously tested with a solid casing, was tested with a casing with circumferential grooves over the tips of both rotors (casing treatment). Tests were conducted at 80 and 100 percent of design speed with uniform flow. The casing treatment improved the flow range and stall margin significantly without changing the characteristics overall performance curves of total-pressure and efficiency as functions of weight flow, other than extending them to lower weight flows.

  15. Acoustic testing of a 1.5 pressure ratio low tip speed fan with casing tip bleed (QEP Fan B scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Minzner, W. R.; Paas, J. E.

    1971-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.

  16. Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael

    2011-01-01

    This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.

  17. Alluvial fan sensitivity to glacial-interglacial climate change: case studies from Death Valley.

    NASA Astrophysics Data System (ADS)

    Whittaker, Alexander; D'Arcy, Mitch; Roda-Boluda, Duna; Brooke, Sam

    2016-04-01

    The effects of climate change on eroding landscapes and the sedimentary record remain poorly understood. The measurement of regional grain size trends in stream-flow deposits provides one way to address this issue because, in principle, these trends embed important information on the dynamics of sediment routing systems and their sensitivity to external forcings. In many cases, downstream stratigraphic fining is primarily driven by selective deposition of sediment. The relative efficiency of this process is determined by the physical characteristics of the input sediment supply and the spatial distribution of subsidence rate, which generates the accommodation necessary for mass extraction. Here, we measure grain size fining rates from apex to toe for alluvial fan systems in Death Valley, California, which have well-exposed modern and late Pleistocene deposits, where the long-term tectonic boundary conditions are known and where climatic variation over this time period is well-constrained. Our field data demonstrate that input grain sizes and input fining rates do vary noticeably over the late Pleistocene-Holocene period in this study area, although there is little evidence for significant changes in rates of faulting in the last 200 ky. For two catchments in the Grapevine Mountains for which we have excellent stratigraphic constraints on modern and 70 ka fan deposits, we use a self-similarity based grain size fining model to understand changes in sediment flux to the fans over this time period. When calibrated with cosmogenically-derived catchment erosion rates, our results show that a 30 % decrease in average precipitation rate over this time-frame led to a 20 % decrease in sediment flux to the fans, and a clear increase in the down-fan rate of fining. This supports existing landscape evolution models that relate a decrease in precipitation rate to a decrease in sediment flux, but implies that the relationship between sediment flux and precipitation rate may be

  18. Towards a three-component model of fan loyalty: a case study of Chinese youth.

    PubMed

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term "fan loyalty" refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed. PMID:25886557

  19. Towards a Three-Component Model of Fan Loyalty: A Case Study of Chinese Youth

    PubMed Central

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term “fan loyalty” refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed. PMID:25886557

  20. Towards a three-component model of fan loyalty: a case study of Chinese youth.

    PubMed

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term "fan loyalty" refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed.

  1. Field performance of erosion resistant materials on boiler induced draft fan blades

    SciTech Connect

    Karr, O.F.; Brooks, J.B.; Seay, E.

    1993-05-01

    The TVA Kingston Fossil Power Plant has nine units and is located near Kingston, Tennessee. Units 1 through 4 have a rating of 148 MW and units 5 through 9 have a rating of 197 MW. Each unit has two induced draft fans manufactured by Westinghouse Electric Corp., Sturtevant Division. A table showing design data for the induced draft fans is located on page 16 of this report. The fan blade design details for units 5 through 9 are shown on pages 11 through 14. There is a mechanical fly ash collector and a small electrostatic precipitator preceding the induced draft fans in the boiler flue gas stream and a large, efficient electrostatic precipitator downstream of these fans. The steam generators and pulverizers were supplied by Combustion Engineering. The average temperature of the flue gas is about 340 degrees Fahrenheit for units 5 through 9. All induced draft fans in the boiler flue gas stream experience erosion from fly ash. When the precipitators and fly ash collectors were new the fan blades would last about three years before they were eroded severely and had to be replaced. Kingston Plant personnel say the fly ash collectors are presently in need of major repairs; therefore, the fan blades are not expected to last as long as they did when the plant was new.

  2. Application of composite materials to turbofan engine fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Smith, G. T.

    1980-01-01

    A program was conducted by NASA with the JT9D engine manufacturer to develop a lightweight, cost effective, composite material fan exit guide vane design having satisfactory structural durability for commerical engine use. Based on the results of a previous company supported program, eight graphite/epoxy and graphite-glass/epoxy guide vane designs were evaluated and four were selected for fabrication and testing. Two commercial fabricators each fabricated 13 vanes. Fatigue tests were used to qualify the selected design configurations under nominally dry, 38 C (100 F) and fully wet and 60 C (140 F) environmental conditions. Cost estimates for a production rate of 1000 vanes per month ranged from 1.7 to 2.6 times the cost of an all aluminum vane. This cost is 50 to 80 percent less than the initial program target cost ratio which was 3 times the cost of an aluminum vane. Application to the JT9D commercial engine is projected to provide a weight savings of 236 N (53 lb) per engine.

  3. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  4. Materials, Manufacturing and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.

    2014-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  5. A Case Report on the Effect of Fan Beam Thickness in Helical Tomotherapy of Nasopharyngeal Carcinoma

    SciTech Connect

    Wu, W.C. Vincent; Mui, Wing Lun A.

    2011-04-01

    The fan beam thickness (FBT) in helical tomotherapy is defined by a pair of collimators parallel to the rotational orbit of the radiation beam and is fixed for a specific patient treatment. The aim of this case study is to evaluate the dosimetric influence of changing the FBT in the treatment of a nasopharyngeal carcinoma (NPC) patient. The subject was a T2N1M0 stage NPC patient. The planning target volumes (PTVs) of the primary nasopharyngeal tumor and the left and right cervical lymphatics were delineated along with the organs at risk (OARs) in the corresponding computed tomography slices. Three treatment plans with FBT of 1.0 cm, 2.5 cm, and 5.0 cm (FBT-10, FBT-25, and FBT-50) were generated separately based on similar dose constraints and planning parameters. The dosimetric results of the PTV and OARs were collected and compared among the 3 treatment plans. The differences in the dose parameters of the PTVs were small among the 3 plans. The FBT-10 plan demonstrated the most homogeneous PTV doses with the smallest homogeneity indices (HIs). The FBT-50 plan delivered the highest dose to the OARs and the FBT-10 plan delivered the lowest. The differences between the 2 plans were more significant in the spinal cord, optic chiasm, optic nerves, and lens. This case study demonstrated that the variation of FBT in tomotherapy affected the quality of the treatment plan mainly in the OAR doses, but not so much in the PTV. Increasing the FBT reduced the effectiveness in the sparing of OARs.

  6. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  7. Detailed flow measurements in casing boundary layer of 429-meter-per-second-tip-speed two-stage fan

    NASA Technical Reports Server (NTRS)

    Gorrell, W. T.

    1984-01-01

    Detailed flow measurements between all blade rows were taken in the outer 30 percent of passage height of a two stage fan. Tabulations of the detailed flow measurements are included. Results of these measurements revealed the steep axial velocity profiles near the casing. The axial velocity profile near the casing at the rotor exists was much steeper than at the stator exits. The data also show overturning of the flow at the tip at the stator exits. The effect of mixing is shown by the redistribution of the first stage rotor exit total temperature profile as it passes through the following stator.

  8. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    SciTech Connect

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  9. Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Hodges, T. R.; Keenan, M. J.

    1975-01-01

    A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion.

  10. Use of morphometric analysis and self-organizing maps for alluvial fan classification: case study on Ostorankooh altitudes, Iran

    NASA Astrophysics Data System (ADS)

    Mokarram, Marzieh; Seif, Abdollah; Sathyamoorthy, Dinesh

    2014-06-01

    The aim of this study is to classify alluvial fans formed by high-gradient braided streams and torrents that discharge into the Oshtorankook altitudes in the Lorestan province, Iran. The morphology of the fans and their watershed is quantitatively described through estimated morphometric parameters. For relationships between geomorphological features of the fans and their drainage basins, self-organizingmaps (SOM) were used. In SOM, according to both qualitative data and morphometric variables, the clustering tendency of alluvial fans was investigated using 15 alluvial fans parameters. The results of the analysis showed that several morphologically different fan types were recognizedbased on their geomorphological characteristics in the study area. A strong positive relationship was found between the drainage basin area and size of the fan with a simple power function. In addition, the relationship between fan slope and drainage area was found to be negative and moderately strong with a simple power function.

  11. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    , during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  12. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  13. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  14. Fan Performance From Duct Rake Instrumentation on a 1.294 Pressure Ratio, 725 ft/sec Tip Speed Turbofan Simulator Using Vaned Passage Casing Treatment

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    A 1.294 pressure ratio, 725 ft/sec tip speed, variable pitch low noise fan was designed and tested in the NASA Glenn 9- by 15-foot Wind Tunnel. The design included a casing treatment that used recirculation to extend the fan stall line and provide an acceptable operating range. Overall aerodynamic experimental results are presented for this low tip speed, low noise fan without casing treatment as well as using several variants of the casing treatment that moved the air extraction and insertion axial locations. Measurements were made to assess effects on performance, operability, and noise. An unusual instability was discovered near the design operating line and is documented in the fan operating range. Measurements were made to compare stall margin improvements as well as measure the performance impact of the casing treatments. Experimental results in the presence of simulated inlet distortion, via screens, are presented for the baseline and recirculation casing treatment configurations. Estimates are made for the quantity of recirculation weight flow based on limited instrumentation in the recirculation system along with discussion of results and conclusions

  15. "Fan Fic-ing" English Studies: A Case Study Exploring the Interplay of Vernacular Literacies and Disciplinary Engagement

    ERIC Educational Resources Information Center

    Roozen, Kevin

    2009-01-01

    Drawing from a study of one student's literate engagements with English studies and fan fiction and related fan art over her two years in an MA program, which also reached back to the earlier writing she did for English classes and other writings before the study began, this article employs sociohistoric theory to examine the profoundly dialogic…

  16. Applying Model Simulation to Identify The Importance of Protecting Groundwater Recharge Area - A Case Study of Choshuihsi Alluvial Fan, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Er; Huang, Chih-Chao; Wang, Yun-Shuen; Tsai, Jui-Pin; Chang, Liang-Cheng; Chen, Yu-Wen; Chen, You-Cheng; Wang, Yun-Chih

    2013-04-01

    Groundwater is an important source of water supply, especially for areas lacking in surface water. Many countries have delineated recharge areas to protect groundwater resources. If the areas were not protected, the groundwater quantity and quality would be affected because of human activities. To understand the importance of recharge areas, this study applied MODFLOW and MODPATH to qualify the effects after a recharge area was polluted. This study developed a steady state groundwater simulation model consisting of three aquifers to simulate the groundwater flow of Choshuihsi Alluvial Fan. The simulation heads from MODFLOW were used as input into MODPATH to estimate concentration field. The initial condition of MODPATH was that the contamination particles were distributed on the surface of the shallow aquifer inside the recharge area and the simulation period was set as 200 years. Results shows that parts of the particles flow into the deep aquifers and parts of them flow into the distal-fan of the shallow aquifer 200 years. The result also shows that 22.2%, 45.3% and 22.4% of the three aquifers were polluted, respectively. The second aquifer was polluted widest, this is because the confining bed at mid-fan and distal-fan between first aquifer and second aquifer were well developed. This caused the recharge of second aquifer to rely on the lateral recharge from recharge area and so does third aquifer. Furthermore, the large amount of pumpage at distal-fan of second aquifer caused groundwater level to lower. This situation makes a higher head difference between top-fan and distal-fan of second aquifer. Therefore, the contamination from recharge area has more opportunity to be transported to distal-fan.

  17. CF6 jet engine performance improvement: New fan

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    As part of the NASA sponsored engine component improvement program, and fan package was developed to reduce fuel consumption in current CF6 turbofan aircraft engine. The new fan package consist of an improved fan blade, reduced fan tip clearance due to a fan case stiffener, and a smooth fan casing tip shroud. CF6 engine performance and acoustic tests demonstrated the predicted 1.8% improvement in cruise sfc without an increase in engine noise. Power management thrust/fan speed characteristics were defined. Mechanical and structural integrity was demonstrated in model fan rotor photoelastic stress tests, full-size fan blade bench fatigue tests, and CF6 engine bird ingestion, crosswind, and cyclic endurance tests. The fan was certified in the CF6-500c2/E2 engines and is in commerical service on the Boeing 747-200, Douglas DC-10-30, and Atrbus industrie A300B aircraft.

  18. Layered Fan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03692 Layered Fan

    This beautiful fan deposit is located at the end of a mega-gully that empties into the southern trough of Coprates Chasma.

    Image information: VIS instrument. Latitude -14.9N, Longitude 299.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. 7. EXTERIOR VIEW OF BALTIMORE FAN HOUSE, AIRWAY, AND HILLMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR VIEW OF BALTIMORE FAN HOUSE, AIRWAY, AND HILLMAN FAN HOUSE LOOKING SOUTHEAST The roof of the 1908 Baltimore Fan House is to the left; the doorway opens onto the rear of the metal fan housing. In the immediate foreground is a section of the blast doors installed in the airway directly over the shaft to protect the fans in case of a mine explosion. The sloping airway, to the right, connects with the New Fan House, whose metal updraft chimney is evident in the right background. The engine house of the Hillman Fan House is in the left background with the fan housing and updraft chimney connected. The boiler house stack is in the background. All of the engines in the fan complex were powered by the boiler house. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  20. High-loading low-speed fan study. 4: Data and performance with redesign stator and including a rotor tip casing treatment

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Odegard, P. A.; Burdsall, E. A.

    1972-01-01

    A single stage fan with a rotor tip speed of 1000 ft/sec(304.8 m/sec) and a hub-to-tip ratio of 0.392 was retested with a redesigned stator. Tests were conducted with uniform inlet, tip-radial, hub-radial, and circumferential inlet distortions. With uniform inlet flow, stall margin was improved 12 percentage points above that with the original stator. The fan demonstrated an efficiency of 0.883 and a stall margin of 15 percent at a pressure ratio of 1.488 and a specific flow of 41.17 lb/sec/sq ft. Tests were also made with a redesigned casing treatment consisting of skewed slots over the rotor blade tips. This casing treatment gave a 7 percentage point improvement in stall margin when tested with tip radial distortion (when the rotor tip initiated stall). Noise measurements at the fan inlet and exit indicate no effect from closing the stator 10 degrees, nor were there measurable effects from adding skewed slots over the blade tips.

  1. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  2. Fan Acoustic Issues in the NASA Space Flight Experience

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Goodman, Jerry

    2008-01-01

    Emphasis needs to be placed on choosing quiet fans compatible with systems design and specifications that control spec levels: a) Sound power; b) Choose quiet fan or plan to quiet it, early in program; c) Plan early verification that fan source allocations are met. Airborne noise: a) System design should function/play together with fans used (flow passages, restrictions, bends, expansions & contractions, and acoustics) vs. fan speed understood (nominal, worst case, & unplanned variances); b) Fan inlets treated, as required; c) Fan Outlets treated, as required; d) Ducted system inlets are outlets designed for acoustic compliance compatibility & designed so some late required modifications can be made without significant impacts. Structure Borne Noise: a) Structure borne noise dealt with as part of fan package or installation; b) Duct attachments and lines isolated. Case Radiated Noise: - Treatment added as much as possible to fan package (see example).

  3. [Lymphocytic primary angiitis of the central nervous system with fan-shaped linear enhancement converging to the lateral ventricles: a case report].

    PubMed

    Okunomiya, Taro; Kageyama, Takashi; Tanaka, Kanta; Kambe, Daisuke; Shinde, Akiyo; Suenaga, Toshihiko

    2014-01-01

    We report a case of lymphocytic primary angiitis of the central nervous system (PACNS) with a characteristic gadolinium-enhancement pattern on magnetic resonance imaging (MRI). A 48-year-old, right-handed man presented with a 3-month history of tremor and progressing dementia. Neurologic examination revealed cognitive decline with anterograde amnesia and postural tremor of the fingers. Except for the positive result of serum antinuclear antibody, intense investigations for infectious, rheumatic and neoplastic diseases were negative. Analysis of cerebrospinal fluid showed mild pleocytosis (14 cells/μl). Brain MRI revealed diffuse hyperintense areas in the deep cerebral white matter on T2-weighted images. Gadolinium-enhanced T1-weighted images demonstrated fan-shaped multiple linear enhancements converging to the body of the lateral ventricles. Brain biopsy showed intense infiltration of small lymphocytes without atypia or granuloma mainly within the vessel walls and perivascular spaces. The diagnosis of lymphocytic PACNS was made. Administration of corticosteroid markedly improved the tremor and cognitive dysfunction. MRI after the treatment showed resolution of the abnormal fan-shaped linear enhancement. He returned to his previous occupation. PACNS should be included in the differential diagnosis for fan-shaped linear enhancement converging to the lateral ventricles on MRI in patients with unexplained progressing dementia.

  4. Fan deltas and braid deltas: conceptual problems

    SciTech Connect

    McPherson, J.G.; Shanmugam, G.; Moiola, R.J.

    1986-05-01

    The concept of fan deltas has been widely misinterpreted in the geologic literature. A true fan delta is defined as an alluvial fan deposited into a standing body of water. Such sequences are of limited areal extent and are, as expected, uncommon in the rock record. By contrast, braid deltas (herein defined), formed by progradation of a braided fluvial system into a standing body of water, are a common geomorphic feature in many modern settings, and their deposits are common in the geologic record. Braid-delta sequences are often identified as fan deltas, on the false premise that coarse-grained deposits in a deltaic setting are always part of an alluvial fan complex. The authors find that most published examples of so called fan deltas contain no direct evidence for the presence of an alluvial fan. Even in examples where an alluvial fan could be documented, the authors found that, in many cases, the alluvial fan complex was far removed from the shoreline, separated by an extensive braid plain. The authors suggest that such systems are better classified as braid deltas. They consider that it is essential to distinguish the environmental setting of true fan deltas from that of braid deltas. Misclassification will lead to incorrect interpretations of expected facies, sandstone geometry, reservoir quality, and tectonic settings. Criteria based on geometry, vertical and lateral lithofacies associations, and paleocurrent patterns should be used to correctly identify and distinguish these depositional systems.

  5. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the

  6. Minimizing fan energy costs

    SciTech Connect

    Monroe, R.C.

    1985-05-27

    Minimizing fan energy costs and maximizing fan efficiency is the subject of this paper. Blade design itself can cause poor flow distribution and inefficiency. A basic design criterion is that a blade should produce uniform flow over the entire plane of the fan. Also an inherent problem with the axial fan is swirl -- the tangential deflection of exit-flow caused by the effect of torque. Swirl can be prevented with an inexpensive hub component. Basic efficiency can be checked by means of the fan's performance curve. Generally, fewer blades translate into higher axial-fan efficiency. A crowded inboard area creates hub turbulence which lessens efficiency. Whether the pitch of fan blades is fixed or variable also affects energy consumption. Power savings of 50% per year or more can be realized by replacing fixed-pitch, continuously operating fans with fans whose blade pitch or speed is automatically varied.

  7. Alluvial fans and fan deltas: a guide to exploration for oil and gas

    SciTech Connect

    Fraser, G.S.; Suttner, L.

    1986-01-01

    This volume is a result of a series of lectures presented to an oil company in 1985 and is intended for an audience of explorationists. Material is presented in the order in which an exploration program might proceed in a frontier area. The volume is divided into six chapters that cover definitions and tectonic setting, alluvial-fan morphology, processes and facies on alluvial fans, geomorphic controls, effects of extrinsic controls (chiefly tectonism and climate) on alluvial-fan sequences, and diagenesis. Previously published black-and-white line drawings from studies of modern and ancient fans and fan deltas provide almost all the illustrative material; only one photograph is included, an aerial view of fans in part of Death Valley. The authors emphasize the complexity and variability of fan deposits and their resultant architecture. Although the volume contains a useful review of previous literature, it contains little new material, and it is remarkably lacking subsurface examples and data for a volume intended for the exploration community. In addition, fan deltas receive only brief attention; the overwhelming part of the book is devoted to alluvial fans. The volume will be of interest to those involved in studies of modern and ancient alluvial-fan deposits. 165 references.

  8. Star Trek Rerun, Reread, Rewritten: Fan Writing as Textual Poaching.

    ERIC Educational Resources Information Center

    Jenkins III, Henry

    1988-01-01

    Discusses women who write fiction and fan literature based on the "Star Trek" universe, outlining how Star Trek fans force the primary text to accommodate alternate interests. Also considers the issue of literary property in light of the moral economy of the fan community that shapes the range of permissible retellings of the program materials.…

  9. Supersonic throughflow fans

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Moore, R. D.

    1988-01-01

    Supersonic throughflow fan research, and technology needs are reviewed. The design of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser is described. The results from the analysis codes used in executing the design are shown. An engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope is presented.

  10. Effect of casing treatment of overall performance of axial-flow transonic fan stage with pressure ratio of 1.75 and tip solidity of 1.5

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Moore, R. D.

    1977-01-01

    The effect of a number of casing treatments on the overall performance of a 1.75-pressure-ratio, 423-m/sec-tip-speed fan stage was evaluated. The skewed slot configuration with short-open slots over the midportion of the rotor had a stall margin of 23.5 percent, while the solid casing had a stall margin of 15.0 percent. The skewed slot configuration with long open slots extending ahead of and over portion of rotor displaced the stall line to the lowest flow at all speeds tested. At design speed, the peak efficiency for the long, forward open slots was 1 point less than that for the short midopen slots and 3 points less than that for the solid casing.

  11. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  12. 2. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN HOUSE LOOKING NORTHEAST The New Fan House is in the foreground; the metal fan housing and updraft chimney are attached to the north side. The Hillman Fan House is in the background; the brick airway, fan housing, and updraft chimney are visible. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  13. The transfer of river load to deep-sea fans: A quantitative approach

    SciTech Connect

    Wetzel, A. )

    1993-10-01

    Submarine fans and turbidite systems are major petroleum reservoirs in many sedimentary basins worldwide. The size of a river-fed deep-sea fan is controlled mainly by the amount of sediment available from a terrestrial source, whereas sea level fluctuations only trigger mass transfer to the deep sea. The deposition rate and fan length correlate for most fans formed on abyssal plains. Fan size is independent of depositional environment (lake or sea), time span, or geological period, which may be characterized by different amplitudes and frequencies of sea level fluctuations. In climatically stable regions such as the tropics about 25 [+-] 10% of the suspended river load reaching the river mouth is transported to the deep sea over the long term. The type of river mouth affects the amount of material transported to the deep sea; estuaries with deeply incised canyons may transfer 6-8 times more material than fluvial-dominated and lobate deltas, provided the suspended river load is equal in both cases. For most river-fed deep-sea fans, a well-defined geometry develops on unconfined abyssal plains. The width/length ratio is about 0.2 at the base of the slope, and reaches a maximum of 0.5 farther downward. This is in good agreement with flume experiments. The volume of such fans resting on a planar base is roughly 0.35 [times] area [times] maximum thickness. The quantitative relationships of fans with respect to geometry, deposition rate, and river suspended discharge may provide some basic for basin modeling and calculation of the sediment budget of erosional-depositional systems.

  14. FBP Algorithms for Attenuated Fan-Beam Projections

    PubMed Central

    You, Jiangsheng; Zeng, Gengsheng L.; Liang, Zhengrong

    2005-01-01

    A filtered backprojection (FBP) reconstruction algorithm for attenuated fan-beam projections has been derived based on Novikov’s inversion formula. The derivation uses a common transformation between parallel-beam and fan-beam coordinates. The filtering is shift-invariant. Numerical evaluation of the FBP algorithm is presented as well. As a special application, we also present a shift-invariant FBP algorithm for fan-beam SPECT reconstruction with uniform attenuation compensation. Several other fan-beam reconstruction algorithms are also discussed. In the attenuation-free case, our algorithm reduces to the conventional fan-beam FBP reconstruction algorithm. PMID:16570111

  15. Civil protection non-structural measures in risk management on debris fan: a case study in Villarpellice (Italy)

    NASA Astrophysics Data System (ADS)

    Lazzari, A.; Conte, R.; Franzi, L.; Arattano, M.; Giordan, D.

    2009-04-01

    In the Piemonte region (Italy) the ideal sequence of steps that are pursued to manage, reduce or mitigate debris flow risk is followed by the regional Authorities in land planning activities. Generally practitioners, engineers, geologists and land planners are involved in this process because they have necessarily to interact among each other. In this frame, the collection of field data, the execution of field surveys and the application of hazard and risk mapping techniques to identify the debris flow prone areas on the debris fan allow decision makers to find the most profitable countermeasures to reduce the hazards and the risk, as well as to monitor the processes on the debris fan. The availability of time allows the government officers to elaborate also complex procedures and methods, and to widely discuss solutions with politicians, the general public and economists. In emergency situations, right after debris flow occurrence, similar procedures are generally followed to allow the authorities to take the most urgent decisions for risk and hazard management. However the lack of time often forces officers and decision makers to choose solutions to problems and to hazard mitigation much more quickly. Moreover, due to the complexity of the situations that have to be faced (assessment of the residual risk, project of countermeasures), the coordination of engineers, geologists and practitioners plays one of the most important roles in residual risk management. Land planning efficiency is less when the complexity of situation is high. Therefore, in emergency situations, simple and flexible criteria are generally to be preferred to complex ones. The paper discuss the procedures that need to be followed in emergency situations for a good documentation and an effective monitoring of debris flows and for the design of mitigation measures. In particular the paper shows the way the civil protection works in Piemonte region, on the base of the so-called AUGUSTUS approach

  16. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  17. Tracking Soil Organic Carbon Transport to Continental Margin Sediments Using Soil-Specific Hopanoid Biomarkers: a Case Study From the Congo Fan (ODP Site 1075)

    NASA Astrophysics Data System (ADS)

    Cooke, M. P.; Talbot, H. M.; Eniola, O.; Zabel, M.; Wagner, T.

    2007-12-01

    The transport and subsequent deposition of terrestrially derived organic matter into the ocean is an important but poorly constrained aspect of the modern global carbon cycle. In regions associated with large river systems it is likely that the terrestrial input of organic carbon is much more complex than commonly considered and very difficult to trace based on established geochemical proxies. It is therefore important to develop proxies that target the movement and fate of this terrestrial organic material. The identification of bacteriohopanepolyol (BHP) biomarkers unique to soil derived organic carbon (SOC) has enabled the transport of SOC into aquatic sediments to be traced. The extreme recalcitrance of BHPs enables these source specific compounds to be used on recent and ancient sediments to identify periods of high and low SOC input into sediments. BHPs are bacterial membrane compounds with a high degree of structural variability. They are analogous to steroids in eukaryotes and have been identified in over half of all bacteria studied for their presence. BHPs have a wide range of over 40 functional groups on the side chain, with up to 6 functional groups in each structure, and with methylation and unsaturation over 100 total structures have been identified1. During the BHP analysis of a wide range of soils from around the world we consistently measure high levels adenosylhopane, known to originate from purple non-sulphur, nitrogen fixing and ammonia oxidising bacteria and 2-methyl adenosyl hopane (m/z 802)2, from nitrogen fixing bacteria. Only 3 lacustrine sediments with large SOC supply from their catchments areas have been found to contain these markers in a survey of over 40 different non-marine settings. Recent studies on Late Quaternary sediments from the Congo deep sea fan (OPD site 1075, approximately 2 km water depth) provide a strong case to expect markers for SOC3. An initial analysis of the core samples confirms the presence of soil specific BHP

  18. 1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN HOUSE LOOKING NORTHWEST The building on the left, the New Fan House, houses a Corliss steam engine which powered a Buffalo Forge Company single inlet Duplex Conoidal centrifugal exhausted fan through a metal updraft chimney. Part of the brick airway leading to the Baltimore shaft is visible to its right rear. The Hillman Fan House, on the right, houses the 1883 double inlet Guibal fan. The south entry, the curve of the fan housing, and brick updraft chimney are visible in this view. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  19. Axial fan monitoring by pressure transients close to the blades, a preliminary study

    SciTech Connect

    Loomis, I.; Ramsay, S.

    1999-07-01

    As the axial fan blades move within the fan case pressure transients are developed, which can be measured and qualified by a fixed point monitor. The nature of the pressure transient pattern observed close to the fan blade varies with the location on the fan performance curve. Measurement of the pressure fluctuation around the fan blade ring reveals the minute variation in pressure associated with the movement of the air within the fan. Such observations could be the basis for an on-line fan monitoring system based on the acoustic emissions from the fan blade. This paper describes a preliminary study that was conducted to evaluate the nature of the pressure transient profiles close to the blade of a laboratory axial flow fan. A comparison is made between the transient patterns measured in the fan blade/case gap and immediately behind the fan blade ring. The experimental work involves measurements of transient pressures at various point along the fan performance curve for a series of fan speeds. Of particular interest are those points measured as the fan approaches the stall point. Analysis of the data seeks to define a relationship between the fan performance and the observations. Finally, some thoughts as to how such measurement methods could be employed in fan monitoring systems are presented.

  20. Reason and Reaction: The Dual Route of Decision Making Process on Social Media Usage: The Case of Hospitality Brand Fan Pages

    ERIC Educational Resources Information Center

    Manthiou, Aikaterini

    2012-01-01

    A new phenomenon on Facebook, resulting from social media revolution, is the emergence of numerous Facebook fan pages. This form of online brand community is an effective tool for building relationships with consumers. Many hospitality firms (i.e. restaurants) have captured the strength of a fan page because it can enhance brand attractiveness and…

  1. Coastal alluvial fans (fan deltas) of the Gulf of Aqaba (Gulf of Eilat), Red Sea

    NASA Astrophysics Data System (ADS)

    Hayward, A. B.

    1985-04-01

    Coastal sediments of the Gulf of Aqaba are dominated by alluvial fans that prograde directly into the sea. The fans can be subdivided into four types: (1) largely inactive alluvial fans that merge into a braided fluvial system and pass seaward into sabkha flats, lagoons, mangroves and fringing reefs; (2) large alluvial fans that pass directly into the sea with one major entrenched channel and a fringing reef with a large incised canyon; both of these were formed during the Pleistocene, present fluvial activity is confined to the entrenched channels; (3) medium-sized (1-2 km long, 3-4 km wide) moderate to highly active alluvial fans with fringing reefs and backreef lagoons; and (4) small short-headed wadis that empty directly into the sea. The scale, overall sediment body geometry and facies associations of type (3) coastal alluvial fans (fan deltas) provide a close and useful modern analogue for many ancient fan-delta sedimentary sequences. On subaerial parts of the fan, disorganised cobbles and boulders, at the apex, deposited by debris flows pass downslope into longitudinal bars deposited during the high flood stage of periodic flash-flood events. The bars extend over the entire fan surface becoming progressively smaller and finer grained down fan. In general, the fans are characterised by a low proportion of floodplain deposits and extensive modification by aeolian processes, producing widespread gravel pavements and small dune fields over inactive areas of the lower fan. In the marine environment the fans are modified by a combination of wave action and longshore drift. Sand beaches are characterised by low-angle seaward-dipping lamination. On shingle beaches all gravel clasts have a strong preferred seaward dipping orientation. In areas where the fringing reefs are situated offshore from the fan, mixed quartz-bioclastic sand-filled lagoons develop. The nearshore lagoon areas are characterised by large sand bars orientated parallel to the shore. These pass

  2. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of

  3. Impact resistance of composite fan blades

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of a program to determine the impact resistance of composite fan blades subjected to foreign object damage (FOD) while operating under conditions simulating a short take-off and landing (STOL) engine at takeoff. The full-scale TF39 first-stage fan blade was chosen as the base design for the demonstration component since its configuration and operating tip speeds are similar to a typical STOL fan blade several composite configurations had already been designed and evaluated under previous programs. The first portion of the program was devoted toward fabricating and testing high impact resistant, aerodynamically acceptable composite blades which utilized only a single material system in any given blade. In order to increase the blade impact capability beyond this point, several mixed material (hybrid) designs were investigated using S-glass and Kevlar as well as boron and graphite fibers. These hybrid composite blades showed a marked improvement in resistance to bird impact over those blades made of a single composite material. The work conducted under this program has demonstrated substantial improvement in composite fan blades with respect to FOD resistance and has indicated that the hybrid design concept, which utilizes different types of fibers in various portions of a fan blade design depending on the particular requirements of the different areas and the characteristics of the different fibers involved, shows a significant improvement over those designs utilizing only one material system.

  4. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  5. Prototype Morphing Fan Nozzle Demonstrated

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  6. Smart Fan Modules And System

    DOEpatents

    Cipolla, Thomas M.; Kaufman, Richard I.; Mok, Lawrence S.

    2003-07-15

    A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

  7. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Coppa, A. P.

    1979-01-01

    A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.

  8. 9. DETAIL OF THE FAN HOUSE INTERIOR, SHOWING FAN OPENINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF THE FAN HOUSE INTERIOR, SHOWING FAN OPENINGS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  9. Noise generated by quiet engine fans. 1: FanB

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.

    1972-01-01

    Acoustical tests of full scale fans for jet engines are presented. The fans are described and some aerodynamic operating data are given. Far field noise around the fan was measured for a variety of configurations over a range of operating conditions. Complete results of one third octave band analysis are presented in tabular form. Power spectra and sideline perceived noise levels are included.

  10. 4. DOORS TO FAN ROOM IN FAN HOUSE, FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DOORS TO FAN ROOM IN FAN HOUSE, FROM NORTH - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  11. 3. STEVENS 10 FT FAN IN FAN HOUSE, FROM NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. STEVENS 10 FT FAN IN FAN HOUSE, FROM NORTHEAST - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  12. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  13. Isotopic insights into smoothening of abandoned fan surfaces, Southern California

    USGS Publications Warehouse

    Matmon, A.; Nichols, K.; Finkel, R.

    2006-01-01

    Cosmogenic nuclide concentrations measured on abandoned fan surfaces along the Mojave section of the San Andreas Fault suggest that sediment is generated, transported, and removed from the fans on the order of 30-40??kyr. We measured in situ produced cosmogenic 10Be, and in some cases 26Al, in boulders (n??=??15), surface sediment (n??=??15), and one depth profile (n??=??9). Nuclide concentrations in surface sediments and boulders underestimate fan ages, suggesting that 10Be accumulation is largely controlled by the geomorphic processes that operate on the surfaces of the fans and not by their ages. Field observations, grain-size distribution, and cosmogenic nuclide data suggest that over time, boulders weather into grus and the bar sediments diffuse into the adjacent swales. As fans grow older the relief between bars and swales decreases, the sediment transport rate from bars to swales decreases, and the surface processes that erode the fan become uniform over the entire fan surface. The nuclide data therefore suggest that, over time, the difference in 10Be concentration between bars and swales increases to a maximum until the topographic relief between bars and swales is minimized, resulting in a common surface lowering rate and common 10Be concentrations across the fan. During this phase, the entire fan is lowered homogeneously at a rate of 10-15??mm??kyr-1. ?? 2006 University of Washington.

  14. Flight effects of fan noise

    NASA Astrophysics Data System (ADS)

    Chestnutt, D.

    1982-09-01

    Simulation of inflight fan noise and flight effects was discussed. The status of the overall program on the flight effects of fan noise was reviewed, and flight to static noise comparisons with the JT15D engine were displayed.

  15. Flight effects of fan noise

    NASA Technical Reports Server (NTRS)

    Chestnutt, D. (Editor)

    1982-01-01

    Simulation of inflight fan noise and flight effects was discussed. The status of the overall program on the flight effects of fan noise was reviewed, and flight to static noise comparisons with the JT15D engine were displayed.

  16. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  17. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  18. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  19. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  20. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  1. A fan tale, modern and ancient fans - A comparison

    SciTech Connect

    Fischer, P.J. ); Thor, D.R. ); Cherven, V.B.

    1991-02-01

    The Quaternary Conception fan of the Santa Barbara basin and the Upper Cretaceous Lathrop fan of the northern San Joaquin basin tell an interesting tale. Both fans show a well defined sequence stratigraphy of alternating low-stand, sand-rich units that alternate with thin high-stand silt units that drape and in-fill the surface topography of the previous sand-cycle. Isopachs made from detailed well log correlations (Lathrop) and seismic reflection data tied to borings (Conception) show that the fans are composed of a series of offset-stacked, elongate fan lobes. These lobes are similar in size. A major difference in the development of the two fans is the timing of tectonism. Concomitant tectonism uplifted the Conception fan lobes and resulted in localized erosion of high-stand silts beds and sand-on-sand lobe contacts. Tectonism and Lathrop occurred after fan deposition and provided the trapping structure-the Lathrop anticlinal fold. Following are some lessons to be learned from these and other fans the authors have studied: (1) Quaternary or modern' fans and ancient fans are similar. (2) Elongate sand-rich fan lobes separated by highstand silt units are typical of fans. (3) In addition to well-known techniques (seismic stratigraphy and detailed well log correlations), original reservoir pressures may be used to differentiate sequences and lobes (e.g., Lathrop). (4) Tectonism and erosion along the margin may limit traps to the uppermost lobe sequence (e.g., Conception). (5) An offset-stacked elongate fan lobe model is a valuable exploration and production tool.

  2. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently

  3. Comparison of modern Mississippi fan with selected ancient fans

    SciTech Connect

    Shanmugam, G.; Moiola, R.J.; McPherson, J.G.; O'Connell, S.

    1988-09-01

    A comparison of the modern passive-margin Mississippi fan (DSDP Leg 96) with selected ancient active-margin fans reveals major differences in turbidite facies associations and seismic characteristics of the lower fan area. The lower Mississippi fan is composed of channel (facies B and F) and nonchannel sequences (facies C. and D), whereas lower fan areas of ancient active-margin fans are characterized by nonchannelized, thickening-upward depositional lobes (facies C and D) with sheetlike geometry. An absence of depositional lobes in the lower Mississippi fan is also suggested by a lack of mounded seismic reflections. Continuous and parallel seismic reflections of the lower Mississippi fan may represent sheet sands, but not those of true depositional lobes. In mature passive-margin fans, long, sinuous channels develop as a consequence of low gradients and the transport of sediment with a relatively low sand/mud ratio, and these channels develop lenticular sand bodies. In contrast, channels in active-margin fans are short and commonly braided as a result of high gradients and the transport of sediment with a relatively high sand/mud ratio. Braided channels characteristically develop sheetlike sand bodies.

  4. Jet Engine Fan Blade Containment Using an Alternate Geometry

    NASA Technical Reports Server (NTRS)

    Carney, K.S.; Pereira, J.M.; Revilock, D.M.; Matheny, P.

    2008-01-01

    With a goal of reducing jet engine weight, simulations of a fan blade containment system with an alternate geometry were tested and analyzed. A projectile simulating a fan blade was shot at two alternate geometry containment case configurations using a gas gun. The first configuration was a flat plate representing a standard case configuration. The second configuration was a flat plate with a radially convex curve section at the impact point. The curved surface was designed to force the blade to deform plastically, dissipating energy before the full impact of the blade is received by the plate. The curved case was able to tolerate a higher impact velocity before failure. The computational model was developed and correlated with the tests and a weight savings assessment was performed. For the particular test configuration used in this study the ballistic impact velocity of the curved plate was approximately 60 m/s (200 ft/s) greater than that of the flat plate. For the computational model to successfully duplicate the test, the very high strain rate behavior of the materials had to be incorporated.

  5. Acoustic analysis of a computer cooling fan

    NASA Astrophysics Data System (ADS)

    Huang, Lixi; Wang, Jian

    2005-10-01

    Noise radiated by a typical computer cooling fan is investigated experimentally and analyzed within the framework of rotor-stator interaction noise using point source formulation. The fan is 9 cm in rotor casing diameter and its design speed is 3000 rpm. The main noise sources are found and quantified; they are (a) the inlet flow distortion caused by the sharp edges of the incomplete bellmouth due to the square outer framework, (b) the interaction of rotor blades with the downstream struts which hold the motor, and (c) the extra size of one strut carrying electrical wiring. Methods are devised to extract the rotor-strut interaction noise, (b) and (c), radiated by the component forces of drag and thrust at the leading and higher order spinning pressure modes, as well as the leading edge noise generated by (a). By re-installing the original fan rotor in various casings, the noises radiated by the three features of the original fan are separated, and details of the directivity are interpreted. It is found that the inlet flow distortion and the unequal set of four struts make about the same amount of noise. Their corrections show a potential of around 10-dB sound power reduction.

  6. Improving Several Fan-Driven Systems in an Oriented-Strand Board Manufacturing Facility (Louisiana Pacific Corporation Dryer Combustion Fan)

    SciTech Connect

    1999-01-01

    Read this Technical Case Study to discover how Louisiana Pacific Corporation, a Motor Challenge Showcase Demonstration project partner, was able to realize substantial energy and cost savings by optimizing its fan system.

  7. Comparison of depositional elements of an ancient and a modern submarine fan complex: Early Pennsylvanian Jackfork and late Pleistocene Mississippi fans

    SciTech Connect

    Coleman, J.L. Jr. )

    1990-05-01

    Normark urged that all future, meaningful deep-sea fan comparisons be confined to key depositional elements common to most turbidite systems. These elements should include basin size, tectonic and eustatic setting, and depositional process indicators. A test case for elemental comparisons between two widely studied fan complexes is presented and evaluated. The lower Pennsylvanian (Morrowan) Jackfork submarine fan complex extends from central Arkansas to northeast Texas. Sequence analysis suggests that the Jackfork is composed of four to seven depositional episodes and occupies the floor of a deep basin bordered to the north and east by a passive carbonate-siliciclastic shelf margin and to the south and east by a northward-advancing orogenic belt. The Jackfork apparently unrestricted to the west and southwest. The Mississippi submarine fan complex extends from the submerged continental shelf of southern Louisiana to the abyssal depths between Yucatan and Florida. The fan complex is primarily Pleistocene in age, with the present morphologic fan being late Wisconsinian. The Mississippi Fan is composed of 17 depositional episodes. It occupies the floor of a deep basin bordered on the north and west by quiescent( ) halokinetic-siliciclastic shelf margins and to the east and south by passive carbonate margins. Elemental comparisons between the Mississippi fan and a palynspastically restored Jackfork fan complex suggest that both are quite similar, even though the Mississippi fan is up to three times larger in some categories. Comparative study of key depositional elements facilities a more complete understanding of both modern and ancient submarine fans.

  8. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  9. Self similar growth of a 1D granular fan under laminar flow near threshold

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Métivier, François; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie

    2014-05-01

    Alluvial fans are major sedimentary bodies that make the transition between the reliefs and the sedimentary basins. They are found at the outlet of some drainages catchments, where rivers are free to diverge and avulse, and to depose part of their sedimentary load. Understanding their dynamics of formation and evolution is a great problem of sediment transport. Rivers and fan profiles are usually described as diffusive systems but this is only true if the shear stress exerted on the bed is high compared to the critical shear stress. This might be the case for sand bed rivers, but not for gravel bed rivers, for which it is known that the shear stress is only slightly higher than the critical one. This is why we need to develop a new model to describe the evolution of alluvial fans built by gravel bed rivers. To do this analytically, we work in 1D, with a laminar flow and one grain-size in order to be able to describe both the fluid and the sediment transport. In addition, the conditions of the experiments insured that the boundary shear stress is near the critical value for motion inception of the granular material. Using Taylor expansion, we show that for asymptotically long times, the fan growth is self-similar and can be decomposed into a triangular ``threshold" shape plus a small quadratic deviation. We performed experiments with glass beads and glycerol to test and successfully validate this theory.

  10. Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan

    SciTech Connect

    Kolla, V.; Coumes, F.

    1987-06-01

    The upper Indus Fan (1600-3600 m) is characterized by up to several hundred meters relief that resulted from the aggradation of large channel-levee complexes; gradients greater than 1:500; a distinct 3.5 kHz echo character with several continuous subbottom reflectors; and by fine-grained sediments, except within the channels where coarse-grained materials are inferred. The lower fan has a smooth relief with channels and levees of relatively small dimensions; overall gradients of less than 1:1000; prolonged 3.5 kHz echo character with few or no subbottom reflectors; and a dominantly sandy lithology. The characteristics of the middle fan are intermediate between those of the upper and lower fans. Seismic records reveal at least three canyon complexes on the shelf, each of which gave rise to several leveed channels on the fan. The canyons and channels migrated extensively in time and space across the fan, and channel abandonment and avulsion were very common. Seismically, the canyon fill consists of several reflection-free zones overlain by inclined reflections of moderate amplitudes which are inferred to indicate fine-grained sediments. The channel fills consist of high-amplitude, random reflections overlain successively by reflection-free zones and weak to moderate-amplitude continuous reflections. These characteristics suggest coarse-grained deposits at the base fining upward to the top of the channel fill. The channels, especially on the upper and middle fan, are flanked by wedge-shaped, concave-upward reflection packages characteristic of levee-overbank deposits. Sea level changes and the Himalayan orogenies have profoundly affected the Indus Fan sedimentation since the Oligocene-early Miocene. Sedimentation was by channelized turbidity currents with overbank deposition on the upper fan, and by both unchannelized and channelized turbidity currents on the lower fan during the lowstands of sea level.

  11. Development of a Fan for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  12. EXHAUST STACK RISES. STEEL FRAMEWORK FOR FAN HOUSE IN PLACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXHAUST STACK RISES. STEEL FRAMEWORK FOR FAN HOUSE IN PLACE. TRENCH IN FOREGROUND IS FOR DUCT THAT WILL CARRY COOLANT AIR FROM MTR'S THERMAL SHIELD. DUCT LINES UP WITH NORTH SIDE OF FAN HOUSE. AT RIGHT OF VIEW, NOTE TRENCH LEADING TO SOUTH SIDE OF FAN HOUSE; IT WILL BRING CONTAMINATED AIR FROM LABORATORY HOODS AND VENTS. CAMERA FACING EAST. INL NEGATIVE NO. 2764. Unknown Photographer, 6/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Fan Cart: The Next Generation

    NASA Astrophysics Data System (ADS)

    Lamore, Brian

    2016-10-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. The Physics Teacher has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested in developing the `E' portion of your and your students' STEM (science, technology, engineering, and math) skills, one way to accomplish this is to revisit the DIY fan cart. In this article I share a design of a new edition of the DIY fan cart and some ideas for incorporating the engineering design process into your high school curriculum.

  14. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  15. Bird impact analysis package for turbine engine fan blades

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.

    1982-01-01

    A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.

  16. Field of Fans

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Subimage #1 Figure 1 Subimage #2 Figure 2 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Anaglyph Figure 3 Subimage #3 Figure 4

    At the very beginning of spring in the southern hemisphere on Mars the ground is covered with a seasonal layer of carbon dioxide ice. In this image there are two lanes of undisturbed ice bordered by two lanes peppered with fans of dark dust.

    When we zoom in to the subimage (figure 1), the fans are seen to be pointed in the same direction, dust carried along by the prevailing wind. The fans seem to emanate from spider-like features.

    The second subimage (figure 2) zooms in to full HiRISE resolution to reveal the nature of the 'spiders.' The arms are channels carved in the surface, blanketed by the seasonal carbon dioxide ice. The seasonal ice, warmed from below, evaporates and the gas is carried along the channels. Wherever a weak spot is found the gas vents to the top of the seasonal ice, carrying along dust from below.

    The anaglyph (figure 3) of this spider shows that these channels are deep, deepening and widening as they converge. Spiders like this are often draped over the local topography and often channels get larger as they go uphill. This is consistent with a gas eroding the channels.

    A different channel morphology is apparent in the lanes not showing fans. In these regions the channels are dense, more like lace, and are not radially organized. The third subimage (figure 4) shows an example of 'lace.'

    Observation Geometry Image PSP_002532_0935 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 09-Feb-2007. The complete image is centered at -86.4 degrees latitude, 99.1 degrees East longitude. The range to the target site was 276.1 km (172.6 miles). At this distance the image scale is

  17. Comprehensive Report of Fan Performance From Duct Rake Instrumentation on 1.294 Pressure Ratio, 806 ft/sec Tip Speed Turbofan Simulator Models

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    2006-01-01

    A large scale model representative of an advanced ducted propulsor-type, low-noise, very high bypass ratio turbofan engine was tested for acoustics, aerodynamic performance, and off-design operability in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel. The test was part of NASA s Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and un-powered core passage were simulated. As might be expected, the effect of stall management casing treatment was a performance penalty. Reducing the recirculating flow at the fan tip reduced the penalty while still providing sufficient stall margin. Two fans were tested with the same aerodynamic design; one with graphite composite material, and the other with solid titanium. There were surprising performance differences between the two fans, though both blades showed some indication of transitional flow near the tips. Though the pressure and temperature ratios were low for this fan design, the techniques used to improve thermocouple measurement accuracy gave repeatable data with adiabatic efficiencies agreeing within 1 percent. The measured fan adiabatic efficiency at simulated takeoff conditions was 93.7 percent and matched the design intent.

  18. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  19. Depositional conditions on an alluvial fan at the turn of the Weichselian to the Holocene - a case study in the Żmigród Basin, southwest Poland

    NASA Astrophysics Data System (ADS)

    Zieliński, Paweł; Sokołowski, Robert J.; Fedorowicz, Stanisław; Woronko, Barbara; Hołub, Beata; Jankowski, Michał; Kuc, Michał; Tracz, Michał

    2016-06-01

    Presented are the results of research into the fluvio-aeolian sedimentary succession at the site of Postolin in the Żmigród Basin, southwest Poland. Based on lithofacies analysis, textural analysis, Thermoluminescence and Infrared-Optical Stimulated Luminescence dating and GIS analysis, three lithofacies units were recognised and their stratigraphic succession identified: 1) the lower unit was deposited during the Pleni-Weichselian within a sand-bed braided river functioning under permafrost conditions within the central part of the alluvial fan; 2) the middle unit is the result of aeolian deposition and fluvial redeposition on the surface of the fan during long-term permafrost and progressive decrease of humidity of the climate at the turn of the Pleni- to the Late Weichselian; 3) the upper unit accumulated following the development of longitudinal dunes at the turn of the Late Weichselian to the Holocene; the development of dunes was interrupted twice by the form being stabilised by vegetation and soil development.

  20. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  1. Fan Cart: The Next Generation

    ERIC Educational Resources Information Center

    Lamore, Brian

    2016-01-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. "The Physics Teacher" has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested…

  2. The Case for Authentic Materials on Videodisc.

    ERIC Educational Resources Information Center

    Saint-Leon, Claire Brandicourt

    1988-01-01

    Foreign language video is invaluable for enhancing foreign language instruction, particularly when combined with laser videodisc technology, which allows learners to study minute details. Authentic materials should be made available on videodisks to fully exploit the resources of foreign language video. (Author/CB)

  3. CRIS Case Study Materials in Ethical Decision Making.

    ERIC Educational Resources Information Center

    Blanning, James R.

    Designed for secondary-level classroom discussion, these materials contain nine, short case studies of ethical dilemmas. The cast studies focus mainly on incidents and issues relevant to high school students. Discussion questions for each case study require students to examine the case, discuss the issue, and make an ethical decision about how…

  4. The Materials Division: A case study

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Lowell, Carl E.

    1989-01-01

    The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.

  5. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  6. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  7. Extended parametric representation of compressor fans and turbines. Volume 3: MODFAN user's manual (parametric modulating flow fan)

    NASA Technical Reports Server (NTRS)

    Converse, G. L.

    1984-01-01

    A modeling technique for single stage flow modulating fans or centrifugal compressors has been developed which will enable the user to obtain consistent and rapid off-design performnce from design point input. The fan flow modulation may be obtained by either a VIGV (variable inlet guide vane) or a VPF (variable pitch rotor) option. Only the VIGV option is available for the centrifugal compressor. The modeling technique has been incorporated into a time-sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the last of a three volume set describing the parametric representation of compressor fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan).

  8. COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS

    SciTech Connect

    Ronald Dupree

    2005-07-31

    Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade

  9. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  10. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  11. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  12. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  13. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  14. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  15. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  16. Fan noise research at NASA

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  17. Fan noise research at NASA

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1994-01-01

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  18. Hydraulic processes on alluvial fans

    SciTech Connect

    French, R.H.

    1987-01-01

    Alluvial fans are among the most prominent landscape features in the American Southwest and throughout the semi-arid and arid regions of the world. The importance of developing a qualitative and quantitative understanding of the hydraulic processes which formed, and which continue to modify, these features derives from their rapid and significant development over the past four decades. As unplanned urban sprawl moved from valley floors onto alluvial fans, the serious damage incurred from infrequent flow events has dramatically increased. This book presents a discussion of our current and rapidly expanding knowledge of hydraulic processes on alluvial fans. It addresses the subject from a multidisciplinary viewpoint, acquainting the reader with geological principles pertinent to the analysis of hydraulic processes on alluvial fans.

  19. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  20. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  1. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  2. Longitudinal study of aspergillosis in sea fan corals.

    PubMed

    Kim, Kiho; Alker, Alisa P; Shuster, Kara; Quirolo, Craig; Harvell, C Drew

    2006-03-23

    Aspergillosis (a fungal disease) is affecting sea fan corals Gorgonia spp. throughout the Caribbean. To measure the impact of this disease, we established longitudinal, or in other words individual-based, monitoring studies on 3 reefs in the Florida Keys, USA, to obtain estimates of incidence, rates of disease progress, recovery, and mortality. At Western Dry Rocks (near Key West), 40 Gorgonia ventalina colonies (20 initially healthy and 20 initially diseased) were photo-monitored between June 1996 and May 1998. Additional sea fans were visually monitored during 2 localized outbreaks at Conch (May 1998 to September 1999) and Carysfort (July 2000 to May 2001) reefs located in the Upper Keys. Data from Western Dry Rocks showed that over a 2 yr period, the incidence rate was 0.58 sea fans yr(-1) and that tissue purpling can lead to tissue loss and subsequently to mortality, albeit at low frequencies. Most sea fans, once infected, maintained a low level of damage over time. Only 3 fans recovered from the disease; however 2 were subsequently re-infected. Case fatality rate was 10% (2 of 20 initially infected died), which is equivalent to 5% yr(-1). However, mortality can increase during localized outbreaks. At Conch, mortality was 46% yr(-1) among infected sea fans (compared to 8% yr(-1) at Carysfort, a less impacted site, during the same period). During an outbreak at Carysfort, mortality was 95% yr(-1) among diseased sea fans. These data clearly demonstrate the significant role aspergillosis plays in the population ecology of sea fan corals.

  3. Longitudinal study of aspergillosis in sea fan corals.

    PubMed

    Kim, Kiho; Alker, Alisa P; Shuster, Kara; Quirolo, Craig; Harvell, C Drew

    2006-03-23

    Aspergillosis (a fungal disease) is affecting sea fan corals Gorgonia spp. throughout the Caribbean. To measure the impact of this disease, we established longitudinal, or in other words individual-based, monitoring studies on 3 reefs in the Florida Keys, USA, to obtain estimates of incidence, rates of disease progress, recovery, and mortality. At Western Dry Rocks (near Key West), 40 Gorgonia ventalina colonies (20 initially healthy and 20 initially diseased) were photo-monitored between June 1996 and May 1998. Additional sea fans were visually monitored during 2 localized outbreaks at Conch (May 1998 to September 1999) and Carysfort (July 2000 to May 2001) reefs located in the Upper Keys. Data from Western Dry Rocks showed that over a 2 yr period, the incidence rate was 0.58 sea fans yr(-1) and that tissue purpling can lead to tissue loss and subsequently to mortality, albeit at low frequencies. Most sea fans, once infected, maintained a low level of damage over time. Only 3 fans recovered from the disease; however 2 were subsequently re-infected. Case fatality rate was 10% (2 of 20 initially infected died), which is equivalent to 5% yr(-1). However, mortality can increase during localized outbreaks. At Conch, mortality was 46% yr(-1) among infected sea fans (compared to 8% yr(-1) at Carysfort, a less impacted site, during the same period). During an outbreak at Carysfort, mortality was 95% yr(-1) among diseased sea fans. These data clearly demonstrate the significant role aspergillosis plays in the population ecology of sea fan corals. PMID:16703771

  4. A Method to Further Reduce the Perceived Noise of Low Tip Speed Fans

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    2000-01-01

    The use of low tip speed, high bypass ratio fans is a method for reducing the noise of turbofan jet engines. These fans typically have a low number of rotor blades and a number of stator vanes sufficient to achieve cut-off of the blade passing tone. Their perceived noise levels are typically dominated by broadband noise caused by the rotor wake turbulence - stator interaction mechanism. A 106 bladed, 1100 ft/sec takeoff tip speed fan, the Alternative Low Noise Fan, has been tested and shown to have reduced broadband noise. This reduced noise is believed to be the result of the high rotor blade number. Although this fan with 106 blades would not be practical with materials as they exist today, a fan with 50 or so blades could be practically realized. A noise estimate has indicated that such a 50 bladed, low tip speed fan could be 2 to 3 EPNdB quieter than an 18 bladed fan. If achieved, this level of noise reduction would be significant and points to the use of a high blade number, low tip speed fan as a possible configuration for reduced fan noise.

  5. Understanding space-time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chu, Hone-Jay

    2010-02-01

    SummaryNatural or anthropogenic activities contribute to changes of groundwater levels in space and time. Understanding the major and significant driving forces to changes in space-time patterns of groundwater levels is essential to groundwater management. This study analyzes monthly observations of piezometric heads from 66 wells during 1997-2002 located in the Choshui River alluvial fan of Taiwan, where groundwater has been the important local water resource for myriads of agricultural or industrial demands. Following spatiotemporal estimations of piezometric heads by Bayesian Maximum Entropy method (BME), this work performs rotated empirical orthogonal function (REOF) analysis to decompose the obtained space-time heads into a set of spatially distributed empirical orthogonal functions (EOFs) and their associated uncorrelated time series. Results show that the leading EOFs represent the most significant driving forces to spatiotemporal changes of groundwater levels in the Choshui River aquifer. These include rainfall recharges from upstream Choshui and Pei-Kang River, pumping activities from aquaculture usages in the coastal areas, as well as water exchanges between surface and subsurface flow of Choshui River. In summary, this study shows the strength of the REOF analysis which can effectively provide integrative views of spatiotemporal changes of groundwater, gaining insights of interactions between the groundwater system and other natural and human activities.

  6. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  7. Large Well-exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A.D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early- Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters = 70 km in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 deg S and 30 deg S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  8. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  9. Theories of failure of filament wound-case composite materials

    SciTech Connect

    Lewis, G.

    1986-07-01

    The appropriate failure criterion for composite materials is perhaps one of the most contentious issues in the field. A critical review of the main theories is presented. It is suggested that the tensor polynominal theory, with a modification for normal stress interaction, be adopted. The failure envelopes for the composite materials being studied for the construction of the casing of the solid rocket booster motor of the US Space Shuttle are obtained using this theory. 14 references, 3 figures, 3 tables.

  10. MTR BLOWER AND FAN HOUSE, TRA610. ELEVATION OF STACK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BLOWER AND FAN HOUSE, TRA-610. ELEVATION OF STACK ON WEST SIDE OF FAN HOUSE. BLAW-KNOX 3150-10-2, 6/1950. INL INDEX NO. 531-0610-00-098-100021, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. 30 CFR 57.4131 - Surface fan installations and mine openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface fan installations and mine openings. 57... Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4131 Surface fan installations and mine openings. (a) On the surface, no more than one day's supply of combustible materials shall...

  12. Two-Stage Centrifugal Fan

    NASA Technical Reports Server (NTRS)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  13. 3D Geologic and Reservoir Modelling of a Distributive Fluvial System Derived from lidar: A Case Study of the Huesca Fluvial Fan.

    NASA Astrophysics Data System (ADS)

    Burnham, Brian; Hodgetts, David; Redfern, Jonathan

    2014-05-01

    Understanding stratigraphic and depositional architecture in a fluvially dominated system is fundamental when trying to model and characterise properties such as geometric relationships, heterogeneity, lithologic patterns or trends of the system as well as any associated petrophysical properties or behaviours. The Huesca fluvial fan, an Oligocene - Miocene age Distributive Fluvial System (DFS) in the northern extent of the Ebro Basin, is used extensively as an outcrop analogue for modelling fluvial hydrocarbon reservoirs, as well as a base for the DFS model. To further improve understanding of the system, mapping techniques using lidar integrated with Differential Global Navigation Satellite System (DGNSS) measurements were used to create sub-metre (spatially) accurate geologic models of the medial-distal portions of the DFS. In addition to the digital terrain data, traditional field sedimentary logs, structural and palaeocurrent measurements, and samples for petrophysical analysis were also collected near the town of Piracés in a series of amphitheatres and canal cuts that expose excellent two and three-dimensional views of the strata. The geologic models and subsequent analyses derived from the data will provide a quantitative tool to further understand the depositional architecture, geometric relationship and lithologic characteristics across the studied portion of the distributive fluvial system. Utilizing the inherent quantitative nature of the terrain data in combination with the traditional field and sample data collected, an outcrop based geocellular model of the studied section can be constructed by using several geostatistical modelling approaches to describe geo-body geometries (thickness and width ratio) for the associated fluvial architecture, as well as facies distribution and observed petrophysical characteristics. The resolution of the digital terrain data (<10cm) allowed for an accurate integration of the field observations (palaeoflow

  14. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  15. New observations of sinuous channels on the Amazon Fan

    NASA Astrophysics Data System (ADS)

    Flood, R. D.

    2014-12-01

    High-sinuosity submarine fan channels on the Amazon Fan were first observed using long-range (GLORIA) side-scan sonar in 1982 and mapped in greater detail using multibeam sonar in 1984. These data have provided important insights into the nature and evolution of submarine channel systems. Subsequent studies on the Amazon Fan have focused on avulsion patterns, sedimentation patterns, fan growth and the climate record contained in fan sediments, and there has been relatively little additional work on the details of sinuous channel morphology. Channels on the Amazon Fan have been imaged by multibeam sonar on several occasions since 1984 during focused studies, regional mapping and ship transit. These multibeam data are being compiled and studied to better characterize these iconic channels. One observation of particular interest is that, on the Amazon Fan, channel-wall slumps appear to be more common than previously thought. Drilling of a cut-off meander during ODP Leg 155 on the Amazon Fan showed the presence of slumped material deeper in the channel suggesting that failure of the channel wall was in part responsible for the abandonment and filling of that meander loop. The failure also apparently created a sandy debris flow with clasts of fine-grained levee material transported in a sandy matrix. This sandy debris flow may have been able to flow along the channel and deposit at the seaward end where similar sediments can be found. Disturbed zones now visible on the inner walls of channels at several other places along the channels suggest that these kinds of inner-wall slumps may play important roles in channel evolution and fan growth. Channel-blocking slumps can isolate channel loops which can then fill with sandy sediments, and avulsions are likely if this kind of slump fills the channel. The failure of channel walls can also lead to new channel segments that tend to straighten the channel. Dramatic changes to the shape of the channel can likely lead to large and

  16. Measurement of airflow and pressure characteristics of a fan built in a car ventilation system

    NASA Astrophysics Data System (ADS)

    Pokorný, Jan; Poláček, Filip; Fojtlín, Miloš; Fišer, Jan; Jícha, Miroslav

    2016-03-01

    The aim of this study was to identify a set of operating points of a fan built in ventilation system of our test car. These operating points are given by the fan pressure characteristics and are defined by a pressure drop of the HVAC system (air ducts and vents) and volumetric flow rate of ventilation air. To cover a wide range of pressure drops situations, four cases of vent flaps setup were examined: (1) all vents opened, (2) only central vents closed (3) only central vents opened and (4) all vents closed. To cover a different volumetric flows, the each case was measured at least for four different speeds of fan defined by the fan voltage. It was observed that the pressure difference of the fan is proportional to the fan voltage and strongly depends on the throttling of the air distribution system by the settings of the vents flaps. In case of our test car we identified correlations between volumetric flow rate of ventilation air, fan pressure difference and fan voltage. These correlations will facilitate and reduce time costs of the following experiments with this test car.

  17. Sound maintenance practices protect fan investments

    SciTech Connect

    Bauer, M.

    2009-11-15

    Since underground coal miners depend on axial fans, lack of maintenance could prove costly. A number of pre-emptive actions that can help keep fans running at optimal performance can also be taken. 2 photos.

  18. Prop-fan with improved stability

    NASA Technical Reports Server (NTRS)

    Rothman, Edward A. (Inventor); Violette, John A. (Inventor)

    1988-01-01

    Improved prop-fan stability is achieved by providing each blade of the prop-fan with a leading edge which, outwardly, from a location thereon at the mid-span of the blade, occupy generally a single plane.

  19. FAN HOUSE INTERIOR. THREE MOTOR DRIVES FOR POSITIVE DISPLACEMENT BLOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAN HOUSE INTERIOR. THREE MOTOR DRIVES FOR POSITIVE DISPLACEMENT BLOWERS LINE UP ON NORTH WALL. CONCRETE PEDESTALS. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 4291. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  1. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  2. Interaction of fan rotor flow with downstream struts

    NASA Technical Reports Server (NTRS)

    Obrien, W. F., Jr.; Reimers, S. L.; Richardson, S. W.

    1983-01-01

    The detailed unsteady pressure field produced on the rotor blades of an axial-flow fan by interaction with downstream struts was investigated. The experimental arrangement was similar to that found in the fan casings of turbofan aircraft engines. Acoustically significant pressure fluctuations were measured on both thy suction and pressure sides of the rotor blades for several positions of the downstream struts. The level of the observed interaction decreased with increased spacing of the struts behind the rotor. An inviscid flow analysis for the disturbance level is compared with trends of the measured results.

  3. 10 CFR 429.32 - Ceiling fans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Ceiling fans. 429.32 Section 429.32 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.32 Ceiling fans. (a) Sampling plan for selection of units for testing. The requirements of § 429.11 are applicable to ceiling fans. (b)...

  4. 10 CFR 429.32 - Ceiling fans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Ceiling fans. 429.32 Section 429.32 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.32 Ceiling fans. (a) Sampling plan for selection of units for testing. The requirements of § 429.11 are applicable to ceiling fans. (b)...

  5. 10 CFR 429.32 - Ceiling fans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Ceiling fans. 429.32 Section 429.32 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.32 Ceiling fans. (a) Sampling plan for selection of units for testing. The requirements of § 429.11 are applicable to ceiling fans. (b)...

  6. Online Fan Fiction and Critical Media Literacy

    ERIC Educational Resources Information Center

    Black, Rebecca W.

    2010-01-01

    This article explores English-language-learning (ELL) youths' engagement with popular media through composing and publicly posting stories in an online fan fiction writing space. Fan fiction is a genre that lends itself to critical engagement with media texts as fans repurpose popular media to design their own narratives. Analyses describe how…

  7. Azimuthal Directivity of Fan Tones Containing Multiple Modes

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Sutliff, Daniel L.; Nallasamy, M.

    1997-01-01

    The directivity of fan tone noise is generally measured and plotted in the sideline or flyover plane and it is assumed that this curve is the same for all azimuthal angles. When two or more circumferential (m-order) modes of the same tone are present in the fan duct, an interference pattern develops in the azimuthal direction both in the duct and in the farfield. In this investigation two m-order modes of similar power were generated in a large low speed fan. Farfield measurements and a finite element propagation code both show substantial variations in the azimuthal direction. Induct mode measurement were made and used as input to the code. Although these tests may represent a worst case scenario, the validity of the current practice of assuming axisymmetry should be questioned.

  8. Acoustic results of supersonic tip speed fan blade modification

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A supersonic tip speed single stage fan was modified with the intent of reducing multiple pure tone (MPT) or buzz saw noise. There were three modifications to the blades from the original design. The modifications to the blade resulted in an increase in cascade throat area causing the shock to start at a lower corrected fan speed. The acoustic results without acoustically absorbing liners showed substantial reduction in multiple pure tone levels. However, an increase in the blade passing frequency noise at takeoff fan speed accompanied the MPT reduction. The net result however, was a reduction in the maximum 1000-foot (304.8 m) altitude level flyover PNL. For the case with acoustic treatment in the inlet outer wall, the takeoff noise increased relative to an acoustically treated baseline. This was largely due to the increased blade passing frequency noise which was not effectively reduced by the liner.

  9. Fan-surface dynamics and biogenic calcrete development: Interactions during ultimate phases of fan evolution in the semiarid SE Spain (Murcia)

    NASA Astrophysics Data System (ADS)

    Alonso-Zarza, Ana M.; Silva, Pablo G.; Goy, José L.; Zazo, Cari

    1998-08-01

    Pleistocene alluvial fan surfaces of the Campo de Cartagena-Mar Menor Basin (Murcia, SE Spain) are capped by thick mature calcretes. Calcrete profiles consist mainly of six different horizons: prismatic, chalky, nodular, massive, laminar and coated-gravels. Petrographic study of the calcretes has shown the occurrence of features such as alveolar septal structures, calcified filaments, coated grains, spherulites, calcified root cells and calcispheres that indicate the biogenic origin of the calcretes, mainly induced by plant root related microbial activity. The calcretes studied were formed initially in the soil and represented the K horizon. Development of the calcrete profiles took place in six main stages and was driven by multiple phases of soil formation, erosion and reworking. The relationships between these processes caused the formation of different calcrete profiles in proximal and distal fan areas. In the distal areas, which are controlled by limited distal fan aggradation, episodic sediment input, buried previously developed calcretes and generated new space for calcrete growth by plants growing in the overlying unconsolidated materials. This allowed the renewal of calcrete formation and it led to the development of complex composite profiles which are thicker than in proximal areas, where surface stabilisation and/or dissection enabled calcrete reworking and brecciation. These processes of erosion, sedimentation, reworking and renewed calcrete formation initiated by vegetation were repeated through time. They explain the complex macro- and microstructures of these calcretes and indicate that calcrete development, even reaching mature stages, can start before the fan surface is completely abandoned, but it requires episodic sedimentation. Eventually, distal fan aggradation and continuous calcrete development throughout the entire fan surface, led to the ultimate fan surface induration, controlling subsequent landscape evolution. So, fan surface calcretes

  10. A structural and depositional framework for fan deltas in southern Puerto Rico

    SciTech Connect

    Renken, R.A. )

    1990-05-01

    Puerto Rico's southern plain consists of six coalescing fan deltas of Holocene to Miocene age that are bordered to the north by the steep-faced mountains of the Cordillera Central. These fan deltas extend 70 km along the Caribbean Sea and form a narrow plain that ranges from 3 to 8 km in width. A narrow, transitional marine zone separates the subaerial part of the fan from the coast. Possibly due to their poor preservation or subsequent erosion, deeply buried marginal marine fan-delta deposits have not been identified in well core data. Subaerial fan-delta deposits are separated at outcrop and in the subsurface into a fine-grained facies of bedded silt sheet-flow deposits and a coarse-grained facies of boulder to fine sand streamflow deposits. The six fan deltas form an elongate depositional basin nearly parallel to the west-northwest structural trend of the great southern Puerto Rico fault zone. Subsurface mapping indicates that this fault zone, which contains numerous sinistral and high-angle cross faults, probably extends beneath the fan-delta plain. Movement along these faults has resulted in pull-apart basin structures beneath the Salinas fan delta and a releasing bend structure beneath the Ponce-Capitanejo fan deltas. Percentage sand and gravel lithofacies maps show that the trunk streams concentrate coarse-grained material as a narrow proximal channel near the apex or as a midfan lobe. Bedded silt deposits dominate the distal and interfan areas. Thickening-upward sand and gravel beds and thinning-upward silt beds in the distal fan subsurface areas indicate that several fan deltas are part of a coarsening-upward prograding sequence.

  11. Performance of two-stage fan having low-aspect-ratio first-stage rotor blading

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.; Gorrell, W. T.; Cunnan, W. S.

    1979-01-01

    The NASA two stage fan was tested with a low aspect ratio first stage rotor having no midspan dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak efficiencies for the first stage and rotor of 0.870 and 0.906, respectively. Peak efficiency occurred very close to the stall line. In an attempt to improve stall margin, the fan was retested with circumferentially grooved casing treatment and with a series of stator blade resets. Results showed no improvement in stall margin with casing treatment but increased to 8 percent with stator blade reset.

  12. Fan Performance Testing and Oxygen Compatibility Assessment Results for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.; Paul, Heather L.; Vogel, Matthew

    2008-01-01

    An advanced portable life support system (PLSS) for the space suit will require a small, robust, and energy-efficient system to transport the ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on the trade study results, five commercially available, 24volt fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included fan delta-pressures, input voltages, input electrical currents, and in some cases motor windings electrical voltages and currents. In addition, a follow-on trade study was performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.

  13. Fan Performance Testing and Oxygen Compatibility Assessment Results for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Vogel, Matthew

    2009-01-01

    An advanced portable life support system (PLSS) for the space suit will require a small, robust, and energyefficient system to transport the ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on the trade study results, five commercially available, 24-volt fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included fan delta-pressures, input voltages, input electrical currents, and in some cases motor windings electrical voltages and currents. In addition, a follow-on trade study was performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.

  14. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  15. Fan System Optimization Improves Ventilation and Saves Energy at a Computer Chip Manufacturer

    SciTech Connect

    2002-01-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  16. Flutter of swept fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Kaza, K. R. V.

    1984-01-01

    The effect of sweep on fan blade flutter is studied by applying the analytical methods developed for aeroelastic analysis of advance turboprops. Two methods are used. The first method utilizes an approximate structural model in which the blade is represented by a swept, nonuniform beam. The second method utilizes a finite element technique to conduct modal flutter analysis. For both methods the unsteady aerodynamic loads are calculated using two dimensional cascade theories which are modified to account for sweep. An advanced fan stage is analyzed with 0, 15 and 30 degrees of sweep. It is shown that sweep has a beneficial effect on predominantly torsional flutter and a detrimental effect on predominantly bending flutter. This detrimental effect is shown to be significantly destabilizing for 30 degrees of sweep.

  17. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Hobley, D. E. J.; Moore, J. M.; Dietrich, W. E.; Williams, R. M. E.; Burr, D. M.; Grant, J. A.; Wilson, S. A.; Matsubara, Y.

    2014-02-01

    The deflated surfaces of the alluvial fans in Saheki crater reveal the most detailed record of fan stratigraphy and evolution found, to date, on Mars. During deposition of at least the uppermost 100 m of fan deposits, discharges from the source basin consisted of channelized flows transporting sediment (which we infer to be primarily sand- and gravel-sized) as bedload coupled with extensive overbank mud-rich flows depositing planar beds of sand-sized or finer sediment. Flow events are inferred to have been of modest magnitude (probably less than ∼60 m3/s), of short duration, and probably occupied only a few distributaries during any individual flow event. Occasional channel avulsions resulted in the distribution of sediment across the entire fan. A comparison with fine-grained alluvial fans in Chile’s Atacama Desert provides insights into the processes responsible for constructing the Saheki crater fans: sediment is deposited by channelized flows (transporting sand through boulder-sized material) and overbank mudflows (sand size and finer) and wind erosion leaves channels expressed in inverted topographic relief. The most likely source of water was snowmelt released after annual or epochal accumulation of snow in the headwater source basin on the interior crater rim during the Hesperian to Amazonian periods. We infer the Saheki fans to have been constructed by many hundreds of separate flow events, and accumulation of the necessary snow and release of meltwater may have required favorable orbital configurations or transient global warming.

  18. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic

  19. Surface mine fan installations at Inco Limited

    SciTech Connect

    Stachulak, J.S.

    1995-12-31

    Inco Limited operates 11 underground mines in the Sudbury District. The mines are located on the rim of the Sudbury Basin, an oval with the axis in the range of 27 and 60 km. The ore dips to at least 3000 m below surface. The ores are mined primarily for nickel and copper. Total ore production from underground is in excess of 55,000 tons per day. Over 40 surface fans have been installed since the late 1960`s. All of the fans are adjustable pitch, axial flow units. A major factor influencing ventilation design in the last 30 years has been the introduction of diesel equipment underground. Volumes per fan have ranged from 60 to 330 (cubic metres per second), with motors from 100 to 2500 hp. Fans of the axial flow type have been in common use for main fan installations at Canadian mines for many years. The standard arrangement has been to mount these fans horizontally, i.e. with the fan shaft and the long axis of the housing horizontal. This is a natural arrangement for an underground fan, but for a surface installation, a vertically mounted fan has definite advantages. The surface area taken up by a typical vertical fan installation is generally about one quarter of that with a horizontal fan of the same capacity. This is not a problem with isolated fans and flat surface outcrop sites, but where the installation is to be near existing buildings, or where there are poor surface soil conditions, space and cost considerations greatly favour vertical fans.

  20. A case study of teachers using innovative curriculum materials

    NASA Astrophysics Data System (ADS)

    Dixon, Patricia J.

    A yearlong study of two middle school teachers was completed in an effort to better understand the complexity of teachers using innovative curriculum materials. In order for this process to take place, teachers change the way they view materials, the use of materials, and are forced to reexamine their views on teaching and learning. Five fundamental elements necessary to facilitate teacher change were identified as a result of analysis of the data: (1) an external stimulus; (2) an attitude of nonresistance to change; (3) a context in which change is acceptable; (4) support; and (5) practice. One or more of these elements occur in the context of teachers enhancing their ideas about how to teach through the relationships that they develop as part of their involvement in the profession. For example, the way teachers choose which materials to use in their classrooms and how to use them is affected by professional development, inservice opportunities, attendance at conferences, collegial relationships, standards, district and school policy, and collaborations with outside groups. The following questions guided the study: (1) What elements facilitate teachers' use of innovative curriculum materials? (2) Do teachers have to change their ideas about their practice in order to incorporate innovative materials into their practice? (3) What relationships do teachers form that either support or inhibit incorporation of innovative curriculum materials into their practice? Data gathered through case studies, interviews, guided conversations, and member checks were sorted and the following themes were used to organize the data: personal issues, school culture, classroom management, planning, and materials. From this initial examination, and placing themes into the complexity of teachers' work, five elements that facilitate teacher change were identified. In addition, the study identified concrete examples of teachers changing their practice to accommodate materials that they

  1. Seismic definition of fan lobe types of Mississippi Fan, Gulf of Mexico

    SciTech Connect

    Weimer, P.; Buffler, R.T.

    1986-05-01

    Detailed seismic stratigraphic studies in the upper and middle Mississippi Fan identified 12 fan lobes. Three different types of fan lobes are present. The type 1 fan lobe consists of two seismic sequences. At the base of the lower sequence are mounded reflectors that change upward to hummocky reflectors. The upper sequence has stacked high-amplitude reflectors flanked on either side by low-amplitude, laterally continuous reflectors. These type 1 fan lobes are interpreted as mass transport deposits overlain by a single channel with extensive overbank deposits. The type 2 fan lobe has seismic and geologic facies similar to the upper sequence of type 1. Both type 1 and type 2 fan lobes have a single channel that is sinuous in the middle fan. The type 3 fan lobe is characterized by several stacked high-amplitude reflectors, flanked by laterally continuous low-amplitude reflectors. These represent a bifurcating channel system showing several episodes of deposition and abandonment. Most of the sediments in the Mississippi Fan were deposited in type 2 or the upper sequence of type 1 fan lobes. Sediments in the lower sequence of the type 1 lobe are areally and volumetrically limited. Of the 12 fan lobes, 7 are type 1, 4 are type 2, and 1 is type 3. Deep Sea Drilling Project Leg 96 drilling penetrated only the modern lobe, which is a type 2 fan lobe.

  2. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported. PMID:25215729

  3. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  4. The Forming of AISI 409 sheets for fan blade manufacturing

    SciTech Connect

    Foroni, F. D.; Menezes, M. A.; Moreira Filho, L. A.

    2007-04-07

    The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concern referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good to temperatures of gas exhaust from tunnels in fire situation. The innovation is centered in the process of a deep drawing of metallic sheets in order to keep the ideal aerodynamic superficies for the fan ideal performance. Through the impression of circles on the sheet plane it is shown, experimentally, that, during the pressing process, the more deformed regions on the sheet plane of the blade can not reach the deformation limits of the utilized sheet material.

  5. Factors controlling ebro deep-sea fan growth, Mediterranean Sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A.; Alonso, B.; Palanques, A.; Ryan, W.B.F.; Kastens, K.; O'Connel, S.

    1985-01-01

    Tectonic, sediment-source and sea-level factors control depositional patterns of the Ebro deep-sea fan system. In unstable, steep continental slope terrain, mass movement of material results in wide gullied canyons and formation of non-channelized debris aprons. These fan channels develop low sinuosity and generally traverse the continental rise without feeding into depositional lobes because of steep gradients (1:50 to 1:100) and sediment draining into the subsiding Valencia Valley graben. An abundance of sediment input points from mass failure and many river-fed canyons contributes to a depositional pattern of side-by-side debris aprons and separate channel-levee complexes. When a large sediment supply feeds a channel for a relatively long period 1) fan valley sinuosity increases: 2) channel walls are modified through undercutting, slumping, and crevasse splays: 3) channel bifurcation occurs: 4) incipient depositional lobe formation begins. Lowering of sea levels in Late Pleistocene time permitted the access of coarse river sediment to slope valleys and promoted deposition of numerous turbidites and active growth of the fan. During the Holocene, when sea levels have been high, a regime of hemipelagic sedimentation, mass movement, and debris apron sedimentation has dominated.

  6. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality...

  7. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality...

  8. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality...

  9. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality...

  10. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality...

  11. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  12. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  13. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  14. A comparative study of varying fan noise mitigation techniques in relation to sustainable design goals

    NASA Astrophysics Data System (ADS)

    Overweg, Cornelis; Fullerton, Jeff L.

    2005-04-01

    Green building design promotes effective use of materials and energy, improved indoor environmental quality (IEQ), and enhanced occupant comfort. These ``green'' goals can occasionally conflict with common acoustical approaches used for fan noise control. A design striving for low noise levels from the ventilation system to benefit occupant comfort can inadvertently introduce elements that are contradictory to other green building objectives. For example, typical fan noise control devices introduce higher energy consumption or less beneficial indoor environmental quality. This paper discusses the acoustical, mechanical, environmental, and relative cost impacts of various fan noise control techniques.

  15. Analysis and control of computer cooling fan noise

    NASA Astrophysics Data System (ADS)

    Wong, Kam

    This thesis is divided into three parts: the study of the source mechanisms and their separation, passive noise control, and active noise control. The mechanisms of noise radiated by a typical computer cooling fan is investigated both theoretically and experimentally focusing on the dominant rotor-stator interaction. The unsteady force generated by the aerodynamic interaction between the rotor blades and struts is phase locked with the blade rotation and radiates tonal noise. Experimentally, synchronous averaging with the rotation signal extracts the tones made by the deterministic part of the rotor-strut interaction mechanism. This averaged signal is called the rotary noise. The difference between the overall noise and rotary noise is defined as random noise which is broadband in the spectrum. The deterministic tonal peaks are certainly more annoying than the broadband, so the suppression of the tones is the focus of this study. Based on the theoretical study of point force formulation, methods are devised to separate the noise radiated by the two components of drag and thrust forces on blades and struts. The source separation is also extended to the leading and higher order modes of the spinning pressure pattern. By using the original fan rotor and installing it in various casings, the noise sources of the original fan are decomposed into elementary sources through directivity measurements. Details of the acoustical directivity for the original fan and its various modifications are interpreted. For the sample fan, two common features account for most of the tonal noise radiated. The two features are the inlet flow distortion caused by the square fan casing, and the large strut carrying the electric wires for the motor. When the inlet bellmouth is installed and the large strut is trimmed down to size, a significant reduction of 12 dB in tonal sound power is achieved. These structural corrections constitute the passive noise control. However, the end product still

  16. Quaternary conception fan, Santa Barbara, California: two distinct canyon(s)-fan systems

    SciTech Connect

    Kraemer, S.M.C.

    1987-05-01

    The Quaternary Conception fan forms the gentle northwestern slope of the Santa Barbara basin, California. Two distinct canyon(s)-fan systems which show conspicuous differences in growth pattern coalesced to form this sediment wedge. The older Cojo canyon-fan system fed a typical radial fan characterized by (1) a single persistent conduit, (2) rhythmic interbedded levees in the upper and mid-fan built by frequent episodic turbidity flows, (3) an apparently well-developed distributary system, and (4) distal sand deposition on the lower fan and basin plain. Subsequently, the Gaviota canyons formed a radial fan/slope apron system. Two subparallel canyons were incised along fault zones where headward erosion was enhanced by slumping and increased fluvial sediment supply during the Pleistocene due to the capture of the Santa Ynez River near Gaviota Creek. Tectonism produced channel aggradation, which resulted in a series of en echelon channels. The eastern channel is associated with slumping and numerous coalescing slope gullies. These features resulted from oversteepening of the fan slope. Due to the absence of distinct gradient breaks, recent channel morphology was used to define fan divisions: (1) upper fan, broad channel with levees, gradient range from 1:25 to 1:40, (2) middle fan, levee heights decrease and channels narrow, gradients range from 1:40 to 1:100, and (3) lower fan, relatively smooth surface morphology, gradients less than 1:100. These higher gradients on the present Conception fan are unlike radial fan systems and have resulted in (1) relatively straight incised channels, (2) no distinct distributary system with evidence of channel braiding or avulsion, and (3) no suprafan bulge despite high sand supply. Morphology of the Cojo canyon-fan system suggests gradients were lower during deposition than presently observed on the fan.

  17. Turbulent dispersion via fan-generated flows.

    PubMed

    Halloran, Siobhan K; Wexler, Anthony S; Ristenpart, William D

    2014-05-01

    Turbulent dispersion of passive scalar quantities has been extensively studied in wind tunnel settings, where the flow is carefully conditioned using flow straighteners and grids. Much less is known about turbulent dispersion in the "unconditioned" flows generated by fans that are ubiquitous in indoor environments, despite the importance of these flows to pathogen and contaminant transport. Here, we demonstrate that a point source of scalars released into an airflow generated by an axial fan yields a plume whose width is invariant with respect to the fan speed. The results point toward a useful simplification in modeling of disease and pollution spread via fan-generated flows.

  18. Noise suppression by flexible fan silencers

    SciTech Connect

    Partyka, J.; Kelly, T.R.J.

    1995-12-31

    This paper presents the results on noise testing of a fan only, as well as the results of a steel silencer and of flexible silencers that were connected directly to a fan. On-site facilities and free-field method set by the British Standards Institution were used to measure and then compare the fan only and different practical silencer configuration setups. In order to determine the fan-silencer combination that would give the maximum noise attenuation, total noise intensity, noise contributed to by the fan motor only, as well as aerodynamical noise created through air interacting with the fan parts were considered to obtain decibel readings for the octave bands. Subsequently, the optimal configuration found was the setup with flexible silencers on the fan inlet and the fan outlet. If only one silencer is used, it should be installed on the fan inlet. The aerodynamic noise affects the low frequencies. The flow noise is then overtaken at 1 kHz by the mechanical noise.

  19. Turbulent dispersion via fan-generated flows

    PubMed Central

    Halloran, Siobhan K.; Wexler, Anthony S.; Ristenpart, William D.

    2014-01-01

    Turbulent dispersion of passive scalar quantities has been extensively studied in wind tunnel settings, where the flow is carefully conditioned using flow straighteners and grids. Much less is known about turbulent dispersion in the “unconditioned” flows generated by fans that are ubiquitous in indoor environments, despite the importance of these flows to pathogen and contaminant transport. Here, we demonstrate that a point source of scalars released into an airflow generated by an axial fan yields a plume whose width is invariant with respect to the fan speed. The results point toward a useful simplification in modeling of disease and pollution spread via fan-generated flows. PMID:24932096

  20. Enhanced Fan Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  1. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  2. Flow visualization around axial flow fan blades

    NASA Astrophysics Data System (ADS)

    Kawaguchi, K.; Matsui, K.

    1986-02-01

    The flow around the blades of an axial flow fan was visualized by using a drum camera. The distribution of the flow velocity about the blades was determined by combining the spark tracing method with the smoke wire method, making it possible to determine the blade element efficiency. The efficiencies and noise levels of radiator cooling fans can be determined using this technique. The method was applied to two types of fans with different performances, and the flow around the wing was correlated with the wing tip efficiency. The effect of tip vortex on the total fan noise was quantified.

  3. Filament-winding fabrication of QCSEE configuration fan blades

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1978-01-01

    The design and fabrication of twelve NASA-QCSEE type composite fan blades utilizing wet filament winding fabrication techniques is described. All composite fibers were continuous and attached to the root end. All components were formed, bonded, and co-cured in one molding process. Advanced fiber materials used in the blade fabrication were Thornel-300, Carbolon Z-2-1, and Carbolon Z-3 graphite in an epoxy resin matrix.

  4. Metal spar/superhybrid shell composite fan blades. [for application to turbofan engins

    NASA Technical Reports Server (NTRS)

    Salemme, C. T.; Murphy, G. C.

    1979-01-01

    The use of superhybrid materials in the manufacture and testing of large fan blades is analyzed. The FOD resistance of large metal spar/superhybrid fan blades is investigated. The technical effort reported was comprised of: (1) preliminary blade design; (2) detailed analysis of two selected superhybrid blade designs; (3) manufacture of two process evaluation blades and destructive evaluation; and (4) manufacture and whirligig testing of six prototype superhybrid blades.

  5. 1. SCAFFOLD, LEPLEY VENTILATOR, AND AEROVANE FAN (LEFT TO RIGHT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SCAFFOLD, LEPLEY VENTILATOR, AND AEROVANE FAN (LEFT TO RIGHT) FROM EAST. AEROVANE FAN HOOD AT REAR OF AEROVANE FAN. - Consolidation Coal Company Mine No. 11, East side of State Route 936, Midlothian, Allegany County, MD

  6. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    SciTech Connect

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  7. Streaming Scholarship: Using Fan Vids to Teach "Harry Potter"

    ERIC Educational Resources Information Center

    Winters, Sarah Fiona

    2013-01-01

    This article argues that Harry Potter fan vids can be used in the classroom as works of secondary criticism about J. K. Rowling's primary text. It makes two claims: the first is that vids can be read as criticism of a particular text (in this case Harry Potter) alongside other critical essays on that text; the second is that the practice of…

  8. Alluvial fan response to climatic change: Insights from numerical modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2009-12-01

    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  9. Flood hazard assessment on alluvial fans: an examination of the methodology

    SciTech Connect

    French, R.H.

    1984-08-01

    The report presents the results of a critical examination of assumptions and methodology recommended by the Federal Emergency Management Agency (FEMA) to assess flood hazard on alluvial fans. The conculsions reached are as follows. First, the assumption that a flow on an alluvial fan has an equal probability of crossing any point on a given contour seems to be a very conservative assumption. Second, given the data from the Nevada Test Site, it would appear that the assumption that fans have critical to supercritical slopes is acceptable. Third, the present methods of estimating channel width and depth on alluvial fans seem to be invalid. Fourth, the specific flood hazard evaluation procedures recommended by FEMA are not valid in some cases because they are based on the assumption that sufficient records exist to do a standard peak flow analysis. Fifth, the validity of the implied assumption that debris flows present no risk can only be assessed after a location on a fan relative to the intersection point has been established. It is concluded that the current methods of flood hazard assessment on alluvial fans are not adequate given the current and projected economic value of structures and development on alluvial fans in the southwestern United States. 55 references, 5 figures, 5 tables.

  10. Active control of automotive fan noise

    NASA Astrophysics Data System (ADS)

    Gerard, Anthony; Berry, Alain; Masson, Patrice

    2002-11-01

    Active control for globally reducing the noise radiated by automotive axial engine cooling fans is investigated. First, an aeroacoutic model of the fan is combined with acoustic directivity measurements to derive a distribution of equivalent dipole sources on the fan surface. The results reveal that the fan behaves like a distributed dipole at blade passage tones when the upstream flow through the fan is spatially nonuniform. Numerical simulations of active noise control in the free field have been carried out using the previous aeroacoustic model of the fan and a dipole secondary source in front of the fan. The numerical results show that a single dipole control source is effective in globally controlling the sound radiation of the fan at the blade passage frequency and its first harmonic. Last, an experimental investigation of active control is presented. It consists of a SISO feedforward configuration with either a LMS algorithm (for FIR filters) or a back-retropopagation algorithm (for neural networks) using the Simulink/Dspace environment for real-time implementation.

  11. The Right to Be a Fan

    ERIC Educational Resources Information Center

    Gutierrez, Peter

    2011-01-01

    Reading experts have consistently cited the importance of independent reading, reading for pleasure, and fostering "a love of reading." Unfortunately, fanning the fire of fan readership is not so easy in the service of our clear-cut and standards-aligned curricula, except perhaps in small, carefully channeled doses. Moreover, the impetus for such…

  12. Fiber composite fan blade impact improvement program

    NASA Technical Reports Server (NTRS)

    Oller, T. L.

    1976-01-01

    The results of a 20-month program, designed to investigate parameters which effect the foreign object damage resulting from ingestion of birds into fan blades are described. Work performed on this program included the design, fabrication, and impact testing of QCSEE fan blades to demonstrate improvement in resistance relative to existing blades and also the design and demonstration of a pin root attachment concept.

  13. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  14. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  15. Blade Vibration Measurement System for Unducted Fans

    NASA Technical Reports Server (NTRS)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  16. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  17. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  18. Cost/benefit assessment of the application of composite materials to subsonic commercial transport engines

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Signorelli, R. A.

    1976-01-01

    Results from a number of studies concerned with the cost and benefits of applying advanced composite materials to commercial turbofan engines are summarized. For each application area the optimistic and pessimistic benefit projections were averaged to arrive at a projected yearly percentage fuel savings for a commercial fleet of advanced technology transport aircraft. Engine components included in the summary are the fan section which includes fan blades, fan frame/case, and the blade containment ring; the nacelle; and the high pressure turbine blades and vanes. The projected fuel savings resulting from the application of composites are 1.85 percent for the fan section, 1.75 percent for the nacelle, and 2.35 percent for the high pressure turbine.

  19. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  20. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change

    USGS Publications Warehouse

    Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.

    1996-01-01

    Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of > 100-50 ka and 11-0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the

  1. Partially inverted, mixed grain size alluvial fans in the Atacama Desert as analogues for Martian sediment fans

    NASA Astrophysics Data System (ADS)

    Hobley, D. E.; Howard, A. D.

    2011-12-01

    Martian alluvial fans have now been recognized in many craters around the equatorial latitudes of Mars. HiRISE imagery reveals that their surfaces often show a radial pattern of narrow (10s to 100s of meters), long (km), low relief (<10 m), flat topped ridges. These may crosscut and superpose on each other, branch (especially at their downslope ends), and in nighttime thermal infrared imaging are brighter than the surrounding material, indicating a comparatively higher thermal inertia. These features among others suggest that these ridges are fluvial distributary channels, coarser grained than their surrounding material,now inverted by the postdepositional removal of many of these fines. This study focuses on a suite of alluvial fans in the Pampa de Tamarugal, part of the northern Atacama Desert. This site is an ideal analogue for the Martian examples, both in terms of the fan sedimentology and also the postdepositional inversion of flow deposits. The scales of both the fans and the channels associated with the flows approximate the Martian equivalents. The sediment sourced to the fans is a bimodal mixture of coarser (gravel to cobble) and finer (silt and mud) grain sizes, variable across both space and time and controlled by release from source rocks of highly variable lithology upstream. Such a bimodal grain size distribution is a match to the inferred sizes present in the Martian fans. We use WorldView-2 satellite visual imagery (0.6 m resolution) first to assess depositional processes and likely sediment grain sizes, then to reconstruct a history of activity across the fan surface and to assess the subsequent degradation of the deposits of each age. We infer the flow processes and grain size distribution of the deposits visually based on color, texture, and form in the images, groundtruthed with field reconnaissance. Active flow on the fan is strongly channelized, and near the rangefront commonly reoccupies earlier abandoned courses. Where unconfined by

  2. TBCC Fan Stage Operability and Performance

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2007-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach

  3. Turbofan gas turbine engine with variable fan outlet guide vanes

    NASA Technical Reports Server (NTRS)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  4. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  5. Diffusion bonded boron/aluminum spar-shell fan blade

    NASA Technical Reports Server (NTRS)

    Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.

    1980-01-01

    Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.

  6. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  7. Detectability of minerals on desert alluvial fans using reflectance spectra

    NASA Technical Reports Server (NTRS)

    Shipman, Hugh; Adams, John B.

    1987-01-01

    The visible and near-infrared reflectance spectra of soil samples collected from desert alluvial and colluvial surfaces in the Cuprite mining district, Nevada, were analyzed. These surfaces are downslope from hydrothermally altered volcanic rocks that contain spectrally characteristic minerals such as alunite and kaolinite. Coarse fractions of the soils on the alluvial fans are mineralogically variable and express the upslope lithologies; fine fractions are remarkably similar mineralogically and spectrally in all samples because of dilution of local mineral components by regionally derived windblown dust. Theoretical models for spectral mixing and for particle-size effects were used to model the observed spectral variations. Diagnostic mineral absorption bands in the spectra of fan materials were enhanced by computationally removing the spectrum of the homogeneous fine-soil component. Results show that spectral mixing models are useful for analyzing data with high spectral resolution obtained by field and aircraft spectrometers.

  8. The role of tip clearance in high-speed fan stall

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Celestina, M. L.; Greitzer, E. M.

    1991-01-01

    A numerical experiment has been carried out to define the near-stall casing endwall flowfield of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-pasage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock, which is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade which controls the flow processes leading to stall.

  9. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  10. Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user's manual

    NASA Technical Reports Server (NTRS)

    Converse, G. L.; Giffin, R. G.

    1984-01-01

    A modeling technique for fans, boosters, and compressors has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. The fans and compressors are assumed to be multi-stage machines incorporating front variable stators. The boosters are assumed to be fixed geometry machines. The modeling technique has been incorporated into time sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the first of a three volume set describing the parametric representation of compressors, fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan).

  11. Analytical inversion formula for uniformly attenuated fan-beam projections

    SciTech Connect

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1997-04-01

    In deriving algorithms to reconstruct single photon emission computed tomography (SPECT) projection data, it is important that the algorithm compensates for photon attenuation in order to obtain quantitative reconstruction results. A convolution backprojection algorithm was derived by Tretiak and Metz to reconstruct two-dimensional (2-D) transaxial slices from uniformly attenuated parallel-beam projections. Using transformation of coordinates, this algorithm can be modified to obtain a formulation useful to reconstruct uniformly attenuated fan-beam projections. Unlike that for parallel-beam projections, this formulation does not produce a filtered backprojection reconstruction algorithm but instead has a formulation that is an inverse integral operator with a spatially varying kernel. This algorithm thus requires more computation time than does the filtered backprojection reconstruction algorithm for the uniformly attenuated parallel-beam case. However, the fan-beam reconstructions demonstrate the same image quality as that of parallel-beam reconstructions.

  12. Dynamic response of Hovercraft lift fans

    NASA Astrophysics Data System (ADS)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  13. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  14. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  15. UHB engine fan broadband noise reduction study

    NASA Astrophysics Data System (ADS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-06-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  16. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    NASA Astrophysics Data System (ADS)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is

  17. Sound source localization on an axial fan at different operating points

    NASA Astrophysics Data System (ADS)

    Zenger, Florian J.; Herold, Gert; Becker, Stefan; Sarradj, Ennes

    2016-08-01

    A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.

  18. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  19. Submarine fans in a sequence stratigraphic framework

    SciTech Connect

    Posamentier, H.W.; Erskine, R.D.; Mitchum, R.M.; Vail, P.R.

    1987-05-01

    Submarine fans are fan- or cone-shaped turbiditic deposits formed in upper bathyal or deeper water depths. Within a sequence stratigraphic framework, these basin-floor turbidites can occur during lowstand-fan or lowstand-wedge systems tract time. During lowstand fan time, streams are rejuvenated and depocenters shift from the coastal plain to the upper slope, causing retrogradational slope failure and canyon formation. The sediment delivered here bypasses the canyon and continues down the slope as a succession of gravity flows and is deposited as fan-shaped turbiditic deposits at the base of the slope. Seismic and outcrop evidence suggest that these sand-prone deposits are abruptly introduced into the basin and are generally characterized by subtle external mounding and internal bidirectionally down lapping seismic reflections where seismically resolvable. Deep-water sediment deposited during this interval has no coeval shelf equivalent. During lowstand wedge time, streams cease down cutting and valleys which have been freshly incised begin to fill. Because coarse sediment will preferentially be deposited within these incised valleys, the sand-to-mud ratio delivered to the upper slope will be decreased and, consequently, there is an inherent difference between submarine fans deposited at this time and those deposited during lowstand fan time. Deposition during lowstand wedge time is characterized seismically by slope front fill or wedge-shaped geometries down lapping the earlier submarine fan (i.e., deposited during lowstand fan time). These shale-prone deposits are largely comprised of thinner-bedded turbidites as well as the occasional leveed channel.

  20. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  1. Supersonic through-flow fan design

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.; Moore, Royce D.; Wood, Jerry R.; Steinke, Ronald J.

    1987-01-01

    The NASA Lewis Research Center has embarked on a program to experimentally prove the concept of a supersonic through-flow fan which is to maintain supersonic velocities throughout the compression system with only weak shock-wave flow losses. The detailed design of a supersonic through-flow fan and estimated off-design performance with the use of advanced computational codes are described. A multistage compressor facility is being modified for the newly designed supersonic through-flow fan and the major aspects of this modification are briefly described.

  2. Modern and ancient alluvial fan deposits

    SciTech Connect

    Nilsen, T.H.

    1985-01-01

    Understanding the structure and depositional processes of alluvial fans (river outwash deposits) has a special interest for those involved with the exploration of petroleum and many minerals. This collection of facsimile reprints of significant and classical research papers sheds new light on the subject. This reference covers the stratigraphy, sedimentology, and depositional processes of modern and ancient alluvial fans. Geographical areas considered include Arctic Canada, the American Southwest, Australia, Wyoming, Norway, and Spain. It includes a state-of-the-art introduction by the editor along with commentaries on all the papers included, a master author citation index and a subject index, and a chronological listing of early studies of alluvial fans.

  3. The Florida High School Mock Trial Competition Case Materials, 1997. State of Florida v. Lee Appleman.

    ERIC Educational Resources Information Center

    Florida Law Related Education Association, Tallahassee.

    This material provides students with information to prepare for a mock trial. The defendant in this case has been accused of the crime of driving under the influence of alcoholic beverages causing severe bodily injury. Case materials include stipulated facts, jury instructions, depositions, and other related materials. (EH)

  4. Fan Database and Web-tool for Choosing Quieter Spaceflight Fans

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Burnside, Nathan J.

    2007-01-01

    One critical aspect of designing spaceflight hardware is the selection of fans to provide the necessary cooling. And with efforts to minimize cost and the tendancy to be conservative with the amount of cooling provided, it is easy to choose an overpowered fan. One impact of this is that the fan uses more energy than is necessary. But, the more significant impact is that the hardware produces much more acoustic noise than if an optimal fan was chosen. Choosing the right fan for a specific hardware application is no simple task. It requires knowledge of cooling requirements and various fan performance characteristics as well as knowledge of the aerodynamic losses of the hardware in which the fan is to be installed. Knowledge of the acoustic emissions of each fan as a function of operating condition is also required in order to choose a quieter fan for a given design point. The purpose of this paper is to describe a database and design-tool that have been developed to aid spaceflight hardware developers in choosing a fan for their application that is based on aerodynamic performance and reduced acoustic emissions as well. This web-based-tool provides a limited amount of fan-data, provides a method for selecting a fan based on its projected operating point, and also provides a method for comparing and contrasting aerodynamic performance and acoustic data from different fans. Drill-down techniques are used to display details of the spectral noise characteristics of the fan at specific operation conditions. The fan aerodynamic and acoustic data were acquired at Ames Research Center in the Experimental Aero-Physics Branch's Anechoic Chamber. Acoustic data were acquired according to ANSI Standard S12.11-1987, "Method for the Measurement of Noise Emitted by Small Air-Moving Devices." One significant improvement made to this technique included automation that allows for a significant increase in flow-rate resolution. The web-tool was developed at Johnson Space Center and is

  5. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  6. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main...

  7. 30 CFR 75.310 - Installation of main mine fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of main mine fans. 75.310 Section... mine fans. (a) Each main mine fan shall be— (1) Installed on the surface in an incombustible housing... that gives a signal at the mine when the fan either slows or stops. A responsible person designated...

  8. 30 CFR 75.310 - Installation of main mine fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of main mine fans. 75.310 Section... mine fans. (a) Each main mine fan shall be— (1) Installed on the surface in an incombustible housing... that gives a signal at the mine when the fan either slows or stops. A responsible person designated...

  9. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be—...

  10. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main...

  11. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main...

  12. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be—...

  13. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main...

  14. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  15. 30 CFR 75.310 - Installation of main mine fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of main mine fans. 75.310 Section... mine fans. (a) Each main mine fan shall be— (1) Installed on the surface in an incombustible housing... that gives a signal at the mine when the fan either slows or stops. A responsible person designated...

  16. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be—...

  17. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main...

  18. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be—...

  19. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be—...

  20. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  1. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  2. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  3. 30 CFR 75.310 - Installation of main mine fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of main mine fans. 75.310 Section... mine fans. (a) Each main mine fan shall be— (1) Installed on the surface in an incombustible housing... that gives a signal at the mine when the fan either slows or stops. A responsible person designated...

  4. New Fan Engine Noise-Reduction Concept Using Trailing Edge Blowing of Fan Blades Demonstrated

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.

    2002-01-01

    A major source of noise in commercial turbofan engines is the interaction of the fan blade wakes with the fan exit vanes (stators). These wakes can be greatly reduced by filling them with air blown out of the blade trailing edge. Extensive testing of this concept has demonstrated significant noise reductions. These tests were conducted on a low-speed, 4- ft-diameter fan using hollow blades at NASA Glenn Research Center's Aeroacoustic Propulsion Laboratory (AAPL).

  5. Navy Fan, California Borderland: Growth pattern and depositional processes

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.

    1984-01-01

    Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland. The middle fan, characterized by one active and two abandoned 'distributary' channels and associated lobe deposits, at present onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene depositional processes. ?? 1984 Springer-Verlag New York Inc.

  6. 11. EXTERIOR VIEW OF NEW FAN HOUSE LOOKING EAST The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EXTERIOR VIEW OF NEW FAN HOUSE LOOKING EAST The airway (on the left) leads from the Baltimore shaft to the New Fan House. The metal housing (center foreground) encases a single entry Duplex Conoidal fan, made by the Buffalo Forge Company. The Duplex Conoidal fan had two parts: a disk fan which drew air up the airway and a centrifugal fan set at a right angle to it which exhausted the air. The engine house (on the right) contains a direct connected Corliss engine. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  7. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas

    2003-01-01

    The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.

  8. Operation and maintenance guidelines for draft fans

    SciTech Connect

    Henry, R.E.; Basile, J.F. )

    1993-01-01

    Large draft fans typically account for more than one-fourth of a generating unit's auxiliary output. Industry data indicates that failure of draft fans is among the top 15 causes of outages. These guidelines offer comprehensive coverage of major topics, such as fan operation, maintenance, troubleshooting, wheel inspection, and weld repairs. Each section provides extensive road maps describing step-by-step procedures for implementing mutually supportive operating and maintenance strategies. The guidelines emphasize preventive maintenance through checks and predictive maintenance through vibration and temperature monitoring. Moreover, the guidelines present a tri-level maintenance structure of prestart checks, operational checks, and out-of-service checks. Utilities may use the guidelines in developing and refining overall operation and maintenance procedures for large draft fans in power plant applications.

  9. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  10. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947

  11. Delgada Fan: Preliminary interpretation of channel development

    USGS Publications Warehouse

    Normark, W.R.; Gutmacher, C.E.

    1984-01-01

    The Delgada Fan, an irregularly shaped turbidite deposit extending more than 350 km offshore from northern California, consists of two large leveed-valley units each fed by a separate complex of coalescing submarine canyons and slope gullies. Although the leveed-valley units head within 25 km of each other, both appear to have developed independently during fan growth. The larger southern leveed-valley system has not developed middle-fan distributary channels and appears to illustrate a period of progressive valley abandonment. Although the lower-fan area is underlain by sandy sediments, little sand has been recovered in piston cores from the leveed-valley unit. ?? 1984 Springer-Verlag New York Inc.

  12. Synchronous and Cogged Fan Belt Performance Assessment

    SciTech Connect

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  13. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  14. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2011-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  15. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  16. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  17. Flutter Calculations for an Experimental Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Panovsky, Josef; Keith, Theo G., Jr.; Stefko, George L.

    2003-01-01

    During testing, an experimental forward-swept fan encountered flutter at part-speed conditions. A three-dimensional propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This paper describes the flutter calculations and compares the results to the experimental measurements. Results of sensitivity studies are also presented that show the relative importance of different aspects of aeroelastic modeling.

  18. Noise Radiation from Engine Cooling Fans

    NASA Astrophysics Data System (ADS)

    Wu, S. F.; Su, S.; Shah, H.

    1998-09-01

    The semi-empirical formulation previously derived by the authors (Journal of Sound and Vibration200,379-399) for predicting noise spectra of axial flow fans running in a free field is extended to engine cooling fans installed in full-size vehicles. Because of the presence of shroud, upstream radiator/condenser, and downstream engine block, the ingested and discharged flow fields around the fan blades are completely different from those in a free field. Accordingly, the noise generation mechanisms become much more difficult to analyze and model. The shroud may significantly increase the unsteady fluctuating forces exerted on the fan blades, thus greatly enhancing the levels of the discrete sounds centred at the blade passage frequency and its harmonics. The upstream radiator/condenser set may induce a significant amount of intake turbulence, thus raising the levels of the broadband sounds. The downstream engine block may force the airflow to recirculate to the front and more importantly, raise the static pressure drop across the fan assembly, which has a direct impact on the resulting flow rate. Obviously, an exact description of the effects of these factors on the resulting noise spectra is not possible. In this paper it is shown that these factors can be approximated by using certain shapes and functions. The computer model thus developed is used to predict the noise spectra from different fan assemblies under various working conditions, and the results thus obtained are compared with the measured data. Also, this model is used to calculate the overall sound pressure levels from dimensionally similar fans running under different working conditions, and the results are compared with those predicted by the fan laws currently in use by engineers in the automotive industry.

  19. Sediments and stratigraphy of a glaciomarine fan in the lower Androscoggin Valley, Lewiston, Maine

    SciTech Connect

    Slayton, J.T. . Geology Dept.)

    1993-03-01

    Numerous exposures in ice contact deltas and glacial marine fans in the lower Androscoggin Valley of S. Central Maine detail a history of the Wisconsinan ice sheet retreat in contact with marine waters ca. 12,000 to 13,000 years B.P. The ice contact deltas and fans probably form by many similar processes and have common stratigraphic sequences that build seaward from a meltwater tunnel source. This study investigates the sediments and stratigraphic relationships in a glaciomarine fan complex in the Lewiston, Maine area. The study focuses on a composite landform that is triangular in map view and encompasses approximately 3 km[sup 2]. Exposures in 5 bottom pits were mapped, and stratigraphic lithofacies logged in numerous exposures. The bulk of the deposit is composed of lithofacies including: poorly sorted gravelly sand and boulders in ice proximal regions, coarse to fine bedded sands medial regions and terminating in the distal fan area in silty clay facies. Facies originate predominantly from traction currents, gravity flow, and suspension settling of material from the meltwater tunnel. Diamicton facies formed at various stratigraphic levels within the pit originate from debris flows down the topographic gradient of the fan surface. Two models are proposed for the formation of the fan complex. The first suggests that the sediments are the result of two different ice-marginal positions; with the first depositional sequence lasting longer than the subsequent position 0.5 km to the north. The second model uses one ice-marginal position, but sediments prograde distally and laterally over earlier fan deposits. Regardless of which model is most accurate, the fan builds a large sand and gravel complex that grades to within 5 meters of marine limit as recorded in an ice-contact delta, 10 km to the NW.

  20. Radiated noise of ducted fans

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  1. Radiated noise of ducted fans

    NASA Astrophysics Data System (ADS)

    Eversman, Walter

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  2. A Comparison of Measured Tone Modes for Two Low Noise Propulsion Fans

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Elliott, David M.

    2000-01-01

    The acoustic modes for two low tip speed propulsion fans were measured to examine the effects of fan tip speed, at constant pressure ratio. A continuously rotating microphone method was used that provided the complete modal structure (circumferential and radial order) at the fundamental and second harmonic of the blade passing tone as well as most of the third harmonic modes. The fans are compared in terms of their rotor/stator interaction modal power, and total tone power. It was hoped that the lower tip speed might produce less noise. This was not the case. The higher tip speed fan, at both takeoff and cutback speeds, had lower tone and interaction levels. This could be an indication that the higher aerodynamic loading required to produce the same pressure ratio for the lower tip speed fan resulted in a greater velocity deficit in the blade wakes and thus more noise. Results consistent with expected rotor transmission effects were noted in the inlet modal structures of both fans.

  3. Functional materials for sustainable energy technologies: four case studies.

    PubMed

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  4. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  5. Writing about Clients: Developing Composite Case Material and Its Rationale

    ERIC Educational Resources Information Center

    Duffy, Maureen

    2010-01-01

    Ethical guidelines of the 4 major professional associations representing counselors and psychotherapists are reviewed. To help clarify thinking about writing up clinical cases, 3 kinds of cases are described. The author concludes that the current guidelines for clinician authors in writing about clients for publication or presentation are…

  6. Acoustic testing of a supersonic tip speed fan with acoustic treatment and rotor casting slots. Quiet engine program scale model fan C

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.

  7. 75 FR 43878 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... products, which was published in the Federal Register on September 21, 2009 (74 FR 48021). That earlier... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G...

  8. Fan broadband interaction noise modeling using a low-order method

    NASA Astrophysics Data System (ADS)

    Grace, S. M.

    2015-06-01

    A low-order method for simulating broadband interaction noise downstream of the fan stage in a turbofan engine is explored in this paper. The particular noise source of interest is due to the interaction of the fan rotor wake with the fan exit guide vanes (FEGVs). The vanes are modeled as flat plates and the method utilizes strip theory relying on unsteady aerodynamic cascade theory at each strip. This paper shows predictions for 6 of the 9 cases from NASA's Source Diagnostic Test (SDT) and all 4 cases from the 2014 Fan Broadband Workshop Fundamental Case 2 (FC2). The turbulence in the rotor wake is taken from hot-wire data for the low speed SDT cases and the FC2 cases. Additionally, four different computational simulations of the rotor wake flow for all of the SDT rotor speeds have been used to determine the rotor wake turbulence parameters. Comparisons between predictions based on the different inputs highlight the possibility of a potential effect present in the hot-wire data for the SDT as well as the importance of accurately describing the turbulence length scale when using this model. The method produces accurate predictions of the spectral shape for all of the cases. It also predicts reasonably well all of the trends that can be considered based on the included cases such as vane geometry, vane count, turbulence level, and rotor speed.

  9. Classic and New Materials Used for Structural Rehabilitation. Case Study

    NASA Astrophysics Data System (ADS)

    Lute, M.

    2016-06-01

    New materials development with different combination of properties were always a challenge in terms of their adequate use in civil engineering. Introduction of carbon fibres as strength material for structures was a beginning of a new approach in structural rehabilitation, and sometimes meant the end of classic rehabilitation solution use. The present paper gives an example of a building rehabilitation that use a melt of both new and old solutions in order to achieve the optimum result for building itself. The problem was even more challenging, because the structure considered is only 22 years old, but having some design faults in terms of seismic behaviour and, in addition, one floor was added to existing structure. The chosen solution was a compromise between the use of old and new materials in places where their qualities were best suitable and their minuses could be compensated by the other material.

  10. Fracture Detection in Alluvial Fan Deposits Using Near-Surface Seismic Reflection Techniques

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Miller, B.

    2012-12-01

    In this study we document the observation of probable extensive shallow vertical fracture systems in unprocessed 2-D source gathers from near-surface seismic reflection surveys conducted over unconsolidated materials in alluvial fans environments. Mapping of fracture and fault systems within the sedimentary sections at hydrocarbon exploration scales has become common practice. This is due to the advent of post-stack attribute analysis of 3-D seismic images worldwide. However, examples of fracture detection and imaging in the near-surface are currently lacking in the literature. In addition, examples of fracture detection and mapping in the pre-stack domain are also lacking. In this study, unprocessed seismic source gathers from very high-resolution reflection surveys over alluvial fan deposits in tectonically active areas appear to display distinct patterns of amplitude drop off, geometrically similar to patterns expected for vertical fracture systems. The patterns can also be extracted by attribute analysis using techniques such as envelope and coherency analyses. Simple standard processing steps such as trace editing, muting, and bandpass filtering enhance interpretability. The patterns appear to be consistent and spatially fixed in the subsurface from source location to source location. These are observed in areas of obvious recent local large-scale fault movement. Examples are given from two areas, eastern Queen Valley in California and eastern Fish Lake Valley in Nevada. The stratigraphic and sedimentation patterns are quite complicated in both areas, and sediment characteristics vary considerably between sites. The surface sediments in the Queen Valley case are, in general, much coarser with many more boulder-sized clasts in the shallow subsurface. The seismic source consisted of a 30-06 rifle fired downhole at a depth of 0.5m. While the boulders interfered with seismic source operations, the record quality was excellent. The alluvial materials, especially

  11. Holocene sedimentation history of the major fan valleys of Monterey fan

    USGS Publications Warehouse

    Hess, G.R.; Normark, W.R.

    1976-01-01

    There are three major fan valleys on upper Monterey fan. Deep-tow geophysical profiles and 40 sediment cores provide the basis for evaluation of the sedimentation histories of these valleys. Monterey fan valley leads from Monterey canyon to a major suprafan and is bounded by levees that crest more than 400 m above the valley floor. The valley passes through a large z-bend or meander. Monterey East fan valley joins Monterey fan valley at the meander at about 150 m above the valley floor, and marks an earlier position of the lower Monterey fan valley. Ascension valley, a hanging contributary to the Monterey fan valley, appears to have once been the shoreward head of the lower part of the present Monterey fan valley. The relief of Monterey fan valley appears from deep-tow profiles to be erosional. The valley is floored with sand. Holocene turbidity currents do not overtop the levees 400 m above the valley floor, but do at times overflow and transport sand into Monterey East valley, producing a sandy floor. An 1100 m by 300 m dune field was observed on side scan sonar in Monterey East valley. Ascension fan valley was floored with sand during glacial intervals of lowered sea level, then was cut off from its sand source as sea level rose. A narrow (500 m), erosional, meandering channel was incised into the flat valley floor; the relief features otherwise appear depositional, with a hummocky topography perhaps produced in the manner of a braided riverbed. The sand is mantled by about 6 m of probable Holocene mud. Hummocky relief on the back side of the northwestern levees of both Ascension and Monterey valleys is characteristic of many turbidite valleys in the northeast Pacific. The hummocky topography is produced by dune-like features that migrate toward levee crests during growth. ?? 1976.

  12. Characterisation and modelling of washover fans

    USGS Publications Warehouse

    Donnelly, Chantal; Sallenger, Asbury H.

    2007-01-01

    Pre- and post-storm topography and aerial photography, collected in regions where new washover fans were formed, were studied to determine the extent of morphologic, vegetative and anthropogenic control on washover shape and extent. When overwash is funnelled through a gap in a dune ridge and then spreads laterally on the back barrier, decelerating and depositing sediment, it forms washover fans. Fans were shown to primarily occur at pre-existing gaps in the foredune. During overwash, these gaps, or overwash throats, widened and deepened. The shape and extent of the fan was shown to depend on not only the pre-storm topography, but also the existence of beach tracks, roads and other anthropogenic influences and vegetation. The cross-shore overwash profile change model by Larson et al. and Donnelly et al. was modified to include pre-storm throat widths and a lateral spreading angle estimated from the pre-storm topography as inputs and tested using cross-shore profiles through the fan centres. These new inputs make the model more generalised, such that the calibrated model is applicable to a wider range of cross-shore profiles.

  13. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  14. Meander in valley crossing a deep-ocean fan.

    PubMed

    Shepard, F P

    1966-10-21

    Seaward of most submarine canyons there are large sediment fans comparable to the fans at the base of mountain ranges. Many of the submarine fans are cut by valleys called fan-valleys which usually connect with the mouths of submarine canyons. Loop-like bends or meanders characterize the channels of rivers in their lower flood plains, but have never been found in the shallow channels that cross the alluvial fans at the base of mountain canyons. Therefore, it was surprising to find that the channel in a very deep submarine fan-valley off Monterey Bay, California, has a tight meander. PMID:17751705

  15. 10. EXTERIOR VIEW OF STONE RETAINING WALL, AIRWAY, BALTIMORE FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. EXTERIOR VIEW OF STONE RETAINING WALL, AIRWAY, BALTIMORE FAN HOUSE AND HILLMAN FAN HOUSE LOOKING EAST The stone retaining wall encloses a pit which may have been the original site of the Hillman Fan House steam engine. The concrete foundations in the left foreground are more recent (c. 1930) additions which may be supports for a porch or stairway. The sloping airshaft, in the middle ground, connected the Baltimore shaft to the New Fan House (not shown) and Hillman Fan House in the background. The Hillman engine house is on the left. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  16. 20. INTERIOR VIEW OF NO. 4 AIRWAY AND NEW FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR VIEW OF NO. 4 AIRWAY AND NEW FAN HOUSE LOOKING SOUTH The No. 4 (Baltimore) shaft would be directly behind the viewer. The ventilating doors leading to the Hillman Fan House are to the left. The floor of the airway, once covered with concrete, has deteriorated. In the background is the metal disk fan, part of the Duplex Conoidal Fan installed in the New Fan House. The ladder provides access to the shaft bearings. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  17. 22. INTERIOR VIEW OF NEW FAN HOUSE UPSHAFT CHIMNEY LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW OF NEW FAN HOUSE UPSHAFT CHIMNEY LOOKING WEST The Duplex Conoidal Fan is a single entry disk fan (see PA 61-21 and PA 61-22) which drew air from the No. 4 (Baltimore) shaft up the air-way through the cone, seen on the right, into the centrifugal fan, pictured here. The curved metal blades forced the air from the center of the fan to the tips of the blades and out the sheet metal exhaust chimney. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  18. Meander in valley crossing a deep-ocean fan.

    PubMed

    Shepard, F P

    1966-10-21

    Seaward of most submarine canyons there are large sediment fans comparable to the fans at the base of mountain ranges. Many of the submarine fans are cut by valleys called fan-valleys which usually connect with the mouths of submarine canyons. Loop-like bends or meanders characterize the channels of rivers in their lower flood plains, but have never been found in the shallow channels that cross the alluvial fans at the base of mountain canyons. Therefore, it was surprising to find that the channel in a very deep submarine fan-valley off Monterey Bay, California, has a tight meander.

  19. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  20. Modification of Polymer Materials by Ion Bombardment: Case Studies

    SciTech Connect

    Bielinski, D. M.; Jagielski, J.; Piatkowska, A.

    2009-03-10

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  1. Heat transfer and performance characteristics of axial cooling fans with downstream guide vanes

    NASA Astrophysics Data System (ADS)

    Terzis, Alexandros; Stylianou, Ioannis; Kalfas, Anestis I.; Ott, Peter

    2012-04-01

    This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complete stage, was used for all the experimental configurations. Performance measurements were carried out in a constant speed stage performance test rig while the transient liquid crystal technique was used for the heat transfer measurements. Full surface heat transfer coefficient distributions were obtained by recording the temperature history of liquid crystals on a target plate. The experimental data indicated that the results are highly affected by the flow conditions at the fan outlet. Stators can be beneficial in terms of pressure drop and efficiency, and thus more economical operation, as well as, in the local heat transfer distribution at the wake of the stator blades if the fan is installed very close to the cooling object. However, as the separation distance increases, enhanced heat transfer rate in the order of 25% is observed in the case of the fan impeller.

  2. Creating Culturally Relevant Instructional Materials: A Swaziland Case Study

    ERIC Educational Resources Information Center

    Titone, Connie; Plummer, Emily C.; Kielar, Melissa A.

    2012-01-01

    In the field of English language learning, research proves that culturally relevant reading materials improve students' language acquisition, learning motivation, self-esteem, and identity formation. Since English is the language of instruction in many distant countries, such as Swaziland, even when English is not the native language of those…

  3. Regional material flow accounting and environmental pressures: the Spanish case.

    PubMed

    Sastre, Sergio; Carpintero, Óscar; Lomas, Pedro L

    2015-02-17

    This paper explores potential contributions of regional material flow accounting to the characterization of environmental pressures. With this aim, patterns of material extraction, trade, consumption, and productivity for the Spanish regions were studied within the 1996-2010 period. The main methodological variation as compared to whole-country based approaches is the inclusion of interregional trade, which can be separately assessed from the international exchanges. Each region was additionally profiled regarding its commercial exchanges with the rest of the regions and the rest of the world and the related environmental pressures. Given its magnitude, interregional trade is a significant source of environmental pressure. Most of the exchanges occur across regions and different extractive and trading patterns also arise at this scale. These differences are particularly great for construction minerals, which in Spain represent the largest share of extracted and consumed materials but do not cover long distances, so their impact is visible mainly at the regional level. During the housing bubble, economic growth did not improve material productivity.

  4. Pitfalls in the Preparation of Bilingual Materials: A Case Study

    ERIC Educational Resources Information Center

    Azeyedo, Milton M.; Garcia-Moya, Rodolfo

    1977-01-01

    An error analysis was conducted with materials published in Spanish in connection with an election in the U.S. Southwest. Most improprieties in the Spanish texts were found to be the result of an inadequate command of Spanish and lack of proficiency in translation skills. (Author/RM)

  5. Optimism Bias in Fans and Sports Reporters.

    PubMed

    Love, Bradley C; Kopeć, Łukasz; Guest, Olivia

    2015-01-01

    People are optimistic about their prospects relative to others. However, existing studies can be difficult to interpret because outcomes are not zero-sum. For example, one person avoiding cancer does not necessitate that another person develops cancer. Ideally, optimism bias would be evaluated within a closed formal system to establish with certainty the extent of the bias and the associated environmental factors, such that optimism bias is demonstrated when a population is internally inconsistent. Accordingly, we asked NFL fans to predict how many games teams they liked and disliked would win in the 2015 season. Fans, like ESPN reporters assigned to cover a team, were overly optimistic about their team's prospects. The opposite pattern was found for teams that fans disliked. Optimism may flourish because year-to-year team results are marked by auto-correlation and regression to the group mean (i.e., good teams stay good, but bad teams improve).

  6. The mediating role of facebook fan pages.

    PubMed

    Chih, Wen-Hai; Hsu, Li-Chun; Wang, Kai-Yu; Lin, Kuan-Yu

    2014-01-01

    Using the dual mediation hypothesis, this study investigates the role of interestingness (the power of attracting or holding one's attention) attitude towards the news, in the formation of Facebook Fan Page users' electronic word-of-mouth intentions. A total of 599 Facebook fan page users in Taiwan were recruited and structural equation modeling (SEM) was used to test the research hypotheses. The results show that both perceived news entertainment and informativeness positively influence interestingness attitude towards the news. Interestingness attitude towards the news subsequently influences hedonism and utilitarianism attitudes towards the Fan Page, which then influence eWOM intentions. Interestingness attitude towards the news plays a more important role than hedonism and utilitarianism attitudes in generating electronic word-of-mouth intentions. Based on the findings, the implications and future research suggestions are provided. PMID:24875695

  7. Transformation-optical Fan-beam Synthesis

    PubMed Central

    Yang, Rui; Kong, Xianghui; Wang, Hui; Su, He; Lei, Zhenya; Wang, Jing; Zhang, Aofang; Chen, Lei

    2016-01-01

    Gradient-index dielectric lenses are generated based on the coordinate transformation by compressing the homogeneous air spaces quasi-conformally towards and outwards the primary source. The three-dimensional modeling is then performed through revolving the prescribed transformational media 180 degrees around the focal point to reach the architecture of barrel-vaults. It is found that all these two- and three-dimensional transformation-optical designs are capable of producing fan-beams efficiently over a broad frequency range with their main lobes possessing the narrow beamwidth in one dimension and the wide beamwidth in the other, while having the great ability of the wide angular scanning. Finally, we propose to construct such four types of fan-beam lenses through multiple-layered dielectrics with non-uniformed perforations and experimentally demonstrate their excellent performances in the fan-beam synthesis. PMID:26847048

  8. Noise Measurements of the VAIIPR Fan

    NASA Technical Reports Server (NTRS)

    Mendoza, Jeff; Weir, Don

    2012-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.

  9. Optimism Bias in Fans and Sports Reporters

    PubMed Central

    Love, Bradley C.

    2015-01-01

    People are optimistic about their prospects relative to others. However, existing studies can be difficult to interpret because outcomes are not zero-sum. For example, one person avoiding cancer does not necessitate that another person develops cancer. Ideally, optimism bias would be evaluated within a closed formal system to establish with certainty the extent of the bias and the associated environmental factors, such that optimism bias is demonstrated when a population is internally inconsistent. Accordingly, we asked NFL fans to predict how many games teams they liked and disliked would win in the 2015 season. Fans, like ESPN reporters assigned to cover a team, were overly optimistic about their team’s prospects. The opposite pattern was found for teams that fans disliked. Optimism may flourish because year-to-year team results are marked by auto-correlation and regression to the group mean (i.e., good teams stay good, but bad teams improve). PMID:26352146

  10. Directional scales of heterogeneity in alluvial fan aquifers

    SciTech Connect

    Neton, M.J.; Dorsch, J.; Young, S.C.; Olson, C.D. . Dept. of Geological Sciences Tennessee Valley Authority Engineering Lab., Norris, TN )

    1992-01-01

    Abrupt lateral and vertical permeability changes of up to 12 orders of magnitude are common in alluvial fan aquifers due to depositional heterogeneity. This abrupt heterogeneity is problematic, particularly in construction of a continuous hydraulic conductivity field from point measurements. Site characterization is improved through use of a scale-and-directionally-related model of fan heterogeneities. A directional classification of alluvial fan aquifer heterogeneities is proposed. The three directional scales of heterogeneity in alluvial fan aquifers are: (1) within-fan, (2) between-fan (strike-parallel), and (3) cross-fan (strike-perpendicular). Within-fan heterogeneity ranges from very small-scale intergrain relationships which control the nature of pores, to larger scale permeability trends between fan apex and toe, and includes abrupt lateral and vertical facies relationships. Between-fan heterogeneities are of a larger-scale and include differences between adjacent (non)coalescent fans along a basin-margin fault due primarily to changes in lithology between adjacent upland source basins. These differences produce different (a) grain and pore fluid compositions, (b) lithologic facies and proportions, and (c) down-fan fining trends, between adjacent fans. Cross-fan heterogeneities extend from source to basin. Fan deposits are in abrupt contact upgradient with low permeability, basin-margin source rock. Downgradient, fan deposits are in gradational to abrupt contact with time-equivalent, generally lower permeability deposits of lake, desert, longitudinal braided and meandering river, volcanic, and shallow marine environments. Throughout basin history these environments may abruptly cover the fan with low permeability horizons.

  11. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  12. Eustatic and structural control of submarine-fan sedimentation, Conception fan, Santa Barbara basin, California

    SciTech Connect

    Thor, D.R.

    1984-04-01

    Eustatic sea level lows provide an opportunity for submarine-fan development; topography and structure, however, can control depositional-sequence geometry. Analysis of high-resolution seismic data provides a basis to evaluate to the evolution and geometry of the Pleistocene-Holocene Conception fan. The fan formed in the restricted, tectonically active Santo Barbara basin. It consists of 4 vertically stacked depositional sequences, each bounded by nondepositional unconformities. The unconformities are defined by seismic-sequence boundaries and were formed during sea-level falls that are related to Pleistocene glacioeustatic changes. Each depositional sequence consists of lowstand, sandrich facies (fan channel, levee, and lobe) topped by highstand, mud-rich facies. The geometry of the depositional sequences tends to be rectilinear, not arcuate, because lateral progradation is restricted by topographically high structures. The modern fan surface and the Holocene depositional sequence provide a good analog for the older, underlying depositional sequences. The fan surface is characterized by 4 main channels, 2 of which head into submarine canyons incised into the shelf. Submarine canyons that fed the other 2 channels are now filled and have no topographic expression. In addition, numerous partially buried channel segments occur in the interchannel areas. The Holocene depositional sequence consists of lenticular and sheet-drape deposits interpreted to be channel, levee, and lobe facies. The facies geometry suggests that Mutti's topographic compensation, channel migration, and avulsion were typical processes on Conception fan.

  13. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  14. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  15. Active control of fan noise-feasibility study. Volume 1: Flyover system noise studies

    NASA Astrophysics Data System (ADS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-10-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  16. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  17. Sediment sound velocities from sonobuoys: Arabian fan

    SciTech Connect

    Bachman, R.T.; Hamilton, E.L.

    1980-02-10

    Eight variable-angle seismic reflection stations in the Arabian Fan, Northwestern Indian Ocean, provided 40 determinations of sound velocity in sediment and sedimentary rock. Sound velocity in the homogeneous, largely terrigenous fan increases smoothly with depth. Regression analysis yielded the velocity-time relationship V (km/s)=1.510+1.863t, where V is instantaneous velocity and t is one-way travel time below the sea floor to 1 s. The velocity-depth function is V (km/s)=1.510+1.200h-0.253h/sup 2/+ 0.034h/sup 3/, where h is subbottom depth in km.

  18. Fan and Open-Rotor Noise

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2010-01-01

    This presentation is a technical progress report and near term outlook for work on fan (in-duct) and open-rotor (high speed propeller) noise funded by NASA's Fundamental Aeronautics Program, Subsonic Fixed Wing (SFW) Project and the Integrated Systems Research Program, Environmentally Responsible Aircraft Project. Sections of the presentation cover: the system level metrics are outlined for the SFW timeframes (2015, 2020 1 2025); the Ultra-High Bypass ratio technology development roadmap; a feasibility study for a low technology readiness level fan test rig; the development plan for a turbomachinery oriented computational aero-acoustics code; and systems analysis work on open-rotor modeling.

  19. Theoretical Determination of Axial Fan Performance

    NASA Technical Reports Server (NTRS)

    Struve, E.

    1943-01-01

    The report presents a method for the computation of axial fan characteristics. The method is based on the assumption that the law of constancy of the circulation along the blade holds, approximately, for all fan conditions for which the blade elements operate at normal angles of attack (up to the stalling angles). Pressure head coefficient K(sub a) and power coefficient K(sub u) for the force components in the axial and tangential directions, respectively, and analogous to the lift and drag coefficients C(sub y) and C(sub x) are conveniently introduced.

  20. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  1. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  2. Quaternary alluvial fans of Ciudad Juárez, Chihuahua, northern México: OSL ages and implications for climatic history of the region

    USGS Publications Warehouse

    Zúñiga de León, David; Kershaw, Stephen; Mahan, Shannon

    2016-01-01

    Alluvial fans formed from sediments derived from erosion of the Juárez Mountains in northernmost México have a significant flood impact on the Ciudad Juárez, which is built on the fan system. The northern part of Ciudad Juárez is the most active; further south, older parts of the fan, upon which the rest of the city is built, were largely eroded by natural processes prior to human habitation and subsequently modified only recently by human construction. Three aeolian sand samples, collected from the uppermost (youngest) parts of the fan system in the city area, in places where human intervention has not disturbed the sediment, and constrain the latest dates of fan building. Depositional ages of the Quaternary alluvial fans were measured using Optically Stimulated Luminescence (OSL) on aeolian sands that have inter-fingered with alluvial fan material. These dates are: a) sample P1, 31 ka; b) sample P2, 41 ka; c) sample P3, 74 ka, between Oxygen Isotope Stages (OIS) 3 to 5. They demonstrate that fan development, in the area now occupied by the city, terminated in the Late Pleistocene, immediately after what we interpret to have been an extended period of erosion without further deposition, lasting from the Late Pleistocene to Holocene. The three dates broadly correspond to global glacial periods, implying that the cool, dry periods may reflect periods of aeolian transport in northern México in between phases that were wetter to form the alluvial fans. Alluvial fan margins inter-finger with fluvial terrace sediments derived from the Río Bravo, indicating an additional component of fan dissection by Río Bravo lateral erosion, presumed to be active during earlier times than our OSL ages, but these are not yet dated. Further dating is required to ascertain the controls on the fan and fluvial system.

  3. Method of sealing casings of subsurface materials management system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-02-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  4. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  5. Design, durability and low cost processing technology for composite fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Blecherman, S. S.

    1979-01-01

    A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.

  6. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  7. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  8. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  9. 61. FAN HOUSE BUILT DURING LOW MOOR ERA; PEDESTALS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. FAN HOUSE BUILT DURING LOW MOOR ERA; PEDESTALS ON WHICH FAN RESTED IS IN FOREGROUND, LOOKING SOUTH - Kaymoor Coal Mine, South side of New River, upstream of New River Gorge Bridge, Fayetteville, Fayette County, WV

  10. 5. AEROVANE FAN HOOD FROM NORTHWEST. MANWAY SHAFT DOORS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AEROVANE FAN HOOD FROM NORTHWEST. MANWAY SHAFT DOORS AND METAL FRAGMENT AT RIGHT REAR. - Consolidation Coal Company Mine No. 11, Aerovane Fan, East side of State Route 936, Midlothian, Allegany County, MD

  11. 2. FAN HOUSE FROM SOUTHEAST Sublet Mine No. 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FAN HOUSE FROM SOUTHEAST - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  12. 1. FAN HOUSE FROM NORTHEAST Sublet Mine No. 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. FAN HOUSE FROM NORTHEAST - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  13. 1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE OF THE ADIT OPENINGS (VIEW TO THE NORTH). - Foster Gulch Mine, Fan Housing, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  14. Improving Fan System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-04-01

    This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.

  15. Silicone impression material foreign body in the middle ear: Two case reports and literature review.

    PubMed

    Suzuki, Nobuyoshi; Okamura, Koji; Yano, Takuya; Moteki, Hideaki; Kitoh, Ryosuke; Takumi, Yutaka; Usami, Shin-ichi

    2015-10-01

    We report two cases of impression material foreign body in the middle ear. The first case had been affected with chronic otitis media. The silicone flowed into the middle ear through a tympanic membrane perforation during the process of making an ear mold. About 4 years and 8 months after, the patient had severe vertigo and deafness. We found bone erosion of the prominence of the lateral semicircular canal and diagnosed labyrinthitis caused by silicone impression material. In the second case silicone flowed into the canal wall down mastoid cavity. Both cases required surgery to remove the foreign body. The clinical courses in such cases are variable and timing of surgery is sometimes difficult. In addition to reporting these two cases, we present here a review of the literature regarding impression material foreign bodies.

  16. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  17. Morphology of the Ebro fan valleys from SeaMARC and sea beam profiles

    USGS Publications Warehouse

    Alonso, B.; Kastens, K.A.; Maldonado, A.; Malinverno, A.; Nelson, C.H.; O'Connell, S.; Palanques, A.; Ryan, William B. F.

    1985-01-01

    The northern continental slope off the Ebro Delta has a badland topography indicating major slope erosion and mass movement of material that deposits sediment into a ponded lobe. The southern slope has a low degree of mass movement activity and slope valleys feed channel levee-complexes on a steep continental rise. The last active fan valley is V-shaped with little meandering and its thalweg merges downstream with the Valencia Valley. The older and larger inactive channel-levee complex is smoother, U-shaped, and meanders more than the active fan valley. ?? 1985 Springer-Verlag New York Inc.

  18. MTR BLOWER AND FAN HOUSE, TRA610. FIRST FLOOR, ROOF AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BLOWER AND FAN HOUSE, TRA-610. FIRST FLOOR, ROOF AND FOUNDATION PLANS. DOOR SCHEDULE AND LOCATION OF STRUCTURAL STEEL AND HOLLOW METAL DOORS. BLAW-KNOX 3150-810-1, 1/1951. INL INDEX NO. 531-0610-00-098-100688, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Hazardous materials incidents on major highways -- A case study

    SciTech Connect

    McElhaney, M.S.

    1995-12-31

    Personnel from both the public and private sectors have been involved for many years in pre-planning for hazardous materials releases at fixed installations all over the world. As a result of several major petroleum releases during marine transportation, oil companies, private contractors and government agencies have been preparing contingency plans for oil spills and other petroleum product releases in marine settings. Various industry groups have also developed plans for railway and pipeline disasters. These response plans are of varying quality, complexity and usefulness. Organizations such as plant emergency response teams, government agencies, contract response and clean-up crews and fire departments use these plans as a basis for training and resource allocation, hopefully becoming familiar enough with them that the plans are truly useful when product releases occur. Planners and emergency responders to hazardous materials releases must overcome some of the deficiencies which have long stood in the way of efficient and effective response and mitigation efforts. Specifically they must recognize and involve all resources with which they may respond or interact during an incident. This involvement should begin with the planning stages and carry through to training and emergency response and recovery efforts. They must ensure that they adopt and utilize a common command and control system and that all potential resources know this system thoroughly and train together before the incident occurs. It is only through incorporating these two factors that may successfully combat the ever growing number of unwanted product releases occurring in the more difficult realm of transportation.

  20. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.; Moore, Royce D.

    1990-01-01

    A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  1. 8. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The engine room and south airway are in the foreground. The brick walls covering the fan housing and brick upshaft chimney are in the background. The engine room, fan housing, and airways are covered with reinforced concrete roofing. In the left foreground is an airlock leading into the airway. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  2. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  3. System design and integration of the large-scale advanced prop-fan

    NASA Technical Reports Server (NTRS)

    Huth, B. P.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have demonstrated to the higher speed to today's aircraft. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowables and a review of the key analytical results are given.

  4. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  5. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  6. Discrete-frequency and broadband noise radiation from diesel engine cooling fans

    NASA Astrophysics Data System (ADS)

    Kim, Geon-Seok

    This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of the fan blade with inlet flow are the dominant source for both discrete-frequency and broadband noise of the subject propeller fan. In many cases, a primary source of discrepancy between fan noise prediction and measurement is due to incomplete description of the fan inflow. Particularly, in such engine cooling systems where space is very limited, it would be very difficult, if not, impossible to measure the fan inflow velocity field using the conventional, stationary hot-wire method. Instead, the fan inflow was measured with two-component x-type hot-film probes attached very close to the leading edge of a rotating blade. One of the advantages of the blade-mounted-probe measurement technique is that it measures velocities relative to the rotating probe, which enables the acquired data to be applied directly in many aerodynamic theories that have been developed for the airfoil fixed-coordinate system. However, the velocity time data measured by this technique contains the spatially non-uniform mean velocity field along with the temporal fluctuations. A phase-locked averaging technique was successfully employed to decompose the velocity data into time-invariant flow distortions and fluctuations due to turbulence. The angles of attack of the fan blades, obtained from inlet flow measurements, indicate that the blades are stalled. The fan's radiated noise was measured without contamination from the engine noise by driving the fan with an electric motor. The motor operated at a constant speed while a pair of speed controllable pulleys controlled the fan speed. Narrowband and 1/3-octave band sound power of the cooling fan was measured by using the comparison method with a reference sound source in a reverberant room. The spatially non-uniform mean velocity field was used in axial-flow fan noise

  7. Experimental apparatus for investigation of fan aeroelastic instabilities in turbomachinery

    NASA Technical Reports Server (NTRS)

    Jones, W. H.; Bishop, W. A.; Kirchgessner, T. A.; Dicus, J. H.

    1977-01-01

    The application, installation, and monitoring of dynamic strain gage instrumentation on the rotating fan blades for subsonic stalled flutter mode of the first fan rotor are described. The engine installation, the modifications to the engine controls to obtain off schedule operation of the fan, engine aerodynamic instrumentation, and general data acquisition systems are discussed.

  8. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or...

  9. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or...

  10. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or...

  11. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or...

  12. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or...

  13. 16 CFR 305.13 - Labeling for ceiling fans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Labeling for ceiling fans. 305.13 Section... Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal display panel with the...

  14. 30 CFR 57.8529 - Auxiliary fan systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems...

  15. 16 CFR 305.13 - Labeling for ceiling fans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Labeling for ceiling fans. 305.13 Section... Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal display panel with the...

  16. 30 CFR 57.8529 - Auxiliary fan systems

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems...

  17. 30 CFR 57.8529 - Auxiliary fan systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auxiliary fan systems. 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems. When auxiliary fan systems are used, such systems...

  18. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either...

  19. 16 CFR 305.13 - Labeling for ceiling fans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Labeling for ceiling fans. 305.13 Section... Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal display panel with the...

  20. 16 CFR 305.13 - Labeling for ceiling fans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for ceiling fans. 305.13 Section... Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal display panel with the...

  1. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either...

  2. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either...

  3. Alcohol-Related Fan Behavior on College Football Game Day

    ERIC Educational Resources Information Center

    Glassman, Tavis; Werch, Chudley E.; Jobli, Edessa; Bian, Hui

    2007-01-01

    High-risk drinking on game day represents a unique public health challenge. Objective: The authors examined the drinking behavior of college football fans and assessed the support for related interventions. Participants: The authors randomly selected 762 football fans, including college students, alumni, and other college football fans, to…

  4. 30 CFR 57.8529 - Auxiliary fan systems

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems...

  5. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either...

  6. 16 CFR 305.13 - Labeling for ceiling fans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Labeling for ceiling fans. 305.13 Section... LABELING RULEâ) Required Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal...

  7. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either...

  8. 30 CFR 57.8529 - Auxiliary fan systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auxiliary fan systems. 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems. When auxiliary fan systems are used, such systems...

  9. Nicolas and Eel submarine fans, California continental borderland

    SciTech Connect

    Reynolds, S.; Gorsline, D.S.

    1987-04-01

    Nicolas and Eel Submarine Fans occur in the San Nicolas basin - an outer basin of the California continental borderland that has a low sedimentation rate. Nicolas Fan lies southeast of San Nicolas Island and the broad San Nicolas Bank. The upper fan is characterized by numerous channels. The midfan region may be divided into three distinct areas: a central midfan and two subfans. The central midfan deposition system is typical of Normark's suprafan. The subfans are essentially flat, sandy lobes. Eel Fan lies west of San Clemente Island and is fed by an erosional valley. Its midfan region may also be characterized as a flat, sandy lobe. Box-core data show that holocene turbidity currents have occurred on the central Nicolas Fan, whereas the subfans and Eel Fan are nearly inactive. The local tectonic regime influences these fans by determining slope trends, creating bathymetric obstacles, controlling canyon location, and triggering mass movements. Sea level changes affect sedimentation patterns of the fans by increasing the mean grain size and the amount of sediment delivered to the fan during lowstands. These changes may, in turn, affect the morphology of the fan. The characteristics of these fans represent variations of the generalized fan models described in the literature. 12 figures, 1 table.

  10. 2. EAST ELEVATION, THE FAN HOUSE WAS CONSTRUCTED BY THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION, THE FAN HOUSE WAS CONSTRUCTED BY THE MARYLAND NEW RIVER COAL COMPANY IN LATE 1940S OR EARLY 1950S, STEEL EXHAUST HOOD (RIGHT) EXHUASTED MINE GASES; NOTE SQUIRREL CAGE FAN INSIDE EXHAUST HOOD - Nuttallburg Mine Complex, Fan House, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  11. Hexahedron Projection by Triangle Fans and Strips

    2007-05-10

    The program divides the projection of a hexahedron with not-necessarily-planar quadrilateral faces, such as would arise in a curvilinear grid, by the projections of its edges, into polygons overlapped by a single front-facing and a single back-facing face. These polygons are further organized into triangle strips and fans, for rapid volume rendering in graphics hardware.

  12. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  13. Online Fan Fiction, Global Identities, and Imagination

    ERIC Educational Resources Information Center

    Black, Rebecca W.

    2009-01-01

    Based on longitudinal data from a three year ethnographic study, this article uses discourse analytic methods to explore the literacy and social practices of three adolescent English language learners writing in an online fan fiction community. Theoretical constructs within globalization and literacy studies are used to describe the influences of…

  14. Fanning the Optimal Breeze with an Abanico

    NASA Astrophysics Data System (ADS)

    Goon, Grace; Marthelot, Joel; Reis, Pedro

    2015-03-01

    Flexible hand-held fans, or abanicos, are universally employed as cooling devices that are both portable and sustainable. Their to and fro axial motion about one's hand generates an airflow that increases the evaporation rate near the skin and refreshes. We study this problem in the context of fluid-structure interaction, through precision model experiments. We first characterize the elastic properties of a number of commercially available fans and evaluate their aerodynamic performance in a custom built apparatus. The air velocity profile that results from the flapping motion of the fan is characterized for different driving conditions. We then fabricate our own analogue model fans that comprise a thin elastic plate, shaped as a circular section, with an underlying substructure of radial slats. A systematic variation of the geometric and elastic parameters, along with an exploration of the parameter space of the periodic driving motion (amplitude and frequency), allows us to establish optimal design and operational conditions for maximal output of the generated airflow, while minimizing the input power.

  15. Visualization and experiment of tip vortex phenomenon in cooling fan using digital particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Xie, Junlong; Wang, Xuejun; Wu, Guanghui; Wu, Keqi

    2004-11-01

    The Digital Particle Image Velocimetry (DPIV) is an efficient method for measuring the internal flow field of a low-speed cooling fan. This paper studied the velocity field by means of PIV technology for a leading edge swept axial-flow fan without casing, and the tip vortex phenomenon was observed. Time-averaged velocity measurements were taken near the pressure surface, the suction surface and the tip of blade, etc. Moreover, the flow characteristics were visualized using numerical techniques. Experimental results showed that this tip vortex existed at the leading edge of the blade. The generating, developing and dissipating evolvement process of the tip vortex from the blade leading edge to downstream were discussed in detail. In addition, by comparing DPIV results and numerical results, a good agreement between them indicated a possibility to predict flow field using CFD tools. The experimental data provided in this paper are reliable for improving the aerodynamic characteristics of the open axial fan.

  16. Lift-fan aircraft: Lessons learned-the pilot's perspective

    NASA Technical Reports Server (NTRS)

    Gerdes, Ronald M.

    1993-01-01

    This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.

  17. Shape memory alloy actuation for a variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  18. Morphometry of Alluvial Fans in a Polar Desert (Svalbard, Norway): Implications for Interpreting Martian Fans

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Preusker, F.; Trauthan, F.; Reiss, D.; Zanetti, M.; Jaumann, R.; Hiesinger, H.

    2009-04-01

    Alluvial fan-like landforms have been identified on Mars [e.g., 1-3]. Alluvial fans contain information on several controlling factors (tectonism, climate, lithology/geology), and therefore the investigation of possible Martian fans can reveal information about the planet`s climate. In lieu of direct observations of active depositional processes on Martian fans, comparisons with terrestrial analogues can constrain models of Martian fan formation derived from remote sensing data. Since present-day Mars is cold and dry, alluvial fans formed in cold deserts should be considered as useful analogues. The probably closest climatic analogue to Mars on Earth are the Antarctic Dry Valleys [5], but polar deserts can also be found in the Arctic. We report on our field work in summer 2008 and a simultaneous flight campaign with an airborne version (HRSC-AX) of the High Resolution Stereo Camera (HRSC) onboard Mars Express [6]. The results are compared with measurements of Martian fans, based on HRSC DEM. Our study area is in Svalbard near Longyearbyen (78°13'0"N, 15°38'0"E), around mountains of Mesozoic layered sandstones and shales) on the northern side of Adventfjorden. Climate data are available from the nearby Longyearbyen airport (just a few km from the study area). The present climate is arctic [7], with low mean annual air temperatures and very low precipitation, mostly as snow. Stereo images acquired in July 2008 (at the end of the snow melting season) were processed to orthoimages with a spatial resolution of 20 cm/pixel, and corresponding Digital Elevation Models (DEM) with a grid spacing of 50 cm/pixel. Simultaneous field measurements focused on channels and levees (widths, depths, heights), which were determined at vertical increments of 10 m, together with the local slope. Alluvial fans in the study area are present on slopes of all orientations. They typically coalesce into bajadas. Basically all alluvial fans in the study area are characterized by sinuous

  19. Design, durability and low cost processing technology for composite fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Blecherman, S. S.

    1980-01-01

    A program was conducted to design, fabricate and test a durable, low cost, lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application. Eight candidate material/design combinations were evaluated by NASTRAN finite element analysis. Four of these candidate systems were selected for composite vane fabrication by two vendors. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Composite vanes were nondestructively inspected and subsequently fatigue tested in both dry and 'wet' conditions. The program provided relevant data with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits and part price of the composite fan exit guide vane.

  20. Synoptic snowfall as a possible source of water for late alluvial fan activity in southern Margaritifer Terra, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Wilson, S. A.

    2012-12-01

    formation, supporting the contention that crater formation was followed by an even later period of fan emplacement. A latest Hesperian or Amazonian emplacement age for the surface materials in such widely distributed fans likely requires late-occurring synoptic precipitation. Precipitation, possibly occurring as snow, may have been locally influenced by topography and (or) orbital variations. It is not known how much of the total sediment inventory in the fans relates to this late activity versus possible earlier events that may have had alternate (e.g., local) sources of water. Winds may have concentrated late precipitation in the form of snow into existing relief and (or) preexisting alcoves that facilitated physical weathering to produce fine sediments later incorporated into fans. Two of the craters containing fan deposits, Holden and Eberswalde, were finalists for the Mars Science Laboratory (MSL) landing site. Results suggest that exposed and accessible fan sediments at both crater sites may record late occurring, relatively colder, drier, and less sustained conditions relative to earlier periods on Mars.

  1. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  2. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990-2007 in the US alone [1]. As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a non-rotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various nonrotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the pre-stress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a

  3. Enactment of a Geoscience Curriculum by Using Innovative Curriculum Materials: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Hansen, Henning; Hlawatsch, Sylke; Lucken, Markus

    2007-01-01

    Trying to implement interdisciplinary geoscience curriculum materials in geography and science education we asked how they fit into teachers' existing practices, their needs for support and strategies to plan instruction. The focus of our case study has been the identification of the goals teachers pursue with the materials, of strategies for…

  4. Controls on morphometry and morphology of alluvial and colluvial fans in the high-Arctic setting, Petuniabukta, Svalbard.

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek

    2016-04-01

    The Petuniabukta (78o42' N, 16o32') is a bay in the northern part of Billefjorden in the central part of Spitsbergen Island, Svalbard. The bay is surrounded by six major, partly glaciated valleys. A numerous alluvial and colluvial fans have developed within valleys as well as along the fiord margins. Distribution and characterization of morphometric parameters of fans were investigated using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite imagery from 2013. In addition, a very detailed DEM and orthophoto (5 cm resolution) have been produced from unmanned aerial vehicle (UAV) imagery from 2014 and 2015, covering three fans characterised by different types of surface morphology. A 1:40,000 map showing the distribution of almost 300 alluvial and colluvial fans (ranging in area from 325 km2 to 451 275 km2), together with time-series of 1:5,000 geomorphological maps of sample fans enabled an assessment of the spatial and temporal evolution of processes responsible for delivery and erosion of sediments from the fans. The relationship between terrain parameters (e.g. slope, exposition) as well as geology was also investigated. Many of the studied alluvial fans were at least partly coupled and sediments were transferred from the upstream zone to the downstream zone, either due to debris-flow or channelized stream flow. In other cases, coarse sediments were stored within fans, and fines were transported downstream by sheet flows or sub-surface flows. In most of smaller colluvial fans and debris cones, sediments were delivered by mass movement processes (mainly rockfalls and snowfalls) and did not reach lower margin of landforms. Analysis of historical aerial photographs indicated recent increase in the activity of debris-flow modification of surface morphology of fans. Fans located outside limits of the Little Ice Age (LIA) glaciation are dominated by the secondary processes

  5. Distribution and seismic facies of Mississippi fan channels

    SciTech Connect

    Weimer, P.; Buffler, R.T. )

    1988-10-01

    Analysis of a closely spaced grid of multifold seismic data across the upper Pliocene-Pleistocene Mississippi fan in the deep Gulf of Mexico allows for the first time a detailed description of a large part of the fan. Mapping of the 17 channel-levee systems show considerable variability in parameters such as size, location, geometry, lateral migration, aggradation, sinuosity, and downfan bifurcation, which suggests that multiple factors control channel evolution. The youngest channel, cored during Deep Sea Drilling Project Leg 96, refects only style in channel evolution. Such complexity in large, mud-dominated, submarine fan systems must be considered in evaluating fan models and interpreting ancient fan systems.

  6. NASA/Navy life/cruise fan preliminary design report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary design studies were performed to define a turbotip lift/cruise fan propulsion system for a Navy multimission aircraft. The fan is driven by the exhausts of the YJ97-GE-100 turbojet or a 20 percent Growth J97 configuration as defined during the studies. The LCF459 fan configuration defined has a tip diameter of 1.50 meters (59.0 inches) and develops a design point thrust of 75,130 N (16,890 lbs) at a fan pressure ratio of 1.319. The fan has an estimated weight of 386 kg (850 lbs). Trade studies performed to define the selected configuration are described.

  7. 21. INTERIOR VIEW OF NEW FAN HOUSE LOOKING SOUTH The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR VIEW OF NEW FAN HOUSE LOOKING SOUTH The single entry Duplex Conoidal fan had a disk fan, pictured here, which drew air from the No. 4 (Baltimore) shaft up the airway into a centrifugal fan (see PA 61-22) and out the upshaft chimney. The ladder provided access to the shaft bearings; the mesh screen was a safety feature. The door to the left leads into an airlock. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  8. FOREWORD: 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF2013)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Yuan, Shouqi; Shi, Weidong; Liu, Shuhong; Luo, Xingqi; Wang, Fujun

    2013-12-01

    ; other fluid machinery and devices, such as, wind turbines, turbochargers and reversible pump-turbines, clearance and sealing, jets, filters and mixers; and their engineering application and their system behavior, especially, the application of the renewable energy of pumps, compressors, fans and blowers. The objective of the conference was to provide an opportunity for researchers, engineers and students to report on the latest developments in the fields of pumps, compressors, fans and turbochargers, as well as systems. The participants were encouraged to present their work in progress with a short lead time, and the conference promoted discussion of the problems encountered. The ICPF2013 brought together 191 scientists and researchers from 14 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for pumps and fans, which would enhance the sustainable development of fluid machinery and fluid engineering. The Scientific Committee selected 166 technical papers on the following topics: (i) Principles of Fluid Machinery, (ii) Pumps, (iii) Compressors, Fans and Turbochargers, (iv) Turbines, (v) Cavitation and Multiphase Flow, (vi) Systems and Other Fluid Machinery, and 10 invited plenary and invited session lectures, which were presented at the conference, to be included in the proceedings. All the papers of ICPF2013, which were published in this volume of IOP Conference Series: Materials Science and Engineering, have been peer reviewed through processes administered by the editors of the ICPF2013, those are Yulin Wu, Zhengwei Wang, Shouqi Yuan, Weidong Shi, Shuhong Liu, Xingqi Luo and Fujun Wang. We sincerely hope that the 6th International Conference on Pumps and Fans with Compressors and Wind Turbines is a significant step forward in the worldwide efforts to address the present challenges facing modern fluid machines. Professor Yulin Wu Chairman of the Local Organizing Committee 6th International

  9. Advanced modeling of active control of fan noise for ultra high bypass turbofan engines

    NASA Astrophysics Data System (ADS)

    Hutcheson, Florence Vanel

    1999-11-01

    An advanced model of active control of fan noise for ultra high bypass turbofan engines has been developed. This model is based on a boundary integral equation method and simulates the propagation, radiation and control of the noise generated by an engine fan surrounded by a duct of finite length and cylindrical shape, placed in a uniform flow. Control sources, modeled by point monopoles placed along the wall of the engine inlet or outlet duct, inject anti-noise into the duct to destructively interfere with the sound field generated by the fan. The duct inner wall can be lined or rigid. Unlike current methods, reflection from the duct openings is taken into account, as well as the presence of the evanescent modes. Forward, as well as backward (i.e., from the rear of the engine), external radiation is computed. The development of analytical expressions for the sound field resulting from both the fan loading noise and the control sources is presented. Two fan models are described. The first model uses spinning line sources with radially distributed strength to model the loading force that the fan blades exert on the medium. The second model uses radial arrays of spinning point dipoles to simulate the generation of fan modes of specific modal amplitudes. It is shown that these fan models can provide a reasonable approximation of actual engine fan noise in the instance when the modal amplitude of the propagating modes or the loading force distribution on the fan blades, is known. Sample cases of active noise control are performed to demonstrate the feasibility of the model. The results from these tests indicate that this model (1)is conducive to more realistic studies of active control of fan noise on ultra high bypass turbofan engines because it accounts for the presence of evanescent modes and for interference between inlet and outlet radiation, which were shown to have some impact on the performance of the active control system; (2)is very useful because it allows

  10. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  11. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  12. Recent results about fan noise: Its generation, radiation and suppression

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.

    1982-01-01

    Fan noise including its generation, radiation characteristics, and suppression by acoustic treatment is studied. In fan noise generation, results from engine and fan experiments, using inflow control measures to suppress noise sources related to inflow distortion and turbulence, are described. The suppression of sources related to inflow allows the experiments to focus on the fan or engine internal sources. Some of the experiments incorporated pressure sensors on the fan blades to sample the flow disturbances encountered by the blades. From these data some inferences can be drawn about the origins of the disturbances. Also, hot wire measurements of a fan rotor wake field are presented and related to the fan's noise signature. The radiation and the suppression of fan noise are dependent on the acoustic modes generated by the fan. Fan noise suppression and radiation is described by relating these phenomena to the mode cutoff ratio parameter. In addition to its utility in acoustic treatment design and performance prediction, cutoff ratio was useful in developing a simple description of the radiation pattern for broadband fan noise. Some of the findings using the cutoff ratio parameter are presented.

  13. Viscous three-dimensional calculations of transonic fan performance

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1992-01-01

    A 3-D flow analysis code was used to compute the design speed operating line of a transonic fan rotor, and the results were compared with experimental data. The code is an explicit finite difference code with an algebraic turbulence model. The transonic fan, called Rotor 67, was tested experimentally at NASA Lewis conventional aerodynamic probes and with user anemometry and was included as one of the AGARD test cases for the computation of internal flows. The experimental data are described. Maps of total pressure ratio and adiabatic efficiency vs mass flow were computed and are compared with the experimental maps, with good agreement. Detailed comparisons between calculations and experiment are made at two operating points, one near peak efficiency and the other near stall. Blade-to-blade contour plots are used to show the shock structure. Comparisons of circumferentially integrated flow quantities downstream of the rotor show spanwise distributions of several aerodynamic parameters. Calculated Mach number distributions are compared with laser anemometer data within the blade row and the wake to quantify the accuracy of the calculations. Particle traces are used to show the nature of secondary flow.

  14. Transient performance of fan engine with water ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1993-01-01

    In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.

  15. Viscous three-dimensional calculations of transonic fan performance

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1991-01-01

    A 3-D flow analysis code was used to compute the design speed operating line of a transonic fan rotor, and the results were compared with experimental data. The code is an explicit finite difference code with an algebraic turbulence model. The transonic fan, called rotor 67, was tested experimentally at NASA-Lewis with conventional aerodynamic probes and with user anemometry and was included as one of the AGARD test cases for the computation of internal flows. The experimental data are described. Maps of total pressure ratio and adiabatic efficiency versus mass flow were computed and are compared with the experimental maps, with good agreement. Detailed comparisons between calculations and experiment are made at two operating points, one near peak efficiency and the other near stall. Blade-to-blade contour plots are used to show the shock structure. Comparisons of circumferentially integrated flow quantities downstream of the rotor show spanwise distributions of several aerodynamic parameters. Calculated Mach number distributions are compared with laser anemometer data within the blade row and the wake to quantify the accuracy of the calculations. Particle traces are used to show the nature of secondary flow.

  16. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  17. Fifty-five million years of Tibetan evolution recorded in the Indus Fan

    NASA Astrophysics Data System (ADS)

    Clift, Peter; Shimizu, Nobu; Layne, Graham; Gaedicke, Christoph; Schlter, H.-U.; Clark, Marin; Amjad, Shahid

    Although the Indus Fan is only about one-third of the volume of its giant neighbor in the Bay of Bengal, it is one of the largest sediment bodies in the ocean basins, totaling ˜5×106 km3. Its detrital sedimentary record is an important repository of information on the uplift and erosion of the western Himalaya. New seismic and provenance data from the Pakistan margin now suggest that the Indus River and fan system was initiated shortly after the India-Asia collision at ˜5 Ma. The modern Indus drainage basin is dominated by the high peaks of the Karakoram, Kohistan, and other tectonic units of the Indus Suture Zone rather than the High Himalaya. The Indus River, which rises in western Tibet near Mount Kailas, follows the Indus Suture Zone along strike before cutting orthogonally through the Himalaya to the Arabian Sea. The other tributaries to the Indus, such as the Chenab and Sutlej, do drain the crystalline High Himalayan range, but do so in an area where its topography is much reduced (Figure 1). In contrast, the Bengal Fans main feeder rivers, the Ganges and Brahmaputra, follow the High Himalaya along strike for much of the length of the orogen. In practice, this means that the Bengal Fan is swamped by the large volume of material derived from the rapidly unroofing High Himalaya [France-Lanord et al, 1993], while the Indus Fan is dominated by tectonic units adjacent to the suture zone, including western Tibet. This allows their erosional signal to be more readily isolated in the Indus Fan compared to in the Bengal.

  18. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  19. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  20. Low-noise fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Heidelberg, Laurence J. (Inventor); Envia, Edmane (Inventor)

    2008-01-01

    Low-noise fan exit guide vanes are disclosed. According to the present invention a fan exit guide vane has an outer shell substantially shaped as an airfoil and defining an interior cavity. A porous portion of the outer shell allows communication between the fluctuations in the air passing over the guide vane and the interior cavity. At least one acoustically resonant chamber is located within the interior cavity. The resonant chamber is in communication with the porous portion of the outer perimeter. The resonant chamber is configured to reduce the noise generated at a predetermined frequency. In various preferred embodiments, there is a plurality of acoustically resonant chambers located within the interior cavity. The resonant chambers can be separated by one or more partitions within the interior cavity. In these embodiments, the resonant chambers can be configured to reduce the noise generated over a range of predetermined frequencies.

  1. Optical measurement of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1990-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  2. Mozambique upper fan: origin of depositional units

    SciTech Connect

    Droz, L.; Mougenot, D.

    1987-11-01

    The upper Mozambique Fan includes a stable down-stream region, with a north-south channel flanked by thick (1.5 sec two-way traveltime) asymmetric levees, and a migrating upstream region where at least two main feeding paths have been successively dominant. From the Oligocene to early Miocene, the north-south Serpa Pinto Valley acted as the main conduit for the north Mozambique terrigenous sediments. From the middle Miocene, the west-east Zambezi Valley became the dominant path and supplied the fan with sediments transported by the Zambezi River from the central part of Mozanbique. The transfer from one sediment-feeding system to the other is related to the abandonment of the Serpa Pinto Valley because of graben formation along the Davie Ridge, which trapped the sediments, and the increase of the Zambezi River sediment supply because of the creation and erosion of the East African Rift. 13 figures.

  3. Fanning the Optimal Breeze with an Abanico

    NASA Astrophysics Data System (ADS)

    Goon, Grace; Marthelot, Joel; Reis, Pedro; MIT EGS Lab Team

    Flexible hand-held fans, or abanicos, are universally employed as cooling devices that are both portable and sustainable. Their to and fro axial motion about one's hand generates an airflow that increases the evaporation rate near the skin and refreshes. We study this problem in the context of fluid-structure interaction, through precision model experiments. We first characterize the elastic properties of a semi-circular thin plates with various thickness and evaluate their aerodynamic performance in a custom built apparatus. The air velocity profile that results from the flapping motion of the fan is characterized for different driving conditions. A systematic variation of the geometric and elastic parameters, along with an exploration of the parameter space of the periodic driving motion (amplitude and frequency), allows us to establish optimal design and operational conditions for maximal output of the generated airflow, while minimizing the input power.

  4. Fanning the Optimal Breeze with an Abanico

    NASA Astrophysics Data System (ADS)

    Goon, Grace; Marthelot, Joel; Reis, Pedro

    2015-11-01

    Flexible hand-held fans, or abanicos, are universally employed as cooling devices that are both portable and sustainable. Their to and fro axial motion about one's hand generates an airflow that increases the evaporation rate near the skin and refreshes. We study this problem in the context of fluid-structure interaction, through precision model experiments. We first characterize the elastic properties of a semi-circular thin plates with various thickness and evaluate their aerodynamic performance in a custom built apparatus. The air velocity profile that results from the flapping motion of the fan is characterized for different driving conditions. A systematic variation of the geometric and elastic parameters, along with an exploration of the parameter space of the periodic driving motion (amplitude and frequency), allows us to establish optimal design and operational conditions for maximal output of the generated airflow, while minimizing the input power.

  5. 'Bataille's boys': postmodernity, Fascists and football fans.

    PubMed

    Smith, T

    2000-09-01

    In his analysis of football hooliganism, Anthony King claims to reveal the historical, conceptual scheme young, male supporters draw upon. This 'masculine vision', he states, is similar to that held by the Freikorps. Both groups are said to adhere to modernist notions of masculinity, sexuality and nationhood, reinforced by rituals which maintain boundaries between these 'proper' males and deviant 'others'. Occasionally, football hooligans breach these boundaries in acts of postmodern transgression. King also claims that fans link sex and violence in their imaginations. In this response I examine King's critique of his fellow theorists; challenge his 'Freikorps-Fans' analogy; demonstrate the problem he has in establishing the sex-violence link and question the relevance of his concept of postmodernity.

  6. Investigation of Single Stage Axial Fans

    NASA Technical Reports Server (NTRS)

    Ruden, P.

    1944-01-01

    The following investigations are connected with experiments on fans carried out by the author in the Gouttingen Aerodynamic Laboratory within the framework of the preliminary experiments for the new Gouttingen wind-tunnel project. A fan rotor was developed which had very high efficiency at the design point corresponding to moderate pressure and which, in addition, could operate at a proportionally high pressure, rise. To establish the determining operating factors the author carried out extensive theoretical investigation in Hannover. In this it was necessary, to depart from the usual assumption of vanishing radial velocities. The calculations were substantially lightened by the introduction of diagrams. The, first part of the.report describes the theoretical investigations; the second, the experiments carried out at Gouttingen.

  7. Gigapixel Images Connect Sports Teams with Fans

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Technology developed at Ames Research Center to take high-resolution imagery on Mars is now being used in baseball stadiums across the country. New York City-based Major League Baseball Advanced Media LP customized the platform to accommodate in-game shots that capture nearly the whole stadium. Fans navigate the photos online and tag themselves and their friends using social media tools.

  8. End-wall boundary layer measurements in a two-stage fan

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Reid, L.; Schmidt, J. F.

    1983-01-01

    Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.

  9. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  10. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  11. Geometry and evolution of a syntectonic alluvial fan, Southern Pyrenees

    SciTech Connect

    Arminio, J.F. ); Nichols, G.J. )

    1993-02-01

    Syntectonic alluvial fans formed on the northern margin of the Ebro Foreland Basin along the South Pyrenean thrust front during late orogenic thrust movements in the late Oligocene/early Miocene. The present-day geometry, structural relations and sedimentology of one of these fans, the Aguero fan in the province of Huesca, Spain, were studied. Field observations of the architecture of depositional facies and the geometries of syn-tectonic folds and unconformities indicate that the Aguero fan formed as the result of several phases of sedimentation which were primarily controlled by periods of tectonic activity and quiescence. The syntectonic unconformities and growth folds in the fan deposits provide a detailed record of the evolution of a fan adjacent to an active thrust front. Using a computer program to simulate sedimentation and deformation of an alluvial fan it is possible to constrain rates of both sedimentary and tectonic processes by modeling the evolution of the fan body. A facies model for the fan phases indicates that the facies change from proximal (coarse-grained, amalgamated) to distal (finger grained, stacked fining up cycles) in less than 1 km across a fan of radius estimated to be about 2 km.

  12. Transient Finite Element Analyses Developed to Model Fan Containment Impact Events

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael

    1997-01-01

    Research is underway to establish an increased level of confidence in existing numerical techniques for predicting transient behavior when the fan of a jet engine is released and impacts the fan containment system. To evaluate the predictive accuracy that can currently be obtained, researchers at the NASA Lewis Research Center used the DYNA 3D computer code to simulate large-scale subcomponent impact tests that were conducted at the University of Dayton Research Institute (UDRI) Impact Physics Lab. In these tests, 20- by 40-in. flat metal panels, contoured to the shape of a typical fan case, were impacted by the root section of a fan blade. The panels were oriented at an angle to the path of the projectile that would simulate the conditions in an actual blade-out event. The metal panels were modeled in DYNA 3D using a kinematic hardening model with the strain rate dependence of the yield stress governed by the Cowper-Simons rule. Failure was governed by the effective plastic strain criterion. The model of the fan blade and case just after impact is shown. By varying the maximum effective plastic strain, we obtained good qualitative agreement between the model and the experiments. Both the velocity required to penetrate the case and the deflection during impact compared well. This indicates that the failure criterion and constitutive model may be appropriate, but for DYNA 3D to be useful as a predictive tool, methods to determine accurate model parameters must be established. Simple methods for measuring model parameters are currently being developed. In addition, alternative constitutive models and failure criteria are being investigated.

  13. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  14. Snapshot fan beam coded aperture coherent scatter tomography.

    PubMed

    Hassan, Mehadi; Greenberg, Joel A; Odinaka, Ikenna; Brady, David J

    2016-08-01

    We use coherently scattered X-rays to measure the molecular composition of an object throughout its volume. We image a planar slice of the object in a single snapshot by illuminating it with a fan beam and placing a coded aperture between the object and the detectors. We characterize the system and demonstrate a resolution of 13 mm in range and 2 mm in cross-range and a fractional momentum transfer resolution of 15%. In addition, we show that this technique allows a 100x speedup compared to previously-studied pencil beam systems using the same components. Finally, by scanning an object through the beam, we image the full 4-dimensional data cube (3 spatial and 1 material dimension) for complete volumetric molecular imaging.

  15. Snapshot fan beam coded aperture coherent scatter tomography.

    PubMed

    Hassan, Mehadi; Greenberg, Joel A; Odinaka, Ikenna; Brady, David J

    2016-08-01

    We use coherently scattered X-rays to measure the molecular composition of an object throughout its volume. We image a planar slice of the object in a single snapshot by illuminating it with a fan beam and placing a coded aperture between the object and the detectors. We characterize the system and demonstrate a resolution of 13 mm in range and 2 mm in cross-range and a fractional momentum transfer resolution of 15%. In addition, we show that this technique allows a 100x speedup compared to previously-studied pencil beam systems using the same components. Finally, by scanning an object through the beam, we image the full 4-dimensional data cube (3 spatial and 1 material dimension) for complete volumetric molecular imaging. PMID:27505791

  16. A Numerical Model of Retreating Alluvial Fan Coasts

    NASA Astrophysics Data System (ADS)

    Hicks, M.; Dickson, M.; Coco, G.

    2006-12-01

    A numerical model has been developed that simulates the wave-driven retreat of partially-consolidated alluvial- fan shores over millennium time-scales. It has been developed to reproduce the shore profiles and coastal erosion rates observed along the Pleistocene glacial-outwash fan built by the Waitaki River on the east coast of New Zealand's South Island. This cliffed shore is currently fronted by a narrow sand-and-gravel beach. The nearshore seabed is formed in Pleistocene substrate and has only a thin and patchy cover of sand. The motivation is to examine the sensitivity of the erosion rates to wave-climate change, sea-level rise, and river sediment supplies. The model is forced by two wave conditions that, when randomly sampled, represent the storm-wave and normal-swell climates of the prototype coast. These each operate for a fixed proportion of the model's yearly time-step. Morphological change is driven by a series of coupled process models. These include scour of the nearshore seabed by shoaling waves, cross-shore exchanges of sand and gravel between the nearshore and beach, berm construction during normal wave conditions, berm overtopping by storm waves with consequent beach stripping and scour of the exposed sub-aerial substrate and cliff-toe notch-cutting, gravity-failure of the cliffs and talus construction between storm events, and beach sediment abrasion. The scour, notching, and transport models are generally based on energetics principles and are calibrated with linear scaling coefficients to match field observations from the prototype coast. Negative feedback regulates the rate of cliff erosion through the protection that is afforded by cliff and substrate material added to the beach. The starting model condition is a sloping alluvial fan inundated by the sea-level rise that followed the last glacial epoch, and the model is run for 6000 years to the present assuming a stable sea level. Initially, the gentle slope of the alluvial fan results in

  17. Alveolar ridge augmentation: comparison of two socket graft materials in implant cases.

    PubMed

    Tolstunov, Len; Chi, Jibin

    2011-03-01

    With the variety of bone grafting materials available and their use around both natural teeth and dental implants, clinicians need to understand not only basic bone biology but also characteristics of different bone grafting materials to make a proper choice when selecting a material for alveolar bone augmentation and implant treatment. The grafting materials used in the maxillofacial region include autogenous bone, allografts, xenografts, alloplastic or synthetic products, and composite grafts (combination of different materials). This case report describes two frequenly used bone graft materials for socket preservation immediately after extraction: Puros® (Zimmer Dental Inc, www.zimmerdental.com) (allogeneic) and Bio-Oss®(Osteohealth Co, www.osteohealth.comwww.osteohealth.com) (xenogeneic). In the case presented, the authors perform biologic, clinical, radiologic, and histologic analysis of the two grafting materials by placing them side-by-side in the same patient during implant reconstruction. Implant-related phases of bone augmentation are proposed, and an overview of bone grafting materials, specifically Bio-Oss and Puros, is presented.

  18. Alveolar ridge augmentation: comparison of two socket graft materials in implant cases.

    PubMed

    Tolstunov, Len; Chi, Jibin

    2011-01-01

    With the variety of bone grafting materials available and their use around both natural teeth and dental implants, clinicians need to understand not only basic bone biology but also characteristics of different bone grafting materials to make a proper choice when selecting a material for alveolar bone augmentation and implant treatment. The grafting materials used in the maxillofacial region include autogenous bone, allografts, xenografts, alloplastic or synthetic products, and composite grafts (combination of different materials). This case report describes two frequenly used bone graft materials for socket preservation immediately after extraction: Puros® (Zimmer Dental Inc, www.zimmerdental.com) (allogeneic) and Bio-Oss®(Osteohealth Co, www.osteohealth.comwww.osteohealth.com) (xenogeneic). In the case presented, the authors perform biologic, clinical, radiologic, and histologic analysis of the two grafting materials by placing them side-by-side in the same patient during implant reconstruction. Implant-related phases of bone augmentation are proposed, and an overview of bone grafting materials, specifically Bio-Oss and Puros, is presented.

  19. Capillary Oscillations of Drops on a Fan-Shaped Pillar

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon Jeong; Fontelos, Marco A.; Hwang, Hyung Ju

    2016-07-01

    We study the capillary oscillations of the surface of a 2D drop attached to a fan-shaped pillar. The fluid flow is modeled by means of a velocity potential and we assume a no-flux condition at the liquid-solid interface. The natural oscillation frequencies and oscillation modes are computed for two different physical situations depending on the contact line behavior: (1) free-end, when the contact line moves along the solid with a constant contact angle and (2) pinned-end when the contact line is pinned to the solid and does not move. We also study the linearized initial value problem and prove well-posedness results in both free-end and pinned-end cases. Hence, for capillary oscillations when the fluid is in partial contact with a solid, not only initial conditions must be prescribed but also the behavior of the contact line.

  20. Guided bone regeneration using an allograft material: review and case presentations.

    PubMed

    Bhola, Monish; Kinaia, Bassam M; Chahine, Katy

    2008-10-01

    Post extraction sites may have residual ridge deformities with insufficient bone present for future implant placement. This presents a challenge to the clinician attempting to obtain optimum results. To predictably augment these areas and obtain aesthetically pleasing results, bone grafting may be required. Guided bone regeneration with an allograft material is a predictable means by which to solve this challenge. This article describes three case presentations utilizing on allograft material for bone regeneration prior to implant placement.

  1. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  2. Regional-scale assessment of a sequence-bounding paleosol on fluvial fans using ground-penetrating radar, eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Bennett, V.G.L.; Weissmann, G.S.; Baker, G.S.; Hyndman, D.W.

    2006-01-01

    Recently developed sequence stratigraphic models for fluvial fans suggest that sequence boundaries in these deposits are marked by laterally extensive paleosols; however, these models were based on paleosol correlations inferred between wells. To test this, we collected ???190 km of ground-penetrating radar (GPR) profiles on three fluvial fans from the eastern San Joaquin Valley, California, to determine the lateral extent and character of a buried near-surface sequence-bounding-paleosol. This paleosol, recognized on GPR by rapid shallow signal attenuation, extends across large areas on all three fluvial fans. Limited areas of significantly increased signal penetration were also identified, and these zones are interpreted to indicate the absence of the paleosol. The zones where the paleosol is missing likely correspond to paleooutwash channel activity on the fan surfaces that, when active, was able to partially or fully scour through the paleosol and deposit coarse-grained channel sediments in place of the sequence boundary. Erosional breaks are most common on the Kings River fan, while few breaks on the Tuolumne and Merced River fans may indicate less paleochannel activity on these fan surfaces during the last outwash event. Differences in channel activity between fans indicate that the Kings River migrated across its fan during the last outwash event, as evidenced by the large number of areas with increased GPR signal penetration and the presence of numerous channel deposits recorded on the soil surveys, while the Tuolumne and Merced Rivers only deposited floodplain fines, with the channels remaining inside a shallow incised valley, as evidenced by the relatively low number of areas with increased GPR signal penetration and the presence of primarily fine-grained material recorded on the soil surveys. Factors controlling these differences may include variable valley subsidence rates and differences in the San Joaquin Basin overall width at each fan location

  3. 18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING EAST The flywheel of the 1908 Allis-Chalmers Corliss steam engine and flywheel are in the foreground. The engine is a horizontal slide valve type with a 24 inch bore and 48 inch stroke. It was direct connected to the Dickson Guibal fan which rotated at 69 revolutions per minute. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  4. 1. SOUTH ELEVATION, THE FAN HOUSE WAS CONSTRUCTED BY THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH ELEVATION, THE FAN HOUSE WAS CONSTRUCTED BY THE MARYLAND NEW RIVER COAL COMPANY IN LATE 1940S OR EARLY 1950S TO VENTILATE MINE WORKINGS, ENTRANCE TO MINE (LEFT) AND MOTOR ROOM (RIGHT), WHICH HOUSED THE ELECTRIC MOTOR AND VENTILATING FAN - Nuttallburg Mine Complex, Fan House, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  5. Sediment mass-flow processes on a depositional lobe, outer Mississippi Fan

    SciTech Connect

    Schwab, W.C.; Twichell, D.C.; Lee, H.J.; Nelson, C.H.; McArthur, W.G.; Locat, J.; Kenyon, N.H.

    1996-09-01

    As exploration for hydrocarbons moves toward subtler traps, channel-end sand deposits of deep-sea fans and related turbidite systems are among the key targets. SeaMARC 1A sidescan-sonar imagery and cores from the distal reaches of a depositional lobe on the Mississippi Fan show that channelized mass flow as the dominant mechanism for transport of silt and sand during the formation of this part of the fan. Sediments in these flows were rapidly deposited once outside of their confining channels. The depositional lobe is formed of a series of long, narrow sublobes composed of thin-bedded turbidites (normally graded siliciclastic sand and silt, 20 cm thick on average), debris-flow deposits (soft clay clasts up to 5 cm in diameter in a siliciclastic silt matrix, 48 cm thick on average), and background-sedimentation hemipelagic muds. The mass flows most likely originated from slope failure at the head of the Mississippi Canyon or on the outer continental shelf and flowed approximately 500 km to the distal reaches of the fan, with debris flow being the dominant flow type. An analysis that uses the geometry of the confining channels and strength properties of the debris-flow material shows that these thin debris flows could have traveled hundreds of kilometers on extremely small sea-floor slopes at low velocities if the flowing medium behaved as Bingham fluids and were steady-state phenomena.

  6. Timing and frequency of glacigenic debris flows on the Bear Island Fan

    NASA Astrophysics Data System (ADS)

    Pope, Ed; Talling, Peter; Hunt, James

    2015-04-01

    Trough Mouth Fans represent one of the most significant deposition systems for sediment on the planet. Trough mouth fans are found in front of bathymetric troughs that extend across continental shelves to the shelf break. It is along these troughs that large volumes of subglacial sediment are transported by fast flowing ice streams. Following initial deposition, glacially derived sediment is then often re-mobilised and re-deposited down the continental slope via gravity flow processes. Glacigenic debris flows are among the most significant of these processes, often occurring on slopes with gradients of <10. These flows commonly occur in lobes with characteristic lengths (30 - 200 km), widths (2 - 10 km) and thicknesses (10 - 50 m). The stacking of these lobes provides a significant proportion of the material making up trough mouth fans. Despite processes of sedimentation and sediment reworking being long established for these systems they are incompletely understood and there has been little work specifically dating individual events. We therefore have little information regarding the frequency of these events. This is especially true on more distal parts of trough mouth fans. Instead work has focussed primarily on upper areas of trough mouth fans in an attempt to precisely date ice retreat from these features. The Bear Island Trough Mouth Fan is situated in front of the Bear Island Trough in the Barents Sea. The cross shelf trough is about 150 km wide and 500 m deep at its mouth and served as a major drainage pathway for the Barents Sea Ice Sheet. The fan covers an area of 125,000 km2 and extends from the continental shelf edge at water depths of about 500 m to over 3000 m water depth in the Lofoten Basin. Previous studies using GLORIA have shown debris flows radiating out from near the top of the fan, extending to near its base, whilst 3.5 kHz sub-bottom profiler records show these lobes to be staked. Some dates have been produced from hemipelagic material above

  7. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system—...

  8. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system—...

  9. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the...

  10. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system—...

  11. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the...

  12. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the...

  13. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the...

  14. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system—...

  15. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system—...

  16. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the...

  17. Energy dissipation in the blade tip region of an axial fan

    NASA Astrophysics Data System (ADS)

    Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.

    2016-11-01

    A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.

  18. On limited fan-in optimal neural networks

    SciTech Connect

    Beiu, V.; Makaruk, H.E.; Draghici, S.

    1998-03-01

    Because VLSI implementations do not cope well with highly interconnected nets the area of a chip growing as the cube of the fan-in--this paper analyses the influence of limited fan in on the size and VLSI optimality of such nets. Two different approaches will show that VLSI- and size-optimal discrete neural networks can be obtained for small (i.e. lower than linear) fan-in values. They have applications to hardware implementations of neural networks. The first approach is based on implementing a certain sub class of Boolean functions, IF{sub n,m} functions. The authors will show that this class of functions can be implemented in VLSI optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan ins. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on neural networks with fan-ins limited to 2. They generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan in values, while relative minimum size solutions can be obtained for fan-ins strictly lower than linear. Finally, a size-optimal neural network having small constant fan-ins will be suggested for IF{sub n,m} functions.

  19. Rhone deep-sea fan: morphostructure and growth pattern

    SciTech Connect

    Droz, L.; Bellaiche, G.

    1985-03-01

    A detailed bathymetric survey of the Rhone deep-sea fan and its feeder canyon using Sea-Beam, reveals morphologic features such as very tight meanders of the canyon and channel courses, cutoff meanders, and downslope narrowing of the inner channel floor. Striking similarities exist between these deep-sea features and some continental landforms, especially in alluvial plain areas or desert environments. Sea-Beam also reveals evidence of huge slump scars affecting the slope and fan. The superficial structure of the Rhone Fan results from the stacking of numerous lenticular acoustic units displaying specific seismic characters in which the authors recognized channel and levee facies. Except in the upper fan area, these units have not been constant; they have generally migrated, owing to shifting of the channel throughout fan evolution. Construction of the fan probably began as early as the early Pliocene and continued to the close of the Wurmian (late Wisconsinian). The fan's growth pattern could be associated with climatic fluctuations. The principal sedimentary mechanism responsible for the growth of the fan appears to be turbidity currents, but mass gravity flows have also been an important factor in building the fan by occasionally blocking the main channel and forcing it to migrate.

  20. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  1. Timescales of alluvial fan development by precipitation on Mars

    NASA Astrophysics Data System (ADS)

    Armitage, John J.; Warner, Nicholas H.; Goddard, Kate; Gupta, Sanjeev

    2011-09-01

    Dozens of large, low-gradient alluvial fans are present within impact crater basins on the cratered highlands of Mars. The timescales and climate conditions that were required to generate such fans are unknown, but testable through our understanding of terrestrial hill slope erosion in the presence of precipitation. Previous estimates of fan formation time vary from years to millions of years. Here, we use an idealised physical model of 2-D catchment-fan evolution to present a framework within which the development of Martian alluvial fans should be considered. We simplify the erosional and depositional system so that there are only three variables: erodibility due to gravity, amount of water runoff due to precipitation, and catchment-fan boundary elevation. Within this framework, to generate large, low-gradient (<6°) alluvial fans on Mars requires significant periods of erosion due to runoff. We suggest two climate scenarios, either: (1) rates of precipitation that are similar to arid terrestrial climates over timescales of 107 to 108 yr or (2) a shorter duration of semiarid to temperate climate conditions over a period on the order of 106 yr. Hyper-arid conditions generate low-gradient alluvial fans under conditions of a topographically lowered fan-catchment boundary and only over timescales >108 yr if the substrate is extremely erodible relative to terrestrial examples.

  2. 19. INTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST This view of the south airway shows the circular brick opening through which air was drawn to the center of the 28 foot diameter Dickson Guibal double inlet fan. Note the solid core of the Dickson-Guibal centrifugal fan and the bracing for the steel paddles. The shaft, shaft support and braces, and catwalk are in the right foreground. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  3. Composite fan exit guide vanes for high bypass ratio gas turbine engines

    NASA Technical Reports Server (NTRS)

    Blecherman, S. S.; Stankunas, T. N.

    1981-01-01

    Various composite materials were identified for reduced weight applications as fan exit guide vanes in high bypass ratio gas turbine engines. Candidate materials, airfoil geometry and ply orientation were evaluated using NASTRAN finite element analysis. A vane core and shell design approach utilizing several different fiber orientation concepts was selected and variations in bending and torsional stiffness were documented. Material suppliers and airfoil fabricators were selected to provide panels and airfoils which were inspected, environmentally conditioned and tested. Static and dynamic airfoil tests established durability characteristics for a range of composite material/design approaches.

  4. Sub-fragmentation of structural-reactive-material casings under explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2015-06-01

    The sub-fragmentation of structural reactive material (SRM) thick-casings is to generate fine fragments during casing fragmentation under explosive loading for their efficient energy release to enhance air blast. This has been investigated using a cylindrical casing made from either rich Al-MoO3 or Al-W-based granular composites. The former composite was to study the concept of reactive hot spots where the reaction of reactive particles, which were distributed into base SRM in a fuel-rich equivalence ratio, created heat and gas products during SRM fragmentation. The expansion of these distributed hot spots initiated local fractures of the casing, leading to fine fragments. The Al-W-based composite investigated the concept of impedance mismatch, where shock dynamics at the interfaces of different impedance ingredients resulted in non-uniform, high local temperatures and stresses and late in times the dissimilar inertia resulted in different accelerations, leading to material separation and fine fragments. The casings were manufactured through both hot iso-static pressing and cold gas dynamic spray deposition. Explosion experiments were conducted in a 3 m diameter, 23 m3 cylindrical chamber for these cased charges in a casing-to-explosive mass ratio of 1.75. The results demonstrated the presence of fine fragments and more efficient fragment combustion, compared with previous results, and indicated the effectiveness of both concepts. This work was jointly funded by Defence R&D Canada and the Advanced Energetics Program of DTRA (Dr. William H. Wilson).

  5. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    ratios of 1.75 and 1.60. At the two lower fan pressure ratios, the effectivness of treatment is much greater than that of ANC, and (5) No significant difference in ANC suppression behavior was found from the QCSEE engine database analysis compared to that of the E3 engine database, for the FPR = 1.3 engine cycle. The effects of ANC on EPNL noise reduction are difficult to generalize. It was found that the reduction obtained in any particular case depended upon the frequency of the tones and their shift with rpm, the amount of ANC suppression received by each tone (which depended on its protrusion from the background), and the NOY-value of the tone relative to the NOY-value of other tones and the peak broadband levels, because PNL is determined from the sum of the NOY-values.

  6. A Case Study on the Use of Materials by Classroom Teachers

    ERIC Educational Resources Information Center

    Yildirim, Kasim

    2008-01-01

    This research has the nature of a descriptive case study aiming to clarify the opinions of primary education classroom teachers about the use of materials and tools in the lessons. It is a qualitative research benefiting from focus group interview method which is one of the efficient data collection techniques. "Semi-Structured Interview Form" has…

  7. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    ERIC Educational Resources Information Center

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  8. Fan blade for an axial flow fan and method of forming same

    SciTech Connect

    Kluppel, G.E.; Monroe, R.C.

    1988-01-19

    For use as part of an axial flow fan, a blade is described comprising a hollow, one-piece molded body having leading and trailing edges and including a core of reinforced, thermosetting resin having relatively low abrasive resistance, and a large concentration of silica particles molded into the body along only its leading edge.

  9. Condensate Accretion in Shock Tube's Expansion Fan

    NASA Technical Reports Server (NTRS)

    Mezonlin, Ephrem-Denis; DeSilva, Upul P.; Hunte, F.; Johnson, Joseph A., III

    1997-01-01

    It has been shown that turbulence and temperature influence the droplet sizes in expansion fan induced condensation by studying the Rayleigh scattering from one port in our shock tube's test section. We have modified our set-up so as to allow, using two ports, the real time measurement of the influence of turbulence and temperature on the rate at which these droplets grow. To do this, we looked at the Rayleigh scattering from two different ports for ten Reynolds numbers at five different temperatures. We modeled the time of flight of droplets, using the equations of one-dimensional gas dynamics and the measured shock wave speed in shock tube's driven section.

  10. Noise suppressor for turbo fan jet engines

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  11. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  12. Discal cyst associated with myxoid change and apoptosis of herniated disc materials: a case report.

    PubMed

    Okada, Kyoji; Saito, Hajime; Nishida, Jun; Miyakoshi, Naohisa; Takahashi, Shu; Nagasawa, Hiroyuki; Suzuki, Norio; Chida, Shuichi

    2007-01-01

    Discal cyst is a lumbar intraspinal cyst communicating with intervertebral disc, and previously reported series described the wall of these cysts as consisting of dense fibrous connective tissue. We report a 29-year-old Japanese male with discal cyst showing unusual histological features. Clinical symptoms in the current case as well as imaging features including discography were similar to those previously reported.However, the wall of the cyst consisted of disc material with myxoid degeneration. In addition, apoptosis of chondrocytes was diffusely observed in the herniated disc material. The current case was considered a histological variant of discal cyst. Myxoid degeneration of herniated disc material with diffuse apoptotic change of chondrocytes was probably associated with the formation of discal cyst. PMID:17578806

  13. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  14. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    SciTech Connect

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  15. The morphology, processes, and evolution of Monterey Fan: a revisit

    USGS Publications Warehouse

    Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.

    2010-01-01

    Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.

  16. Experimental study of a single channel alluvial fan

    NASA Astrophysics Data System (ADS)

    Delorme, Pauline; Devauchelle, Olivier; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers reach a flat plain and start to depose their sediment load into a conical sedimentary structure called alluvial fan. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters (fluid and sediment discharges, grain size). Our observations accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. At the first order, the fan profile is linear and control by the water discharge. The downstream decrease in sediment discharge add a curvature to this profile. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil).

  17. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  18. Variations in rock types on alluvial fan surfaces as an indicator of source reach and geomorphic process, Fish Lake Valley, Nevada-California

    SciTech Connect

    Slate, J.L. )

    1993-04-01

    Lithologic composition of fan-surface clasts can reflect the source of alluvial fan deposits within those drainages where rock types vary with location in the basin, provided that clasts at the surface resemble the makeup of rocks within the deposit. Interpreting the reach from which deposits were derived may, in turn, be used to infer the relation of fan deposition to causal events and source-area conditions. A multiparameter study of alluvial fans in four drainage basins of Fish Lake Valley, Nevada-California, included assessing modal lithology and the lithologic ratio among three main rock types. The author tallied rock types of 100 surface pebbles described on geomorphic surfaces along 50-m-long transects oriented perpendicular to streamflow direction near the mountain fronts. Source areas for the fan deposits shifted from the Pleistocene to the late Holocene, and may be a result of changes in weathering and transport conditions. The middle and lower reach sources of the two youngest (late Holocene) units (based on 7 transects) suggest that they were deposited in response to events that were only sufficient to transport material from these areas and not the headwaters, or that insufficient material was available for transport from the headwaters. The presence of these units of apparently similar age in the four mapped areas rules out localized storms or isolated faulting events as causes of deposition. The headwater and drainage-basin wide sources of two Pleistocene fan units (based on 13 transects) indicate deposition of these units may have occurred in response to significant climatic events that weathered material in the headwaters areas and transported that material to the fans. Thus, climatic conditions or elapsed time or a combination of the two may control sources of fan deposits.

  19. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  20. The Congo deep-sea fan: from basin-wide to block scale.

    NASA Astrophysics Data System (ADS)

    Anka, Zahie; Séranne, Michel; Kowitz, Astrid; Ondrak, Robert; Clausen, Lene

    2010-05-01

    With a surface of about 300,000 km² and at least 0.7 Mkm³ of Cenozoic sediments, the Congo deep-sea fan is one of the largest submarine fan systems in the world and one of the most important depocentre in the eastern south Atlantic. The present-day fan extends over 1000 km offshore the Congo-Angola continental margin and it is sourced by the Congo River, whose continental drainage area is the second largest behind the Amazon's. Since there is a direct connexion between the drainage and the deep offshore basins, through the Congo submarine canyon, direct transfer of terrigenous material from the continent onto the abyssal plain takes place by-passing the shelf and upper slope of the basin. Thus, the study of such a system provides insights on the interaction between a giant distal submarine fan and the proximal mature passive margin, as well as a better understanding of the stratigraphic signature on ultra-deep accumulations from geological processes acting on the proximal margin. In this sense, the analysis of very large 2D seismic-reflection datasets and borehole data has allowed us to carry out multi-scale studies ranging from basin-wide down to block scale. We address questions regarding the time-space sedimentation partitioning on the Congo basin and its possible controlling factors. This has led to a re-interpretation of the post-rift history of the basin and a reconsideration of the stability of the Congo River as a long-term sediment supplier to the Atlantic. The seismo-stratigraphic record of the Congo deep-sea fan results from a complex, but yet decipherable, interplay among processes acting at different scales: submarine erosions, salt tectonics, margin seaward tilting, continental uplift, and climate. In turn, the long-term evolution of this large submarine fan seem to control the distribution of small-scale features probably associated to short-term processes as present-day active liquid /gaseous hydrocarbon leakage. These features (i.e. seafloor

  1. River path selection in response to uplift and interaction with alluvial fans

    NASA Astrophysics Data System (ADS)

    Grimaud, J. L.; Paola, C.; Voller, V. R.

    2015-12-01

    terranes collapse material in the river and slow down the lateral migration of channels. As a result, the extension of the lateral fan as sedimentation rate increases is not able to completely erase pre-existing reliefs.

  2. Fiber composite fan blade impact improvement

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  3. On Static Pressure Fluctuation between Sirocco Fan Blades in a Car Air-Conditioning System

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiko; Kato, Takaaki; Moriguchi, Yuu; Sakai, Masaharu; Ito, Kouji; Mitsuishi, Yasushi; Nagata, Kouji; Kubo, Takashi

    In this study, special attention is directed to static pressure fluctuation in a sirocco fan for a car air-conditioning system, because it is expected that there is a close connection between the fluid noise and the pressure fluctuation. The final purpose of this study is to clarify the relationship between the static pressure fluctuation between fan blades and the sound noise emitted to the outside of the fan, and to develop an air-conditioning system with highly low noise level. For this purpose, first of all, a new micro probe for the measurement of static pressure fluctuation has been developed. This new micro probe is composed of an L-type static pressure tube (the outer diameter is 0.5 mm and the inner diameter is 0.34 mm) and a very small pressure transducer. This probe exhibits a flat frequency response until approximately 2,000 Hz, and it is set between the blades of the fan rotating at 1,500 rpm. The measurements of the static pressure fluctuation between the blades have been performed, and the intensity of sound source was quantified from the second derivative of the phase-averaged static pressure fluctuation signals on the basis of Ribner's formula (Ribner 1962). The experiments have been made in two different modes, i.e., the cooling mode (FACE MODE) and the heating mode (FOOT MODE). It is shown that the static pressure increases rapidly as the blade approaches to the nose of the casing. It is also found that the sound source for FACE MODE shows the larger value than that for FOOT MODE as a whole. In particular, the largest intensity of sound source is observed when the blade approaches to the nose. From these results, it is confirmed that the present new static pressure probe is useful to specify the distributions of sound source in a sirocco fan.

  4. Using the Bidirectional Reflectance Distribution Function (BRDF) for remotely mapping surface roughness on alluvial fans: A comparison of Death Valley, CA to Mojave Crater on Mars

    NASA Astrophysics Data System (ADS)

    Doyle, S. L.; Wilkinson, M. J.; Scuderi, L. A.; Weissmann, G. S.; Scuderi, L. J.

    2011-12-01

    resulting surface roughness maps are strikingly similar in classes and patterns to many fans within Death Valley. The surfaces interpreted by Williams and Malin (2008) to be evidence of multiple flow events are clearly classified using BRDF. In addition to age differences, possible locations of materials with different grain size and sorting are also identified. Since the BRDF classes of certain surface features on Earth and Mars fans largely overlap, field observations for each class type made for Death Valley fan surfaces may be useful for understanding the past fluvial processes on Mars and their similarities with fan forming processes in arid regions on Earth. This remote sensing approach has the potential to provide a tool for studying fans that may be inaccessible or too large for extensive fieldwork.

  5. Highly loaded multi-stage fan drive turbine: Performance of final three configurations

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Thomas, M. W.

    1974-01-01

    Results for a three-stage highly loaded fan drive turbine follow-on test program are presented. The effects of combinations of tandem and leaned bladerows on three-stage turbine performance were tested. The three-stage turbine with a tandem stator in stage two exhibited a total-to-total efficiency of approximately 0.887 as compared to 0.886 for the plain blade turbine base case.

  6. Transient states of air parameters after a stoppage and re-start of the main fan / Stany przejściowe parametrów powietrza po postoju i załączeniu wentylatora głównego

    NASA Astrophysics Data System (ADS)

    Wasilewski, Stanisław

    2012-12-01

    A stoppage of the main ventilation fan constitutes a disturbance of ventilation conditions of a deepmine and its effects can cause serious hazards by generating transient states of air and gas flow. Main ventilation fans are the basic deep-mine facilities; therefore, under mining regulations it is only allowed to stop them with the consent and under the conditions specified by the mine maintenance manager. The stoppage of the main ventilation fan may be accompanied by transient air parameters, including the air pressure and flow patterns. There is even the likelihood of reversing the direction of air flow, which, in case of methane mines, can pose a major hazard, particularly in sections of the mine with fire fields or large goaf areas. At the same time, stoppages of deep-mine main ventilation fans create interesting research conditions, which if conducted under the supervision of the monitoring systems, can provide much information about the transient processes of pressure, air and gas flow in underground workings. This article is a discussion of air parameter observations in mine workings made as part of such experiments. It also presents the procedure of the experiments, conducted in three mines. They involved the observation of transient processes of mine air parameters, and most interestingly, the recording of pressure and air and gas flow in the workings of the mine ventilation networks by mine monitoring systems and using specialist recording instruments. In mining practice, both in Poland and elsewhere, software tools and computer modelling methods are used to try and reproduce the conditions prior to and during disasters based on the existing network model and monitoring system data. The use of these tools to simulate the alternatives of combating and liquidation of the gas-fire hazard after its occurrence is an important issue. Measurement data collected during the experiments provides interesting research material for the verification and validation of

  7. Case studies of sealing methods and materials used in the salt and potash mining industries

    SciTech Connect

    Eyermann, T.J.; Sambeek, L.L. Van

    1995-11-01

    Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.

  8. Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials.

    PubMed

    Noble, R; Fermor, T R; Lincoln, S; Dobrovin-Pennington, A; Evered, C; Mead, A; Li, R

    2003-01-01

    The mushroom (Agaricus bisporus) has a requirement for a "casing layer" that has specific physical, chemical and microbiological properties which stimulate and promote the initiation of primordia. Some of these primordia then may develop further into sporophores, involving differentiation of tissue. Wild and commercial strains of A. bisporus were cultured in axenic and nonaxenic microcosms, using a rye grain substrate covered by a range of organic and inorganic casing materials. In axenic culture, A. bisporus (commercial strain A15) was capable of producing primordia and mature sporophores on charcoal (wood and activated), anthracite coal, lignite and zeolite, but not on bark, coir, peat, rockwool, silica or vermiculite. Of six strains tested, only the developmental variant mutant, B430, produced rudimentary primordia on axenic peat-based casing material. However, none of these rudimentary primordia developed differentiated tissues or beyond 4 mm diameter, either on axenic casing material in the microcosms or in larger-scale culture. In larger-scale, nonaxenic culture, strain B430 produced severely malformed but mature sporophores in similar numbers to those of other strains. Typically, 3-6% of primordia developed into mature sporophores, but significant differences in this proportion, as well as in the numbers of primordia produced, were recorded between 12 A. bisporus strains. PMID:21148971

  9. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  10. Fan Size and Foil Type in Recognition Memory.

    ERIC Educational Resources Information Center

    Walls, Richard T.; And Others

    An experiment involving 20 graduate and undergraduate students (7 males and 13 females) at West Virginia University (Morgantown) assessed "fan network structures" of recognition memory. A fan in network memory structure occurs when several facts are connected into a single node (concept). The more links from that concept to various discrete facts…

  11. 17. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING EAST The direct-acting 1883 Pittston Engine and Machine Company steam engine was made by George A. Parrish and W. B. Culver of West Pittston, Pennsylvania. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  12. 9. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The brick and concrete construction of the engine room, airways, and chimney are evident. The shaft housing and flywheel of the Allis- Chalmers Corliss steam engine are visible through the window of the engine room. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  13. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  14. Choosing the right boiler air fans at Weston 4

    SciTech Connect

    Spring, N.

    2009-04-15

    When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

  15. 23. INTERIOR VIEW OF NEW FAN HOUSE ENGINE ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INTERIOR VIEW OF NEW FAN HOUSE ENGINE ROOM LOOKING EAST The flywheel, shaft, and coupling of the c. 1930 Buffalo Forge Corliss engine are shown. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  16. Using Fan Fiction to Teach Critical Reading and Writing Skills

    ERIC Educational Resources Information Center

    Kell, Tracey

    2009-01-01

    In this article, the author talks about fan fiction, which is defined by Jenkins (2008) as "original stories and novels which are set in the fictional universe of favorite television series, films, comics, games or other media properties." Fan fiction generally involves writing stories with a combination of established characters and established…

  17. Drawing Desire: Male Youth and Homoerotic Fan Art

    ERIC Educational Resources Information Center

    Dennis, Jeffery P.

    2010-01-01

    Although Western mass media aimed at juvenile audiences aggressively eliminates any references to same-sex desire and behavior, it inspires a tremendous amount of homoerotic fan art. To determine how same-sex potential is portrayed in juvenile fan art, a content analysis was conducted of 872 male homoerotic images by 442 juvenile male and female…

  18. 24. INTERIOR VIEW OF NEW FAN HOUSE LOOKING SOUTHWEST A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR VIEW OF NEW FAN HOUSE LOOKING SOUTHWEST A section of the cylinder, parts of the Corliss linkages, and the shaft are shown. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  19. 6. STEEL DOORS AND PASSAGES IN SOUTH ROOM OF FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. STEEL DOORS AND PASSAGES IN SOUTH ROOM OF FAN HOUSE THAT REGULATE FLOW OF AIR - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  20. Global classification of spectrum of submarine fan types

    SciTech Connect

    Gorsline, D.S.

    1987-05-01

    There is a pressing need for a schema in which they can arrange the variety of fan forms, both modern and ancient. Such schemes have been generated for the delta depositional form, the beach form, and to some extent for aeolian, fluvial, and glacial deposits. Work by several workers has demonstrated that three necessary dimensions define the variety of submarine fan morphological responses: (1) fan size, (2) sediment supply rate, and (3) the proportion of sand and mud in that supply. These three dimensions form a space within which all submarine fans can be fitted and within which four subspaces can be defined on the basis of order-of-magnitude changes in all three dimensions. Fan morphologies in the less than 10 km scale are simple cones or lobes (suprafan lobes); those of the order of 10 to 100 km may have both lobe and leveed channel components; those in the size range from 100 to 1000 km tend to be dominated by channel systems and are probably composites of smaller fans analogous to crevasse splay systems in very large deltas. Fans larger than about 1000 km are few in number (giant fans) and are dominated by large-scale channels. Megaturbidites are probably limited to systems of the third zone by the constraints of sediment supply and receiving area.

  1. The Retarding Force on a Fan-Cart Reversing Direction

    ERIC Educational Resources Information Center

    Aurora, Tarlok S.; Brunner, Bernard J.

    2011-01-01

    In introductory physics, students learn that an object tossed upward has a constant downward acceleration while going up, at the highest point and while falling down. To demonstrate this concept, a self-propelled fan cart system is used on a frictionless track. A quick push is given to the fan cart and it is allowed to move away on a track under…

  2. Submarine-fan sedimentation, Ouachita Mountains, Arkansas and Oklahoma

    SciTech Connect

    Moiola, R.J.; Shanmugam, G.

    1984-09-01

    More than 10,000 m (32,808 ft) of interbedded sandstones and shales comprise the Upper Mississippian and Lower Pennsylvanian flysch succession (Stanley, Jackfork, Johns Valley, Atoka) in the Ouachita Mountains of Arkansas and Oklahoma. Deposited primarily by turbidity current and hemipelagic processes in bathyal and abyssal water depths, these strata formed major submarine-fan complexes that prograded in a westward direction along the axis of an elongate remnant ocean basin that was associated with the collision and suturing of the North American and African-South American plates. A longitudinal fan system is visualized as the depositional framework for these strata, which were deposited in a setting analogous to the modern Bengal fan of the Indian Ocean. Facies analysis of the Jackfork formation indicates that inner fan deposits are present in the vicinity of Little Rock, Arkansas; middle fan channel and interchannel deposits occur at DeGray Dam and Friendship, Arkansas; and outer fan depositional-lobe deposits are present in southeastern Oklahoma. Boulder-bearing units (olistostromes), many with exotic clasts, were shed laterally into the Ouachita basin. They occur throughout the flysch succession and in all fan environments (i.e., inner, middle, and outer). This relationship may serve as a useful criterion for recognizing analogous longitudinal fan systems in the rock record.

  3. Impact resistance of hybrid composite fan blade materials

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.

    1974-01-01

    Improved resistance to foreign object damage was demonstrated for hybrid composite simulated blade specimens. Transply metallic reinforcement offered additional improvement in resistance to gelatin projectile impacts. Metallic leading edge protection permitted equivalent-to-titanium performance of the hybrid composite simulated blade specimen for impacts with 1.27 cm and 2.54 cm (0.50 and 1.00 inch) diameter gelatin spheres.

  4. Procedure Developed for Ballistic Impact Testing of Composite Fan Containment Concepts

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Melis, Matthew E.

    1998-01-01

    The fan-containment system in a jet engine is designed to prevent a fan blade from penetrating the engine case in the event that the blade or a portion of the blade separates from the rotor during operation. Usually, these systems consist of a thick metal case that is strong enough to survive such an impact. Other systems consist of a dry aramid fabric wrapped around a relatively thin metal case. In large turbofan engines, metal-containment systems can weigh well over 300 kg, and there is a strong impetus to reduce their weight. As a result, the NASA Lewis Research Center is involved in an effort to develop polymer matrix composite (PMC) fan-containment systems to reduce the weight and cost while maintaining the high levels of safety associated with current systems. Under a Space Act Agreement with AlliedSignal Aircraft Engines, a new ballistic impact test procedure has been developed to quantitatively evaluate the performance of polymer matrix composite systems.

  5. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  6. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil.

    PubMed

    Cohen, Yigal; Ben-Naim, Yariv

    2016-01-01

    Downy mildew is currently the most serious disease of sweet basil around the world. The oomycete causal agent Peronospora belbahrii requires ≥ 4h free leaf moisture for infection and ≥7.5h of water-saturated atmosphere (relative humidity RH≥95%) at night for sporulation. We show here that continued nocturnal fanning (wind speed of 0.4-1.5 m/s) from 8pm to 8am dramatically suppressed downy mildew development. In three experiments conducted during 2015, percent infected leaves in regular (non-fanned) net-houses reached a mean of 89.9, 94.3 and 96.0% compared to1.2, 1.7 and 0.5% in adjacent fanned net-houses, respectively. Nocturnal fanning reduced the number of hours per night with RH≥95% thus shortened the dew periods below the threshold required for infection or sporulation. In experiments A, B and C, the number of nights with ≥4h of RH≥95% was 28, 10 and 17 in the non-fanned net-houses compared to 5, 0 and 5 in the fanned net-houses, respectively. In the third experiment leaf wetness sensors were installed. Dew formation was strongly suppressed in the fanned net-house as compared to the non-fanned net-house. Healthy potted plants became infected and sporulated a week later if placed one night in the non-fanned house whereas healthy plants placed during that night in the fanned house remained healthy. Infected potted basil plants sporulated heavily after one night of incubation in the non-fanned house whereas almost no sporulation occurred in similar plants incubated that night in the fanned house. The data suggest that nocturnal fanning is highly effective in suppressing downy mildew epidemics in sweet basil. Fanning prevented the within-canopy RH from reaching saturation, reduced dew deposition on the leaves, and hence prevented both infection and sporulation of P. belbahrii. PMID:27171554

  7. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil

    PubMed Central

    Cohen, Yigal; Ben-Naim, Yariv

    2016-01-01

    Downy mildew is currently the most serious disease of sweet basil around the world. The oomycete causal agent Peronospora belbahrii requires ≥ 4h free leaf moisture for infection and ≥7.5h of water-saturated atmosphere (relative humidity RH≥95%) at night for sporulation. We show here that continued nocturnal fanning (wind speed of 0.4–1.5 m/s) from 8pm to 8am dramatically suppressed downy mildew development. In three experiments conducted during 2015, percent infected leaves in regular (non-fanned) net-houses reached a mean of 89.9, 94.3 and 96.0% compared to1.2, 1.7 and 0.5% in adjacent fanned net-houses, respectively. Nocturnal fanning reduced the number of hours per night with RH≥95% thus shortened the dew periods below the threshold required for infection or sporulation. In experiments A, B and C, the number of nights with ≥4h of RH≥95% was 28, 10 and 17 in the non-fanned net-houses compared to 5, 0 and 5 in the fanned net-houses, respectively. In the third experiment leaf wetness sensors were installed. Dew formation was strongly suppressed in the fanned net-house as compared to the non-fanned net-house. Healthy potted plants became infected and sporulated a week later if placed one night in the non-fanned house whereas healthy plants placed during that night in the fanned house remained healthy. Infected potted basil plants sporulated heavily after one night of incubation in the non-fanned house whereas almost no sporulation occurred in similar plants incubated that night in the fanned house. The data suggest that nocturnal fanning is highly effective in suppressing downy mildew epidemics in sweet basil. Fanning prevented the within-canopy RH from reaching saturation, reduced dew deposition on the leaves, and hence prevented both infection and sporulation of P. belbahrii. PMID:27171554

  8. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  9. Portable Fan Assembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Jenkins, Arthur A.; Roman, Monsi C.

    1999-01-01

    NASA/ Marshall Space Flight Center (NASA/MSFC) is responsible for the design and fabrication of a Portable Fan Assembly (PFA) for the International Space Station (ISS). The PFA will be used to enhance ventilation inside the ISS modules as needed for crew comfort and for rack rotation. The PFA consists of the fan on-orbit replaceable unit (ORU) and two noise suppression packages (silencers). The fan ORU will have a mechanical interface with the Seat Track Equipment Anchor Assembly, in addition to the power supply module which includes a DC-DC converter, on/standby switch, speed control, power cable and connector. This paper provides a brief development history, including the criteria used for the fan, and a detailed description of the PFA operational configurations. Space Station requirements as well as fan performance characteristics are also discussed.

  10. Design and Manufacture of Wood Blades for Windtunnel Fans

    NASA Technical Reports Server (NTRS)

    Richardson, S. E.

    1998-01-01

    Many windtunnels use wooden fan blades, however, because of their usual long life (often in excess of 50 years) wooden blades typically do not have to be replaced very often; therefore, the expertise for designing and building wooden windtunnel fan blades is being lost. The purpose of this report is to document the design and build process so that when replacement blades are eventually required some of the critical information required is available. Information useful to fan-blade designers, fabricators, inspectors, and windtunnel operations personnel is included. Fixed pitch and variable pitch fans as well as fans which range in size from a few feet in diameter to over 40 ft. in diameter are described. Woods, adhesives, and coverings are discussed.

  11. V/STOL model fan stage rig design report

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Creason, T. L.

    1983-01-01

    A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.

  12. Fan-In Communications On A Cray Gemini Interconnect

    SciTech Connect

    Jones, Terry R; Settlemyer, Bradley W

    2014-01-01

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in communications form hot spots that present significant challenges for any interconnect fabric and communication software stack. Yet despite the inherent challenges, these communication patterns are common in both applications (which often perform reductions and other collective operations that include fan-in communication such as barriers) and system software (where they assume an important role within parallel file systems and other components requiring high-bandwidth or low-latency I/O). Our study determines the effectiveness of differing clientserver fan-in strategies. We describe fan-in performance in terms of aggregate bandwidth in the presence of varying degrees of congestion, as well as several other key attributes. Comparison numbers are presented for the Cray Aries interconnect. Finally, we provide recommended communication strategies based on our findings.

  13. Experimental quiet engine program aerodynamic performance of Fan C

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1972-01-01

    This report presents the aerodynamic component test results of Fan C, a high-bypass-ratio, low-aerodynamic-loading, 1550 feet per second (472.4 m/sec), single-stage fan, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.60 with an adiabatic efficiency of 84.2 percent at a total fan flow of 915 lb/sec (415.0 kg/sec). It was tested with and without inlet distortion. A bypass total-pressure ratio of 1.61 and an adiabatic efficiency of 83.9 percent at a total fan flow of 921 lb/sec (417.8 kg/sec) were actually achieved. An operating margin in excess of 14.6 percent was demonstrated at design speed.

  14. Characteristics of an anechoic chamber for fan noise testing

    NASA Technical Reports Server (NTRS)

    Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.

    1977-01-01

    Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.

  15. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  16. Performance characteristics of a model VTOL lift fan in crossflow.

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Yuska, J. A.; Diedrich, J. H.

    1973-01-01

    This paper presents a summary of principal results obtained from crossflow tests of a model 15-in.-diam lift fan installed in a wing in the NASA Lewis Research Center, 9 by 15 ft V/STOL Propulsion Wind Tunnel. Tests were run with and without exit louvers over a range of tunnel air speeds, fan speeds, and wing angle of attack. Fan thrust in crossflow was influenced by two principal factors: the effects of inflow distortion on blade-row performance, and changes in fan stage operating point brought about by changes in back pressure ratio. In this particular fan, flow separation on the inlet bellmouth did not appear to be a serious problem for crossflow operation.

  17. 3. EXTERIOR VIEW OF HILLMAN FAN HOUSE LOOKING NORTH The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EXTERIOR VIEW OF HILLMAN FAN HOUSE LOOKING NORTH The airway, with sloping concrete roof, is in the foreground. Two periods of construction are evident. In the center of the wall, to the left of the window, is a cover over the air velocity indicator. The building houses a 35 foot diameter cast iron and wood Guibal centrifugal fan. The curve of the fan housing with its iron roof are in the middle ground, and the rectangular upshaft chimney is in the background. The brick, metal, and concrete building was designed to be fireproof. The metal upshaft chimney of the New Fan House is to the left. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  18. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  19. Impact resistant boron/aluminum composites for large fan blades

    NASA Technical Reports Server (NTRS)

    Oller, T. L.; Salemme, C. T.; Bowden, J. H.; Doble, G. S.; Melnyk, P.

    1977-01-01

    Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.

  20. Design of impact-resistant boron/aluminum large fan blade

    NASA Technical Reports Server (NTRS)

    Salemme, C. T.; Yokel, S. A.

    1978-01-01

    The technical program was comprised of two technical tasks. Task 1 encompassed the preliminary boron/aluminum fan blade design effort. Two preliminary designs were evolved. An initial design consisted of 32 blades per stage and was based on material properties extracted from manufactured blades. A final design of 36 blades per stage was based on rule-of-mixture material properties. In Task 2, the selected preliminary blade design was refined via more sophisticated analytical tools. Detailed finite element stress analysis and aero performance analysis were carried out to determine blade material frequencies and directional stresses.

  1. Crime event 3D reconstruction based on incomplete or fragmentary evidence material--case report.

    PubMed

    Maksymowicz, Krzysztof; Tunikowski, Wojciech; Kościuk, Jacek

    2014-09-01

    Using our own experience in 3D analysis, the authors will demonstrate the possibilities of 3D crime scene and event reconstruction in cases where originally collected material evidence is largely insufficient. The necessity to repeat forensic evaluation is often down to the emergence of new facts in the course of case proceedings. Even in cases when a crime scene and its surroundings have undergone partial or complete transformation, with regard to elements significant to the course of the case, or when the scene was not satisfactorily secured, it is still possible to reconstruct it in a 3D environment based on the originally-collected, even incomplete, material evidence. In particular cases when no image of the crime scene is available, its partial or even full reconstruction is still potentially feasible. Credibility of evidence for such reconstruction can still satisfy the evidence requirements in court. Reconstruction of the missing elements of the crime scene is still possible with the use of information obtained from current publicly available databases. In the study, we demonstrate that these can include Google Maps(®*), Google Street View(®*) and available construction and architecture archives. PMID:25132528

  2. Crime event 3D reconstruction based on incomplete or fragmentary evidence material--case report.

    PubMed

    Maksymowicz, Krzysztof; Tunikowski, Wojciech; Kościuk, Jacek

    2014-09-01

    Using our own experience in 3D analysis, the authors will demonstrate the possibilities of 3D crime scene and event reconstruction in cases where originally collected material evidence is largely insufficient. The necessity to repeat forensic evaluation is often down to the emergence of new facts in the course of case proceedings. Even in cases when a crime scene and its surroundings have undergone partial or complete transformation, with regard to elements significant to the course of the case, or when the scene was not satisfactorily secured, it is still possible to reconstruct it in a 3D environment based on the originally-collected, even incomplete, material evidence. In particular cases when no image of the crime scene is available, its partial or even full reconstruction is still potentially feasible. Credibility of evidence for such reconstruction can still satisfy the evidence requirements in court. Reconstruction of the missing elements of the crime scene is still possible with the use of information obtained from current publicly available databases. In the study, we demonstrate that these can include Google Maps(®*), Google Street View(®*) and available construction and architecture archives.

  3. Case series of undetected intranasal impression material in patients with clefts.

    PubMed

    Jones, Simon D; Drake, David J

    2013-04-01

    We report the cases of two female patients in their twenties who had had corrective surgery for bilateral cleft lip and palate as babies. They had both had residual palatal fistulas and had had further treatment that required repeated dental impressions. Several years later both had complained of persistent nasal discomfort and discharge, and routine clinical examination and investigations had failed to identify the cause. Full examination of the whole nasal cavity under general anaesthesia, in both cases, showed the presence of displaced dental impression material in the nasal floor. Removal resulted in complete resolution of symptoms.

  4. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1987-01-01

    Increased need for more efficient long-range supersonic flight has revived interest in the supersonic throughflow fan as a possible component for advanced high-speed propulsion systems. A fan that can operate with supersonic inlet axial Mach numbers would reduce the inlet losses incurred in diffusing the flow from supersonic Mach numbers to a subsonic one at the fan face. In addition, the size and weight of an all-supersonic inlet will be substantially lower than those of a conventional inlet. However, the data base for components of this type is practically nonexistent. Therefore, in order to furnish the required information for assessing the potential for this type of fan, the NASA Lewis Research Center has begun a program to design, analyze, build, and test a fan stage that is capable of operating with supersonic axial velocities from inlet to exit. The objectives are to demonstrate the feasibility and potential of supersonic throughflow fans, to gain a fundamental understanding of the flow physics associated with such systems, and to develop an experimental data base for design and analysis code validation. A brief overview of past supersonic throughflow fan activities are provided; the technology needs discussed; the design of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser described; and the results from the analysis codes used in executing the design are presented. Also presented is an engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  5. Boeing 18-Inch Fan Rig Broadband Noise Test

    NASA Technical Reports Server (NTRS)

    Ganz, Ulrich W.; Joppa, Paul D.; Patten, Timothy J.; Scharpf, Daniel F.

    1998-01-01

    The purposes of the subject test were to identify and quantify the mechanisms by which fan broadband noise is produced, and to assess the validity of such theoretical models of those mechanisms as may be available. The test was conducted with the Boeing 18-inch fan rig in the Boeing Low-Speed Aeroacoustic Facility (LSAF). The rig was designed to be particularly clean and geometrically simple to facilitate theoretical modeling and to minimize sources of interfering noise. The inlet is cylindrical and is equipped with a boundary layer suction system. The fan is typical of modern high-by-pass ratio designs but is capable of operating with or without fan exit guide vanes (stators), and there is only a single flow stream. Fan loading and tip clearance are adjustable. Instrumentation included measurements of fan performance, the unsteady flow field incident on the fan and stators, and far-field and in-duct acoustic fields. The acoustic results were manipulated to estimate the noise generated by different sources. Significant fan broadband noise was found to come from the rotor self-noise as measured with clean inflow and no boundary layer. The rotor tip clearance affected rotor self-noise somewhat. The interaction of the rotor with inlet boundary layer turbulence is also a significant source, and is strongly affected by rotor tip clearance. High level noise can be generated by a high-order nonuniform rotating at a fraction of the fan speed, at least when tip clearance and loading are both large. Stator-generated noise is the loudest of the significant sources, by a small margin, at least on this rig. Stator noise is significantly affected by propagation through the fan.

  6. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  7. Alluvial Fan Morphology, distribution and formation on Titan

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Howard, A. D.; Moore, J. M.; Radebaugh, J.

    2016-05-01

    Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km2 to 27,000 km2. A significant fraction (∼60%) of the fans are restricted to latitudes of ±50-80°, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today.

  8. Use of spectral data and Landsat TM for mapping alluvial fan deposits of the Rosillos Mountains in Brewster County, Texas

    SciTech Connect

    Bittick, S.M.; Morgan, K.M.; Busbey, A.B. . Dept. of Geology)

    1993-02-01

    The Rosillos Mountains consist of a large, highly faulted and fracture, exposed Tertiary igneous intrusion (laccolith) located adjacent to Big Bend National Park. This study examines the alluvial deposits that fan out over the 25,000 acre privately owned Rosillos Ranch located on the east side of the laccolith. Using a field spectrometer, spectral curves were generated for the various materials present. These surface reflectance patterns were used for spectral recognition and, along with Landsat digital data, for computer classification mapping of the alluvial fans. Several computer classification techniques will be presented along with mapping accuracies. Initial results indicate the resulting Landsat generated fan deposit maps are, in fact, related to the source areas and the age of deposition.

  9. Advice on Life? Online Fan Forums as a Space for Peer-to-Peer Sex and Relationships Education

    ERIC Educational Resources Information Center

    Masanet, Maria-Jose; Buckingham, David

    2015-01-01

    Previous research has pointed to the potential of entertainment media as a source of informal sex education for young people. New social media may offer additional potential in this respect. In this paper, we consider the pedagogical possibilities and limitations of online fan forums, via a case study of the forums of the controversial British…

  10. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  11. Method of fan sound mode structure determination

    NASA Technical Reports Server (NTRS)

    Pickett, G. F.; Sofrin, T. G.; Wells, R. W.

    1977-01-01

    A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones.

  12. The Ebro Deep-Sea Fan system

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.; Coumes, F.; Got, H.; Manaco, A.

    1984-01-01

    The Ebro Fan System consists of en echelon channel-levee complexes, 50??20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment 'drainage' of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits. ?? 1984 Springer-Verlag New York Inc.

  13. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  14. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  15. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  16. Case study of materials damage due to air pollution and acid rain in New Haven, CT

    SciTech Connect

    Lipfert, F.W.; Dupuis, L.R.; Malone, R.G.; Schaedler, J.; daum, M.L.

    1985-05-01

    This case study of New Haven, CT has estimated the annual costs of materials degradation due to SO/sub 2/ and acidic precipitation, at current conditions. The assessment is based on a detailed materials distribution, computed as well as measured environmental conditions, and newly-derived damage functions. Painted surfaces are the most prevalent, and contribute over 60% of the total estimated costs. Since paint damage is highly dependent on the type of paint and its application, these costs are less certain than, for example, the metal or stone damage portions. This finding emphasizes the need for accelerated research on damage to painted surfaces due to acidic deposition. By pollutant, hydrogen ion deposition is seen to be responsible for more damage in New Haven than SO/sub 2/, for all materials. This finding, together with the important role played by background SO/sub 2/, indicated that regional air pollution is much more important for materials damage (in New Haven) than are local sources. This may not be the case, however, in a more industralized location.

  17. Fine fragmentation distribution from structural reactive material casings under explosive loading

    NASA Astrophysics Data System (ADS)

    Wilson, William; Zhang, Fan; Kim, Kibong

    2015-06-01

    Structural reactive material (SRM) can be used for explosive casings to provide additional blast energy. SRM fragments can react either promptly or after impact with nearby structure. Better understanding of fine fragment distributions from SRM casings is important for optimization of initiation and reaction of the SRM fragments. Key to this is knowledge of the initial fragmentation character before it has been altered by early reaction or by subsequent impact with surrounding structure. The study must be conducted beyond critical charge diameter to minimize effects of the expansion wave on fragment sizes. The collection and analysis of fragment distribution down to 40 micron size from thick SRM casings are therefore investigated in a 1.18 m diameter, 2.1 m3 closed cylindrical chamber filled with artificially-made pure snow packed to density 0.35 g/cm3. The snow quenches early reaction of SRM fragments and soft-catches the fragments before impact with the chamber walls. A 100 g cylindrical C-4 explosive charge is used, packed in a 3.3 cm inner diameter SRM casing, with length-to-diameter ratio of L/d = 2, and casing-to-explosive mass ratio of M/C = 1.75. Three types of SRM are investigated, including a baseline of Aluminum 6061 for comparison. The cased charge is suspended in an argon filled cavity, 20 cm in diameter and 40 cm long, within the snow filed chamber.

  18. Impact of detector geometry for compressive fan beam snapshot coherent scatter imaging

    NASA Astrophysics Data System (ADS)

    Hassan, Mehadi; Holmgren, Andrew; Greenberg, Joel A.; Odinaka, Ikenna; Brady, David

    2016-05-01

    Previous realizations of coded-aperture X-ray diffraction tomography (XRDT) techniques based on pencil beams image one line through an object via a single measurement but require raster scanning the object in multiple dimensions. Fan beam approaches are able to image the spatial extent of the object while retaining the ability to do material identification. Building on these approaches we present our system concept and geometry of combining a fan beam with energy sensitive/photon counting detectors and a coded aperture to capture both spatial and spectral information about an object at each voxel. Using our system we image slices via snapshot measurements for four different detector configurations and compare their results.

  19. HEPA Filter Differential Pressure Fan Interlock System Functional Requirements and Technical Design Criteria

    SciTech Connect

    TUCK, J.A.

    2000-05-11

    Double-shell tanks (DSTs) and Double Contained Receiver Tanks (DCRTs) are actively ventilated, along with certain single-shell tanks (SSTs) and other RPP facilities. The exhaust air stream on a typical primary ventilation system is drawn through two stages of high-efficiency particulate air (HEPA) filtration to ensure confinement of airborne radioactive materials. Active ventilation exhaust stacks require a stack CAM interlock to detect releases from postulated accidents, and to shut down the exhaust fan when high radiation levels are detected in the stack airstream. The stack CAM interlock is credited as a mitigating control to stop continued unfiltered radiological and toxicological discharges from the stack, which may result from an accident involving failure of a HEPA filter. This document defines the initial technical design baseline for a HEPA filter AP fan interlock system.

  20. Case Reports: Legg-Calvé-Perthes Disease in Czech Archaeological Material

    PubMed Central

    Smrcka, Vaclav; Svenssonova, Marketa; Likovsky, Jakub

    2008-01-01

    Legg-Calvé-Perthes disease (osteochondrosis of the femoral head) has been recognized in archaeological material for nearly a century but is extremely rare. We describe two Czech cases from archaeological findings. The first case was diagnosed in the skeleton of a man older than 50 years with the left hip affected. The skeleton was in grave Number 2 of the Langobard cemetery at Lužice (Moravia) and dated to the end of the fifth century and the beginning of the sixth century AD. The second case was described by J. Chochol in 1957 on the left femur and half of the pelvis of a skeleton from an archaeological investigation in Brandýsek (Bohemia), ninth to tenth centuries AD. Using the diagnostic criteria of Ortner and Putschar, we excluded slipped capital femoral epiphysis in both cases. We discuss the differential diagnosis of Legg-Calvé-Perthes disease versus unilateral and bilateral osteochondroses of the femoral head in archaeological and current clinical material. PMID:18841434