Science.gov

Sample records for faraday fast track

  1. Fast Faraday Cup With High Bandwidth

    SciTech Connect

    Deibele, Craig E

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  2. Fast track evaluation methodology.

    PubMed

    Duke, J R

    1991-06-01

    Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.

  3. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  4. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  5. Faraday-cup-type lost fast ion detector on Heliotron J

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Ogawa, K.; Isobe, M.; Darrow, D. S.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Nakamura, Y.; Konoshima, S.; Kemmochi, N.; Ohtani, Y.; Mizuuchi, T.

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90∘-140∘, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  6. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  7. Simultaneous slow and fast light involving the Faraday effect

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Ségard, Bernard

    2016-10-01

    We theoretically study the linear transmission of linearly polarized light pulses in an ensemble of cold atoms submitted to a static magnetic field parallel to the direction of propagation. The carrier frequency of the incident pulses coincides with a resonance frequency of the atoms. The transmitted light, the electric field of which is transversal, is examined in the polarizations parallel and perpendicular to that of the incident pulses. We give explicit analytic expressions for the transfer functions of the system for both polarizations and for the corresponding group delays. We demonstrate that slow light can be observed in a polarization, whereas fast light is simultaneously observed in the perpendicular polarization. Moreover, we point out that, due to the polarization postselection, the system is not necessarily minimum phase shift. Slow light can then be obtained in situations where an irrelevant application of the Kramers-Kronig relations could lead one to expect fast light. When the incident light is step modulated, we finally show that, in suitable conditions, the system enables one to separate optical precursor and main field.

  8. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.

    1974-01-01

    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  9. Fast track to 340B.

    PubMed

    Gricius, Robert F; Wong, Douglas

    2016-01-01

    Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process. PMID:26863836

  10. Fast track to 340B.

    PubMed

    Gricius, Robert F; Wong, Douglas

    2016-01-01

    Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process.

  11. Design of a tapered stripline fast Faraday cup for measurements on heavy ion beams: problems and solutions

    SciTech Connect

    Marcellini, F.; Poggi, M.

    1998-12-10

    The design of a tapered stripline fast Faraday cup (TSFFC) to perform the impedance matching between the fast cup itself and the signal line (connector, cable, and amplifier) is reported here. The frequency response of the TSFFC as a high-pass filter is analyzed from a theoretical point of view and some solutions to achieve a broadband response are given.

  12. Fast sweep-rate plastic Faraday force magnetometer with simultaneous sample temperature measurement.

    PubMed

    Slobinsky, D; Borzi, R A; Mackenzie, A P; Grigera, S A

    2012-12-01

    We present a design for a magnetometer capable of operating at temperatures down to 50 mK and magnetic fields up to 15 T with integrated sample temperature measurement. Our design is based on the concept of a Faraday force magnetometer with a load-sensing variable capacitor. A plastic body allows for fast sweep rates and sample temperature measurement, and the possibility of regulating the initial capacitance simplifies the initial bridge balancing. Under moderate gradient fields of ~1 T/m our prototype performed with a resolution better than 1 × 10(-5) emu. The magnetometer can be operated either in a dc mode, or in an oscillatory mode which allows the determination of the magnetic susceptibility. We present measurements on Dy(2)Ti(2)O(7) and Sr(3)Ru(2)O(7) as an example of its performance.

  13. Faraday cup with nanosecond response and adjustable impedance for fast electron beam characterization

    SciTech Connect

    Hu Jing; Rovey, Joshua L.

    2011-07-15

    A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 {Omega} characteristic impedance to match with 50 {Omega} standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fall time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a ''double-humped'' energy distribution.

  14. The Physics of Fast Track

    ERIC Educational Resources Information Center

    Kibble, Bob

    2007-01-01

    Toys can provide motivational contexts for learning and teaching about physics. A cheap car track provides an almost frictionless environment from which a quantitative study of conservation of energy and circular motion can be made.

  15. Fast tracking using edge histograms

    NASA Astrophysics Data System (ADS)

    Rokita, Przemyslaw

    1997-04-01

    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  16. Accelerated Leadership Development: Fast Tracking School Leaders

    ERIC Educational Resources Information Center

    Earley, Peter; Jones, Jeff

    2010-01-01

    "Accelerated Leadership Development" captures and communicates the lessons learned from successful fast-track leadership programmes in the private and public sector, and provides a model which schools can follow and customize as they plan their own leadership development strategies. As large numbers of headteachers and other senior staff retire,…

  17. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  18. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  19. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  20. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  1. Design and Construction of a Fast Ion Loss Faraday Cup Array Diagnostic for JET

    SciTech Connect

    D.S. Darrow; S. Bauumel; F.E. Cecil; V. Kiptily; R. Ellis; L. Pedrick; A. Werner

    2004-04-26

    A thin foil Faraday cup array is being built to measure the loss of 3.5 MeV alpha particles and MeV ion cyclotron heating (ICH) tail ions on JET. It will consist of nine detectors spread over five different poloidal locations and three radial positions. They will measure the poloidal distribution and radial scrape off of the losses. The detectors will be comprised of four layers of thin (2.5 micron) Ni foil, giving some resolution of the lost particle energy distribution as different ranges of energies will stop in different layers of the detector. One detector will utilize eight thinner (1.0 micron) foils to obtain a better resolved energy distribution. These detectors will accept particles incident up to 45{sup o} from the normal to the foils.

  2. Detection of Nitro-Based and Peroxide-Based Explosives by Fast Polarity-Switchable Ion Mobility Spectrometer with Ion Focusing in Vicinity of Faraday Detector

    PubMed Central

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-01-01

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H]− and [HMTD+H]+ could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP. PMID:26021282

  3. Fast Track'' nuclear thermal propulsion concept

    SciTech Connect

    Johnson, R.A.; Zweig, H.R. ); Cooper, M.H.; Wett, J. Jr. )

    1993-01-10

    The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

  4. Security market reaction to FDA fast track designations.

    PubMed

    Anderson, Christopher W; Zhang, Ying

    2010-01-01

    Pharmaceutical firms can apply for the Food and Drug Administration to 'fast track' research and de velopment on new drugs, accelerating clinical trials and expediting regulatory review required prior to marketing to consumers. We investigate security market reaction to more than 100 fast track designations from 1998 to 2004. Fast track designation appears to enhance investor recognition of firm value. Specifically, fast track designation coincides with abnormal trading volume and excess daily stock returns for sponsoring firms. Institutional ownership and analyst attention also increase. Market response is more pronounced for firms that are smaller, do not yet market products, and have low institutional ownership. PMID:21294437

  5. Fast Track: A Language Arts Program for Middle School Gifted

    ERIC Educational Resources Information Center

    Schneider, Jean

    2008-01-01

    "Fast Track" is a pseudonym for an accelerated, advanced language arts program for verbally gifted and high potential students in grades 6-8. The critical thinking model used for "Fast Track" was gleaned from Coalition of Essential Schools founder Ted Sizer's Habits of Mind: significance, evidence, connections, perspective, and supposition, as…

  6. Fast Track Teaching: Beginning the Experiment in Accelerated Leadership Development

    ERIC Educational Resources Information Center

    Churches, Richard; Hutchinson, Geraldine; Jones, Jeff

    2009-01-01

    This article provides an overview of the development of the Fast Track teaching programme and personalised nature of the training and support that has been delivered. Fast Track teacher promotion rates are compared to national statistics demonstrating significant progression for certain groups, particularly women. (Contains 3 tables and 3 figures.)

  7. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  8. Anger, Heavy Exertion: Fast Track to A Heart Attack?

    MedlinePlus

    ... html Anger, Heavy Exertion: Fast Track to a Heart Attack? But researchers suggest that artery-clogging plaque has ... physical exertion may be triggers for a first heart attack in some people, new research suggests. In the ...

  9. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  10. Education For All (EFA) - Fast Track Initiative Progress Report 30046

    ERIC Educational Resources Information Center

    World Bank Education Advisory Service, 2004

    2004-01-01

    Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…

  11. Fast Track: Elementary School. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    "Fast Track" is a comprehensive intervention designed to reduce conduct problems and promote academic, behavioral, and social improvement. The program's components include the "Promoting Alternative THinking Strategies" curriculum, parent groups, parent-child sharing time, child social skills training, home visiting, child…

  12. Fast-track drug approval in inflammatory bowel diseases

    PubMed Central

    Katsanos, Konstantinos H.; Koutroumpakis, Efstratios; Giagkou, Eftychia; Malakos, Zikos; Almpani, Eleni; Skamnelos, Alexandros; Christodoulou, Dimitrios K.

    2016-01-01

    Fast-track drug designation of safe regimens represents an emerging method of development and approval of new medications targeting debilitating diseases including inflammatory bowel diseases (IBD). The goal of accelerated drug approval pathways is to shorten the time between application and approval of therapies that treat diseases with significant morbidity and mortality. Recently, fast-track drug approval approaches were supported by data deriving from central reading of images, a method of clinical data interpretation that has significantly benefited patients with gastrointestinal disorders. Biological agents and other emerging therapies in IBD represent “game-changing” or “treat-to-target” drugs and have satisfied quite successfully some of the patients’ unmet needs. The development of biosimilars is an area where the Federal Drug Administration and the European Agency for Evaluation of Medicinal Products seem to have different approval processes. Biosimilars, including those for IBD, promise cost reductions and wide access to biologic therapies by patients, advantages similar to those already offered by generic drugs. Given the rapid development of IBD drugs and patients’ needs, a consensus among the academic community, clinicians, researchers, sponsors, patients and regulatory authorities is required to standardize better the IBD trials and create a productive environment for fast-track approval of any “changing-game” IBD drug.

  13. [FastTrack approach to major colorectal surgery].

    PubMed

    Susa, Antonio; Roveran, Antonietta; Bocchi, Anna; Carrer, Sara; Tartari, Stefano

    2004-01-01

    Intensive rehabilitation programs after major abdominal, thoracic and vascular surgery have been published over the last few years, showing early recovery, fewer complications and a quicker discharge. The aim of the study was to evaluate the feasibility and efficacy of a multimodal intensive rehabilitation program (FastTrack) after major colorectal surgery, according to the experience of Dr. H. Kehlet of Hvidovre University Hospital, Copenhagen. The study design was of the prospective, randomized, controlled type. Forty patients undergoing elective colonic surgery were randomly selected and assigned to two groups well matched for age, weight, ASA and type of resection. The FastTrack group underwent a multimodal rehabilitation program with epidural analgesia, short laparotomy, early feeding and mobilisation. The control group had the usual postoperative treatment with a pain control program. The FastTrack group exhibited a shorter need for assisted ventilation, a lower sedation level and lower opioid consumption over the first 24 hours. We also observed a statistically significant earlier onset of peristalsis (0.5 vs 2.7 days), gastrointestinal function (defecation) (2.8 vs 5.8 days), regular feeding (3.1 vs 7.2 days) and autonomous ambulation (3.3 vs 6.9). The multimodal rehabilitation approach to colon surgery permits an earlier postoperative recovery, better postoperative performance and quicker functional autonomy. These results may have important implications for the management of patients after major colorectal surgery. PMID:15771036

  14. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  15. Fast-neutron spectroscopy studies using induced-proton tracks in PADC track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.; Eman, S. A.

    2010-06-01

    In this work, a simple and adequate method for fast-neutron spectroscopy is proposed. This method was performed by free-in-air fast-neutron irradiation of CR-39 Nuclear Track Detectors (NTD) using an Am-Be source. Detectors were then chemically etched to remove few layers up to a thickness of 6.25 μm. By using an automatic image analyzer system for studying the registration of the induced-proton tracks in the NTD, the obtained data were analyzed via two tracks shapes. In the first one, the elliptical tracks were eliminated from the calculation and only the circular ones were considered in developing the response function. In the second method all registered tracks were considered and the corresponding response function was obtained. The rate of energy loss of the protons as a function of V[(d E/d X) - V] was calculated using the Monte Carlo simulation. The induced-proton energy was extracted from the corresponding d E/d X in NTD using a computer program based on the Bethe-Bloch function. The energy of the incident particles was up to few hundred MeV/nucleon. The energy of the interacting neutrons was then estimated by means of the extracted induced-proton energies and the scattering angle. It was found that the present resulting energy distribution of the fast-neutron spectrum from the Am-Be source was similar to that given in the literature where an average neutron energy of 4.6MeV was obtained.

  16. X-33 Environmental Impact Statement: A Fast Track Approach

    NASA Technical Reports Server (NTRS)

    McCaleb, Rebecca C.; Holland, Donna L.

    1998-01-01

    NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.

  17. A fast track trigger processor for the OPAL experiment at LEP, CERN

    SciTech Connect

    Bramhall, M.; Jaroslawski, S.; Penton, A.; Hammarstrom, R.; Joos, D.; Weber, C.

    1989-02-01

    A fast programmable trigger processor for the OPAL experiment is described. The processor can handle multihit events. The tracks are found in the R-Z and the R-PHI planes by 24 fast track finder circuits operating in parallel using a novel histogramming technique. A semicustom coincidence array circuit is used to match tracks.

  18. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids

    PubMed Central

    Sahl, Steffen J.; Leutenegger, Marcel; Hilbert, Michael; Hell, Stefan W.; Eggeling, Christian

    2010-01-01

    We describe an optical method capable of tracking a single fluorescent molecule with a flexible choice of high spatial accuracy (∼10–20 nm standard deviation or ∼20–40 nm full-width-at-half-maximum) and temporal resolution (< 1 ms). The fluorescence signal during individual passages of fluorescent molecules through a spot of excitation light allows the sequential localization and thus spatio-temporal tracking of the molecule if its fluorescence is collected on at least three separate point detectors arranged in close proximity. We show two-dimensional trajectories of individual, small organic dye labeled lipids diffusing in the plasma membrane of living cells and directly observe transient events of trapping on < 20 nm spatial scales. The trapping is cholesterol-assisted and much more pronounced for a sphingo- than for a phosphoglycero-lipid, with average trapping times of ∼15 ms and < 4 ms, respectively. The results support previous STED nanoscopy measurements and suggest that, at least for nontreated cells, the transient interaction of a single lipid is confined to macromolecular dimensions. Our experimental approach demonstrates that fast molecular movements can be tracked with minimal invasion, which can reveal new important details of cellular nano-organization. PMID:20351247

  19. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  20. A planning process for a fast track to IAIMS.

    PubMed Central

    Olsen, A. J.; Baker, W. L.; Sittig, D. F.; Stead, W. W.

    1993-01-01

    The strategic planning process that is part of Vanderbilt University's fast track to IAIMS is evolving based on feedback from the process itself. Led by a committee of VUMC's top management, broad-based sub-committees for administration, education, patient care, and research worked initially on the following strategic issues: identifying key external pressures that constrain and provide opportunities, visioning how VUMC might operate in the future, and establishing a mission and high-level goals for information management. Next steps include identifying the critical mass of function that will prompt daily use of the IAIMS by everyone at VUMC and adding groups to focus on information and technology architectures and developing academic informatics. This manuscript gives detailed, practical information about the evolution of the planning process, committees' responsibilities, working relationships, and lessons learned. PMID:8130533

  1. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    NASA Technical Reports Server (NTRS)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  2. Fast-track for fast times: catching and keeping generation Y in the nursing workforce.

    PubMed

    Walker, Kim

    2007-04-01

    There is little doubt we find ourselves in challenging times as never before has there been such generational diversity in the nursing workforce. Currently, nurses from four distinct (and now well recognised and discussed) generational groups jostle for primacy of recognition and reward. Equally significant is the acute realisation that our ageing profession must find ways to sustain itself in the wake of huge attrition as the 'baby boomer' nurses start retiring over the next ten to fifteen years. These realities impel us to become ever more strategic in our thinking about how best to manage the workforce of the future. This paper presents two exciting and original innovations currently in train at one of Australia's leading Catholic health care providers: firstly, a new fast-track bachelor of nursing program for fee-paying domestic students. This is a collaborative venture between St Vincent's and Mater Health, Sydney (SV&MHS) and the University of Tasmania (UTas); as far as we know, it is unprecedented in Australia. As well, the two private facilities of SV&MHS, St Vincent's Private (SVPH) and the Mater Hospitals, have developed and implemented a unique 'accelerated progression pathway' (APP) to enable registered nurses with talent and ambition to fast track their career through a competency and merit based system of performance management and reward. Both these initiatives are aimed squarely at the gen Y demographic and provide potential to significantly augment our capacity to recruit and retain quality people well into the future.

  3. Financing Access and Participation in Primary Education: Is There a "Fast-Track" for Fragile States?

    ERIC Educational Resources Information Center

    Turrent, Victoria

    2011-01-01

    Despite moves to "fast-track" progress towards universal primary education, few fragile states have been able to access Fast Track Initiative (FTI) funding facilities. Weak systems and capacity have made these countries a high-risk proposition for donor investment. The absence of credible education sector plans has meant that the majority of…

  4. National Diffusion Network's Evaluation of the Fast Track Music System 1992-93.

    ERIC Educational Resources Information Center

    Szymczuk, Michael

    This document reports on an evaluation project to determine the effectiveness of the Fast Track method of instrumental music instruction as applied to beginning band instruction. The Fast Track music system is unique because it simultaneously aids both visual and aural learning by using a book and cassette tape approach to instruction. Traditional…

  5. "Fast Track" and "Traditional Path" Coaches: Affordances, Agency and Social Capital

    ERIC Educational Resources Information Center

    Rynne, Steven

    2014-01-01

    A recent development in large-scale coach accreditation (certification) structures has been the "fast tracking" of former elite athletes. Former elite athletes are often exempted from entry-level qualifications and are generally granted access to fast track courses that are shortened versions of the accreditation courses undertaken by…

  6. Fast TracKer: A fast hardware track trigger for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pandini, Carlo

    2016-07-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.

  7. Ultrafast Faraday Rotation of Slow Light

    NASA Astrophysics Data System (ADS)

    Musorin, A. I.; Sharipova, M. I.; Dolgova, T. V.; Inoue, M.; Fedyanin, A. A.

    2016-08-01

    The active control of optical signals in the time domain is what science and technology demand in fast all-optical information processing. Nanostructured materials can modify the group velocity and slow the light down, as the artificial light dispersion emerges. We observe the ultrafast temporal behavior of the Faraday rotation within a single femtosecond laser pulse under conditions of slow light in a one-dimensional magnetophotonic crystal. The Faraday effect changes by 20% over the time of 150 fs. This might be applicable to the fast control of light in high-capacity photonic devices.

  8. Michael Faraday's Bicentenary.

    ERIC Educational Resources Information Center

    Williams, L. Pearce; And Others

    1991-01-01

    Six articles discuss the work of Michael Faraday, a chemist whose work revolutionized physics and led directly to both classical field and relativity theory. The scientist as a young man, the electromagnetic experiments of Faraday, his search for the gravelectric effect, his work on optical glass, his laboratory notebooks, and his creative use of…

  9. Early recovery after fast-track Oxford unicompartmental knee arthroplasty

    PubMed Central

    2012-01-01

    Background and purpose After total knee arthroplasty with conventional surgical approach, more than half of the quadriceps extension strength is lost in the first postoperative month. Unicompartmental knee arthroplasty (UKA) operated with minimally invasive surgery (MIS) results in less operative trauma. We investigated changes in leg-extension power (LEP) in the first month after MIS Oxford UKA and its relation to pain, knee motion, functional performance, and knee function. Patients and methods In 35 consecutive Oxford UKA patients, LEP was measured 1 week before and 1 month after surgery together with knee motion, knee swelling, the 30-second chair-stand test, and Oxford knee score. Assessment of knee pain at rest and walking was done using a visual analog scale. Results 30 patients were discharged on the day after surgery, and 5 on the second day after surgery. LEP and functional performance reached the preoperative level after 1 month. Only slight postoperative knee swelling was observed with rapid restoration of knee flexion and function. A high level of pain during the first postoperative night and day fell considerably thereafter. None of the patients needed physiotherapy supervision in the first month after discharge. Interpretation Fast-track MIS Oxford UKA with discharge on the day after surgery is safe and leads to early recovery of knee motion and strength even when no physiotherapy is used. PMID:22313368

  10. A fast track influenza virus vaccine produced in insect cells.

    PubMed

    Cox, Manon M J; Hashimoto, Yoshifumi

    2011-07-01

    The viral surface protein hemagglutinin (HA) has been recognized as a key antigen in the host response to influenza virus in both natural infection and vaccination because neutralizing antibodies directed against HA can mitigate or prevent infection. The baculovirus-insect cell system can be used for the production of recombinant HA molecules and is suitable for influenza vaccine production where annual adjustment of the vaccine is required. This expression system is generally considered safe with minimal potential for growth of human pathogens. Extensive characterization of this novel cell substrate has been performed, none of which has revealed the presence of adventitious agents. Multiple clinical studies have demonstrated that the vaccine is safe, well-tolerated and immunogenic. The baculovirus-insect cell system could, therefore, be used for the expedited production of a safe and efficacious influenza vaccine. As a result, this technology should provide a fast track worldwide solution for newly emerging influenza strains or pandemic preparedness within a few years. PMID:21784229

  11. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  12. Dynamic square superlattice of Faraday waves

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Tuckerman, Laurette

    2014-11-01

    Faraday waves are computed in a 3D container using BLUE, a code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. A new dynamic superlattice pattern is described which consists of a set of square waves arranged in a two-by-two array. The corners of this array are connected by a bridge whose position oscillates in time between the two diagonals.

  13. A fast assistant decision-making system on the emergent maneuver of the tracking ship

    NASA Astrophysics Data System (ADS)

    Huang, Qiong; Xue, G. H.; Ni, X. Q.

    2016-02-01

    This paper studies a fast assistant decision-making system on the emergent maneuver of the tracking ship, adopting the design method of the emergent working state of the tracking ship based on the meteorological prediction, the virtual display technology based on the multi-stage mapping, and the 2-dimension area algorithm based on the line-scanning. It solves problems that the tracking ship met during working, such as the long TT&C time, the dense crucial observation arc, the complicated working flow, and the changeful scheme. It established the hard basement for the fast design of the emergency working state when the tracking ship in the awful sea conditions.

  14. Fast polarization-state tracking scheme based on radius-directed linear Kalman filter.

    PubMed

    Yang, Yanfu; Cao, Guoliang; Zhong, Kangping; Zhou, Xian; Yao, Yong; Lau, Alan Pak Tao; Lu, Chao

    2015-07-27

    We propose and experimentally demonstrate a fast polarization tracking scheme based on radius-directed linear Kalman filter. It has the advantages of fast convergence and is inherently insensitive to phase noise and frequency offset effects. The scheme is experimentally compared to conventional polarization tracking methods on the polarization rotation angular frequency. The results show that better tracking capability with more than one order of magnitude improvement is obtained in the cases of polarization multiplexed QPSK and 16QAM signals. The influences of the filter tuning parameters on tracking performance are also investigated in detail.

  15. 42 CFR 422.626 - Fast-track appeals of service terminations to independent review entities (IREs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Fast-track appeals of service terminations to... Grievances, Organization Determinations and Appeals § 422.626 Fast-track appeals of service terminations to independent review entities (IREs). (a) Enrollee's right to a fast-track appeal of an MA...

  16. 42 CFR 422.626 - Fast-track appeals of service terminations to independent review entities (IREs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Fast-track appeals of service terminations to... ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.626 Fast-track appeals of service terminations to independent review entities (IREs). (a) Enrollee's right to a fast-track appeal...

  17. Michael Faraday, media man.

    PubMed

    Fara, Patricia

    2006-03-01

    Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles. PMID:16332391

  18. Michael Faraday, media man.

    PubMed

    Fara, Patricia

    2006-03-01

    Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles.

  19. Repositioning: the fast track to new anti-malarial medicines?

    PubMed Central

    2014-01-01

    Background Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. Methods Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [3H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4’,6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low μM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D70087/N9 huSCID ‘humanized’ mouse model. Results Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally

  20. 77 FR 1697 - Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... HUMAN SERVICES Indian Health Service Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery: IHS Web Site Customer... on Agency Service Delivery: IHS Web site Customer Service Satisfaction Survey. Abstract:...

  1. Heating profiles on ICRF antenna Faraday shields

    SciTech Connect

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs.

  2. The Fleet Application for Scheduling and Tracking (FAST) Management Website

    NASA Technical Reports Server (NTRS)

    Marrero-Perez, Radames J.

    2014-01-01

    The FAST application was designed to replace the paper and pen method of checking out and checking in GSA Vehicles at KSC. By innovating from a paper and pen based checkout system to a fully digital one, not only the resources wasted by printing the checkout forms have been reduced, but it also reduces significantly the time that users and fleet managers need to interact with the system as well as improving the record accuracy for each vehicle. The vehicle information is pulled from a centralized database server in the SPSDL. In an attempt to add a new feature to the FAST application, the author of this report (alongside the FAST developers) has been designing and developing the FAST Management Website. The GSA fleet managers had to rely on the FAST developers in order to add new vehicles, edit vehicles and previous transactions, or for generating vehicles reports. By providing an easy-to-use FAST Management Website portal, the GSA fleet managers are now able to easily move vehicles, edit records, and print reports.

  3. Following Michael Faraday's Footprints

    NASA Astrophysics Data System (ADS)

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable for following Michael Faraday's footprints. There are many other places in Europe of special interest for the physics teacher,2,3 and some useful guides to help us visit places as "scientific travelers,"4,5 but this paper focuses on Michael Faraday and London. I have personally visited most of the places described below and found the experience to be really worthwhile.

  4. Cryogenic Faraday isolator

    SciTech Connect

    Zheleznov, D S; Zelenogorskii, V V; Katin, E V; Mukhin, I B; Palashov, O V; Khazanov, Efim A

    2010-05-26

    A Faraday isolator is described in which thermal effects are suppressed by cooling down to liquid nitrogen temperatures. The principal scheme, main characteristics and modifications of the isolator are presented. The isolation degree is studied experimentally for the subkilowatt average laser radiation power. It is shown that the isolator can be used at radiation powers up to tens of kilowatts. (quantum electronic devices)

  5. Following Michael Faraday's Footprints

    ERIC Educational Resources Information Center

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable…

  6. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    SciTech Connect

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  7. Note: fast neutron efficiency in CR-39 nuclear track detectors.

    PubMed

    Cavallaro, S

    2015-03-01

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  8. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  9. Restoring integrity—A grounded theory of coping with a fast track surgery programme

    PubMed Central

    Jørgensen, Lene Bastrup; Fridlund, Bengt

    2016-01-01

    Aims and objectives The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Background Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. Design The study design used classical grounded theory. Methods The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Results Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients’ main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. Conclusion In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme. PMID:26751199

  10. New method for fast detection of railway track smoothness by fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Liang, Lei; Hu, Wenbin

    2000-05-01

    In this article, the conducting schemes for fiber optic gyro (FOG) used int he fast detecting of the smoothness of rail track has been proposed from the practical use point of view. The relevant approximate method of calculating has been given. The experiments in lab have been carried out, and the factors to influence the detecting precision of the smoothness of rail track such as the precision of FOG have been analyzed.

  11. Tracking Changing Environments: Innovators Are Fast, but Not Flexible Learners

    PubMed Central

    Griffin, Andrea S.; Guez, David; Lermite, Françoise; Patience, Madeleine

    2013-01-01

    Behavioural innovations are increasingly thought to provide a rich source of phenotypic plasticity and evolutionary change. Innovation propensity shows substantial variation across avian taxa and provides an adaptive mechanism by which behaviour is flexibly adjusted to changing environmental conditions. Here, we tested for the first time the prediction that inter-individual variation in innovation propensity is equally a measure of behavioural flexibility. We used Indian mynas, Sturnus tristis, a highly successful worldwide invader. Results revealed that mynas that solved an extractive foraging task more quickly learnt to discriminate between a cue that predicted food, and one that did not more quickly. However, fast innovators were slower to change their behaviour when the significance of the food cues changed. This unexpected finding appears at odds with the well-established view that avian taxa with larger brains relative to their body size, and therefore greater neural processing power, are both faster, and more flexible learners. We speculate that the existence of this relationship across taxa can be reconciled with its absence within species by assuming that fast, innovative learners and non innovative, slow, flexible learners constitute two separate individual strategies, which are both underpinned by enhanced neural processing power. This idea is consistent with the recent proposal that individuals may differ consistently in ‘cognitive style’, differentially trading off speed against accuracy in cognitive tasks. PMID:24391981

  12. Fast tracking based on local histogram of oriented gradient and dual detection

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Kai; Cheng, Fei; Ding, Wenwen; Zhang, Baijian

    2016-05-01

    Visual tracking is important in computer vision. At present, although many algorithms of visual tracking have been proposed, there are still many problems which are needed to be solved, such as occlusion and frame speed. To solve these problems, this paper proposes a novel method which based on compressive tracking. Firstly, we make sure the occlusion happens if the testing result about image features by the classifiers is lower than a threshold value which is certain. Secondly, we mark the occluded image and record the occlusion region. In the next frame, we test both the classifier and the marked image. This algorithm makes sure the tracking is fast, and the result about solving occlusion is much better than other algorithms, especially compressive tracking.

  13. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking.

    PubMed

    Ravkilde, Thomas; Keall, Paul J; Grau, Cai; Høyer, Morten; Poulsen, Per R

    2014-12-01

    Multileaf collimator (MLC) tracking is a promising and clinically emerging treatment modality for radiotherapy of mobile tumours. Still, new quality assurance (QA) methods are warranted to safely introduce MLC tracking in the clinic. The purpose of this study was to create and experimentally validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets.MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder system. A three-axis motion stage reproduced eight representative tumour trajectories; four lung and four prostate. Low and high modulation 6 MV single-arc volumetric modulated arc therapy treatment plans were delivered for each trajectory with and without MLC tracking, as well as without motion for reference. Temporally resolved doses were measured during all treatments using a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the dosimeter was reconstructed with 500 ms temporal resolution by a motion-including pencil beam convolution algorithm developed in-house. The accuracy of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of-0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose and is adequately fast to be feasible for online use. An online implementation could allow treatment intervention in case of erroneous dose delivery in both

  14. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  15. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  16. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  17. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  18. Fast track-finding processor based on RAM look-up table for the VENUS detector at KEK

    NASA Astrophysics Data System (ADS)

    Ohsugi, T.; Chiba, Y.; Hayashibara, I.; Taketani, A.; Yasuishi, S.; Arai, Y.; Sakamoto, H.; Uehara, S.

    1988-06-01

    We have developed a fast track-finding processor using signals from the central tracking chamber of the VENUS detector in the TRISTAN experiments. Particle tracks are recognized by a look-up table made with a high-speed static RAM. This method enables us to implement the track finder in the first level triggering. The track finder has been working excellently under heavy background due to synchrotron radiation. A processing time of 110 ns is attained.

  19. Fast Track Initiative: Building a Global Compact for Education. Education Notes

    ERIC Educational Resources Information Center

    Human Development Network Education, 2005

    2005-01-01

    This note series is intended to summarize lessons learned and key policy findings on the World Bank's work in education. "Fast Track Initiative" ("FTI") was launched in 2002 as a partnership between donor and developing countries to accelerate progress towards the Millennium Development Goal (MDG) of universal primary education. "FTI" is built on…

  20. New Medical-School Programs Put Students on a Fast Track to the White Coat

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2009-01-01

    California's lieutenant governor has proposed a fast-track medical school that would shave three years off the training needed to become a physician. It is not the first time such an idea has been offered. The proposal, for a hoped-for medical school at the University of California at Merced, struck some medical educators as both unrealistic and…

  1. The Effects of the Fast Track Preventive Intervention on the Development of Conduct Disorder across Childhood

    ERIC Educational Resources Information Center

    Child Development, 2011

    2011-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social…

  2. Michael Faraday vs. the Spiritualists

    NASA Astrophysics Data System (ADS)

    Hirshfeld, Alan

    2006-12-01

    In the 1850s, renowned physicist Michael Faraday launched a public campaign against pseudoscience and spiritualism, which were rampant in England at the time. Faraday objected especially to claims that electrical or magnetic forces were responsible for paranormal phenomena, such as table-spinning and communication with the dead. Using scientific methods, Faraday unmasked the deceptions of spiritualists, clairvoyants and mediums and also laid bare the credulity of a public ill-educated in science. Despite his efforts, Victorian society's fascination with the paranormal swelled. Faraday's debacle anticipates current controversies about public science education and the interface between science and religion. This episode is one of many described in the new biography, The Electric Life of Michael Faraday (Walker & Co.), which chronicles Faraday's discoveries and his unlikely rise from poverty to the pinnacle of the English science establishment.

  3. Research on shaftless fast-steering mirror used in a precision tracking-aiming system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmin; Yin, Hongyan; Wang, Yonghui; Guo, Jin

    2007-12-01

    Based on the analysis of principle of tracking and aiming system, some important factors to design the structure of tracking-aiming system and the layout of optical system are discussed. Besides, the paper gives the present developing situation of fast-steering mirror at home and abroad, analyzes the advantages and disadvantages of FSM with axis, and presents a novel design of flexible axis FSM. The main axis of composite axis system is tracked by motor to drive the frame, and the sub-axis is tracked by voice coil motor (VCM) to drive FSM. The structure of FSM and designing principle of VCM are introduced, and the emulation analyses of inherent frequency and deformation under load of the FSM with software COSMOS are also given.

  4. Unbounded Binary Search for a Fast and Accurate Maximum Power Point Tracking

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sin; Winston, Roland

    2011-12-01

    This paper presents a technique for maximum power point tracking (MPPT) of a concentrating photovoltaic system using cell level power optimization. Perturb and observe (P&O) has been a standard for an MPPT, but it introduces a tradeoff between the tacking speed and the accuracy of the maximum power delivered. The P&O algorithm is not suitable for a rapid environmental condition change by partial shading and self-shading due to its tracking time being linear to the length of the voltage range. Some of researches have been worked on fast tracking but they come with internal ad hoc parameters. In this paper, by using the proposed unbounded binary search algorithm for the MPPT, tracking time becomes a logarithmic function of the voltage search range without ad hoc parameters.

  5. Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity

  6. Fast non-iterative calibration of an external motion tracking device

    PubMed Central

    Zahneisen, Benjamin; Lovell-Smith, Chris; Herbst, Michael; Zaitsev, Maxim; Speck, Oliver; Armstrong, Brian; Ernst, Thomas

    2013-01-01

    Purpose Prospective motion correction of MR scans commonly uses an external device, such as a camera, to track the pose of the organ of interest. However, in order for external tracking data to be translated into the MR scanner reference frame, the pose of the camera relative to the MR scanner must be known accurately. Here, we describe a fast, accurate, non-iterative technique to determine the position of an external tracking device de novo relative to the MR reference frame. Theory and Methods The method relies on imaging a sparse object that allows simultaneous tracking of arbitrary rigid body transformations in the reference frame of the MRI machine and that of the external tracking device. Results Large motions in the MRI reference frame can be measured using a sparse phantom with an accuracy of 0.2 mm, or approximately 1/10 of the voxel size. By using a dual quaternion algorithm to solve the calibration problem, a good camera calibration can be achieved with fewer than 6 measurements. Further refinements can be achieved by applying the method iteratively and using motion correction feedback. Conclusion Independent tracking of a series of movements in two reference frames allows for an analytical solution to the hand-eye-calibration problem for various motion tracking setups in MRI. PMID:23788117

  7. Internal model control of a fast steering mirror for electro-optical fine tracking

    NASA Astrophysics Data System (ADS)

    Xia, Yun-xia; Bao, Qi-liang; Wu, Qiong-yan

    2010-11-01

    The objective of this research is to develop advanced control methods to improve the bandwidth and tracking precision of the electro-optical fine tracking system using a fast steering mirror (FSM). FSM is the most important part in this control system. The model of FSM is established at the beginning of this paper. Compared with the electro-optical fine tracking system with ground based platform, the electro-optical fine tracking system with movement based platform must be a wide bandwidth and a robustness system. An advanced control method based on internal model control law is developed for electro-optical fine tracking system. The IMC is an advanced algorithm. Theoretically, it can eliminate disturbance completely and make sure output equals to input even there is model error. Moreover, it separates process to the system dynamic characteristic and the object perturbation. Compared with the PID controller, the controller is simpler and the parameter regulation is more convenient and the system is more robust. In addition, we design an improved structure based on classic IMC. The tracking error of the two-port control system is much better than which of the classic IMC. The simulation results indicate that the electro-optical control system based on the internal model control algorithm is very effective. It shows a better performance at the tracing precision and the disturbance suppresses. Thus a new method is provided for the high-performance electro-optical fine tracking system.

  8. Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program

    PubMed Central

    Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.

    2009-01-01

    Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487

  9. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  10. A fast track path improves access to palliative care for people with learning disabilities.

    PubMed

    Whitington, Jane; Ma, Peng

    People with learning disabilities often experience inequalities in accessing general health services. This group, their families and carers need access to effective palliative care when facing a life limiting illness. This article describes the development and implementation of a fast track referral pathway for people with learning disabilities at St Francis Hospice in Essex. Our aim is to share this pathway so others can replicate the collaborative working to improve access to palliative care services for this group. PMID:20514883

  11. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    NASA Astrophysics Data System (ADS)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to

  12. Nurse initiated thrombolysis in the accident and emergency department: safe, accurate, and faster than fast track

    PubMed Central

    Heath, S; Bain, R; Andrews, A; Chida, S; Kitchen, S; Walters, M

    2003-01-01

    Objective: To reduce the time between arrival at hospital of a patient with acute myocardial infarction and administration of thrombolytic therapy (door to needle time) by the introduction of nurse initiated thrombolysis in the accident and emergency department. Methods: Two acute chest pain nurse specialists (ACPNS) based in A&E for 62.5 hours of the week were responsible for initiating thrombolysis in the A&E department. The service reverts to a "fast track" system outside of these hours, with the on call medical team prescribing thrombolysis on the coronary care unit. Prospectively gathered data were analysed for a nine month period and a head to head comparison made between the mean and median door to needle times for both systems of thrombolysis delivery. Results: Data from 91 patients were analysed; 43 (47%) were thrombolysed in A&E by the ACPNS and 48 (53%) were thrombolysed in the coronary care unit by the on call medical team. The ACPNS achieved a median door to needle time of 23 minutes (IQR=17 to 32) compared with 56 minutes (IQR=34 to 79.5) for the fast track. The proportion of patients thrombolysed in 30 minutes by the ACPNS and fast track system was 72% (31 of 43) and 21% (10 of 48) respectively (difference=51%, 95% confidence intervals 34% to 69%, p<0.05). Conclusion: Diagnosis of acute myocardial infarction and administration of thrombolysis by experienced cardiology nurses in A&E is a safe and effective strategy for reducing door to needle times, even when compared with a conventional fast track system. PMID:12954678

  13. A Comparison of "Reading Mastery Fast Cycle" and "Horizons Fast Track A-B" on the Reading Achievement of Students with Mild Disabilities

    ERIC Educational Resources Information Center

    Cooke, Nancy L.; Gibbs, Susan L.; Campbell, Monica L.; Shalvis, Shawnna L.

    2004-01-01

    This study examined the reading gains of students with mild disabilities who were taught with one of two programs: "Horizons Fast Track A-B" (Engelmann, Engelmann, & Seitz-Davis, 1997) or "Reading Mastery Fast Cycle" (Engelmann & Bruner, 1995). A quasi-experimental design with preexisting groups was used to examine changes from pretest to…

  14. [Dosimetry of fast neutrons in 1W nuclear reactor with plastic nuclear-track detectors].

    PubMed

    Yasubuchi, S; Hoshi, M; Itoh, T; Hisanaga, S; Niwa, T; Miki, R; Kondo, S

    1989-09-01

    A nuclear reactor at Kinki University is operated at the maximum of 1W. It produces fission neutrons as much as gamma-rays. To facilitate its use for neutron radiobiology, fast neutrons inside the reactor were measured with nuclear-track detectors TS 16 N and a pair of ion chambers. The angular dependence of TS 16 N response, an anisotropy of fast neutron fluxes in the reactor and misuse of the kerma factor assumed for radiation protection business are the major causes of discrepancy is measured doses by the two methods. Correction factors for the three causes are proposed. After correction, neutron doses estimated with TS 16 N and chambers agree within 5%. The dose-rate at the reactor's center is about 20 tissue-cGy/h. This is the first in situ dosimetry of fast neutrons in a reactor with track detectors attached to biologic samples. Our routine usage has demonstrated that, if used with caution, TS 16 N elements are handy, reliable monitors for fast neutron dosimetry as they are insensitive to contaminated gamma-rays and small enough to be attached to biologic samples.

  15. International collaborative project to compare and track the nutritional composition of fast foods

    PubMed Central

    2012-01-01

    Background Chronic diseases are the leading cause of premature death and disability in the world with over-nutrition a primary cause of diet-related ill health. Excess quantities of energy, saturated fat, sugar and salt derived from fast foods contribute importantly to this disease burden. Our objective is to collate and compare nutrient composition data for fast foods as a means of supporting improvements in product formulation. Methods/design Surveys of fast foods will be done in each participating country each year. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from fast food companies, in-store materials or from company websites. Foods will be categorized into major groups for the primary analyses which will compare mean levels of saturated fat, sugar, sodium, energy and serving size at baseline and over time. Countries currently involved include Australia, New Zealand, France, UK, USA, India, Spain, China and Canada, with more anticipated to follow. Discussion This collaborative approach to the collation and sharing of data will enable low-cost tracking of fast food composition around the world. This project represents a significant step forward in the objective and transparent monitoring of industry and government commitments to improve the quality of fast foods. PMID:22838731

  16. A video demonstration of the Li's anastomosis-the key part of the "non-tube no fasting" fast track program for resectable esophageal carcinoma.

    PubMed

    Zheng, Yan; Li, Yin; Wang, Zongfei; Sun, Haibo; Zhang, Ruixiang

    2015-07-01

    The main obstacle of fast track surgery for esophagectomy is early oral feeding. The main concern of early oral feeding is the possibility of increasing the incidence of anastomotic leakage. Dr. Yin Li used the Li's anastomosis to ensure oral feeding at will the first day after esophagectomy. This safe and efficient anastomosis method significantly reduced the anastomotic leak rate, the number of post-operative days and stricture. Importantly, the "non-tube no fasting" fast track program for esophageal cancer patients was conducted smoothly with Li's anastomosis. This article was focused on the surgical procedure of Li's anastomosis.

  17. fsclean: Faraday Synthesis CLEAN imager

    NASA Astrophysics Data System (ADS)

    Bell, M. R.; Ensslin, T. A.

    2015-06-01

    Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

  18. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  19. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  20. Fast track in colo-rectal surgery. Preliminary experience in a rural hospital

    PubMed Central

    FRONTERA, D.; ARENA, L.; CORSALE, I.; FRANCIOLI, N.; MAMMOLITI, F.; BUCCIANELLI, E.

    2014-01-01

    Background “Fast Track surgery” is a therapeutic program of large application, despite some doubts about its applicability and real validity. Literature review shows that this approach to colo-rectal surgery, particularly video-assisted, can allow a rapid recovery, better performance and a faster postoperative functional autonomy of the work, which can be discharged without cause additional welfare costs; in addition it can be reproducible in different health reality. Purpose To analyze the possibility to apply the Fast Truck protocol in patients undergoing colorectal surgery in a rural hospital and non specialistic Unit of Surgery. Patients and methods We have conducted a prospective, randomized study on 80 patients subjected to colorectal surgery in the last year. Results The protocol was observed in 95% of cases, compliance with the Fast Track was high and general morbidity was limited (7.8%). Conclusion This “aggressive” approach, which has fundamentally altered the usual surgical behavior, seems to allow a mean length of stay significantly lower than in controls (p < 0.05) with positive implications for patients and containment of health care costs, even after discharge (no need for home care in 92% of cases, no early re-admittance to the hospital). Homogeneous protocols are desirable, as well as an increased enrollment, to consolidate these rehabilitation programs in order to provide a reference for all hospitals. PMID:25644732

  1. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  2. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  3. Morbidity and mortality after bilateral simultaneous total knee arthroplasty in a fast-track setting

    PubMed Central

    Gromov, Kirill; Troelsen, Anders; Stahl Otte, Kristian; Ørsnes, Thue; Husted, Henrik

    2016-01-01

    Background and purpose The safety aspects of bilateral simultaneous total knee arthroplasty (BSTKA) are still debated. In this retrospective single-center study, we investigated early morbidity and mortality following BSTKA in a modern fast-track setting. We also identified risk factors for re-admission within 90 days and for a length of stay (LOS) of more than 5 days. Patients and methods 284 patients were selected to receive BSTKA at our institution from 2008 through 2014 in a well-described, standardized fast-track setup (Husted 2012a, b). All re-admissions within 90 days were identified and mortality rates and time until death were recorded. Transfusion rates and numbers of transfusions were also recorded. Logistic regression analysis was used to identify risk factors for re-admission within 90 days, and also for a LOS of more than 5 days. Results 90-day mortality was 0%. 10% of the patients were re-admitted within 90 days. Median time to re-admission was 18 (3–75) days. 153 patients (54%) received postoperative blood transfusions. An ASA score of 3 was identified as an independent risk factor for re-admission within 90 days (OR = 5, 95% CI: 1.3–19) and for LOS of > 5 days (OR = 6, 95% CI: 1.6–21). Higher BMI was a weak risk factor for re-admission within 90 days. Interpretation BSTKA in selected patients without cardiopulmonary disease in a fast-track setting appears to be safe with respect to early postoperative morbidity and mortality. Surgeons should be aware that patients with an ASA score of 3 have an increased risk of re-admission and a prolonged length of stay, while patients with higher BMI have an increased risk of re-admission following BSTKA. PMID:26823094

  4. "Fast-Tracking": Ain't No Golden Parachute So Don't Slide off the Rainbow.

    ERIC Educational Resources Information Center

    Newburger, Craig; Butler, Jerry

    Awareness of the corporate cultural phenomenon of fast-tracking, a process whereby executives are advanced within and among organizations, should assist communication students and practicing professionals to become more effective corporate communicators. A critical distinction between self-directed fast-trackers and their corporately-sanctioned…

  5. A steady tracking technology adopted to fast FH/BPSK signal under satellite channel

    NASA Astrophysics Data System (ADS)

    Guo, SuLi; Lou, Zhigang; Wang, XiDuo; Xia, ShuangZhi

    2015-07-01

    In order to survive under the conditions with great jamming and interference, fast frequency hopped signal are employed in satellite communication system. This paper discusses the nonlinear phases induced by the equipment and atmosphere, and their influence on the FFH/BPSK tracking loop. Two methods are developed including compensating phase which is based on channel estimation and compensating Doppler frequency based on velocity normalization. Simulation results for a real circuit with proper parameters shows that the degradation due to the demodulation of frequency-hopped is only a fraction of one dB in an AWGN environment under satellite channel.

  6. Performing track reconstruction at the ALICE TPC using a fast Hough Transform method

    NASA Astrophysics Data System (ADS)

    Kouzinopoulos, Charalampos S.; Hristov, Peter

    2016-09-01

    The Hough Transform algorithm is a popular image analysis method that is widely used to perform global pattern recognition in images through the identification of local patterns in a suitably chosen parameter space. The algorithm can also be used to perform track reconstruction; to estimate the trajectory of individual particles when passed through the active elements of a detector volume. This paper presents a fast reconstruction method for the Time Projection Chamber (TPC) of the ALICE experiment at LHC. The method, that combines a linear Hough Transform algorithm with a fast filling of the Hough Transform parameter space, is developed within AliceO2, the new computing framework of ALICE for RUN3.

  7. Fast track anesthesia for liver transplantation: Review of the current practice

    PubMed Central

    Aniskevich, Stephen; Pai, Sher-Lu

    2015-01-01

    Historically, patients undergoing liver transplantation were left intubated and extubated in the intensive care unit (ICU) after a period of recovery. Proponents of this practice argued that these patients were critically ill and need time to be properly optimized from a physiological and pain standpoint prior to extubation. Recently, there has been a growing movement toward early extubation in transplant centers worldwide. Initially fueled by research into early extubation following cardiac surgery, extubation in the operating room or soon after arrival to the ICU, has been shown to be safe with proper patient selection. Additionally, as experience at determining appropriate candidates has improved, some institutions have developed systems to allow select patients to bypass the ICU entirely and be admitted to the surgical ward after transplant. We discuss the history of early extubation and the arguments in favor and against fast track anesthesia. We also described our practice of fast track anesthesia at Mayo Clinic Florida, in which, we extubate approximately 60% of our patients in the operating room and send them to the surgical ward after a period of time in the post anesthesia recovery unit. PMID:26380654

  8. Fast-track program in laparoscopic liver surgery: Theory or fact?

    PubMed Central

    Sánchez-Pérez, Belinda; Aranda-Narváez, José Manuel; Suárez-Muñoz, Miguel Angel; elAdel-delFresno, Moises; Fernández-Aguilar, José Luis; Pérez-Daga, Jose Antonio; Pulido-Roa, Ysabel; Santoyo-Santoyo, Julio

    2012-01-01

    AIM: To analyze our results after the introduction of a fast-track (FT) program after laparoscopic liver surgery in our Hepatobiliarypancreatic Unit. METHODS: All patients (43) undergoing laparoscopic liver surgery between March 2004 and March 2010 were included and divided into two consecutive groups: Control group (CG) from March 2004 until December 2006 with traditional perioperative cares (17 patients) and fast-track group (FTG) from January 2007 until March 2010 with FT program cares (26 patients). Primary endpoint was the influence of the program on the postoperative stay, the amount of re-admissions, morbidity and mortality. Secondarily we considered duration of surgery, use of drains, conversion to open surgery, intensive cares needs and transfusion. RESULTS: Both groups were homogeneous in age and sex. No differences in technique, time of surgery or conversion to open surgery were found, but more malignant diseases were operated in the FTG, and then transfusions were higher in FTG. Readmissions and morbidity were similar in both groups, without mortality. Postoperative stay was similar, with a median of 3 for CG vs 2.5 for FTG. However, the 80.8% of patients from FTG left the hospital within the first 3 d after surgery (58.8% for CG). CONCLUSION: The introduction of a FT program after laparoscopic liver surgery improves the recovery of patients without increasing complications or re-admissions, which leads to a reduction of the stay and costs. PMID:23493957

  9. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  10. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  11. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  12. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  13. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  14. A Trend for Increased Risk of Revision Surgery due to Deep Infection following Fast-Track Hip Arthroplasty.

    PubMed

    Amlie, Einar; Lerdal, Anners; Gay, Caryl L; Høvik, Øystein; Nordsletten, Lars; Dimmen, Sigbjørn

    2016-01-01

    Rates of revision surgery due to deep infection following total hip arthroplasty (THA) increased at a Norwegian hospital following implementation of fast-track procedures. The purpose of this study was to determine whether selected demographic (age and sex) and clinical (body mass index, American Society of Anesthesiologists (ASA) classification, surgery duration, length of hospital stay, cemented versus uncemented prosthesis, and fast-track procedures) factors were associated with higher risk of revision surgery due to deep infection following THA. In a prospective designed study 4,406 patients undergoing primary THA between January 2001 and January 2013 where included. Rates of infection-related revision surgery within 3 months of THA were higher among males and among patients who received fast-track THA. Adjusting for sex and age, the implemented fast-track elements were significantly associated with increased risk of revision surgery. Risk of infection-related revision surgery was unrelated to body mass index, physical status, surgery duration, length of hospital stay, and prosthesis type. Because local infiltration analgesia, drain cessation, and early mobilization were introduced in combination, it could not be determined which component or combination of components imposed the increased risk. The findings in this small sample raise concern about fast-track THA but require replication in other samples. PMID:27034841

  15. A Trend for Increased Risk of Revision Surgery due to Deep Infection following Fast-Track Hip Arthroplasty

    PubMed Central

    Amlie, Einar; Lerdal, Anners; Gay, Caryl L.; Høvik, Øystein; Nordsletten, Lars; Dimmen, Sigbjørn

    2016-01-01

    Rates of revision surgery due to deep infection following total hip arthroplasty (THA) increased at a Norwegian hospital following implementation of fast-track procedures. The purpose of this study was to determine whether selected demographic (age and sex) and clinical (body mass index, American Society of Anesthesiologists (ASA) classification, surgery duration, length of hospital stay, cemented versus uncemented prosthesis, and fast-track procedures) factors were associated with higher risk of revision surgery due to deep infection following THA. In a prospective designed study 4,406 patients undergoing primary THA between January 2001 and January 2013 where included. Rates of infection-related revision surgery within 3 months of THA were higher among males and among patients who received fast-track THA. Adjusting for sex and age, the implemented fast-track elements were significantly associated with increased risk of revision surgery. Risk of infection-related revision surgery was unrelated to body mass index, physical status, surgery duration, length of hospital stay, and prosthesis type. Because local infiltration analgesia, drain cessation, and early mobilization were introduced in combination, it could not be determined which component or combination of components imposed the increased risk. The findings in this small sample raise concern about fast-track THA but require replication in other samples. PMID:27034841

  16. Study of absolute fast neutron dosimetry using CR-39 track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.

    2010-06-01

    In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

  17. Fast-track surgery in gynaecology and gynaecologic oncology: a review of a rolling clinical audit.

    PubMed

    Carter, Jonathan

    2012-01-01

    Clinical audit is the process by which clinicians are able to demonstrate to themselves, their patients, hospital administrators, and healthcare financial providers the outcome and safety of their clinical practice. It is a process by which the public can be assured of safety and outcomes. A fast-track surgery program was initiated in January 2008, and this paper represents a rolling clinical audit of the outcomes of that program until the end of June 2012. Three hundred and eighty-nine patients underwent fast track surgical management after having a laparotomy for suspected or confirmed gynaecological cancer. There were no exclusions and the data presented represents the practice and outcomes of all patients referred to a single gynaecological oncologist. The majority of patients were deemed to have complex surgical procedures performed usually through a vertical midline incision. One third of patients had a nonzero performance status, median weight was 68 kilograms, and median BMI was 26.5 with 31% being classified as obese. Median operating time was 2.25 hours, and the median estimated blood loss was 175 mL. Overall the median length of stay (LOS) was 3 days with 95% of patients tolerating early oral feeding. Four percent of patients required readmission, and 0.5% were required to return to the operating room. Whilst the wound infection rate was 2.6%, there were no ureteric, bowel or neurovascular injuries. Overall there were 2 bladder injuries (0.5%), and the incidence of venous thromboembolism was 1%. Subset analysis was also undertaken. Whilst a number of variables were associated with reduced LOS, on multivariate analysis, benign pathology, shorter operating time, and the ability to tolerate early oral feeding were found to be significant. The data and experience presented is the largest and most extensive reported in the literature relating to fast-track surgery in gynaecology and gynaecologic oncology. The public can be reassured of the safety and

  18. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39.

  19. Electric eels use high-voltage to track fast-moving prey

    PubMed Central

    Catania, Kenneth C.

    2015-01-01

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a ‘terminal feeding buzz' to track insects. Eel's exhibit ‘sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions. PMID:26485580

  20. Health Preemption Behind Closed Doors: Trade Agreements and Fast-Track Authority

    PubMed Central

    Crosbie, Eric; Gonzalez, Mariaelena

    2014-01-01

    Noncommunicable diseases result from consuming unhealthy products, including tobacco, which are promoted by transnational corporations. The tobacco industry uses preemption to block or reverse tobacco control policies. Preemption removes authority from jurisdictions where tobacco companies’ influence is weak and transfers it to jurisdictions where they have an advantage. International trade agreements relocate decisions about tobacco control policy to venues where there is little opportunity for public scrutiny, participation, and debate. Tobacco companies are using these agreements to preempt domestic authority over tobacco policy. Other transnational corporations that profit by promoting unhealthy foods could do the same. “Fast-track authority,” in which Congress cedes ongoing oversight authority to the President, further distances the public from the debate. With international agreements binding governments to prioritize trade over health, transparency and public oversight of the trade negotiation process is necessary to safeguard public health interests. PMID:25033124

  1. Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Dowling, J.; Dang, K.; Fox, Chris D.; Chandra, S.; Gill, Suki; Kron, T.; Pham, D.; Foroudi, F.

    2014-03-01

    The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.

  2. The Effects of the Fast Track Preventive Intervention on the Development of Conduct Disorder Across Childhood

    PubMed Central

    2013-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social cognitive skills, reading, home visiting, mentoring, and classroom curricula. Outcomes included psychiatric diagnoses after grades 3, 6, 9, and 12 for conduct disorder, oppositional defiant disorder, attention deficit hyperactivity disorder, and any externalizing disorder. Significant interaction effects between intervention and initial risk level indicated that intervention prevented the lifetime prevalence of all diagnoses, but only among those at highest initial risk, suggesting that targeted intervention can prevent externalizing disorders to promote the raising of healthy children. PMID:21291445

  3. The Vanderbilt University fast track to IAIMS: transition from planning to implementation.

    PubMed Central

    Stead, W W; Borden, R; Bourne, J; Giuse, D; Giuse, N; Harris, T R; Miller, R A; Olsen, A J

    1996-01-01

    Vanderbilt University Medical Center is implementing an Integrated Advanced Information Management System (IAIMS) using a fast-track approach. The elapsed time between start-up and completion of implementation will be 7.5 years. The Start-Up and Planning phases of the project are complete. The Implementation phase asks one question: How does an organization create an environment that redirects and coordinates a variety of individual activities so that they come together to provide an IAIMS? Four answers to this question are being tested. First, design resources to be "scalable"--i.e., capable of supporting enterprise-wide use. Second, provide information technology planning activities as ongoing core functions that direct local efforts. Third, design core infrastructure resources to be both reusable and expandable at the local level. Fourth, use milestones to measure progress toward selected endpoints to permit early refinement of plans and strategies. PMID:8880678

  4. Electric eels use high-voltage to track fast-moving prey.

    PubMed

    Catania, Kenneth C

    2015-10-20

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a 'terminal feeding buzz' to track insects. Eel's exhibit 'sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions.

  5. Fast Three-Dimensional Single-Particle Tracking in Natural Brain Tissue

    PubMed Central

    Sokoll, Stefan; Prokazov, Yury; Hanses, Magnus; Biermann, Barbara; Tönnies, Klaus; Heine, Martin

    2015-01-01

    Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures. PMID:26445447

  6. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39. PMID:15353669

  7. The effects of the fast track preventive intervention on the development of conduct disorder across childhood.

    PubMed

    2011-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social cognitive skills, reading, home visiting, mentoring, and classroom curricula. Outcomes included psychiatric diagnoses after grades 3, 6, 9, and 12 for conduct disorder, oppositional defiant disorder, attention deficit hyperactivity disorder, and any externalizing disorder. Significant interaction effects between intervention and initial risk level indicated that intervention prevented the lifetime prevalence of all diagnoses, but only among those at highest initial risk, suggesting that targeted intervention can prevent externalizing disorders to promote the raising of healthy children.

  8. Tracking Down a Fast Instability in the PEP-II LER

    SciTech Connect

    Wienands, U.; Akre, R.; Curry, S.; DeBarger, S.; Decker, F.J.; Ecklund, S.; Fisher, A.S.; Heifets, S.A.; Krasnykh, A.; Kulikov, A.; Novokhatski, A.; Seeman, J.; Sullivan, M.K.; Teytelman, D.; Van Winkle, D.; Yocky, G.; /SLAC

    2007-05-18

    During Run 5, the beam in the PEP-II Low Energy Ring (LER) became affected by a predominantly vertical instability with very fast growth rate of 10...60/ms and varying threshold. The coherent amplitude of the oscillation was limited to approx. 1 mm peak and would damp down over a few tens of turns, however, beam loss set in even as the amplitude signal damped, causing a beam abort. This led to the conclusion that the bunches were actually blowing up. The appearance of a 2{nu}{sub S} line in the spectrum suggested a possible head-tail nature of the instability, although chromaticity was not effective in changing the threshold. The crucial hints in tracking down the cause turned out to be vacuum activity near the rf cavities and observance of signals on the cavity probes of certain rf cavities.

  9. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  10. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique

    SciTech Connect

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit; Hallinan, Gregg; Harding, Leon K.

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  11. Detection of a Faint Fast-moving Near-Earth Asteroid Using the Synthetic Tracking Technique

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit; Hallinan, Gregg; Harding, Leon K.

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day-1 and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  12. Various Paths to Faraday's Law

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2008-01-01

    In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…

  13. Building a better Faraday cage

    NASA Astrophysics Data System (ADS)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  14. Faraday's Law and Seawater Motion

    ERIC Educational Resources Information Center

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  15. A Mobile Phone Faraday Cage

    ERIC Educational Resources Information Center

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  16. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  17. Catalyzing Country Ownership and Aid Effectiveness: Role of the Education for All-Fast Track Initiative Catalytic Fund

    ERIC Educational Resources Information Center

    Bashir, Sajitha

    2009-01-01

    This article examines the contribution of the Education for All-Fast Track Initiative (EFA-FTI) global partnership in strengthening aid effectiveness in the education sector, and specifically how the implementation modalities of the EFA-FTI Catalytic Fund (CF) have contributed to this strengthening. The empirical findings are based on a review…

  18. Fast-track extreme event attribution: How fast can we disentangle thermodynamic (forced) and dynamic (internal) contributions?

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2016-04-01

    provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.

  19. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation. PMID:21999166

  20. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation.

  1. Faraday rotation in CMB maps

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, Beatriz; Battaner, Eduardo; Florido, Estrella

    2016-10-01

    WMAP CMB polarization maps have been used to detect a low signal of Faraday Rotation (FR). If this detection is not interpreted as simple noise, it could be produced: at the last scattering surface (LSS) (z=1100), being primordial, at Reionization (z=10), in the Milky Way. The second interpretation is favoured here. In this case magnetic fields at Reionization with peak values of the order of 10-8 G should produce this observational FR.

  2. Faraday dispersion functions of galaxies

    SciTech Connect

    Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya; Ryu, Dongsu E-mail: 136d8008@st.kumamoto-u.ac.jp E-mail: akahori@physics.usyd.edu.au

    2014-09-01

    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, find that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.

  3. Pivotal role of ATP in macrophages fast tracking wound repair and regeneration.

    PubMed

    Kotwal, Girish J; Sarojini, Harshini; Chien, Sufan

    2015-09-01

    Chronic wounds occurring during aging or diabetes pose a significant burden to patients. The classical four-phase wound healing process has a 3-6 day lag before granulation starts to appear and it requires an intermediate step of activation of resident fibroblasts during the remodeling phase for production of collagen. This brief communication discusses published articles that demonstrate how the entire wound healing process can be fast tracked by intracellular ATP delivery, which triggers a novel pathway where alternatively activated macrophages play absolutely critical and central roles. This novel pathway involves an increase in proinflammatory cytokines (TNF, IL-1β, IL-6) and a chemokine (MCP-1) release. This is followed by activation of purinergic receptor (a family of plasma membrane receptors found in almost all mammalian cells), production of platelets and platelet microparticles, and activation of ATP-dependent chromatin remodeling enzymes. The end result is a massive influx and in situ proliferation of macrophages, increases in vascular endothelial growth factors that promote neovascularization, and most prominently, the direct production of collagen. PMID:26053302

  4. The constraints on day-case total knee arthroplasty: the fastest fast track.

    PubMed

    Thienpont, E; Lavand'homme, P; Kehlet, H

    2015-10-01

    Total knee arthroplasty (TKA) is a major orthopaedic intervention. The length of a patient's stay has been progressively reduced with the introduction of enhanced recovery protocols: day-case surgery has become the ultimate challenge. This narrative review shows the potential limitations of day-case TKA. These constraints may be social, linked to patient's comorbidities, or due to surgery-related adverse events (e.g. pain, post-operative nausea and vomiting, etc.). Using patient stratification, tailored surgical techniques and multimodal opioid-sparing analgesia, day-case TKA might be achievable in a limited group of patients. The younger, male patient without comorbidities and with an excellent social network around him might be a candidate. Demographic changes, effective recovery programmes and less invasive surgical techniques such as unicondylar knee arthroplasty, may increase the size of the group of potential day-case patients. The cost reduction achieved by day-case TKA needs to be balanced against any increase in morbidity and mortality and the cost of advanced follow-up at a distance with new technology. These factors need to be evaluated before adopting this ultimate 'fast-track' approach. PMID:26430085

  5. [Anxiety in patients undergoing fast-track knee arthroplasty in the light of recent literature].

    PubMed

    Ziętek, Paweł; Ziętek, Joanna; Szczypiór, Karina

    2014-01-01

    The rapid progress in knee implants technology and operational techniques go together with more and more modem medical programs, designed to optimize the patients' care and shorten their stay in hospital. However, this does not guarantee any elimination ofperioperative stress in patients. Anxiety is a negative emotional state arising from stressful circumstances accompanied by activation of the autonomous nervous system. Anxiety causes negative physiological changes, including wound healing, resistance to anesthetic induction, it is associated with an increased perioperative pain and prolong recovery period. The purpose of this work is to present the current state of knowledge on the preoperative anxiety and discuss its impact on pain and other parameters in patients undergoing fast-track arthroplasty of big joints. The work also shows selected issues of anxiety pathomechanism, and actual methods reducing preoperative anxiety in hospitalized patients. The common prevalence of anxiety in patients undergoing surgery induces the attempt to routinely identify patients with higher anxiety, which may be a predictive factor of worse results after TKA. Undertaking widely understood psychological support in these patients before and after the operation could be a favorable element, which would influence thefinal result of the treatment of patients after big joints arthroplasties. PMID:25639020

  6. Predictor Variables Associated With Positive Fast Track Outcomes at the End of Third Grade

    PubMed Central

    2009-01-01

    Progress has been made in understanding the outcome effects of preventive interventions and treatments designed to reduce children's conduct problems. However, limited research has explored the factors that may affect the degree to which an intervention is likely to benefit particular individuals. This study examines selected child, family, and community baseline characteristics that may predict proximal outcomes from the Fast Track intervention. The primary goal of this study was to examine predictors of outcomes after 3 years of intervention participation, at the end of 3rd grade. Three types of proximal outcomes were examined: parent-rated aggression, teacher-rated oppositional-aggressive behavior, and special education involvement. The relation between 11 risk factors and these 3 outcomes was examined, with separate regression analyses for the intervention and control groups. Moderate evidence of prediction of outcome effects was found, although none of the baseline variables were found to predict all 3 outcomes, and different patterns of prediction emerged for home versus school outcomes. PMID:11930970

  7. Mass tracking and material accounting in the Integral Fast Reactor (IFR)

    SciTech Connect

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities at ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.

  8. Deconvolving Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-02-01

    In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters, such as the Faraday fiber’s Verdet constant and number of loops in the sensor, are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform, which reveals much of the Faraday rotation measurement’s implicit information necessary for unfolding the dynamic current measurement.

  9. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  10. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    NASA Astrophysics Data System (ADS)

    Sampaio, Joao; Lequeux, Steven; Metaxas, Peter J.; Chanthbouala, Andre; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-12-01

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 107 A/cm2. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  11. Impact of a Fast-Track Esophagectomy Protocol on Esophageal Cancer Patient Outcomes and Hospital Charges

    PubMed Central

    Shewale, Jitesh B.; Correa, Arlene M.; Baker, Carla M.; Villafane-Ferriol, Nicole; Hofstetter, Wayne L.; Jordan, Victoria S.; Kehlet, Henrik; Lewis, Katie M.; Mehran, Reza J.; Summers, Barbara L.; Schaub, Diane; Wilks, Sonia A.; Swisher, Stephen G.

    2016-01-01

    Objective To evaluate the effects of a fast-track esophagectomy protocol (FTEP) on esophageal cancer patients' safety, length of hospital stay (LOS) and hospital charges. Background FTEP involved transferring patients to the telemetry unit instead of the surgical intensive care unit (SICU) after esophagectomy. Methods We retrospectively reviewed 708 consecutive patients who underwent esophagectomy for primary esophageal cancer during the 4 years before (group A; 322 patients) or 4 years after (group B; 386 patients) the institution of an FTEP. Postoperative morbidity and mortality, LOS, and hospital charges were reviewed. Results Compared with group A, group B had significantly shorter median LOS (12 days vs 8 days; P < 0.001); lower mean numbers of SICU days (4.5 days vs 1.2 days; P < 0.001) and telemetry days (12.7 days vs 9.7 days; P < 0.001); and lower rates of atrial arrhythmia (27% vs 19%; P = 0.013) and pulmonary complications (27% vs 20%; P = 0.016). Multivariable analysis revealed FTEP to be associated with shorter LOS (P < 0.001) even after adjustment for predictors like tumor histology and location. FTEP was also associated with a lower rate of pulmonary complications (odds ratio = 0.655; 95% confidence interval = 0.456, 0.942; P = 0.022). In addition, the median hospital charges associated with primary admission and readmission within 90 days for group B ($65,649) were lower than that for group A ($79,117; P < 0.001). Conclusion These findings suggest that an FTEP reduces patients' LOS, perioperative morbidity and hospital charges. PMID:25243545

  12. Traditional healers and the "Fast-Track" HIV response: is success possible without them?

    PubMed

    Leclerc-Madlala, Suzanne; Green, Edward; Hallin, Mary

    2016-07-01

    The rapid scale-up of effective HIV prevention strategies is a central theme of the post-2015 health and development agenda. All major global HIV and AIDS funders have aligned their policies and plans to achieve sharp reductions in new HIV infections and reach epidemic control by 2030. In these "fast-track" plans, increased antiretroviral treatment coverage and the attainment of viral suppression are pivotal, and there is firm recognition of the need for countries to mobilise more domestic resources and build stronger community clinic systems. There is little in these bold plans, however, to suggest that the now 30-year-old call by the World Health Organization (WHO) and other organisations to establish systematic collaborations with the traditional health sector will finally be heeded. In the context of sub-Saharan Africa's HIV epidemic, a significant body of literature demonstrates the critical role that traditional healers can play in improving the success of health programmes, including those for HIV prevention. This paper provides a brief history of collaboration with traditional healers for HIV followed by a description of several successful collaborations and discussion of key elements for success. We argue that the traditional health sector is a major resource that has yet to be sufficiently mobilised against HIV. As we shift from a short-term HIV response to a longer-term and more sustainable response, there is an urgent need to accelerate efforts to leverage and partner with the hundreds of thousands of traditional health practitioners who are already providing health services in communities. Failure to better attune our work to the medical pluralism of communities affected by HIV will continue to hinder HIV programming success and help assure that ambitious post-2015 HIV prevention and control goals are not realised.

  13. Traditional healers and the "Fast-Track" HIV response: is success possible without them?

    PubMed

    Leclerc-Madlala, Suzanne; Green, Edward; Hallin, Mary

    2016-07-01

    The rapid scale-up of effective HIV prevention strategies is a central theme of the post-2015 health and development agenda. All major global HIV and AIDS funders have aligned their policies and plans to achieve sharp reductions in new HIV infections and reach epidemic control by 2030. In these "fast-track" plans, increased antiretroviral treatment coverage and the attainment of viral suppression are pivotal, and there is firm recognition of the need for countries to mobilise more domestic resources and build stronger community clinic systems. There is little in these bold plans, however, to suggest that the now 30-year-old call by the World Health Organization (WHO) and other organisations to establish systematic collaborations with the traditional health sector will finally be heeded. In the context of sub-Saharan Africa's HIV epidemic, a significant body of literature demonstrates the critical role that traditional healers can play in improving the success of health programmes, including those for HIV prevention. This paper provides a brief history of collaboration with traditional healers for HIV followed by a description of several successful collaborations and discussion of key elements for success. We argue that the traditional health sector is a major resource that has yet to be sufficiently mobilised against HIV. As we shift from a short-term HIV response to a longer-term and more sustainable response, there is an urgent need to accelerate efforts to leverage and partner with the hundreds of thousands of traditional health practitioners who are already providing health services in communities. Failure to better attune our work to the medical pluralism of communities affected by HIV will continue to hinder HIV programming success and help assure that ambitious post-2015 HIV prevention and control goals are not realised. PMID:27399048

  14. The Implementation of the Fast Track Program: An Example of a Large-Scale Prevention Science Efficacy Trial

    PubMed Central

    2009-01-01

    In 1990, the Fast Track Project was initiated to evaluate the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders in four demographically diverse American communities (Conduct Problems Prevention Research Group [CPPRG], 1992). Representing a prevention science approach toward community-based preventive intervention, the Fast Track intervention design was based upon the available data base elucidating the epidemiology of risk for conduct disorder and suggesting key causal developmental influences (R. P. Weissberg & M. T. Greenberg, 1998). Critical questions about this approach to prevention center around the extent to which such a science-based program can be effective at (1) engaging community members and stakeholders, (2) maintaining intervention fidelity while responding appropriately to the local norms and needs of communities that vary widely in their demographic and cultural/ethnic composition, and (3) maintaining community engagement in the long-term to support effective and sustainable intervention dissemination. This paper discusses these issues, providing examples from the Fast Track project to illustrate the process of program implementation and the evidence available regarding the success of this science-based program at engaging communities in sustainable and effective ways as partners in prevention programming. PMID:11930968

  15. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468

  16. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  17. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  18. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  19. Lines of Force: Faraday's and Students' Views.

    ERIC Educational Resources Information Center

    Pocovi, M. Cecilia; Finley, Fred

    2002-01-01

    Analyzes how electric and magnetic lines of force were conceived by Faraday and how they are understood by a group of Argentine university students after receiving instruction. Results show that many students possess ideas similar to those of Faraday in that lines of force are conceived as real physical entities responsible for the transmission of…

  20. Michael Faraday's work on optical glass

    NASA Astrophysics Data System (ADS)

    James, Frank A. J. L.

    1991-09-01

    This article discusses Faraday's work of the late 1820s to improve optical glass for the joint Royal Society/Board of Longitude Committee set up for this purpose. It points out the importance of this work for some of Faraday's later physical researches.

  1. Resonant Faraday shield ICRH antenna

    NASA Astrophysics Data System (ADS)

    Cattanei, G.; W7-AS Team

    2002-05-01

    ICRH has proved to be an efficient method of heating the plasma in toroidal devices. The high voltages needed at the coupling structure are, however, a severe handicap of this method. The possibility is investigated of having the highest voltages between the bars of the Faraday shield (FS), where they are both necessary and easier to maintain. For this purpose a resonant Faraday shield (RFS) antenna where the first and last bars of the FS are connected by an inductive strip is proposed. In front of this strip there is a second strip, fed, as in a conventional antenna, by an RF generator. It is shown that if the toroidal length of the FS is larger than λ/2 the strip connecting the bars of the FS acts as the secondary coil of a tuned transformer, the strip fed by the generator being the primary. It is therefore possible, by varying the frequency and the distance between the two strips, i.e. the coupling coefficient, to match the impedance of the primary to that of the generator.

  2. Faraday diagnostics for ALT-3

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the ALT-3 experiment.

  3. Exhausting Attentional Tracking Resources with a Single Fast-Moving Object

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Chen, Wei-Ying

    2012-01-01

    Driving on a busy road, eluding a group of predators, or playing a team sport involves keeping track of multiple moving objects. In typical laboratory tasks, the number of visual targets that humans can track is about four. Three types of theories have been advanced to explain this limit. The fixed-limit theory posits a set number of attentional…

  4. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ˜ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  5. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  6. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  7. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  8. Faraday instability in deformable domains

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves

    2014-11-01

    We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.

  9. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial. PMID:27300815

  10. Costs and Effectiveness of the Fast Track Intervention for Antisocial Behavior

    PubMed Central

    Foster, E. Michael

    2013-01-01

    Background Antisocial behavior is enormously costly to the youth involved, their families, victims, taxpayers and other members of society. These costs are generated by school failure, delinquency and involvement in the juvenile justice system, drug use, health services and other services. For prevention programs to be cost effective, they must reduce these costly behaviors and outcomes. Aim The Fast Track intervention is a 10-year, multi-component prevention program targeting antisocial behavior. The intervention identified children at school entry and provided intervention services over a 10-year period. This study examined the intervention’s impact on outcomes affecting societal costs using data through late adolescence. Methodology The intervention is being evaluated through a multi-cohort, multi-site, multi-year randomized control trial of program participants and comparable children and youth in similar schools, and that study provides the data for these analyses. Schools within four sites (Durham, NC; Nashville, TN; Seattle, WA; and rural central Pennsylvania) were selected as high-risk based on crime and poverty statistics of the neighborhoods they served. Within each site, schools were divided into multiple sets matched for demographics (size, percentage free/reduced lunch, ethnic composition); one set within each pair was randomly assigned to the intervention and one to the control condition. Within participating schools, high-risk children were identified using a multiple-gating procedure. For each of three annual cohorts, all kindergarteners (9,594 total) in 54 schools were screened for classroom conduct problems by teachers. Those children scoring in the top 40% within cohort and site were then solicited for the next stage of screening for home behavior problems by the parents, and 91% agreed (n = 3,274). The teacher and parent screening scores were then standardized within site and combined into a sum score. These summed scores represented a total

  11. Fast TPC Online Tracking on GPUs and Asynchronous Data Processing in the ALICE HLT to facilitate Online Calibration

    NASA Astrophysics Data System (ADS)

    Rohr, David; Gorbunov, Sergey; Krzewicki, Mikolaj; Breitner, Timo; Kretz, Matthias; Lindenstruth, Volker

    2015-12-01

    ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN, which is today the most powerful particle accelerator worldwide. The High Level Trigger (HLT) is an online compute farm of about 200 nodes, which reconstructs events measured by the ALICE detector in real-time. The HLT uses a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs several calibration-sensitive subdetectors, e.g. the TPC (Time Projection Chamber). For a precise reconstruction, the HLT has to perform the calibration online. Online- calibration can make certain Offline calibration steps obsolete and can thus speed up Offline analysis. Looking forward to ALICE Run III starting in 2020, online calibration becomes a necessity. The main detector used for track reconstruction is the TPC. Reconstructing the trajectories in the TPC is the most compute-intense step during event reconstruction. Therefore, a fast tracking implementation is of great importance. Reconstructed TPC tracks build the basis for the calibration making a fast online-tracking mandatory. We present several components developed for the ALICE High Level Trigger to perform fast event reconstruction and to provide features required for online calibration. As first topic, we present our TPC tracker, which employs GPUs to speed up the processing, and which bases on a Cellular Automaton and on the Kalman filter. Our TPC tracking algorithm has been successfully used in 2011 and 2012 in the lead-lead and the proton-lead runs. We have improved it to leverage features of newer GPUs and we have ported it to support OpenCL, CUDA, and CPUs with a single common source code. This makes us vendor independent. As second topic, we present framework extensions required for online calibration. The extensions, however, are generic and can be used for other purposes as well. We have extended the framework to support asynchronous compute

  12. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  13. Michael Faraday's Contributions to Archaeological Chemistry.

    PubMed

    Moshenska, Gabriel

    2015-08-01

    The analysis of ancient artefacts is a long but largely neglected thread within the histories of archaeology and chemistry. This paper examines Michael Faraday's contributions to this nascent field, drawing on his published correspondence and the works of his antiquarian collaborators, and focusing in particular on his analyses of Romano-British and ancient Egyptian artefacts. Faraday examined the materials used in ancient Egyptian mummification, and provided the first proof of the use of lead glazes on Roman ceramics. Beginning with an assessment of Faraday's personal interests and early work on antiquities with Humphry Davy, this paper critically examines the historiography of archaeological chemistry and attempts to place Faraday's work within its institutional, intellectual, and economic contexts. PMID:26307911

  14. Michael Faraday's Contributions to Archaeological Chemistry.

    PubMed

    Moshenska, Gabriel

    2015-08-01

    The analysis of ancient artefacts is a long but largely neglected thread within the histories of archaeology and chemistry. This paper examines Michael Faraday's contributions to this nascent field, drawing on his published correspondence and the works of his antiquarian collaborators, and focusing in particular on his analyses of Romano-British and ancient Egyptian artefacts. Faraday examined the materials used in ancient Egyptian mummification, and provided the first proof of the use of lead glazes on Roman ceramics. Beginning with an assessment of Faraday's personal interests and early work on antiquities with Humphry Davy, this paper critically examines the historiography of archaeological chemistry and attempts to place Faraday's work within its institutional, intellectual, and economic contexts.

  15. Fast-digitizing and track-finding electronics for the vertex detector in the Opal experiment at the Large Electron Positron Collider (LEP) at Cern

    SciTech Connect

    Jaroslawski, S.; Jeffs, M.; Matson, R.; Milborrow, R.; White, D. )

    1990-10-01

    The vertex front-end electronics is described. It comprises fast analog-to-digital conversion circuits and a fast programmable track trigger processor. The function of the electronics is to examine, within one LEP beam crossing (22 {mu}s), data generated in the detector for the evidence of charged particle tracks. Measurements of ionization drift times are based on a gated 93-MHz oscillator synchronized to a precision crystal clock and give points in space. The axial positions of these points along the detector are found by analyzing the difference in time of arrivals of signals at the ends of the detector ({ital z} by timing). Particle tracks are found by 36 track finders operating in parallel and are matched by semicuston coincidence chips. The track information is used in the first stage of data reduction in Opal (the first-level trigger).

  16. Numerical simulation of supersquare patterns in Faraday waves

    NASA Astrophysics Data System (ADS)

    Kahouadji, L.; Périnet, N.; Tuckerman, L. S.; Shin, S.; Chergui, J.; Juric, D.

    2015-06-01

    We report the first simulations of the Faraday instability using the full three-dimensional Navier-Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in rectangular and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett. 6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared to the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the center.

  17. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial

    PubMed Central

    Albert, Dustin; Belsky, Daniel W.; Crowley, D. Max; Latendresse, Shawn J.; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M.; Dodge, Kenneth R.

    2014-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track Randomized Control Trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era. PMID:26106668

  18. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial.

    PubMed

    Albert, Dustin; Belsky, Daniel W; Crowley, D Max; Latendresse, Shawn J; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M; Dodge, Kenneth A

    2015-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track randomized control trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era.

  19. Development of a radiation-hardened SRAM with EDAC algorithm for fast readout CMOS pixel sensors for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Wei, X.; Li, B.; Chen, N.; Wang, J.; Zheng, R.; Gao, W.; Wei, T.; Gao, D.; Hu, Y.

    2014-08-01

    CMOS pixel sensors (CPS) are attractive for use in the innermost particle detectors for charged particle tracking due to their good trade-off between spatial resolution, material budget, radiation hardness, and readout speed. With the requirements of high readout speed and high radiation hardness to total ionizing dose (TID) for particle tracking, fast readout CPS are composed by integrating a data compression block and two SRAM IP cores. However, the radiation hardness of the SRAM IP cores is not as high as that of the other parts in CPS, and thus the radiation hardness of the whole CPS chip is lowered. Especially, when CPS are migrated into 0.18-μm processes, the single event upset (SEU) effects should be also considered besides TID and single event latchup (SEL) effects. This paper presents a radiation-hardened SRAM with enhanced radiation hardness to SEU. An error detection and correction (EDAC) algorithm and a bit-interleaving storage strategy are adopted in the design. The prototype design has been fabricated in a 0.18-μm process. The area of the new SRAM is increased 1.6 times as compared with a non-radiation-hardened SRAM due to the integration of EDAC algorithm and the adoption of radiation hardened layout. The access time is increased from 5 ns to 8 ns due to the integration of EDAC algorithm. The test results indicate that the design satisfy requirements of CPS for charged particle tracking.

  20. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  1. Fast Track Teacher Education: A Review of the Research Literature on "Teach For All" Schemes

    ERIC Educational Resources Information Center

    McConney, Andrew; Price, Anne; Woods-McConney, Amanda

    2012-01-01

    This review of the research literature was commissioned by the New Zealand Post-Primary Teachers Association (PPTA) Te Wehengarua as a means of informing the decision-making of the Association and its members about the Teach For All (TFA) scheme seeking to prepare teachers for New Zealand's schools. The systematic review is about fast track…

  2. A Comparative Study of Postoperative Pulmonary Complications Using Fast Track Regimen and Conservative Analgesic Treatment: A Randomized Clinical Trial

    PubMed Central

    Aghdam, Babak Abri; Golzari, Samad Eslam Jamal; Moghadaszadeh, Majid

    2011-01-01

    Background Postoperative pulmonary complications and pain are important causes of postoperative morbidity following thoracotomy. This study aimed to compare the effects of fast track and conservative treatment regimens on patients undergoing thoracotomy. Materials and Methods In this randomized controlled clinical trial, we recruited 60 patients admitted to the thoracic ICU of Imam Reza Hospital in two matched groups of 30 patients each. Group 1 patients received fast track regimen randomly; whereas, group 2 cases randomly received conservative analgesic regimen after thoracotomy and pulmonary resection. The outcome was determined based on the incidence of pulmonary complications and reduction of post-thoracotomy pain in all patients with forced expiratory volume in one second (FEV1) <75% predicted value which was measured while the patients were in ICU. The length of ICU stay, thoracotomy pain, morbidity, pulmonary complications and mortality were compared in two groups. Results A total of 60 patients, 45 (75%) males and 15(25%) females with ASA class I-III were recruited in this study. Postoperative pulmonary complications were observed in 5 (16.7%) patients in group 1 versus 17 (56.7%) patients in group 2. There were statistically significant differences in development of postoperative pulmonary complications such as atelectasis and prolonged air leak between both groups (P< 0.001 and P = 0.003). There was also a statistically significant difference in the rate of preoperative FEV1 (p = 0.001) and ASA scoring (p = 0.01) and value of FEV1 < 75% predicted in the two groups. The difference in length of ICU stay in two groups was statistically significant (P= 0.003 and P = 0.017 in FEV1 < 75% group). Four patients in group 1 and 9 patients in group 2 had FEV1reduced to less than 75% of predicted value (p = 0.03). Conclusion Using fast track regimen reduced postoperative pain and incidence of some pulmonary complications significantly when compared to the

  3. Michael Faraday and his contribution to anesthesia.

    PubMed

    Bergman, N A

    1992-10-01

    Michael Faraday (1791-1867) was a protégé of Humphry Davy. He became one of Davy's successors as Professor of Chemistry at the Royal Institution of Great Britain. Of Faraday's many brilliant discoveries in chemistry and physics, probably the best remembered today is his work on electromagnetic induction. Faraday's contribution to introduction of anesthesia was his published announcement in 1818 that inhalation of the vapor of ether produced the same effects on mentation and consciousness as the breathing of nitrous oxide. He most likely became familiar with the central nervous system effects of nitrous oxide through his association with Davy, an avid user of the gas. Sulfuric ether was a common, convenient, cheap, and easily available substance, in contrast to nitrous oxide, which required expensive, cumbersome, and probably not widely available apparatus for its production and administration. The capability for inhaling intoxicating vapors eventually became commonly available with the use of ether instead of the gas. The first surgical anesthetics were a consequence of the resulting student "ether frolics." The 1818 announcement on breathing ether vapor was published anonymously; however, notations in Faraday's handwriting in some of his personal books clearly establish Michael Faraday as the author of this brief communication. PMID:1416178

  4. Michael Faraday and his contribution to anesthesia.

    PubMed

    Bergman, N A

    1992-10-01

    Michael Faraday (1791-1867) was a protégé of Humphry Davy. He became one of Davy's successors as Professor of Chemistry at the Royal Institution of Great Britain. Of Faraday's many brilliant discoveries in chemistry and physics, probably the best remembered today is his work on electromagnetic induction. Faraday's contribution to introduction of anesthesia was his published announcement in 1818 that inhalation of the vapor of ether produced the same effects on mentation and consciousness as the breathing of nitrous oxide. He most likely became familiar with the central nervous system effects of nitrous oxide through his association with Davy, an avid user of the gas. Sulfuric ether was a common, convenient, cheap, and easily available substance, in contrast to nitrous oxide, which required expensive, cumbersome, and probably not widely available apparatus for its production and administration. The capability for inhaling intoxicating vapors eventually became commonly available with the use of ether instead of the gas. The first surgical anesthetics were a consequence of the resulting student "ether frolics." The 1818 announcement on breathing ether vapor was published anonymously; however, notations in Faraday's handwriting in some of his personal books clearly establish Michael Faraday as the author of this brief communication.

  5. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  6. Indirect Effects of the Fast Track Intervention on Conduct Disorder Symptoms and Callous-Unemotional Traits: Distinct Pathways Involving Discipline and Warmth.

    PubMed

    Pasalich, Dave S; Witkiewitz, Katie; McMahon, Robert J; Pinderhughes, Ellen E

    2016-04-01

    Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 to 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children's CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively. PMID:26242993

  7. Indirect Effects of the Fast Track Intervention on Conduct Disorder Symptoms and Callous-Unemotional Traits: Distinct Pathways Involving Discipline and Warmth.

    PubMed

    Pasalich, Dave S; Witkiewitz, Katie; McMahon, Robert J; Pinderhughes, Ellen E

    2016-04-01

    Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 to 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children's CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively.

  8. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  9. Evaluation of the influence of pulmonary hypertension in ultra-fast-track anesthesia technique in adult patients undergoing cardiac surgery

    PubMed Central

    da Silva, Paulo Sérgio; Cartacho, Márcio Portugal Trindade; de Castro, Casimiro Cardoso; Salgado Filho, Marcello Fonseca; Brandão, Antônio Carlos Aguiar

    2015-01-01

    Objective To evaluate the influence of pulmonary hypertension in the ultra-fast-track anesthesia technique in adult cardiac surgery. Methods A retrospective study. They were included 40 patients divided into two groups: GI (without pulmonary hypertension) and GII (with pulmonary hypertension). Based on data obtained by transthoracic echocardiography. We considered as the absence of pulmonary hypertension: a pulmonary artery systolic pressure (sPAP) <36 mmHg, with tricuspid regurgitation velocity <2.8 m/s and no additional echocardiographic signs of PH, and PH as presence: a sPAP >40 mmHg associated with additional echocardiographic signs of PH. It was established as influence of pulmonary hypertension: the impossibility of extubation in the operating room, the increase in the time interval for extubation and reintubation the first 24 hours postoperatively. Univariate and multivariate analyzes were performed when necessary. Considered significant a P value <0.05. Results The GI was composed of 21 patients and GII for 19. All patients (100%) were extubated in the operating room in a medium time interval of 17.58±8.06 min with a median of 18 min in GII and 17 min in GI. PH did not increase the time interval for extubation (P=0.397). It required reintubation of 2 patients in GII (5% of the total), without statistically significant as compared to GI (P=0.488). Conclusion In this study, pulmonary hypertension did not influence on ultra-fast-track anesthesia in adult cardiac surgery. PMID:27163419

  10. A "package solution" fast track program can reduce the diagnostic waiting time in head and neck cancer.

    PubMed

    Sorensen, Jesper Roed; Johansen, Jørgen; Gano, Lars; Sørensen, Jens Ahm; Larsen, Stine Rosenkilde; Andersen, Peter Bøgeskov; Thomassen, Anders; Godballe, Christian

    2014-05-01

    In 2007, a fast track program for patients with suspicion of head and neck cancer (HNC) was introduced in Denmark to reduce unnecessary waiting time. The program was based on so called "package solutions" including pre-booked slots for outpatient evaluation, imaging, and diagnostic surgical procedures. The purpose of this study is to present a model for fast track handling of patients suspicious of cancer in the head and neck region and to evaluate the effect of implementation on the diagnostic work up time. Patients with suspicion of HNC referred to the same university department of ENT Head and Neck Surgery during three comparable time intervals 2006-2007, 2007-2008, and 2011-2012 (groups 1-3) were investigated. We recorded the time from patient referral, to first consultation and final diagnosis. The first interval was before initiation of the "package solution", the second just after the introduction, and the third interval represents the current situation. The median time from referral to first consultation was reduced from eight calendar days in group 1 to only one day in groups 2 and 3 (p < 0.001). The combined median time from referral to the final cancer diagnosis decreased from 24 calendar days in group 1 to 7 and 10 days in groups 2 and 3, respectively (p < 0.005). The hit rate of finding malignancy was 41% in group 1, 49% in group 2, and 43% in group 3 with no difference among the groups (p = 0.13). The frequency of newly diagnosed HNC was 19% in group 1, 21% in group 2, and 17% in group 3 (p = 0.52). A "package solution" including pre-booked slots for diagnostic procedures is feasible and can significantly reduce the waiting time for patients with suspicion of HNC. PMID:23775302

  11. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  12. Mode-locking via dissipative Faraday instability

    NASA Astrophysics Data System (ADS)

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  13. Faraday polarization fluctuations of satellite beacon signals

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  14. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  15. The hyperfine Paschen-Back Faraday effect

    NASA Astrophysics Data System (ADS)

    Zentile, Mark A.; Andrews, Rebecca; Weller, Lee; Knappe, Svenja; Adams, Charles S.; Hughes, Ifan G.

    2014-04-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen-Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10-4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87Rb is found to be ˜40 kHz °C-1.

  16. Faraday Waves under Time-Reversed Excitation

    NASA Astrophysics Data System (ADS)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer , Phys. Rev. E 78, 036218 (2008)PLEEE81539-3755]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  17. A fast-initializing digital equalizer with on-line tracking for data communications

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Barksdale, W. J.

    1974-01-01

    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix.

  18. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    SciTech Connect

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  19. Avian pectoral muscle size rapidly tracks body mass changes during flight, fasting and fuelling.

    PubMed

    Lindström, A; Kvist, A; Piersma, T; Dekinga, A; Dietz, M W

    2000-03-01

    We used ultrasonic imaging to monitor short-term changes in the pectoral muscle size of captive red knots Calidris canutus. Pectoral muscle thickness changed rapidly and consistently in parallel with body mass changes caused by flight, fasting and fuelling. Four knots flew repeatedly for 10 h periods in a wind tunnel. Over this period, pectoral muscle thickness decreased in parallel with the decrease in body mass. The change in pectoral muscle thickness during flight was indistinguishable from that during periods of natural and experimental fasting and fuelling. The body-mass-related variation in pectoral muscle thickness between and within individuals was not related to the amount of flight, indicating that changes in avian muscle do not require power-training as in mammals. Our study suggests that it is possible for birds to consume and replace their flight muscles on a time scale short enough to allow these muscles to be used as part of the energy supply for migratory flight. The adaptive significance of the changes in pectoral muscle mass cannot be explained by reproductive needs since our knots were in the early winter phase of their annual cycle. Instead, pectoral muscle mass changes may reflect (i) the breakdown of protein during heavy exercise and its subsequent restoration, (ii) the regulation of flight capacity to maintain optimal flight performance when body mass varies, or (iii) the need for a particular protein:fat ratio in winter survival stores.

  20. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    PubMed

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  1. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  2. Giant Faraday rotation in single- and multilayer graphene

    NASA Astrophysics Data System (ADS)

    Crassee, Iris; Levallois, Julien; Walter, Andrew L.; Ostler, Markus; Bostwick, Aaron; Rotenberg, Eli; Seyller, Thomas; van der Marel, Dirk; Kuzmenko, Alexey B.

    2011-01-01

    The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films-the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon-graphene-turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.

  3. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    PubMed Central

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  4. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    PubMed

    Bosse, Jens B; Tanneti, Nikhila S; Hogue, Ian B; Enquist, Lynn W

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  5. Scientists raise alarms about fast tracking of transoceanic canal through Nicaragua.

    PubMed

    Huete-Pérez, Jorge A; Alvarez, Pedro J J; Schnoor, Jerald L; Rittmann, Bruce E; Clayton, Anthony; Acosta, Maria L; Bicudo, Carlos E M; K Arroyo, Mary T; Brett, Michael T; Campos, Victor M; Chaimovich, Hernan; Jimenez-Cisneros, Blanca; Covich, Alan; Lacerda, Luiz D; Maes, Jean-Michel; Miranda, Julio C; Montenegro-Guillén, Salvador; Ortega-Hegg, Manuel; Urquhart, Gerald R; Vammen, Katherine; Zambrano, Luis

    2015-04-01

    Seeking economic growth and job creation to tackle the nation's extreme poverty, the Nicaraguan government awarded a concession to build an interoceanic canal and associated projects to a recently formed Hong Kong based company with no track record or related expertise. This concession was awarded without a bidding process and in advance of any feasibility, socio-economic or environmental impact assessments; construction has begun without this information. The 278 km long interoceanic canal project may result in significant environmental and social impairments. Of particular concern are damage to Lake Cocibolca, a unique freshwater tropical lake and Central America's main freshwater reservoir; damage to regional biodiversity and ecosystems; and socio-economic impacts. Concerned about the possibly irreparable damage to the environment and to native communities, conservationists and the scientific community at large are urging the Nicaraguan government to devise and reveal an action plan to address and mitigate the possible negative repercussions of this interoceanic canal and associated projects. Critical research needs for preparation of a comprehensive benefit-cost analysis for this megaproject are presented. PMID:25730497

  6. Scientists raise alarms about fast tracking of transoceanic canal through Nicaragua.

    PubMed

    Huete-Pérez, Jorge A; Alvarez, Pedro J J; Schnoor, Jerald L; Rittmann, Bruce E; Clayton, Anthony; Acosta, Maria L; Bicudo, Carlos E M; K Arroyo, Mary T; Brett, Michael T; Campos, Victor M; Chaimovich, Hernan; Jimenez-Cisneros, Blanca; Covich, Alan; Lacerda, Luiz D; Maes, Jean-Michel; Miranda, Julio C; Montenegro-Guillén, Salvador; Ortega-Hegg, Manuel; Urquhart, Gerald R; Vammen, Katherine; Zambrano, Luis

    2015-04-01

    Seeking economic growth and job creation to tackle the nation's extreme poverty, the Nicaraguan government awarded a concession to build an interoceanic canal and associated projects to a recently formed Hong Kong based company with no track record or related expertise. This concession was awarded without a bidding process and in advance of any feasibility, socio-economic or environmental impact assessments; construction has begun without this information. The 278 km long interoceanic canal project may result in significant environmental and social impairments. Of particular concern are damage to Lake Cocibolca, a unique freshwater tropical lake and Central America's main freshwater reservoir; damage to regional biodiversity and ecosystems; and socio-economic impacts. Concerned about the possibly irreparable damage to the environment and to native communities, conservationists and the scientific community at large are urging the Nicaraguan government to devise and reveal an action plan to address and mitigate the possible negative repercussions of this interoceanic canal and associated projects. Critical research needs for preparation of a comprehensive benefit-cost analysis for this megaproject are presented.

  7. Fast internal marker tracking algorithm for onboard MV and kV imaging systems.

    PubMed

    Mao, W; Wiersma, R D; Xing, L

    2008-05-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of approximately 10 frames/sec for the detection of five markers in a 1024 x 768 image are accomplished using an ordinary PC workstation.

  8. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  9. Fast internal marker tracking algorithm for onboard MV and kV imaging systems

    PubMed Central

    Mao, W.; Wiersma, R. D.; Xing, L.

    2008-01-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670

  10. Expanding Support for Education in Fragile States: What Role for the Education for All-Fast Track Initiative? CREATE Pathways to Access. Research Monograph No. 30

    ERIC Educational Resources Information Center

    Turrent, Victoria

    2009-01-01

    The new international aid architecture was established to improve the efficiency and effectiveness of development aid by emphasising country ownership, alignment with national priorities and the harmonisation of donor processes. These features are evident in the Education for All-Fast Track Initiative [EFA-FTI], a global partnership between donor…

  11. Faraday current sensing employing chromatic modulation

    NASA Astrophysics Data System (ADS)

    Jones, G. R.; Li, G.; Spencer, J. W.; Aspey, R. A.; Kong, M. G.

    1998-01-01

    Faraday current sensors using a variety of sensing elements have been investigated extensively for their high sensitivity as well as other advantages [G.L. Lewis et al., Proc. IEE Conf. on The Reliability of Transmission and Distribution Equipment, 1995; Y.N. Ning et al., Optics Lett. 16 (1991); C.M.M. van den Tempel, Appl. Optics 32 (1993)]. Concurrently chromatic modulation techniques have been investigated at the University of Liverpool for use with optical fibre sensors of different types [N.A. Pilling, Ph.D. Thesis, 1992; M.M. Murphy, Ph.D. Thesis, 1991] including Faraday current sensing, for overcoming difficulties with non-referenced intensity modulation systems. In this contribution a brief discussion of the scope of chromatically based Faraday current sensing with particular regard to electric power transmission and distribution industries is given. A novel sensor based upon a Faraday glass block in combination with a BSO crystal in the sensing element is described. The sensor takes advantage of the natural gyrotropy of the BSO which conversely has been previously regarded as a disadvantage. The experimental results obtained indicate that this method offers a novel approach to improving system sensitivity. The extension of the approach from a simple bench top demonstrator to real power systems deployment is also discussed.

  12. QUANTUM ELECTRONIC DEVICES: Cryogenic Faraday isolator

    NASA Astrophysics Data System (ADS)

    Zheleznov, D. S.; Zelenogorskii, V. V.; Katin, E. V.; Mukhin, I. B.; Palashov, O. V.; Khazanov, Efim A.

    2010-05-01

    A Faraday isolator is described in which thermal effects are suppressed by cooling down to liquid nitrogen temperatures. The principal scheme, main characteristics and modifications of the isolator are presented. The isolation degree is studied experimentally for the subkilowatt average laser radiation power. It is shown that the isolator can be used at radiation powers up to tens of kilowatts.

  13. Fiber optic, Faraday rotation current sensor

    SciTech Connect

    Veeser, L.R.; Day, G.W.

    1986-01-01

    At the Second Megagauss Conference in 1979, there were reports of experiments that used the Faraday magneto-optic effect in a glass rod to measure large electric current pulses or magnetic fields. Since then we have seen the development of single-mode optical fibers that can carry polarized light in a closed loop around a current load. A fiber optic Faraday rotation sensor will integrate the flux, instead of sampling it at a discrete point, to get a measurement independent of the current distribution. Early Faraday rotation experiments using optical fibers to measure currents dealt with problems such as fiber birefringence and difficulties in launching light into the tiny fiber cores. We have built on those experiments, working to reduce the effects of shocks and obtaining higher bandwidths, absolute calibration, and computerized recording and data analysis, to develop the Faraday rotation sensors into a routine current diagnostic. For large current pulses we find reduced sensitivity to electromagnetic interference and other backgrounds than for Rogowski loops; often the fiber optic sensors are useful where conductive probes cannot be used at all. In this paper we describe the fiber optic sensors and some practical matters involved in fielding them.

  14. Faraday rotation due to quadratic gravitation

    NASA Astrophysics Data System (ADS)

    Chen, Yihan; Liu, Liping; Tian, Wen-Xiu

    2011-01-01

    The linearized field equations of quadratic gravitation in stationary space-time are written in quasi-Maxwell form. The rotation of the polarization plane for an electromagnetic wave propagating in the gravito-electromagnetic field caused by a rotating gravitational lens is discussed. The influences of the Yukawa potential in quadratic gravitation on the gravitational Faraday rotation are investigated.

  15. Reflections of a Faraday Challenge Day Leader

    ERIC Educational Resources Information Center

    Sewell, Keira

    2014-01-01

    Keira Sewell has just finished her second year as a Challenge Leader for the Faraday Challenge, a STEM-based scheme run by the Institution of Engineering and Technology. Aimed at 12-13 year-old students, its purpose is to engage students in future careers in engineering. Each year, a new challenge is held in over sixty schools and universities…

  16. The Minus Sign in Faraday's Law Revisited

    ERIC Educational Resources Information Center

    O'Sullivan, Colm; Hurley, Donal

    2013-01-01

    By introducing the mathematical concept of orientation, the significance of the minus sign in Faraday's law may be made clear to students with some knowledge of vector calculus. For many students, however, the traditional approach of treating the law as a relationship between positive scalars and of relying on Lenz's law to provide the information…

  17. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  18. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  19. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  20. Monitoring Fast-Moving Landslide in the Three Gorges Area By Offset Tracking Method with High-Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Liao, M.; Shi, X.; Zhang, L.; Balz, T.

    2014-12-01

    Landslide has long been considered as a major geological hazard with great threats to local residents and social economic developments within the Three Gorges area, China. With the regular operation of Three Gorges Dam since 2009, the reservoir water level undergoes an annual cycle from 145 m in early summer to 175 m in early winter caused by storage and discharge operations. Consequently, many ancient landslides were activated by such large variations of water level. One of typical examples is the famous Shuping landslide located in Zigui County. To reduce the risks of landslide collapse, long-term monitoring of ground surface deformation must be carried out. Terrestrial surveillance like GPS and extensometer have been installed at Shuping in 2003. Although these methods can achieve highly accurate displacement measurements, only sparse points can be observed, which is far from the requirement of monitoring vast reservoir area coverage. For such a vast and inaccessible area, D-InSAR and PS-InSAR can measure long-term and continuous displacement trends. Nevertheless, it has been revealed by several studies that InSAR can hardly retrieve accurate deformation signal on fast-moving landslides such as Shuping. Therefore, we further investigated the feasibility and effectiveness of pixel offset tracking (POT) method to detect fast-moving with high-resolution SAR data. One of the key points is to estimate displacement at each pixel through subpixel-level SAR image matching. In order to tackle the difficulties of using traditional POT technique, the point-like target offset tracking (PTOT) is developed. By making use of point-like targets with stable backscattering behavior over long time span, PTOT method is can achieve more reliable results with accuracies at 1/20 of SAR pixel resolution. More importantly, PTOT method can measure two-dimensional displacements, i.e. in both azimuth and slant range direction, while InSAR can measure displacement only along the line

  1. Rapid and complete hitless defragmentation method using a coherent RX LO with fast wavelength tracking in elastic optical networks.

    PubMed

    Proietti, Roberto; Qin, Chuan; Guan, Binbin; Yin, Yawei; Scott, Ryan P; Yu, Runxiang; Yoo, S J B

    2012-11-19

    This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a super-channel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 µs. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40. PMID:23187551

  2. Stroke fast track reduces time delay to neuroimaging and increases use of thrombolysis in an academic medical center in Thailand.

    PubMed

    Ratanakorn, Disya; Keandoungchun, Jesada; Sittichanbuncha, Yuwares; Laothamatas, Jiraporn; Tegeler, Charles H

    2012-01-01

    Delays between hospital arrival and neuroimaging prevented patients from receiving thrombolysis. We report impact of Stroke Fast Track (SFT) on time to imaging, and rates of recombinant tissue plasminogen activator (rt-PA) in eligible patients. Characteristics, time intervals, and rates of rt-PA were evaluated in 464 patients with suspected acute stroke within 7 days (2005-2006). Complete time intervals were available on 380. Median times between emergency room arrival, brain computerized tomography (CT), and CT results were 25 and 45 minutes, respectively, for patients arriving <3 hours from onset, 40, and 65 minutes for those arriving >3 hours, and 35 and 60 minutes for all patients, which is significantly shorter than 2.5 hours to CT in 2004, prior to SFT (P < .0001). Although not different in time to first physician, patients arriving >3 hours had longer times to CT and CT results (P < .001). Overall, 5.5% of ischemic stroke patients received intravenous rt-PA, including 27.1% of those arriving within 3 hours, which represented 100% of all eligible patients, compared with 0% in 2004. SFT reduced time delay in neuroimaging and increased use of rt-PA in Thailand. Continuous quality improvement is needed to achieve best results in each setting, and to insure optimal care for acute stroke patients.

  3. School Outcomes of Aggressive-Disruptive Children: Prediction From Kindergarten Risk Factors and Impact of the Fast Track Prevention Program

    PubMed Central

    Bierman, Karen L.; Coie, John; Dodge, Kenneth; Greenberg, Mark; Lochman, John; McMohan, Robert; Pinderhughes, Ellen

    2013-01-01

    A multi-gate screening process identified 891 children with aggressive-disruptive behavior problems at school entry. Fast Track provided a multi-component preventive intervention in the context of a randomized-controlled design. In addition to psychosocial support and skill training for parents and children, the intervention included intensive reading tutoring in first grade, behavioral management consultation with teachers, and the provision of homework support (as needed) through tenth grade. This study examined the impact of the intervention, as well as the impact of the child's initial aggressive-disruptive behaviors and associated school readiness skills (cognitive ability, reading readiness, attention problems) on academic progress and educational placements during elementary school (Grades 1–4) and during the secondary school years (Grades 7–10), as well as high school graduation. Child behavior problems and skills at school entry predicted school difficulties (low grades, grade retention, placement in a self-contained classroom, behavior disorder classification, and failure to graduate). Disappointingly, intervention did not significantly improve these long-term school outcomes. PMID:23386568

  4. Trajectories of Risk for Early Sexual Activity and Early Substance Use in the Fast Track Prevention Program

    PubMed Central

    2013-01-01

    Children who exhibit early-starting conduct problems are more likely than their peers to initiate sexual activity and substance use at an early age, experience pregnancy, and contract a sexually-transmitted disease [STD], placing them at risk for HIV/AIDS. Hence, understanding the development of multi-problem profiles among youth with early-starting conduct problems may benefit the design of prevention programs. In this study, 1,199 kindergarten children (51 % African American; 47 % European American; 69 % boys) over-sampled for high rates of aggressive-disruptive behavior problems were followed through age 18. Latent class analyses (LCA) were used to define developmental profiles associated with the timing of initiation of sexual activity, tobacco and alcohol/drug use and indicators of risky adolescent sex (e.g. pregnancy and STD). Half of the high-risk children were randomized to a multi-component preventive intervention (Fast Track). The intervention did not significantly reduce membership in the classes characterized by risky sex practices. However, additional analyses examined predictors of poor outcomes, which may inform future prevention efforts. PMID:23417666

  5. School outcomes of aggressive-disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program.

    PubMed

    Bierman, Karen L; Coie, John; Dodge, Kenneth; Greenberg, Mark; Lochman, John; McMohan, Robert; Pinderhughes, Ellen

    2013-01-01

    A multi-gate screening process identified 891 children with aggressive-disruptive behavior problems at school entry. Fast Track provided a multi-component preventive intervention in the context of a randomized-controlled design. In addition to psychosocial support and skill training for parents and children, the intervention included intensive reading tutoring in first grade, behavioral management consultation with teachers, and the provision of homework support (as needed) through tenth grade. This study examined the impact of the intervention, as well as the impact of the child's initial aggressive-disruptive behaviors and associated school readiness skills (cognitive ability, reading readiness, attention problems) on academic progress and educational placements during elementary school (Grades 1-4) and during the secondary school years (Grades 7-10), as well as high school graduation. Child behavior problems and skills at school entry predicted school difficulties (low grades, grade retention, placement in a self-contained classroom, behavior disorder classification, and failure to graduate). Disappointingly, intervention did not significantly improve these long-term school outcomes.

  6. School outcomes of aggressive-disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program.

    PubMed

    Bierman, Karen L; Coie, John; Dodge, Kenneth; Greenberg, Mark; Lochman, John; McMohan, Robert; Pinderhughes, Ellen

    2013-01-01

    A multi-gate screening process identified 891 children with aggressive-disruptive behavior problems at school entry. Fast Track provided a multi-component preventive intervention in the context of a randomized-controlled design. In addition to psychosocial support and skill training for parents and children, the intervention included intensive reading tutoring in first grade, behavioral management consultation with teachers, and the provision of homework support (as needed) through tenth grade. This study examined the impact of the intervention, as well as the impact of the child's initial aggressive-disruptive behaviors and associated school readiness skills (cognitive ability, reading readiness, attention problems) on academic progress and educational placements during elementary school (Grades 1-4) and during the secondary school years (Grades 7-10), as well as high school graduation. Child behavior problems and skills at school entry predicted school difficulties (low grades, grade retention, placement in a self-contained classroom, behavior disorder classification, and failure to graduate). Disappointingly, intervention did not significantly improve these long-term school outcomes. PMID:23386568

  7. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  8. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  9. ionFR: Ionospheric Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brueggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-03-01

    ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

  10. Faraday Pilot-Waves: Generation and Propagation

    NASA Astrophysics Data System (ADS)

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  11. Faraday's first dynamo: An alternate analysis

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-02-01

    The steady-state charge densities, electric potential, and current densities are determined analytically in the case of the first dynamo created by Michael Faraday, which consists of a conducting disk rotating between the poles of an off-axis permanent magnet. The results obtained are compared with another work that considered the same problem using a different approach. We also obtain analytical expressions for the total current on the disk and for the dynamo's electromotive force.

  12. MUSIC for Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    2013-03-01

    Faraday rotation measure (RM) synthesis requires the recovery of the Faraday dispersion function (FDF) from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we propose a novel deconvolution method based on an extension of the MUltiple SIgnal Classification (MUSIC) algorithm. The complexity and speed of the method is determined by the eigen-decomposition of the covariance matrix of the observed polarizations. We show numerically that for high to moderate signal-to-noise ratio (S/N) cases the RM-MUSIC method is able to recover the Faraday depth values of closely spaced pairs of thin RM components, even in situations where the peak response of the FDF is outside of the RM range between the two input RM components. This result is particularly important because the standard deconvolution approach based on RM-CLEAN fails systematically in such situations, due to its greedy mechanism used to extract the RM components. For low S/N situations, both the RM-MUSIC and RM-CLEAN methods provide similar results.

  13. On the Fast Track

    ERIC Educational Resources Information Center

    Selingo, Jeffrey

    2006-01-01

    Northeastern University's continuing-education division is being rejuvenated with market research, faculty involvement, and a non-traditional approach under its new vice president Christopher E. Hopey. The college shifted its emphasis from undergraduates to graduate and certificate programs aimed at working professionals, resulting in a 20 percent…

  14. Fast Tracks to Intelligence

    NASA Astrophysics Data System (ADS)

    Calvin, W. H.

    It is often assumed that the evolution of intelligence is inevitable, given the self-organizing seen in dissapative systems and the gradual shaping-up of Darwinism. While compound-interest reasoning suggests that small advantages will eventually triumph, eventually may be a very long time: there are few examples of rapid brain growth, suggesting that "smarter-is-better" is not a potent force for evolution.

  15. Role of epidural anesthesia in a fast track liver resection protocol for cirrhotic patients - results after three years of practice

    PubMed Central

    Siniscalchi, Antonio; Gamberini, Lorenzo; Bardi, Tommaso; Laici, Cristiana; Gamberini, Elisa; Francorsi, Letizia; Faenza, Stefano

    2016-01-01

    AIM To evaluate the potential benefits and risks of the use of epidural anaesthesia within an enhanced recovery protocol in this specific subpopulation. METHODS A retrospective review was conducted, including all cirrhotic patients who underwent open liver resection between January 2013 and December 2015 at Bologna University Hospital. Patients with an abnormal coagulation profile contraindicating the placement of an epidural catheter were excluded from the analysis. The control group was composed by patients refusing epidural anaesthesia. RESULTS Of the 183 cirrhotic patients undergoing open liver resections, 57 had contraindications to the placement of an epidural catheter; of the remaining 126, 86 patients received general anaesthesia and 40 combined anaesthesia. The two groups presented homogeneous characteristics. Intraoperatively the metabolic data did not differ between the two groups, whilst the epidural group had a lower mean arterial pressure (P = 0.041) and received more colloid infusions (P = 0.007). Postoperative liver and kidney function did not differ significantly. Length of mechanical ventilation (P = 0.003) and hospital stay (P = 0.032) were significantly lower in the epidural group. No complications related to the epidural catheter placement or removal was recorded. CONCLUSION The use of Epidural Anaesthesia within a fast track protocol for cirrhotic patients undergoing liver resections had a positive impact on the patient’s outcomes and comfort as demonstrated by a significantly lower length of mechanical ventilation and hospital stay in the epidural group. The technique appears to be safely manageable in this fragile population even though these results need confirmation in larger studies. PMID:27660677

  16. Fast-track surgery protocol in elderly patients undergoing laparoscopic radical gastrectomy for gastric cancer: a randomized controlled trial

    PubMed Central

    Liu, Guozheng; Jian, Fengguo; Wang, Xiuqin; Chen, Lin

    2016-01-01

    Aim To study the efficacy of the fast-track surgery (FTS) program combined with laparoscopic radical gastrectomy for elderly gastric cancer (GC) patients. Methods Eighty-four elderly patients diagnosed with GC between September 2014 and August 2015 were recruited to participate in this study and were divided into four groups randomly based on the random number table as follows: FTS + laparoscopic group (Group A, n=21), FTS + laparotomy group (Group B, n=21), conventional perioperative care (CC) + laparoscopic group (Group C, n=21), and CC + laparotomy group (Group D, n=21). Observation indicators include intrasurgery indicators, postoperative recovery indicators, nutritional status indicators, and systemic stress response indicators. Results Preoperative and intraoperative baseline characteristics showed no significant differences between patients in each group (P>0.05). There were no significant differences between each group in nausea and vomiting, intestinal obstruction, urinary retention, incision infection, pulmonary infection, and urinary tract infection after operation (P>0.05). Time of first flatus and postoperative hospital stay time of FTS Group A were the shortest, and total medical cost of this group was the lowest. For all groups, serum albumin, prealbumin, and transferrin significantly decreased, while CRP and interleukin 6 were significantly increased postoperative day 1. From postoperative day 4–7, all indicators of the four groups gradually recovered, but compared with other three groups, those of Group A recovered fastest. Conclusion FTS combined with laparoscopic surgery can promote faster postoperative recovery, improve early postoperative nutritional status, and more effectively reduce postoperative stress reaction, and hence is safe and effective for elderly GC patients. PMID:27330314

  17. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently

  18. Fast-track surgery and exclusive enteral nutrition applied to a rat model of heterotopic intestinal transplantation

    PubMed Central

    XU, XINGWEI; FENG, TAO; GAO, XIN; ZHAO, XIN; LIAO, YANNIAN; JI, WU

    2016-01-01

    The present study applied fast-track surgery (FTS) concepts and exclusive enteral nutrition (EEN) to a rat model of heterotopic intestinal transplantation (HIT). A total of 96 pairs of Sprague-Dawley rats were randomly distributed into three groups, as follows: i) The conventional group (group 1); ii) the FTS group (group 2); and iii) the FTS with EEN group (EEN group). FTS alterations to the HIT protocol were as follows: i) The use of sevoflurane as an anesthetic; ii) alterations to the order of the procedure and iii) a modified suturing technique. In addition, the EEN group rats underwent an early EEN gavage. The operation time, success rate, recovery state and morphological characteristics of the grafts were compared among the groups. The average operative time was significantly decreased in the group 2 and EEN group rats (137.44±16.03 and 139.67±15.25 min, respectively), as compared with the group 1 rats (169.36±13.72 min; P<0.05). In addition, the percentage of rats surviving >14 days was significantly increased in the group 2 (87.5%) and EEN group (90.6%) rats, as compared with the group 1 rats (68.7%; P<0.05). Furthermore, the villi of graft in EEN group appeared longer, and exhibited narrower interspaces. The ischemia-reperfusion injury and mononuclear cell infiltration were attenuated at postoperative day 7. The results of the present study suggested that the application of FTS concepts and EEN gavage to HIT may accelerate recovery and ameliorate graft damage following surgery. PMID:26998015

  19. Role of epidural anesthesia in a fast track liver resection protocol for cirrhotic patients - results after three years of practice

    PubMed Central

    Siniscalchi, Antonio; Gamberini, Lorenzo; Bardi, Tommaso; Laici, Cristiana; Gamberini, Elisa; Francorsi, Letizia; Faenza, Stefano

    2016-01-01

    AIM To evaluate the potential benefits and risks of the use of epidural anaesthesia within an enhanced recovery protocol in this specific subpopulation. METHODS A retrospective review was conducted, including all cirrhotic patients who underwent open liver resection between January 2013 and December 2015 at Bologna University Hospital. Patients with an abnormal coagulation profile contraindicating the placement of an epidural catheter were excluded from the analysis. The control group was composed by patients refusing epidural anaesthesia. RESULTS Of the 183 cirrhotic patients undergoing open liver resections, 57 had contraindications to the placement of an epidural catheter; of the remaining 126, 86 patients received general anaesthesia and 40 combined anaesthesia. The two groups presented homogeneous characteristics. Intraoperatively the metabolic data did not differ between the two groups, whilst the epidural group had a lower mean arterial pressure (P = 0.041) and received more colloid infusions (P = 0.007). Postoperative liver and kidney function did not differ significantly. Length of mechanical ventilation (P = 0.003) and hospital stay (P = 0.032) were significantly lower in the epidural group. No complications related to the epidural catheter placement or removal was recorded. CONCLUSION The use of Epidural Anaesthesia within a fast track protocol for cirrhotic patients undergoing liver resections had a positive impact on the patient’s outcomes and comfort as demonstrated by a significantly lower length of mechanical ventilation and hospital stay in the epidural group. The technique appears to be safely manageable in this fragile population even though these results need confirmation in larger studies.

  20. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators

    NASA Astrophysics Data System (ADS)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  1. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model. PMID:27104711

  2. Acoustic Faraday rotation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  3. Inverse Faraday effect driven by radiation friction

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Popruzhenko, S. V.; Macchi, A.

    2016-07-01

    A collective, macroscopic signature to detect radiation friction in laser–plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar ‘inverse Faraday effect’ is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities \\gt {10}23 {{{W}}{{cm}}}-2.

  4. The impact of the Medicines Control Council backlog and fast-track review system on access to innovative and new generic and biosimilar medicines of public health importance in South Africa.

    PubMed

    Leng, Henry Martin John; Pollock, Allyson M; Sanders, David

    2016-03-17

    The fast-track registration policy of the South African National Department of Health allows for rapid registration of new medicines of public health importance and of all medicines on the Essential Medicines List, most of which are generics. No limit is placed on the number of generic brands of a medicine that can be submitted for fast-track registration. This, together with resource constraints at the regulator, may delay access to important new medicines, new fixed-dose combinations of critical medicines or affordable versions of biological medicines (biosimilars). One reason for not limiting the number of fast-track generic applications was to promote price competition among generic brands. We found this not to be valid, since market share correlated poorly with price. Generic brands with high market share were, mostly, those that were registered first. We propose that the number of generic brands accepted for fast-tracking be limited to not more than seven per medicine.

  5. The impact of the Medicines Control Council backlog and fast-track review system on access to innovative and new generic and biosimilar medicines of public health importance in South Africa.

    PubMed

    Leng, Henry Martin John; Pollock, Allyson M; Sanders, David

    2016-04-01

    The fast-track registration policy of the South African National Department of Health allows for rapid registration of new medicines of public health importance and of all medicines on the Essential Medicines List, most of which are generics. No limit is placed on the number of generic brands of a medicine that can be submitted for fast-track registration. This, together with resource constraints at the regulator, may delay access to important new medicines, new fixed-dose combinations of critical medicines or affordable versions of biological medicines (biosimilars). One reason for not limiting the number of fast-track generic applications was to promote price competition among generic brands. We found this not to be valid, since market share correlated poorly with price. Generic brands with high market share were, mostly, those that were registered first. We propose that the number of generic brands accepted for fast-tracking be limited to not more than seven per medicine. PMID:27032846

  6. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  7. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  8. Faraday diagnostics for R-damage

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the R-Damage experiment.

  9. Micro-position sensor using faraday effect

    SciTech Connect

    McElfresh, Michael; Lucas, Matthew; Silveira, Joseph P.; Groves, Scott E.

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  10. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  11. How Fast Is Your Body Motion? Determining a Sufficient Frame Rate for an Optical Motion Tracking System Using Passive Markers

    PubMed Central

    Song, Min-Ho; Godøy, Rolf Inge

    2016-01-01

    This paper addresses how to determine a sufficient frame (sampling) rate for an optical motion tracking system using passive reflective markers. When using passive markers for the optical motion tracking, avoiding identity confusion between the markers becomes a problem as the speed of motion increases, necessitating a higher frame rate to avoid a failure of the motion tracking caused by marker confusions and/or dropouts. Initially, one might believe that the Nyquist-Shannon sampling rate estimated from the assumed maximal temporal variation of a motion (i.e. a sampling rate at least twice that of the maximum motion frequency) could be the complete solution to the problem. However, this paper shows that also the spatial distance between the markers should be taken into account in determining the suitable frame rate of an optical motion tracking with passive markers. In this paper, a frame rate criterion for the optical tracking using passive markers is theoretically derived and also experimentally verified using a high-quality optical motion tracking system. Both the theoretical and the experimental results showed that the minimum frame rate is proportional to the ratio between the maximum speed of the motion and the minimum spacing between markers, and may also be predicted precisely if the proportional constant is known in advance. The inverse of the proportional constant is here defined as the tracking efficiency constant and it can be easily determined with some test measurements. Moreover, this newly defined constant can provide a new way of evaluating the tracking algorithm performance of an optical tracking system. PMID:26967900

  12. The study of control methods in opto-electronic tracking technology for fast object with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Li, Zhi-jun; Liu, Qiong; Mao, Yao

    2015-10-01

    It is inevitable that tracking high-elevation object exists blind region with horizontal gimbal, need to take some control methods to improve the system for high-elevation target tracking capability and reduce the blind region. This paper compares several common tracking control methods, including compound axis control of dual detector, compound axis control of single detector, compound axis control of single detector with modified guidance, analyzes the principle of operation, advantages and disadvantages, and validates by experiments. The experimental results showed that it is stable and reliable using guide modified compound axis control of single detector when the target position information is more accurate. On the other hand, it is able to meet the needs to track target with high speed and high acceleration using improved compound axis control of single detector when the target position information is not very accurate.

  13. What Is Required to End the AIDS Epidemic as a Public Health Threat by 2030? The Cost and Impact of the Fast-Track Approach

    PubMed Central

    Stover, John; Bollinger, Lori; Izazola, Jose Antonio; Loures, Luiz; DeLay, Paul; Ghys, Peter D.

    2016-01-01

    In 2011 a new Investment Framework was proposed that described how the scale-up of key HIV interventions could dramatically reduce new HIV infections and AIDS-related deaths in low and middle income countries by 2015. This framework included ambitious coverage goals for prevention and treatment services for 2015, resulting in a reduction of new HIV infections by more than half, in line with the goals of the declaration of the UN High Level Meeting in June 2011. However, the approach suggested a leveling in the number of new infections at about 1 million annually—far from the UNAIDS goal of ending AIDS by 2030. In response, UNAIDS has developed the Fast-Track approach that is intended to provide a roadmap to the actions required to achieve this goal. The Fast-Track approach is predicated on a rapid scale-up of focused, effective prevention and treatment services over the next 5 years and then maintaining a high level of programme implementation until 2030. Fast-Track aims to reduce new infections and AIDS-related deaths by 90% from 2010 to 2030 and proposes a set of biomedical, behavioral and enabling intervention targets for 2020 and 2030 to achieve that goal, including the rapid scale-up initiative for antiretroviral treatment known as 90-90-90. Compared to a counterfactual scenario of constant coverage for all services at early-2015 levels, the Fast-Track approach would avert 18 million HIV infections and 11 million deaths from 2016 to 2030 globally. This paper describes the analysis that produced these targets and the estimated resources needed to achieve them in low- and middle-income countries. It indicates that it is possible to achieve these goals with a significant push to achieve rapid scale-up of key interventions between now and 2020. The annual resources required from all sources would rise to US$7.4Bn in low-income countries, US$8.2Bn in lower middle-income countries and US$10.5Bn in upper-middle-income-countries by 2020 before declining

  14. Fast and accurate calibration of an X-ray imager to an electromagnetic tracking system for interventional cardiac procedures.

    PubMed

    Lang, Andrew; Stanton, Douglas; Parthasarathy, Vijay; Jain, Ameet

    2010-01-01

    Cardiovascular disease affects millions of Americans each year. Interventional guidance systems are being developed as treatment options for some of the more delicate procedures, including targeted stem cell therapy. As advanced systems for such types of interventional guidance are being developed, electromagnetic (EM) tracking is coming in demand to perform navigation. To use this EM tracking technology, a calibration is necessary to register the tracker to the imaging system. In this paper we investigate the calibration of an X-ray imaging system to EM tracking. Two specially designed calibration phantoms have been designed for this purpose, each having a rigidly attached EM sensor. From a clinical usability point-of-view, we propose to divide this calibration problem into two steps: i) in initial calibration of the EM sensor to the phantom design using an EM tracked needle to trace out grooves in the phantom surface and ii) segmentation from X-ray images and 3D reconstruction of beads embedded in the phantom in a known geometric pattern. Combining these two steps yields and X-ray-to-EM calibration accuracy of less than 1 mm when overlaying an EM tracked needle on X-ray images.

  15. Algorithm for Unfolding Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-05-23

    Various methods are described to translate Faraday rotation measurements into a useful representation of the dynamic current under investigation[1]. For some experiments, simply counting the “fringes” up to the turnaround point in the recorded Faraday rotation signal is sufficient in determining the peak current within some allowable fringe uncertainty. For many other experiments, a higher demand for unfolding the entire dynamic current profile is required. In such cases, investigators often rely extensively on user interaction on the Faraday rotation data by visually observing the data and making logical decisions on what appears to be turnaround points and/or inflections in the signal. After determining extrema, inflection points, and locations, a piece-wise, ΔI/Δt, representation of the current may be revealed with the proviso of having a reliable Verdet constant of the Faraday fiber or medium and time location for each occurring fringe. In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters such as the Faraday fiber’s Verdet constant and number of loops in the sensor are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform (STFT) which reveals much of the Faraday rotation’s hidden detail necessary for unfolding the dynamic current measurement.

  16. Current measurement by Faraday effect on GEPOPU

    NASA Astrophysics Data System (ADS)

    N, Correa; H, Chuaqui; E, Wyndham; F, Veloso; J, Valenzuela; M, Favre; H, Bhuyan

    2014-05-01

    The design and calibration of an optical current sensor using BK7 glass is presented. The current sensor is based on the polarization rotation by Faraday effect. GEPOPU is a pulsed power generator, double transit time 120ns, 1.5 Ohm impedance, coaxial geometry, where Z pinch experiment are performed. The measurements were performed at the Optics and Plasma Physics Laboratory of Pontificia Universidad Catolica de Chile. The verdet constant for two different optical materials was obtained using He-Ne laser. The values obtained are within the experimental error bars of measurements published in the literature (less than 15% difference). Two different sensor geometries were tried. We present the preliminary results for one of the geometries. The values obtained for the current agree within the measurement error with those obtained by means of a Spice simulation of the generator. Signal traces obtained are completely noise free.

  17. TSAG-based cryogenic Faraday isolator

    NASA Astrophysics Data System (ADS)

    Starobor, Aleksey; Yasyhara, Ryo; Snetkov, Ilya; Mironov, Evgeniy; Palashov, Oleg

    2015-09-01

    Thermooptical and magnetooptical properties of novel magnetoactive crystal terbium-scandium aluminum garnet were investigated at temperature range 80-300 K. It is shown that Verdet constant increases inversely proportional to temperature, and thermally induced depolarization, and the optical power of the thermal lens is reduced significantly with cooling from 290 K to 80 K. According to estimates, TSAG crystals in [1 1 1] orientation allow to create a cryogenic Faraday isolator provides a degree of isolation of 30 dB with the laser power exceeds ∼6 kW, it is estimated that the transition to the [0 0 1] orientation allows to provide degree of isolation of 30 dB at a laser power higher than 400 kW.

  18. Template analysis of a Faraday disk dynamo

    NASA Astrophysics Data System (ADS)

    Moroz, I. M.

    2008-12-01

    In a recent paper Moroz [1] returned to a nonlinear three-dimensional model of dynamo action for a self-exciting Faraday disk dynamo introduced by Hide et al. [2]. Since only two examples of chaotic behaviour were shown in [2], Moroz [1] performed a more extensive analysis of the dynamo model, producing a selection of bifurcation transition diagrams, including those encompassing the two examples of chaotic behaviour in [2]. Unstable periodic orbits were extracted and presented in [1], but no attempt was made to identify the underlying chaotic attractor. We rectify that here. Illustrating the procedure with one of the cases considered in [1], we use some of the unstable periodic orbits to identify a possible template for the chaotic attractor, using ideas from topology [3]. In particular, we investigate how the template is affected by changes in bifurcation parameter.

  19. Scaling behavior of coarsening Faraday heaps.

    PubMed

    van Gerner, Henk Jan; van der Weele, Ko; van der Meer, Devaraj; van der Hoef, Martin A

    2015-10-01

    When a layer of sand is vertically shaken, the surface spontaneously breaks up in a landscape of small conical "Faraday heaps," which merge into larger ones on an ever increasing time scale. We propose a model for the heap dynamics and show analytically that the mean lifetime of the transient state with N heaps scales as N(-2). When there is an abundance of sand, such that the vibrating plate always remains completely covered, this means that the average diameter of the heaps grows as t(1/2). Otherwise, when the sand is less plentiful and parts of the plate get depleted during the coarsening process, the average diameter of the heaps grows more slowly, namely as t(1/3). This result compares well with experimental observations. PMID:26565231

  20. Fluctuation dynamos and their Faraday rotation signatures

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy

    2015-03-01

    We study fluctuation dynamo (FD) action in turbulent systems like galaxy-clusters focusing on the Faraday rotation signature. This is defined as RM = K ∫ L n e B . dl where n e is the thermal electron density, B is the magnetic field, the integration is along the line of sight from the source to the observer, and K = 0.81 rad m-2 cm-3 μG-1 pc-1. We directly compute, using the simulation data, ∫ B . dl, and hence the Faraday rotation measure (RM) over 3N 2 lines of sight, along each x, y and z-directions. We normalise the RM by the rms value expected in a simple model, where a field of strength B rms fills each turbulent cell but is randomly oriented from one turbulent cell to another. This normalised RM is expected to have a nearly zero mean but a non-zero dispersion, σ RM . We show in Fig. 1a and 1b, that a suite of simulations, on saturation, obtain the value of σ RM = 0.4-0.5, and this is independent of P M , R M and the resolution of the run. This is a fairly large value for an intermittent random field; as it is of order 40%-50%, of that expected in a model where B rms strength fields volume fill each turbulent cell, but are randomly oriented from one cell to another. We also find that the regions with a field strength larger than 2B rms contribute only 15-20% to the total RM (see Fig. 1a). This shows that it is the general `sea' of volume filling fluctuating fields that contribute dominantly to the RM produced, rather than the the high field regions.

  1. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  2. Miniature modified Faraday cup for micro electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.

    2008-05-27

    A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.

  3. Adaptive welding of fillet welds using a fast seam-tracking sensor in combination with a standard industrial robot

    NASA Astrophysics Data System (ADS)

    Pischetsrieder, Alexandra

    1996-08-01

    In laser welding, problems often arise from the accuracy required by the laser process, particularly where joints have narrow tolerance limits, e.g. with a fillet weld at an overlap joint. In a number of applications seam-tracking sensors can improve this situation. They are able to detect and follow the joint geometry autonomously. In addition to the tolerances, a varying gap between the parts to weld can cause welding flaws. To solve the problems caused by the height of the gap a functionality for adaptive welding can be integrated into the tracking sensor, rendering possible a determined influence on process parameters. Functional dependencies between the height of the gap and the welding parameters are presented in this paper. To further enhance the accuracy of path tracking the dynamic behavior of the system is investigated. With the integration of these dependencies into the tracking sensor, an algorithm for adaptive welding has been obtained, which takes another step towards the raise of profitability of laser installations by a simplified weld seam preparation and an enhanced stability of the welding process.

  4. Eruptions on the fast track: application of Particle Tracking Velocimetry algorithms to visual and thermal high-speed videos of Strombolian explosions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Monica, Moroni; Jacopo, Taddeucci; Luca, Shindler; Piergiorgio, Scarlato

    2013-04-01

    Strombolian eruptions are characterized by mild, frequent explosions that eject gas and ash- to bomb-sized pyroclasts into the atmosphere. Studying these explosions is crucial, both for direct hazard assessment and for understanding eruption dynamics. Conventional thermal and optical imaging already allows characterizing several eruptive processes, but the quantification of key parameters linked to magma properties and conduit processes requires acquiring images at higher frequency. For example, high speed imaging already demonstrated how the size and the pressure of the gas bubble are linked to the decay of the ejection velocity of the particles, and the origin of the bombs, either fresh or recycled material, could be linked to their thermal evolution. However, the manual processing of the images is time consuming. Consequently, it does not allows neither the routine monitoring nor averaged statistics, since only a few relevant particles - usually the fastest - of a few explosions can be taken into account. In order to understand the dynamics of strombolian eruption, and particularly their cyclic behavior, the quantification of the total mass, heat and energy discharge are a crucial point. In this study, we use a Particle Tracking Velocimetry (PTV) algorithm jointly to traditional images processing to automatically extract the above parameters from visible and thermal high-speed videos of individual Strombolian explosions. PTV is an analysis technique where each single particle is detected and tracked during a series of images. Velocity, acceleration, and temperature can then be deduced and time averaged to get an extensive overview of each explosion. The suitability of PTV and its potential limitations in term of detection and representativity is investigated in various explosions of Stromboli (Italy), Yasur (Vanuatu) and Fuego (Guatemala) volcanoes. On most event, multiple sub-explosion are visible. In each sub-explosion, trends are noticeable : (1) the ejection

  5. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    ERIC Educational Resources Information Center

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  6. Faraday effect based optical fiber current sensor for tokamaks

    SciTech Connect

    Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Megret, P.; Wuilpart, M.

    2011-07-01

    Fiber optical current sensor (FOCS) is a technique considered to be compatible with the ITER nuclear environment. FOCS principle is based on the magneto-optic Faraday effect that produces non-reciprocal circular birefringence when a magnetic field is applied in the propagation direction of the light beam. The magnetic field or the electrical current is deduced from the modification of the state of polarization of light. The linear birefringence of the fiber related with non-perfect manufacturing, temperature changes or stress constitute a parasitic effect that reduces the precision and sensitivity of FOCS. A two-pass optical scheme with a Faraday mirror at the end has been proposed to compensate the influence of linear birefringence. In this paper we perform a Stokes analysis of the two-pass optical scheme to highlight the fact that the linear birefringence is not compensated perfectly by the Faraday mirror when non-reciprocal birefringence such as Faraday effect is also present. (authors)

  7. Principle and applications of Faraday-Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Di, Nan; Zhao, Jianlin

    2010-10-01

    A Faraday-Fabry-Perot (FFP) cavity, composed of an Fabry-Perot (FP) cavity and a piece of Faraday magneto-optical material, is presented. The principle of FFP cavity and its polarization modulation effect are described by use of optical matrix analysis. The result shows that the Faraday rotation is able to be magnified by more than two orders of magnitude in resonant FFP cavity, while different elliptically polarized lights are obtained in non-resonant cavity. Furthermore two novel applications, that is, optical isolator based on passive FFP cavity (FOI) and Faraday-Zeeman dual-frequency laser (FZDL) based on active FFP cavity whose eigen modes operate as circularly polarized lights and whose frequency difference can be adjusted continuously by magnetic field, are introduced. The principles, typical parameters and performance characteristics are analyzed in both applications.

  8. Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber.

    PubMed

    Faez, Sanli; Lahini, Yoav; Weidlich, Stefan; Garmann, Rees F; Wondraczek, Katrin; Zeisberger, Matthias; Schmidt, Markus A; Orrit, Michel; Manoharan, Vinothan N

    2015-12-22

    High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems. PMID:26505649

  9. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  10. Multifrequency control of Faraday wave patterns.

    PubMed

    Topaz, Chad M; Porter, Jeff; Silber, Mary

    2004-12-01

    We show how pattern formation in Faraday waves may be manipulated by varying the harmonic content of the periodic forcing function. Our approach relies on the crucial influence of resonant triad interactions coupling pairs of critical standing wave modes with damped, spatiotemporally resonant modes. Under the assumption of weak damping and forcing, we perform a symmetry-based analysis that reveals the damped modes most relevant for pattern selection, and how the strength of the corresponding triad interactions depends on the forcing frequencies, amplitudes, and phases. In many cases, the further assumption of Hamiltonian structure in the inviscid limit determines whether the given triad interaction has an enhancing or suppressing effect on related patterns. Surprisingly, even for forcing functions with arbitrarily many frequency components, there are at most five frequencies that affect each of the important triad interactions at leading order. The relative phases of those forcing components play a key role, sometimes making the difference between an enhancing and suppressing effect. In numerical examples, we examine the validity of our results for larger values of the damping and forcing. Finally, we apply our findings to one-dimensional periodic patterns obtained with impulsive forcing and to two-dimensional superlattice patterns and quasipatterns obtained with multifrequency forcing.

  11. 1/f Noise Inside a Faraday Cage

    SciTech Connect

    Handel, Peter H.; George, Thomas F.

    2009-04-23

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  12. Linear diffusion into a Faraday cage.

    SciTech Connect

    Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O.; Chen, Kenneth C.

    2011-11-01

    Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated to give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.

  13. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGESBeta

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  14. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  16. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  17. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images

    PubMed Central

    Yang, Lei; Ren, Yanyun; Hu, Huosheng; Tian, Bo

    2015-01-01

    In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. PMID:26378540

  18. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images.

    PubMed

    Yang, Lei; Ren, Yanyun; Hu, Huosheng; Tian, Bo

    2015-09-11

    In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.

  19. Initial impact of the Fast Track prevention trial for conduct problems: I. The high-risk sample. Conduct Problems Prevention Research Group.

    PubMed

    1999-10-01

    Fast Track is a multisite, multicomponent preventive intervention for young children at high risk for long-term antisocial behavior. Based on a comprehensive developmental model, intervention included a universal-level classroom program plus social skills training, academic tutoring, parent training, and home visiting to improve competencies and reduce problems in a high-risk group of children selected in kindergarten. At the end of Grade 1, there were moderate positive effects on children's social, emotional, and academic skills; peer interactions and social status; and conduct problems and special-education use. Parents reported less physical discipline and greater parenting satisfaction/ease of parenting and engaged in more appropriate/consistent discipline, warmth/positive involvement, and involvement with the school. Evidence of differential intervention effects across child gender, race, site, and cohort was minimal. PMID:10535230

  20. Initial impact of the Fast Track prevention trial for conduct problems: I. The high-risk sample. Conduct Problems Prevention Research Group.

    PubMed

    1999-10-01

    Fast Track is a multisite, multicomponent preventive intervention for young children at high risk for long-term antisocial behavior. Based on a comprehensive developmental model, intervention included a universal-level classroom program plus social skills training, academic tutoring, parent training, and home visiting to improve competencies and reduce problems in a high-risk group of children selected in kindergarten. At the end of Grade 1, there were moderate positive effects on children's social, emotional, and academic skills; peer interactions and social status; and conduct problems and special-education use. Parents reported less physical discipline and greater parenting satisfaction/ease of parenting and engaged in more appropriate/consistent discipline, warmth/positive involvement, and involvement with the school. Evidence of differential intervention effects across child gender, race, site, and cohort was minimal.

  1. Safety profile of fast-track extubation in pediatric congenital heart disease surgery patients in a tertiary care hospital of a developing country: An observational prospective study

    PubMed Central

    Akhtar, Mohammad Irfan; Hamid, Mohammad; Minai, Fauzia; Wali, Amina Rehmat; Anwar-ul-Haq; Aman-Ullah, Muneer; Ahsan, Khalid

    2014-01-01

    Background and Aims: Early extubation after cardiac operations is an important aspect of fast-track cardiac anesthesia. In order to reduce or eliminate the adverse effects of prolonged ventilation in pediatric congenital heart disease (CHD) surgical patients, the concept of early extubation has been analyzed at our tertiary care hospital. The current study was carried out to record the data to validate the importance and safety of fast-track extubation (FTE) with evidence. Materials and Methods: A total of 71 patients, including male and female aged 6 months to 18 years belonging to risk adjustment for congenital heart surgery-1 category 1, 2, and 3 were included in this study. All patients were anesthetized with a standardized technique and surgery performed by the same surgeon. At the end of operation, the included patients were assessed for FTE and standard extubation criteria were used for decision making. Results: Of the total 71 patients included in the study, 26 patients (36.62%) were extubated in the operating room, 29 (40.85%) were extubated within 6 h of arrival in cardiovascular intensive care unit and 16 (22.54%) were unable to get extubated within 6 h due to multiple reasons. Hence, overall success rate was 77.47%. The reasons for delayed extubation were significant bleeding in 5 (31.3%) cases, hemodynamic instability (low cardiac output syndrome) in 4 (25%) cases, respiratory complication in 2 (12.5%), bleeding plus hemodynamic instability in 2 (12.5) cases, hemodynamic instability, and respiratory complication in 2 (12.5%) cases and triad of hemodynamic instability, bleeding and respiratory complication in 1 (6.5%) case. There was no reintubation in the FTE cases. Conclusion: On the basis of the current study results, it is recommended to use FTE in pediatric CHD surgical patients safely with multidisciplinary approach. PMID:25190943

  2. Digital fast pattern recognizer for autonomous target recognition and tracking for advanced missile guidance and UAV reconnaissance

    NASA Astrophysics Data System (ADS)

    Hastbacka, Albin A.

    2003-08-01

    A digital Fast Pattern Processor (DFPP) system under development for the Naval Air Warfare Center, is funded under a SBIR, Phase III contract. It is an automatic target recognizer and tracker candidate for supersonic missile guidance and unmanned air vehicle (UAV) reconnaissance to meet the U.S. navy's time-critical strike objectives. The former application requires rapid processing of moderate size, real time image arrays, versus large real time image arrays for the latter case. The DFPP correlates operator selected target filters against observed imagery at 1500 correlations per second as currently implemented with programmable logic devices (PLD's) - equivalent to thirty Pentium III (1 GHz) PC's. High performance and low weight, power, size, cost of the current version make it ideal for on-board image data processing in UAV's and cruise missiles or for ground station processing. Conversion to application specific integrated circuit (ASIC) technology provides scalable performance to meet future ATR/ATT needs. The Sanders proprietary DFPP technology embodies a Power-FFT, which is the fastest digital fast Fourier transform (DFTT) in the world with performance exceeding supercomputers, at a small fraction of the cost, size, weight, and power. The DFPP operates under control of Sanders Correlation Image Processor (SCIP) program and enables correlation against a plethora of stored target filters (templates).

  3. Laplace's equation and Faraday's lines of force

    SciTech Connect

    Narasimhan, T.N.

    2007-06-01

    Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.

  4. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    NASA Astrophysics Data System (ADS)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  5. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions. PMID:24580335

  6. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  7. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Mukai, David; Brenner, Matthew

    2006-04-01

    In this manuscript, a GRIN (gradient index) lens rod based probe for endoscopic spectral domain optical coherence tomography (OCT) with dynamic focus tracking is presented. Current endoscopic OCT systems have a fixed focal plane or working distance. In contrast, the focus of this endoscopic OCT probe can dynamically be adjusted at a high speed (500 mm/s) without changing reference arm length to obtain high quality OCT images for contact or non-contact tissue applications, or for areas of difficult access for probes. The dynamic focusing range of the probe can be from 0 to 7.5 mm without moving the probe itself. The imaging depth is 2.8 mm and the lateral scanning range is up to 2.7 mm or 4.5 mm (determined by the diameter of different GRIN lens rods). Three dimensional imaging can be performed using this system over an area of tissue corresponding to the GRIN lens surface. The experimental results demonstrate that this GRIN lens rod based OCT system can perform a high quality non-contact in vivo imaging. This rigid OCT probe is solid and can be adapted to safely access internal organs, to perform front or side view imaging with an imaging speed of 8 frames per second, with all moving parts proximal to the GRIN lens, and has great potential for use in extremely compact OCT endoscopes for in vivo imaging in both biological research and clinical applications.

  8. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  9. The Interactions between Global Education Initiatives and National Education Policy and Planning Processes: A Comparative Case Study of the Education For All Fast Track Initiative in Rwanda and Ethiopia. CREATE Pathways to Access. Research Monograph No. 67

    ERIC Educational Resources Information Center

    Bermingham, Desmond

    2011-01-01

    The Education for All Fast Track Initiative (FTI) was launched by the World Bank in 2002 as a global initiative to help low income countries accelerate progress towards the MDG target of universal primary education by 2015. Over the past decade, the FTI has expanded to become one of the most important initiatives to emerge out of the Dakar World…

  10. Evaluation of ion collection area in Faraday probes

    SciTech Connect

    Brown, Daniel L.; Gallimore, Alec D.

    2010-06-15

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  11. Faraday rotation effects for diagnosing magnetism in bubble environments

    NASA Astrophysics Data System (ADS)

    Ignace, R.

    2014-05-01

    Faraday rotation is a process by which the position angle (PA) of background linearly polarized light is rotated when passing through an ionized and magnetized medium. The effect is sensitive to the line-of-sight magnetic field in conjunction with the electron density. This contribution highlights diagnostic possibilities of inferring the magnetic field (or absence thereof) in and around wind-blown bubbles from the Faraday effect. Three cases are described as illustrations: a stellar toroidal magnetic field, a shocked interstellar magnetic field, and an interstellar magnetic field within an ionized bubble.

  12. Experimenting with magnetism: Ways of learning of Joann and Faraday

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    1997-09-01

    This paper narrates learning as it evolved through experimental work and interpretation in two distinct investigations: the explorations of permanent magnets and needles conducted by a student, Joann, as I interactively interviewed her, and Faraday's initial experimenting with diamagnetism, as documented in his Diary. Both investigators puzzled over details, revisited their confusions resiliently, and invented analogies as ways of extending their questioning; "misconceptions" and conflict were not explicit to their process. Additionally, Faraday formed interpretations—and doubts critiquing them—that drew upon his extensive experience with magnetism's spatial behaviors. These two cases suggest that physics instruction could include opportunities for students' development of their own investigatory learning.

  13. FARADAY ROTATION DISTRIBUTIONS FROM STELLAR MAGNETISM IN WIND-BLOWN BUBBLES

    SciTech Connect

    Ignace, R.; Pingel, N. M. E-mail: nmpingle@wisc.edu

    2013-03-01

    Faraday rotation is a valuable tool for detecting magnetic fields. Here, the technique is considered in relation to wind-blown bubbles. In the context of spherical winds with azimuthal or split monopole stellar magnetic field geometries, we derive maps of the distribution of position angle (P.A.) rotation of linearly polarized radiation across projected bubbles. We show that the morphology of maps for split monopole fields are distinct from those produced by the toroidal field topology; however, the toroidal case is the one most likely to be detectable because of its slower decline in field strength with distance from the star. We also consider the important case of a bubble with a spherical sub-volume that is field-free to approximate crudely a 'swept-up' wind interaction between a fast wind (or possibly a supernova ejecta shell) overtaking a slower magnetized wind from a prior state of stellar evolution. With an azimuthal field, the resultant P.A. map displays two arc-like features of opposite rotation measure, similar to observations of the supernova remnant G296.5+10.0. We illustrate how P.A. maps can be used to disentangle Faraday rotation contributions made by the interstellar medium versus the bubble. Although our models involve simplifying assumptions, their consideration leads to a number of general robust conclusions for use in the analysis of radio mapping data sets.

  14. All-Fiber Optical Faraday Mirror Using 56-wt%-Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-22

    An all-fiber optical Faraday mirror that consists of a fiber Faraday rotator and a fiber Bragg grating is demonstrated. The fiber Faraday rotator uses a 21-cm-long section of 56-wt%-terbium-doped silicate fiber. The polarization state of the reflected light is rotated 89 degrees +/- 2 degrees with a 16-dB polarization extinction ratio.

  15. Possibility of observing dark matter via the gyromagnetic Faraday effect.

    PubMed

    Gardner, Susan

    2008-02-01

    If dark matter consists of cold, neutral particles with a nonzero magnetic moment, then, in the presence of an external magnetic field, a measurable gyromagnetic Faraday effect becomes possible. This enables direct constraints on the nature and distribution of such dark matter through detailed measurements of the polarization and temperature of the cosmic-microwave background radiation.

  16. Faraday's Investigation of Electromagnetic Induction. Experiment No. 21.

    ERIC Educational Resources Information Center

    Devons, Samuel

    This paper focuses on Michael Faraday's experimental research in electricity in the 1830's. Historical notes related to his work are included as well as experiments, his objectives, and illustrations of equipment for the experiments. Examples from his diary are given so that students can attempt to emulate his honest and systematic manner of…

  17. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  18. Interferometer using a 3 × 3 coupler and Faraday mirrors

    NASA Astrophysics Data System (ADS)

    Breguet, J.; Gisin, N.

    1995-06-01

    A new interferometric setup using a 3 \\times 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations.

  19. Faraday Rotation of Rare Earth Ions in Orthoferrites

    NASA Astrophysics Data System (ADS)

    Gomi, Manabu; Abe, Masanori; Nomura, Soichiro

    1980-09-01

    The Faraday rotation spectra corresponding to the 4I15/2→4F9/2(Er3+) and 3H6→3F2(Tm3+) transitions in ErFeO3 and TmFeO3 were found to be in dissipative and dispersive shapes, respectively, in both the \\varGamma2(Fx) and \\varGamma4(Fz) spin configurations. The Faraday rotation due to the electronic transition of the rare earth ions (R3+) was analysed in terms of the molecular field perturbation acting on the R3+ ions. In the case of the R3+ ions with odd number of electrons such as Er3+(4f11), the crystal field state of the J-multiplet is split into degenerate Kramers doublets which makes the spectrum of the Faraday rotation dissipative when \\varGamma(linewidth)≲\\varDelta(Kramers splitting)≪kT; while in the case of the R3+ ions with even number of electrons such as Tm3+(4f12), the crystal field state is split into nondegenerate singlets, which makes the spectrum of the Faraday rotation dispersive.

  20. Faraday, Dickens and Science Education in Victorian Britain

    ERIC Educational Resources Information Center

    Melville, Wayne; Allingham, Philip V.

    2011-01-01

    The achievements of Michael Faraday in the fields of electricity and electrochemistry have led some to describe him as the greatest experimental scientist in history. Charles Dickens was the creative genius behind some of the most memorable characters in literature. In this article, we share an historical account of how the collaboration of these…

  1. Michael Faraday: Prince of lecturers in Victorian England

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong; Lim, Jeanette B. S.

    2001-01-01

    In this note, we focus on Faraday as a lecturer/teacher. We trace his development as a lecturer/teacher and highlight his approaches in popular-science lecturing and in teaching chemistry to military cadets. We appraise his success and conclude with an account of his poignant last lecture.

  2. Professor Henry, Mr. Faraday, and the Hunt for Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Moyer, Albert E.

    1997-04-01

    On different sides of the Atlantic but about the same time, Michael Faraday and Joseph Henry announced success in a quest that had preoccupied the scientific community for a decade: coaxing electricity from magnetism. "Mutual induction," what Faraday and Henry had identified in the early 1830s, would turn out to be not only a foundational concept in the physics of electricity and magnetism but also the principle behind the technology of electrical transformers and generators--two mainstays of industrialization. Although Faraday's breakthrough in London and Henry's in Albany might appear to be classic examples of "independent discovery," they were not. The two natural philosophers shared a similar orientation toward their research and, moreover, a distinctive laboratory instrument: Henry's new, powerful electromagnet. Thus, the story of Henry's and Faraday's search for induction illuminates not only the workings of Victorian science but also the crucial part that an instrument--the unadorned hardware--can play in scientific inquiry. Albert Moyer takes this story from his biography of Joseph Henry that Smithsonian Institution Press is about to publish in commemoration of the 200th anniversary of Henry's birth. The biography focuses on Henry's early and middle years, 1797-1847, from his emergence as America's foremost physical scientist to his election as the Smithsonian Institution's first director.

  3. Comparison of the single-lumen endotracheal tube and double-lumen endobronchial tube used in minimally invasive cardiac surgery for the fast track protocol

    PubMed Central

    Kim, Hee Young; Je, Hyung Gon; Kim, Tae Kyun; Kim, Hye Jin; Ahn, Ji Hye; Park, Soon Ji

    2016-01-01

    Background Minimally invasive cardiac surgery (MICS) has been more commonly performed due to the reduced amount of bleeding and transfusion and length of hospital stay. We investigated the feasibility of performing MICS using single-lumen endotracheal tube (SLT). Methods We conducted a retrospective review of clinical data of 112 patients who underwent MICS between July 2012 and March 2015. The patients underwent MICS using a SLT or a double lumen endotracheal tube (DLT). The duration of intensive care unit (ICU) stay and mechanical ventilation were recorded and analyzed. Results Of the 96 patients, 50 were intubated with a SLT and 46 were intubated with a DLT. Anesthetic induction to skin incision time, surgical time and total anesthetic time were significant decreased in the SLT group (P<0.05). However, there was no difference in the duration of ICU stay and mechanical ventilation, and the incidence of extubation in operation room between the two groups. Conclusions Comparing with insertion of a SLT, insertion of a DLT provided equivalent duration of ICU stay and mechanical ventilation after the MICS. Therefore, the type of inserted endotracheal tube would not influence on failure of the fast track protocol and insertion of a SLT is feasible and could be an alternative method to a DLT. PMID:27162650

  4. Fast-track surgery in real life: how patient factors influence outcomes and compliance with an enhanced recovery clinical pathway after colorectal surgery.

    PubMed

    Feroci, Francesco; Lenzi, Elisa; Baraghini, Maddalena; Garzi, Alessia; Vannucchi, Andrea; Cantafio, Stefano; Scatizzi, Marco

    2013-06-01

    The aim of this prospective cohort study was to identify the patient factors that predict postoperative deviation from each item of a fast-track colorectal surgery protocol (FT) and these factors' influences on postoperative outcomes. A total of 606 patients with colorectal pathology from 2005 to 2011 were analyzed to assess the relationships between patient factors, the outcome variables, and the items of the FT program. The median length of stay was 5 days, and readmission rate was 2.3%. The morbidity rate was 26.7%. Independent predictors of prolonged length of stay were older than 75 years of age, ASA grade 3 and 4, and the presence of an ileostomy. Independent predictors of morbidity were age above 75 years old and ASA grade, whereas age was confirmed as an independent predictor of mortality. Male sex, age above 75 years old, and ASA 3 and 4 were identified as independent predictors of negative compliance to most of the postoperative FT items.

  5. A Fast-Track Referral System for Skin Lesions Suspicious of Melanoma: Population-Based Cross-Sectional Study from a Plastic Surgery Center

    PubMed Central

    Hansen, Lone Bak

    2016-01-01

    Introduction. To minimize delay between presentation, diagnosis, and treatment of cutaneous melanoma (CM), a national fast-track referral system (FTRS) was implemented in Denmark. The aim of this study was to analyze the referral patterns to our department of skin lesions suspicious of melanoma in the FTRS. Methods. Patients referred to the Department of Plastic Surgery and Breast Surgery in Zealand University Hospital were registered prospectively over a 1-year period in 2014. A cross-sectional study was performed analyzing referral patterns, including patient and tumor characteristics. Results. A total of 556 patients were registered as referred to the center in the FTRS for skin lesions suspicious of melanoma. Among these, a total of 312 patients (56.1%) were diagnosed with CM. Additionally, 41 (7.4%) of the referred patients were diagnosed with in situ melanoma. Conclusion. In total, 353 (63.5%) patients had a malignant or premalignant melanocytic skin lesion. When only considering patients who where referred without a biopsy, the diagnostic accuracy for GPs and dermatologists was 29% and 45%, respectively. We suggest that efforts of adequate training for the referring physicians in diagnosing melanocytic skin lesions will increase diagnostic accuracy, leading to larger capacity in secondary care for the required treatment of malignant skin lesions. PMID:27525117

  6. Relationship between self-reported pain sensitivity and pain after total knee arthroplasty: a prospective study of 71 patients 8 weeks after a standardized fast-track program

    PubMed Central

    Valeberg, Berit T; Høvik, Lise H; Gjeilo, Kari H

    2016-01-01

    Background and purpose This was a prospective cohort study assessing data from 71 adult patients undergoing total knee arthroplasty (TKA) following a standardized fast-track program between January and July 2013. The objective was to examine the relationship between self-rated pain sensitivity, as measured by the Pain Sensitivity Questionnaire (PSQ), and postoperative pain after TKA. Methods The baseline questionnaires, PSQ and Brief Pain Inventory, were given to the patients for self-administration at the presurgical evaluation (1–2 weeks prior to surgery). The follow-up questionnaire, Brief Pain Inventory, was administered at the first follow-up, 8 weeks after surgery. Results A statistically significant association was found between average preoperative pain and average pain 8 weeks after surgery (P=0.001). The PSQ-minor was statistically significantly associated with average pain only for patients younger than 70 years (P=0.03). Interpretation This is the first study to examine the relationship between pain sensitivity measured by PSQ and postoperative pain in patients after TKA. We found that a lower score on the PSQ-minor was statistically significantly associated with patients’ pain 8 weeks after TKA surgery, but only for younger patients. Further research is needed to explore whether the PSQ could be a useful screening tool for patients’ pain sensitivity in clinical settings.

  7. A Fast-Track Referral System for Skin Lesions Suspicious of Melanoma: Population-Based Cross-Sectional Study from a Plastic Surgery Center.

    PubMed

    Jarjis, Reem Dina; Hansen, Lone Bak; Matzen, Steen Henrik

    2016-01-01

    Introduction. To minimize delay between presentation, diagnosis, and treatment of cutaneous melanoma (CM), a national fast-track referral system (FTRS) was implemented in Denmark. The aim of this study was to analyze the referral patterns to our department of skin lesions suspicious of melanoma in the FTRS. Methods. Patients referred to the Department of Plastic Surgery and Breast Surgery in Zealand University Hospital were registered prospectively over a 1-year period in 2014. A cross-sectional study was performed analyzing referral patterns, including patient and tumor characteristics. Results. A total of 556 patients were registered as referred to the center in the FTRS for skin lesions suspicious of melanoma. Among these, a total of 312 patients (56.1%) were diagnosed with CM. Additionally, 41 (7.4%) of the referred patients were diagnosed with in situ melanoma. Conclusion. In total, 353 (63.5%) patients had a malignant or premalignant melanocytic skin lesion. When only considering patients who where referred without a biopsy, the diagnostic accuracy for GPs and dermatologists was 29% and 45%, respectively. We suggest that efforts of adequate training for the referring physicians in diagnosing melanocytic skin lesions will increase diagnostic accuracy, leading to larger capacity in secondary care for the required treatment of malignant skin lesions. PMID:27525117

  8. Relationship between self-reported pain sensitivity and pain after total knee arthroplasty: a prospective study of 71 patients 8 weeks after a standardized fast-track program

    PubMed Central

    Valeberg, Berit T; Høvik, Lise H; Gjeilo, Kari H

    2016-01-01

    Background and purpose This was a prospective cohort study assessing data from 71 adult patients undergoing total knee arthroplasty (TKA) following a standardized fast-track program between January and July 2013. The objective was to examine the relationship between self-rated pain sensitivity, as measured by the Pain Sensitivity Questionnaire (PSQ), and postoperative pain after TKA. Methods The baseline questionnaires, PSQ and Brief Pain Inventory, were given to the patients for self-administration at the presurgical evaluation (1–2 weeks prior to surgery). The follow-up questionnaire, Brief Pain Inventory, was administered at the first follow-up, 8 weeks after surgery. Results A statistically significant association was found between average preoperative pain and average pain 8 weeks after surgery (P=0.001). The PSQ-minor was statistically significantly associated with average pain only for patients younger than 70 years (P=0.03). Interpretation This is the first study to examine the relationship between pain sensitivity measured by PSQ and postoperative pain in patients after TKA. We found that a lower score on the PSQ-minor was statistically significantly associated with patients’ pain 8 weeks after TKA surgery, but only for younger patients. Further research is needed to explore whether the PSQ could be a useful screening tool for patients’ pain sensitivity in clinical settings. PMID:27660489

  9. Fast track endoscopic thoracic sympathicotomy.

    PubMed

    Duarte, João Bosco Vieira; Kux, Peter; Castro, Carlos H V; Cruvinel, Marcos G C; Costa, José R R

    2003-12-01

    The length of hospital stay is an important factor of cost and psychological discomfort in the treatment of hyperhidrosis by endoscopic thoracic sympathicotomy (ETS). Our experience enrolls 1587 patients operated on an outpatient basis in the last 10 years and seven months. This study aimed to confirm that ETS can be performed on an outpatient basis. Fifty-two consecutive patients (30 males and 22 females) were submitted to ETS under general anesthesia using a single lumen endotracheal tube, with lung collapse by intrapleural injection of CO(2). The sympathetic chain and the communicating rami were severed at different levels according to hyperhidrosis location. Patients were physical state American Society of Anesthesiologists 1 and 2. Age varied between 13 and 55 years (27.3 +/- 10.2 years). They were monitored with ECG, SPO2, NIBP, expired CO(2), sevoflurane analyzer, and airway pressure. Normal saline (40.0 +/- 2.7 ml/kg) was infused intravenously. The drugs used were propofol, alfentanil, rocuronium, ondansetron, dexamethasone, dipyrone, cetoprofene and sevoflurane. Anesthesia and post-operative data were analyzed. Post-operative thoracic X-rays were taken in 20 patients before discharge. Anesthesia lasted 67.2 +/- 20.8 minutes, and the surgical procedure took 46.3 +/- 20.9 minutes. The patients stayed 18.0 +/- 11.0 minutes in the post-anaesthetic care unit and were discharged from hospital after 150.3 +/- 43.1 minutes. The only abnormal post-operative event observed was insignificant residual carbothorax, found in 2 (10%) of the thoracic X-rays taken. In conclusion, this study confirmed that ETS can be performed safely on an outpatient basis. PMID:14673677

  10. Monogamy on the fast track.

    PubMed

    Adkins-Regan, Elizabeth; Tomaszycki, Michelle

    2007-12-22

    Social monogamy has evolved multiple times and is particularly common in birds. It is not well understood why some of these species are continuously and permanently paired while others occasionally 'divorce' (switch partners). Although several hypotheses have been considered, experimental tests are uncommon. Estrildid finches are thought to be permanently paired because being short-lived opportunistic breeders, they cannot afford the time to form a new pair relationship. Here it is shown through a controlled experimental manipulation that zebra finches (Taeniopygia guttata) allowed to remain with their partners to breed again are faster to initiate a clutch (by approx. 3 days) than birds separated from their mates that have to re-pair, supporting the hypothesis that continuous pairing speeds up initiation of reproduction, a benefit of long-term monogamy in a small, short-lived, gregarious species. PMID:17848359

  11. A Faraday effect position sensor for interventional magnetic resonance imaging.

    PubMed

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  12. CRADA Final Report, 2011S003, Faraday Technologies

    SciTech Connect

    Faraday Technologies

    2012-12-12

    This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, which has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities

  13. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829).

  14. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  15. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829). PMID:17885273

  16. Giant Faraday and Kerr rotation with strained graphene.

    PubMed

    Martinez, J C; Jalil, M B A; Tan, S G

    2012-08-01

    Polarized electromagnetic waves passing through (reflected from) a dielectric medium parallel to a magnetic field undergo Faraday (Kerr) rotation of their polarization. Recently, Faraday rotation angles as much as 0.1 rad were observed for terahertz waves propagating through graphene over a SiC substrate. We show that the same effect is observable with the magnetic field replaced by an in-plane strain field which induces a pseudomagnetic field in graphene. With two such sheets a rotation of π/4 can be achieved, which is the required rotation for an optical diode. Similarly a Kerr rotation of 1/4 rad is predicted from a single reflection from a strained graphene sheet. PMID:22859144

  17. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    PubMed

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility. PMID:23005636

  18. Sodium and potassium vapor Faraday filters revisited: theory and applications

    SciTech Connect

    Harrell, S. D.; She, C.-Y.; Yuan Tao; Krueger, David A.; Chen, H.; Chen, S. S.; Hu, Z. L.

    2009-04-15

    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed.

  19. A new approach for miniaturization of multiple faraday cup collectors.

    SciTech Connect

    Banar, J. C.; Chamberlin, E. P.; Poths, J.; Perrin, R. E.; Chastagner, P.

    2002-01-01

    The mass spectrometry section in CST-7 has been working for several years on a novel so0lution to overcome the size and placement restrictions of multiple Faraday cup collectors. Use of simultaneous collection of multiple isotopes both increases precision in the isotopic measurements and shortens the data collection time. Our application is for the measurement of the isotopic composition of Xe, ionized in a source that produces a large (10{sup -11} amp) but variable ion beam.

  20. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy. PMID:15324724

  1. Faraday rotation data analysis with least-squares elliptical fitting

    SciTech Connect

    White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D.

    2010-10-15

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.

  2. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy.

  3. Effects of Faraday Rotation Observed in Filter Magnetograph Data

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.

    1999-01-01

    In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.

  4. Design and characterization of a versatile Faraday cup

    NASA Astrophysics Data System (ADS)

    Seamans, J. F.; Kimura, W. D.

    1993-02-01

    The design and characterization of a Faraday cup utilizing modular components are presented. Design specifications were primarily tailored to satisfy the specific electron beam (e-beam) energy (˜375 keV), rise time (˜60 ns), and magnitude (30 A/cm2, peak) used in this work and permit convenient sampling of large e-beam areas up to 7 cm×7 cm. Characterization during evacuated conditions included Z-dependence measurements using beryllium, carbon, aluminum, and lead collector plates. Electron beam transmission measurements were made utilizing combinations of various metal screens and Kapton foils in both gas and evacuated conditions. Gas environments tested were air, krypton, and a Kr/Ar mixture. An attacher gas, SF6, was also added inside the Faraday cup. Results reveal decreasing current densities with increasing gas stopping power and increasing electron propagation distance in a gas. Employing a carbon collector plate and a 25-μm Kapton foil insulator, current densities measured through a 3.6-cm thick 760 Torr air slab are reduced ≤6% from the evacuated Kapton-free condition. Applying profile and full-aperture Faraday cup measurements, a consistent description of the e-beam is also presented.

  5. Toward instructional design principles: Inducing Faraday's law with contrasting cases

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2016-06-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.

  6. Model of fractionalization of Faraday lines in compact electrodynamics

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Motrunich, Olexei I.

    2014-12-01

    Motivated by ideas of fractionalization and intrinsic topological order in bosonic models with short-range interactions, we consider similar phenomena in formal lattice gauge theory models. Specifically, we show that a compact quantum electrodynamics (CQED) can have, besides the familiar Coulomb and confined phases, additional unusual confined phases where excitations are quantum lines carrying fractions of the elementary unit of electric field strength. We construct a model that has N -tupled monopole condensation and realizes 1 /N fractionalization of the quantum Faraday lines. This phase has another excitation which is a ZN quantum surface in spatial dimensions five and higher, but can be viewed as a quantum line or a quantum particle in four or three spatial dimensions, respectively. These excitations have statistical interactions with the fractionalized Faraday lines; for example, in three spatial dimensions, the particle excitation picks up a Berry phase of ei 2 π /N when going around the fractionalized Faraday line excitation. We demonstrate the existence of this phase by Monte Carlo simulations in (3+1) space-time dimensions.

  7. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  8. Comparison of Algorithms for Determination of Rotation Measure and Faraday Structure. I. 1100-1400 MHz

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Rudnick, L.; Akahori, Takuya; Anderson, C. S.; Bell, M. R.; Bray, J. D.; Farnes, J. S.; Ideguchi, S.; Kumazaki, K.; O'Brien, T.; O'Sullivan, S. P.; Scaife, A. M. M.; Stepanov, R.; Stil, J.; Takahashi, K.; van Weeren, R. J.; Wolleben, M.

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, R{{M}wtd}, (2) the separation Δφ of two Faraday components, and (3) the reduced chi-squared χ r2. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for R{{M}wtd} but with significantly higher errors for Δφ . All other methods, including standard Faraday synthesis, frequently identify only one component when Δφ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented work well for

  9. Pattern transition of two-dimensional Faraday waves at an extremely shallow depth

    NASA Astrophysics Data System (ADS)

    Li, XiaoChen; Li, XiaoMing; Liao, ShiJun

    2016-11-01

    In this paper, we experimentally investigate the pattern transition of two-dimensional Faraday waves at an extremely shallow depth in a Hele-Shaw cell. Several patterns of Faraday waves are observed, which have some significant differences in wave profile, wave height and wave length. It is found that, in a wide range of the forcing frequency f, there always exists a region of the acceleration amplitude A, in which there exist the so-called hysteretic jumps between different patterns of Faraday waves. All of these experimental observations could enrich our knowledges about the Faraday waves and would be helpful to the further theoretical studies on the related topic in future.

  10. Comparison of algorithms for determination of rotation measure and Faraday structure. I. 1100–1400 MHz

    SciTech Connect

    Sun, X. H.; Akahori, Takuya; Anderson, C. S.; Farnes, J. S.; O’Sullivan, S. P.; Rudnick, L.; O’Brien, T.; Bell, M. R.; Bray, J. D.; Scaife, A. M. M.; Ideguchi, S.; Kumazaki, K.; Stepanov, R.; Stil, J.; Wolleben, M.; Takahashi, K.; Weeren, R. J. van E-mail: larry@umn.edu

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, RM{sub wtd}, (2) the separation Δϕ of two Faraday components, and (3) the reduced chi-squared χ{sub r}{sup 2}. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for RM{sub wtd} but with significantly higher errors for Δϕ. All other methods, including standard Faraday synthesis, frequently identify only one component when Δϕ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented

  11. Michael Faraday, 30,000 Teenagers and Climate Change

    NASA Astrophysics Data System (ADS)

    Giles, K. A.; Wingham, D. J.

    2006-12-01

    One of the objectives of IPY is to engage the awareness, interest and understanding of schoolchildren, the general public and decision-makers worldwide in the purpose and value of polar research and monitoring. Between January and March 2006 I co-presented the Faraday Lecture, run by the Institution of Engineering Technology, which aims to interest the public, and young people in particular, in science and engineering. The topic of the lecture this year was climate change and the technologies that have the potential to reduce our carbon dioxide emissions. As a research fellow at the Centre for Polar Observation and Modelling, University College London, I was able to use my knowledge of the polar regions to help explain the fundamentals of human induced climate change, from using ice cores for paleoclimate studies to what would happen if Greenland melted. The lecture was attended by 30,000 people, mainly aged between 14 to 16, at theatres across the UK and Asia, as well as broadcast on the web to North America and Europe. While the lecture was generally well received, it was apparent that there are misconceptions about the roles of scientists and engineers and a limited understanding of the polar regions and why they are important. The Faraday Lecture is a useful example of a large-scale vehicle for public understanding of science, and for assessing what works and what does not work when addressing young audiences. We consider the lessons learnt from the Faraday lectures in terms of bringing the IPY activities to the attention of the next generation of polar scientists using not only lectures, but a also wider variety of multi-media techniques.

  12. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. PMID:27410823

  13. RF-sheath assessment of ICRF Faraday Screens

    SciTech Connect

    Colas, L.

    2007-09-28

    The line-integrated parallel RF electric field {delta}V{sub RF} is studied on 'long field lines' radially in front of an ICRF antenna closed by a Faraday screen (FS). Several issues are addressed analytically and numerically. To what extent is a FS necessary to shield {delta}V{sub RF} in presence of magnetized plasma, depending on strap phasing? How efficient is it as a function of FS misalignment on tilted magnetic field? Can a FS attenuate {delta}V{sub RF} produced on antenna frame?.

  14. Spun microstructured optical fibres for Faraday effect current sensors

    SciTech Connect

    Chamorovsky, Yury K; Starostin, Nikolay I; Morshnev, Sergey K; Gubin, Vladimir P; Ryabko, Maksim V; Sazonov, Aleksandr I; Vorob'ev, Igor' L

    2009-11-30

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is {approx}70% that of an ideal fibre, in good agreement with theoretical predictions. (optical fibres and fibreoptic sensors)

  15. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of…

  16. A Left-Hand Rule for Faraday's Law

    ERIC Educational Resources Information Center

    Salu, Yehuda

    2014-01-01

    A left-hand rule for Faraday's law is presented here. This rule provides a simple and quick way of finding directional relationships between variables of Faraday's law without using Lenz's rule.

  17. Technology development for the Solar Probe Plus Faraday Cup

    NASA Astrophysics Data System (ADS)

    Freeman, Mark D.; Kasper, Justin; Case, Anthony W.; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Étienne; Balat-Pichelin, Marianne; Wright, Kenneth

    2013-09-01

    The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP's Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly exposed to the solar disk, where at closest approach to the Sun (less than 10 solar radii (Rs) from the center of the Sun) the intensity is greater than 475 earth-suns. These challenges range from materials characterization at temperatures in excess of 1400°C to thermal modeling of the behavior of the materials and their interactions at these temperatures. We discuss the trades that have resulted in the material selection for the current design of the Faraday Cup. Specific challenges include the material selection and mechanical design of insulators, particularly for the high-voltage (up to 8 kV) grid and coaxial supply line, and thermo-optical techniques to minimize temperatures in the SPC, with the specific intent of demonstrating Technology Readiness Level 6 by the end of 2013.

  18. A Faraday effect position sensor for interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bock, M.; Umathum, R.; Sikora, J.; Brenner, S.; Aguor, E. N.; Semmler, W.

    2006-02-01

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m-1 gradient field, a localization uncertainty of 1.5 cm could be achieved. This paper has been presented in parts at the 11th Annual Meeting of the International Society for Magnetic Resonance in Medicine in Toronto, 2003.

  19. Protection characteristics of a Faraday cage compromised by lightning burnthrough.

    SciTech Connect

    Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt; Montoya, Sandra L.; Merewether, Kimball O.; Coats, Rebecca Sue; Martinez, Leonard E.; Jojola, John M.

    2012-01-01

    A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

  20. The continuity of scientific discovery and its communication: the example of Michael Faraday.

    PubMed

    Gross, Alan G

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday's first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences' varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  1. The continuity of scientific discovery and its communication: the example of Michael Faraday.

    PubMed

    Gross, Alan G

    2009-02-25

    This paper documents the cognitive strategies that led to Faraday's first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences' varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight.

  2. Faraday rotation as a probe of coronal and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore

    Faraday rotation observations of polarized radiation from natural radio sources yield a unique diagnostic of coronal and astrophysical plasmas. We made observations of the radiogalaxy 4C+03.01 seen through the solar corona when the source was at a distance of 8.6 solar radii from the Sun. Nearly continuous polarimetric observations were made on March 28, 1997 with the Very Large Array (VLA) at frequencies of 1465 and 1635 MHz. Dual frequency polarization measurements yield the rotation measure, a quantity that is proportional to the product along the line of sight of the electron density and the line-of-sight component of the magnetic field. We measure a rotation measure of +6.2 +/- 1.0 rad m-2 attributable to the corona. We obtain a weak detection of rotation measure fluctuations which may be due to coronal Alfvén waves and derive model-dependent upper limits to the Alfvén wave flux at the coronal base. We also report dual frequency linear polarization observations of thirteen polarized radio sources made on four days in May 1997 at elongations ranging from 5 to 14 solar radii. A tridimensional model of the solar minimum corona was found to be in excellent agreement with the observed rotation measures and deviations from the values predicted by the model were suggestive of long wavelength coronal Alfvén waves. These observations were also used for detection of high frequency magnetohydrodynamic waves. These waves can be detected through a Faraday screen depolarization mechanism, that is a reduction of the observed degree of linear polarization of an extended polarized source when viewed through a medium in which the Faraday rotation varies randomly. The observations show no detectable depolarization, and rule out some turbulence models. Finally we derive expressions for auto- and cross- correlation functions of the Stokes parameters Q and U of the galactic synchrotron radiation. Fluctuations in the polarization characteristics of the galactic synchrotron

  3. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    SciTech Connect

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H; Sayukov, Igor M; Schultz, Larry J; Urbaitis, Algis V; Volegov, Petr L; Wurden, Caroline J

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.

  4. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  5. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds. PMID:24007051

  6. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  7. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  8. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  9. Classical and quantum dynamics of the Faraday lines of force

    SciTech Connect

    Frittelli, S.; Koshti, S.; Newman, E.T.; Rovelli, C. )

    1994-06-15

    We study the vacuum Maxwell theory by expressing the electric field in terms of its Faraday lines of force. This representation allows us to capture the two physical degrees of freedom of the electric field by means of two scalar fields. The corresponding classical canonical theory is constructed in terms of four scalar fields, is fully gauge invariant, has an attractive kinematics, but a rather complicated dynamics. The corresponding quantum theory can be constructed in a well-defined functional representation, which we refer to as the Euler representation. This representation turns out to be related to the loop representation. The resulting quantization scheme is, perhaps, of relevance for non-Abelian theories and for gravity.

  10. The response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  11. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Rassbach, M. E.; Dessler, A. J.

    1983-01-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  12. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  13. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  14. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Dessler, A. J.; Rassbach, M. E.

    1983-10-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  15. Improved Probing of the Rosette Nebula Superbubble with Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Savage, Allison H.; Buffo, J. J.; Spangler, S. R.

    2014-01-01

    In a recent paper Savage et al. 2013, ApJ 765, 42, we reported the results of our investigation of the super bubble associated with the Rosette Nebula (NGC 2244). We made linear polarization measurements of 23 extra-galactic radio sources whose lines of sight passed through or close to the Rosette Nebula. The observations were made at frequencies of 4.4GHz, 4.9GHz, and 7.6GHz using the Karl G. Jansky Very Large Array (VLA). We measured an excess rotation measure (RM) of 50-750 rad m-2 for sources whose lines of sight passed through the nebula. We compared our data with two simple plasma models that can reproduce the magnitude and sign of the measured RM. We argued that one of these models, a wind-blown bubble with an outer shock, better represented our data. However, distinguishing between these models requires measurements on more lines of sight. In NRAO project 12A-039, we observed 11 additional radio sources whose lines of sight pass through the shell of the Rosette Nebula to supplement the previous measurements and to further constrain the simple shell models. The 2012 observations cover two 1.024 GHz bands centered at 4.85GHz and 7.25GHz, with sixteen 128MHz sub-bands. This receiver configuration potentially allows for sixteen measurements of the polarization position angle across the sub-bands, which is a vast improvement over the three polarization position angle measurements of the previous data. We report preliminary results of Faraday rotation measurements for these 11 new lines of sight. We also describe similar Faraday rotation observations of the HII region W4/IC1805 undertaken in NRAO program 13A-035. This research was supported at the University of Iowa by grant AST09-07911 and ATM09-56901 from the National Science Foundation.

  16. A fast Fourier transform (FFT)-based along track interferometry (ATI) approach to SAR-based ground moving target indication (GMTI)

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel D.; Zhang, Yuhong

    2014-06-01

    Along-track interferometry (ATI) is used to detect ground moving targets against a stationary background in synthetic aperture radar (SAR) imagery. In this paper, we present a novel approach to multi-channel ATI wherein clutter cancellation is applied to each pixel of the multiple SAR images, followed by a Fourier transform to estimate range rate (Doppler). Range rate estimates allow us to compensate for the cross-range offset of the target, thus geo-locating the targets. We then present a number of benefits to this approach.

  17. The Continuity of Scientific Discovery and Its Communication: The Example of Michael Faraday

    PubMed Central

    Gross, Alan G.

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday’s first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences’ varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  18. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  19. BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES

    SciTech Connect

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-10

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  20. Broadband Radio Polarimetry and Faraday Rotation of 563 Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-01

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1‧ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  1. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  2. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas

    SciTech Connect

    Liu Jian; Qin Hong

    2012-10-15

    Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

  3. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  4. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  5. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  6. Two-dimensional variational vibroequilibria and Faraday's drops

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Ivan; Lukovsky, Ivan; Timokha, Alexander

    2004-11-01

    When contacting with acoustically-vibrated structures a fluid volume can take a [time-averaged] geometric shape differing from capillary equilibrium. In accordance with theorems by Beyer et al. (2001) this shape (vibroequilibrium) furnishes a local minimum of a [quasi-potential energy] functional. The variational problem contains five dimensionless parameters evaluating the fluid volume, the wave number of acoustic field in the fluid domain, the contact angle and two newly-introduced numbers (η1, η2) giving relationships between (surface tension, gravitation) and Kapitsa’s vibrational forces/energy. The paper focuses on negligible small wave numbers (incompressible fluid) and two-dimensional flows. Although the variational problem may in some isolated cases have analytical solutions, it requires in general numerical approaches. Numerical examples simulate experiments by Wolf (1969) and Ganiyev et al. (1977) on vibroequilibria in horizontally vibrating tanks. These show that there appear at least two types of stable vibroequilibria associated with symmetric (possible non-connected) and asymmetric surface shapes. The paper represents also numerical results on flattening and vibrostabilisation of a drop hanging beneath a vibrating plate (experiments by Faraday (1831)).

  7. A sensitive Faraday rotation setup using triple modulation

    SciTech Connect

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-15

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ{sup 2} dependence was observed.

  8. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  9. Fabrication of a high power Faraday isolator by direct bonding

    NASA Astrophysics Data System (ADS)

    Rothhardt, Carolin; Rekas, Miroslaw; Kalkowski, Gerhard; Haarlammert, Nicoletta; Eberhardt, Ramona; Tünnermann, Andreas

    2013-03-01

    With increasing output power of lasers, absorption in optical components grows larger and demands on heat withdrawal become challenging. We report on the fabrication of a Faraday isolator for high power fiber laser applications (P = 1 kW) at a wavelength of 1080 nm and operation at ambient conditions. We investigate direct bonding of Terbium Gallium Garnet to sapphire disks, to benefit from the good heat spreading properties (having a 6-fold higher thermal conductivity than TGG) at high transparency of the latter. Successful bonding was achieved by extensive cleaning of the plane and smooth surfaces prior to low pressure plasma activation. The surfaces to be bonded were then contacted in a vacuum environment at elevated temperature under axial load. Our measurements show that the bonded interface has no measurable influence on transmission properties and bonded samples are stable for laser output powers of at least 260 W. As compared to a single Terbium Gallium Garnet substrate, wavefront aberrations were significantly decreased by bonding sapphire disks to Terbium Gallium Garnet.

  10. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  11. A sensitive Faraday rotation setup using triple modulation.

    PubMed

    Phelps, G; Abney, J; Broering, M; Korsch, W

    2015-07-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ(2) dependence was observed. PMID:26233356

  12. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  13. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  14. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 ‑ (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  15. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  16. Na-Faraday rotation filtering: The optimal point

    PubMed Central

    Kiefer, Wilhelm; Löw, Robert; Wrachtrup, Jörg; Gerhardt, Ilja

    2014-01-01

    Narrow-band optical filtering is required in many spectroscopy applications to suppress unwanted background light. One example is quantum communication where the fidelity is often limited by the performance of the optical filters. This limitation can be circumvented by utilizing the GHz-wide features of a Doppler broadened atomic gas. The anomalous dispersion of atomic vapours enables spectral filtering. These, so-called, Faraday anomalous dispersion optical filters (FADOFs) can be by far better than any commercial filter in terms of bandwidth, transition edge and peak transmission. We present a theoretical and experimental study on the transmission properties of a sodium vapour based FADOF with the aim to find the best combination of optical rotation and intrinsic loss. The relevant parameters, such as magnetic field, temperature, the related optical depth, and polarization state are discussed. The non-trivial interplay of these quantities defines the net performance of the filter. We determine analytically the optimal working conditions, such as transmission and the signal to background ratio and validate the results experimentally. We find a single global optimum for one specific optical path length of the filter. This can now be applied to spectroscopy, guide star applications, or sensing. PMID:25298251

  17. Relation of magnetism and electricity beyond Faraday-Maxwell electrodynamics

    NASA Astrophysics Data System (ADS)

    Kurkin, M. I.; Orlova, N. B.

    2014-11-01

    A comparison has been performed between the Landau-Dzyaloshinskii-Astrov magnetoelectric effects and the electromagnetic effects caused by the electromagnetic Faraday induction and Maxwell displacement currents. The requirement for the spontaneous violation of symmetry relative to space inversion and time reversion is formulated as the condition for the existence of magnetoelectric effects. An analysis is performed of some results obtained by E.A. Turov both personally and in association with colleagues, which made a significant contribution to the development of the science of magnetoelectricity. These results include the development of the scheme of a simplified symmetry analysis for describing collinear spin structures; the use of this scheme for the invariant expansion of thermodynamic potentials for the magnetic materials with different types of magnetic ordering; the formulation of the microscopic model of magnetoelectricity with the use of the relation between spins and electroactive optical phonons; the study of the phenomena of the enhancement of magnetoelectric effects upon the magnetic resonance; the analysis of the opportunities of electrodipole excitation and of the detection of different signals of magnetic resonance; and the study of the manifestations of magnetoelectric effects in magnetoacoustics and optics.

  18. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  19. A sensitive Faraday rotation setup using triple modulation

    NASA Astrophysics Data System (ADS)

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ2 dependence was observed.

  20. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  1. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086

  2. Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Beck, R.; Frick, P.; Stepanov, R.; Sokoloff, D.

    2012-07-01

    Context. Modern radio telescopes allow us to record a large number of spectral channels. The application of a Fourier transform to spectropolarimetric data in radio continuum, Faraday rotation measure (RM) synthesis, yields the “Faraday spectrum”, which hosts valuable information about the magneto-ionic medium along the line of sight. Aims: We investigate whether the method of wavelet-based RM synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Methods: The analysis of spectropolarimetric radio observations of multi-scale targets calls for a corresponding mathematical technique. Wavelets allow us to reformulate the RM synthesis method in a scale-dependent way and to visualize the data as a function of Faraday depth and scale. Results: We present observational tests to recognize magnetic field structures. A region with a regular magnetic field generates a broad “disk” in Faraday space, with two “horns” when the distribution of cosmic-ray electrons is broader than that of the thermal electrons. Each field reversal generates one asymmetric “horn” on top of the “disk”. A region with a turbulent field can be recognized as a “Faraday forest” of many components. These tests are applied to the spectral ranges of various synthesis radio telescopes. We argue that the ratio of maximum to minimum wavelengths determines the range of scales that can be identified in Faraday space. Conclusions: A reliable recognition of magnetic field structures in spiral galaxies or galaxy clusters requires the analysis of data cubes in position-position-Faraday depth space (“PPF cubes”), observed over a wide and continuous frequency range, allowing the recognition of a wide range of scales as well as high resolution in Faraday space. The planned Square Kilometre Array (SKA) will fulfill this condition and will be close to representing a perfect “Faraday

  3. A fast Adaptive-Gain Orientation Filter of inertial/magnetic data for human motion tracking in free-living environments.

    PubMed

    Tian, Ya; Tan, Jindong

    2012-01-01

    High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as Adaptive-Gain Orientation Filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for Earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.

  4. A fast algorithm for non-Newtonian flow. An enhanced particle-tracking finite element code for solving boundary-valve problems in viscoelastic flow

    NASA Astrophysics Data System (ADS)

    Malkus, David S.

    1989-01-01

    This project concerned the development of a new fast finite element algorithm to solve flow problems of non-Newtonian fluids such as solutions or melts of polymers. Many constitutive theories for such materials involve single integrals over the deformation history of the particle at the stress evaluation point; examples are the Doi-Edwards and Curtiss-Bird molecular theories and the BKZ family derived from continuum arguments. These theories are believed to be among the most accurate in describing non-Newtonian effects important to polymer process design, effects such as stress relaxation, shear thinning, and normal stress effects. This research developed an optimized version of the algorithm which would run a factor of two faster than the pilot algorithm on scalar machines and would be able to take full advantage of vectorization on machines. Significant progress was made in code vectorization; code enhancement and streamlining; adaptive memory quadrature; model problems for the High Weissenberg Number Problem; exactly incompressible projection; development of multimesh extrapolation procedures; and solution of problems of physical interest. A portable version of the code is in the final stages of benchmarking and testing. It interfaces with the widely used FIDAP fluid dynamics package.

  5. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells. PMID:27220309

  6. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells.

  7. Urban development change detection based on Multi-Temporal Satellite Images as a fast tracking approach--a case study of Ahwaz County, southwestern Iran.

    PubMed

    Malmir, Maryam; Zarkesh, Mir Masoud Kheirkhah; Monavari, Seyed Masoud; Jozi, Seyed Ali; Sharifi, Esmail

    2015-03-01

    Rapid land-use/land-cover changes in suburbs of metropolitan cities of Iran have recently caused serious environmental damages. Detection of these changes can be a very important step in urban planning and optimal use of natural resources. Accordingly, the present study was carried out to track land-use/land-cover (LULC) changes of Ahwaz County in southwestern Iran using remote sensing techniques over a period of 26 years, from 1987 to 2013. For this, ISODATA algorithm and Maximum Likelihood were initially used for unsupervised and supervised classifications of the satellite images. The accuracy of the LULC maps was checked by the Kappa Coefficient and the Overall Accuracy methods. As the final step, the LULC changes were detected using the cross-tabulation technique. The obtained results indicated that urban and agricultural areas have been increased about 57.5 and 84.5 %, respectively, from 1987 to 2013. Further, the area of poorly vegetated regions, in the same period, has been decreased to approximately 36 %. The largest land conversion area belongs to the poorly vegetated regions, which have been declined to about 10,371 and 1,334 ha during 1987-2007 and 2007-2013, respectively. Approximately 1,670 and 382 ha of the agricultural lands have also been changed to built-up areas by about 1,670 and 382 ha during the same periods. As a result, it was found that the northwest, southwest, and south of the county were highly subjected to urban development. This would be of great importance for urban planning decision-making faced by the planners of the city in the present and future.

  8. Urban development change detection based on Multi-Temporal Satellite Images as a fast tracking approach--a case study of Ahwaz County, southwestern Iran.

    PubMed

    Malmir, Maryam; Zarkesh, Mir Masoud Kheirkhah; Monavari, Seyed Masoud; Jozi, Seyed Ali; Sharifi, Esmail

    2015-03-01

    Rapid land-use/land-cover changes in suburbs of metropolitan cities of Iran have recently caused serious environmental damages. Detection of these changes can be a very important step in urban planning and optimal use of natural resources. Accordingly, the present study was carried out to track land-use/land-cover (LULC) changes of Ahwaz County in southwestern Iran using remote sensing techniques over a period of 26 years, from 1987 to 2013. For this, ISODATA algorithm and Maximum Likelihood were initially used for unsupervised and supervised classifications of the satellite images. The accuracy of the LULC maps was checked by the Kappa Coefficient and the Overall Accuracy methods. As the final step, the LULC changes were detected using the cross-tabulation technique. The obtained results indicated that urban and agricultural areas have been increased about 57.5 and 84.5 %, respectively, from 1987 to 2013. Further, the area of poorly vegetated regions, in the same period, has been decreased to approximately 36 %. The largest land conversion area belongs to the poorly vegetated regions, which have been declined to about 10,371 and 1,334 ha during 1987-2007 and 2007-2013, respectively. Approximately 1,670 and 382 ha of the agricultural lands have also been changed to built-up areas by about 1,670 and 382 ha during the same periods. As a result, it was found that the northwest, southwest, and south of the county were highly subjected to urban development. This would be of great importance for urban planning decision-making faced by the planners of the city in the present and future. PMID:25673271

  9. Fast Ion Conductors

    NASA Astrophysics Data System (ADS)

    Chadwick, Alan V.

    Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.

  10. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    SciTech Connect

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-07-10

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  11. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom-photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  12. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  13. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  14. Liposome bupivacaine (EXPAREL®) for extended pain relief in patients undergoing ileostomy reversal at a single institution with a fast-track discharge protocol: an IMPROVE Phase IV health economics trial

    PubMed Central

    Vogel, Jon D

    2013-01-01

    -related adverse events. Conclusion A liposome bupivacaine-based multimodal analgesic regimen reduced postoperative opioid consumption in patients undergoing ileostomy reversal under a fast-track discharge protocol. A reduction of 21% in LOS (0.8 days) was noted which, although not statistically significant, may be considered clinically meaningful given the already aggressive fast-track discharge program. PMID:23935387

  15. Using chaotic Faraday waves to create a two-dimensional pseudo-thermal bath for floating particles with tunable interaction potentials

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric

    2013-03-01

    Whether chaos in actively driven systems can be described by an effective temperature is an unresolved question in the study of nonlinear physics. We use chaotic Faraday waves to create a two-dimensional pseudo-thermal bath to investigate tunable interactions between floating particles. By vertically oscillating a liquid with an acceleration greater than g we excite the Faraday instability and create surface waves. Increasing this acceleration above some critical value causes this instability to become chaotic with fluctuations over a broad range of length scales. Particles placed on the surface are buffeted by random excitations in analogy to Brownian motion. We can change the ``temperature'' of the pseudo-thermal bath by manipulating the driving frequency and amplitude, a feature of the system we verify using real-time tracking to follow the diffusive movement of a single particle. With an eye toward creating complex self-assembling systems we use this system to measure the tunable interaction potential in two-, three-, and many-particle systems and to probe the effects of particle size, shape, symmetry, and wetting properties.

  16. Michael Faraday on the Learning of Science and Attitudes of Mind

    NASA Astrophysics Data System (ADS)

    Crawford, Elspeth

    The paper makes use of Michael Faraday's ideas about learning, in particular his thoughts about attitudes to the unknowns of science and the development of an attitude which improves scientific decision-making. An invented scenario involving nursery school children demonstrates some attitudes displayed there. Discussion of the scenario and variation in possible outcomes suggests that Faraday's views are relevant to scientific learning in general. The main thesis of the paper is that it is central to learning in science to acknowledge that there is an inner struggle involved in facing unknowns, and that empathy with the fears and expectations of learners is an essential quality if genuinely scientific thought is to develop. It is suggested, following Faraday, that understanding our own feelings while we teach is a pre-requisite to enabling such empathy and that only then will we be in a position to evaluate accurately whether or not our pupils are thinking scientifically.

  17. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  18. Faraday effect in rippled graphene: Magneto-optics and random gauge fields

    NASA Astrophysics Data System (ADS)

    Schiefele, Jürgen; Martin-Moreno, Luis; Guinea, Francisco

    2016-07-01

    A beam of linearly polarized light transmitted through magnetically biased graphene can have its axis of polarization rotated by several degrees after passing the graphene sheet. This large Faraday effect is due to the action of the magnetic field on graphene's charge carriers. As deformations of the graphene membrane result in pseudomagnetic fields acting on the charge carriers, the effect of random mesoscopic corrugations (ripples) can be described as the exposure of graphene to a random pseudomagnetic field. We aim to clarify the interplay of these typically sample inherent fields with the external magnetic bias field and the resulting effect on the Faraday rotation. In principle, random gauge disorder can be identified from a combination of Faraday angle and optical spectroscopy measurements.

  19. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    PubMed

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery. PMID:25004544

  20. Faraday Effect sensor redressed by Nd2Fe14B biasing magnetic film.

    PubMed

    Jiao, Xinbing; Nguyen, Truong Giang; Qian, Bo; Jiang, Chunping; Ma, Lixin

    2012-01-16

    A Faraday Effect sensor with Nd(2)Fe(14)B biasing magnetic film was described. Ta/Nd(2)Fe(14)B/Ta films were grown by magnetron sputtering method. The magnetic domain in the sensor with the Nd(2)Fe(14)B biasing magnetic film can persist its distribution. The average linearity error of Faraday Effect sensor with biasing magnetic film decreased from 1.42% to 0.125% compared with non-biasing magnetic film, and the measurement range increased from 820 Oe to 900 Oe.

  1. Growth and Faraday rotation characteristics of TbVO4 crystals

    NASA Astrophysics Data System (ADS)

    Guo, Feiyun; Chen, Xin; Gong, Zhongliang; Chen, Xiang; Zhao, Bin; Chen, Jianzhong

    2015-09-01

    TbVO4 (TV) single crystals with dimensions of 18 × 18 × 16 mm3 were grown by Czochralski method under different atmosphere. XPS studies revealed the presence of V4+ and Tb4+ in TV crystal grown at 99.9% N2 atmosphere, which caused a wide absorption peak centered at 950 nm in the transmission spectrum. TV crystal grown at 80% N2 + 20% CO2 mixed atmosphere has high transmittance at 600-1500 nm waveband. Faraday rotation spectra of TV crystal were measured. TV crystal has a larger Faraday rotation than terbium gallium garnet (TGG) crystal at 500-1500 nm waveband.

  2. Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Varytis, P.; Pantazopoulos, P. A.; Stefanou, N.

    2016-06-01

    Collective hybridized plasmon modes, which enable strong magnetooptical coupling and consequent enhanced Faraday effect in three-dimensional periodic assemblies of magnetic dielectric nanoparticles coated with a noble-metal shell, are studied by means of rigorous full electrodynamic calculations using an extension of the layer-multiple-scattering method, in conjunction with the effective-medium approximation. A thorough analysis of relevant photonic dispersion diagrams and transmission spectra provides a consistent explanation of the underlying physical mechanisms to a degree that goes beyond existing interpretation. It is shown that properly designed structures of such composite magnetoplasmonic nanoparticles offer a versatile platform for engineering increased and broadband Faraday rotation.

  3. Interaction of vortex lattice with ultrasound and the acoustic Faraday effect

    SciTech Connect

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R. |

    1995-03-27

    The interaction of sound with the vortex lattice is considered for high-{ital T}{sub {ital c}} superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. At low temperatures the Magnus force results in the acoustic Faraday effect; the velocity of sound propagating along the magnetic field depends on the polarization. This effect is linear in the Magnus force and magnetic field in crystals with equivalent {ital a} and {ital b} axes for a field parallel to the {ital c} axis. In the thermally activated flux flow regime, the Faraday effect is caused by electric and magnetic fields induced by vortices and acting on ions.

  4. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

  5. Faraday-effect light-valve arrays for adaptive optical instruments

    SciTech Connect

    Hirleman, E.D.; Dellenback, P.A.

    1987-01-01

    The ability to adapt to a range of measurement conditions by autonomously configuring software or hardware on-line will be an important attribute of next-generation intelligent sensors. This paper reviews the characteristics of spatial light modulators (SLM) with an emphasis on potential integration into adaptive optical instruments. The paper focuses on one type of SLM, a magneto-optic device based on the Faraday effect. Finally, the integration of the Faraday-effect SLM into a laser-diffraction particle-sizing instrument giving it some ability to adapt to the measurement context is discussed.

  6. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  7. Patterns beyond Faraday waves: observation of parametric crossover from Faraday instabilities to the formation of vortex lattices in open dual fluid strata

    NASA Astrophysics Data System (ADS)

    Ohlin, Kjell; Berggren, Karl Fredrik

    2016-07-01

    Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.

  8. If Maxwell Had Worked between Ampere and Faraday: An Historical Fable with a Pedagogical Moral.

    ERIC Educational Resources Information Center

    Jammer, Max; Stachel, John

    1980-01-01

    Describes a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galilean relativity principle are introduced before discussion of the Faraday induction term. Rationale for the alternate order of introducing these concepts and laws is explained, relative to their historical development. (CS)

  9. Permanent-magnet Faraday isolator with the field intensity of 25 kOe

    SciTech Connect

    Mironov, E A; Snetkov, I L; Voitovich, A V; Palashov, O V

    2013-08-31

    A Faraday isolator with a single magneto-optical element is constructed and experimentally tested. It provides the isolation ratio of 30 dB at an average laser radiation power of 650 W. These parameters are obtained by increasing the field intensity in the magnetic system of the isolator and employing a low-absorption magneto-optical element. (elements of laser devices)

  10. Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation

    ERIC Educational Resources Information Center

    Lopez-Ramos, A.; Menendez, J. R.; Pique, C.

    2008-01-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…

  11. Faraday and resonant waves in binary collisionally-inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sudharsan, J. B.; Radha, R.; Carina Raportaru, Mihaela; Nicolin, Alexandru I.; Balaž, Antun

    2016-08-01

    We study Faraday and resonant waves in two-component quasi-one-dimensional (cigar-shaped) collisionally inhomogeneous Bose-Einstein condensates subject to periodic modulation of the radial confinement. We show by means of extensive numerical simulations that, as the system exhibits stronger spatially-localised binary collisions (whose scattering length is taken for convenience to be of Gaussian form), the system becomes effectively a linear one. In other words, as the scattering length approaches a delta-function, we observe that the two nonlinear configurations typical for binary cigar-shaped condensates, namely the segregated and the symbiotic one, turn into two overlapping Gaussian wave functions typical for linear systems, and that the instability onset times of the Faraday and resonant waves become longer. Moreover, our numerical simulations show that the spatial period of the excited waves (either resonant or Faraday ones) decreases as the inhomogeneity becomes stronger. Our results also demonstrate that the topology of the ground state impacts the dynamics of the ensuing density waves, and that the instability onset times of Faraday and resonant waves, for a given level of inhomogeneity in the two-body interactions, depend on whether the initial configuration is segregated or symbiotic.

  12. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  13. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  14. Dynamic Interplay of Coherent Rotations and Domain Wall Motion in Faraday Rotators based on Ferromagnetic Crystals

    NASA Astrophysics Data System (ADS)

    Garzarella, Anthony; Wu, Dong; Shinn, Mannix

    Under small, externally-applied magnetic fields, the Faraday rotation in magneto-optic material containing ferromagnetic domains is driven primarily by two principal mechanisms: domain wall motion and coherent domain rotations. Domain wall motion yields a larger Faraday responsivity but is limited by magnetically induced optical incoherence and by damping effects. Coherent domain rotation yields smaller Faraday rotations, but exhibits a flatter and broader frequency response. The two mechanisms occur along orthogonal principal axes and may be probed independently. However, when probed along an oblique angle to the principal axes, the relationship between the Faraday rotation and the external field changes from linear to tensorial. Although this may lead to more complicated phenomena (e.g. a sensitivity axis that depends on RF frequency), the interplay of domain rotation and domain wall motion can be exploited to improve responsivity or bandwidth. The detailed experimental data can be understood in terms of a quantitative model for the magnitude and direction of the responsivity vector. Applications to magnetic field sensors based on arrayed bismuth doped iron garnet films will be emphasized in this presentation.

  15. Design and construction of a Faraday cup for measurement of small electronic currents

    NASA Technical Reports Server (NTRS)

    Veyssiere, A.

    1985-01-01

    The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.

  16. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  17. Michael Faraday on the Learning of Science and Attitudes of Mind.

    ERIC Educational Resources Information Center

    Crawford, Elspeth

    1998-01-01

    Makes use of Michael Faraday's ideas on learning, focusing on his attitudes toward the unknowns of science and the development of an attitude that improves scientific decision making. This approach acknowledges that there is an inner struggle involved in facing unknowns. (DDR)

  18. A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles

    ERIC Educational Resources Information Center

    Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd

    2008-01-01

    As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…

  19. Faraday Rotation Measure Synthesis of Intermediate Redshift Quasars as a Probe of Intervening Matter

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Seong; Lilly, Simon J.; Miniati, Francesco; Bernet, Martin L.; Beck, Rainer; O’Sullivan, Shane P.; Gaensler, Bryan M.

    2016-10-01

    There is evidence that magnetized material along the line of sight to distant quasars is detectable in the polarization properties of the background sources. The polarization properties appear to be correlated with the presence of intervening Mg ii absorption, which is thought to arise in outflowing material from star forming galaxies. In order to investigate this further, we have obtained high spectral resolution polarization measurements, with the Very Large Array and the Australia Telescope Compact Array, of a set of 49 unresolved quasars for which we have high quality optical spectra. These enable us to produce a Faraday Depth spectrum for each source, using Rotation Measure (RM) Synthesis. Our new independent radio data confirms that interveners are strongly associated with depolarization. We characterize the complexity of the Faraday Depth spectrum using a number of parameters and show how these are related, or not, to the depolarization and to the presence of Mg ii absorption along the line of sight. We argue that complexity and structure in the Faraday Depth distribution likely arise from both intervening material and intrinsically to the background source and attempt to separate these. We find that the strong radio depolarization effects associated with intervening material at redshifts out to z≈ 1 arise from inhomogeneous Faraday screens producing a dispersion in RM across individual sources of around 10 rad m‑2. This is likely produced by disordered fields with strengths of at least 3 μG.

  20. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes, the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  1. Magnetooptical Faraday and Light-Scattering Diagnostics of Laser Plasma in Leopard Laser Facility at UNR/NTF

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Yates, K.; Ivanov, V. V.; Sotnikov, V. I.; Yasin, E.; Wiewior, P.; Astanovitsky, A.; Chaly, O.; Kindel, J.

    2009-11-01

    Laser plasma of the solid target on Leopard Laser Facility at University of Nevada Reno was investigated using polarimetry, interferometry and laser-scattering diagnostics. 50 TW Nd:glass Leopard laser operates on 1056 nm wavelength, 10 J energy and 1ns/400 fs pulse width. Power flux on a target surface varied from 10^14 to 10^19W/cm^2 with 20 μm focus spot from off-axis parabola. The diagnostic of spontaneous magnetic fields in laser plasma was carried out using three-channel polarinterferometer with Faraday, shadow and interferogram channels. Ultrafast two-frame shadowgrams/interferograms with two probing beams with orthogonal polarizations were used for investigation of fast moving plasma phenomena (jets, ionization front propagation). Continuous 1W green DPSS-laser with external modulation was used for light scattering experiments for investigation of the late-time micro-particles generation in laser plasma with expected large charge number of the grain Z ˜ 100-1000.

  2. Fast Track to College Act of 2011

    THOMAS, 112th Congress

    Sen. Kohl, Herb [D-WI

    2011-01-25

    01/25/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (text of measure as introduced: CR S225-227) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Fast-Tracked Soyuz Docks to Station

    NASA Video Gallery

    The Soyuz TMA-08M spacecraft carrying three new Expedition 35 crew members docks with the International Space Station at 10:28 p.m. EDT Thursday, completing its accelerated journey to the orbiting ...

  4. Energy science: Fast track for silver

    NASA Astrophysics Data System (ADS)

    Nilges, Tom

    2016-08-01

    A solid composite material has been made that conducts electricity through the rapid transport of silver ions, which diffuse faster than in some liquids. The material holds promise for applications in charge-storage devices. See Article p.159

  5. FAST TRACK COMMUNICATION: A dark energy multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador; Martín-Moruno, Prado; Rozas-Fernández, Alberto; González-Díaz, Pedro F.

    2007-05-01

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe.

  6. FAST TRACK COMMUNICATION: Big Bounce and inhomogeneities

    NASA Astrophysics Data System (ADS)

    Brizuela, David; Mena Marugán, Guillermo A.; Pawłowski, Tomasz

    2010-03-01

    The dynamics of an inhomogeneous universe is studied with the methods of loop quantum cosmology, via a so-called hybrid quantization, as an example of the quantization of vacuum cosmological spacetimes containing gravitational waves (Gowdy spacetimes). The analysis of this model with an infinite number of degrees of freedom, performed at the effective level, shows that (i) the initial Big Bang singularity is replaced (as in the case of homogeneous cosmological models) by a Big Bounce, joining deterministically two large universes, (ii) the universe size at the bounce is at least of the same order of magnitude as that of the background homogeneous universe and (iii) for each gravitational wave mode, the difference in amplitude at very early and very late times has a vanishing statistical average when the bounce dynamics is strongly dominated by the inhomogeneities, whereas this average is positive when the dynamics is in a near-vacuum regime, so that statistically the inhomogeneities are amplified.

  7. Certificates: A Fast Track to Careers

    ERIC Educational Resources Information Center

    Torpey, Elka

    2013-01-01

    Certificates are nondegree awards for completing an educational program of study after high school. Typically, students finish these programs to prepare for a specific occupation. And they do so in a relatively short period of time: Most certificates take less than a year to complete, and almost all are designed to take less than 2 years. Among…

  8. Materials Informatics: Fast Track to New Materials

    SciTech Connect

    Ferris, Kim F.; Peurrung, Loni M.; Marder, James M.

    2007-01-01

    Current methods for new materials development focus on either deeper fundamental-level studies or generation of large quantities of data. The data challenge in materials science is not only the volume of data being generated by many independent investigators, but its heterogeneity and also its complexity that must be transformed, analyzed, correlated and communicated. Materials informatics addresses these issues. Materials informatics is an emerging information-based field combining computational, statistical, and mathematical approaches with materials sciences for accelerating discovery and development of new materials. Within the informatic framework, the various different forms of information form a system architecture, an iterative cycle for transforming data into knowledge.

  9. FAST TRACK COMMUNICATION: Complexified dynamical systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.

    2007-08-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.

  10. Beyond Tracking.

    ERIC Educational Resources Information Center

    Bates, Percy; And Others

    1992-01-01

    On the surface, educational tracking may seem like a useful tool for allowing students to work at their own pace, and to avoid discouraging competition, but abuses of the tracking idea have arisen through biased placement practices that have denied equal access to education for minority students. The articles in this issue explore a number of…

  11. Derailing Tracking.

    ERIC Educational Resources Information Center

    Black, Susan

    1993-01-01

    Reviews recent research on student achievement, self-concept, and curriculum and instruction showing the ineffectiveness of tracking and ability grouping. Certain court rulings show that tracking violates the equal protection clause of the Fourteenth Amendment. Innovative alternatives include cooperative learning, mastery learning, peer tutoring,…

  12. High-dynamic GPS tracking

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Statman, J. I.

    1988-01-01

    The results of comparing four different frequency estimation schemes in the presence of high dynamics and low carrier-to-noise ratios are given. The comparison is based on measured data from a hardware demonstration. The tested algorithms include a digital phase-locked loop, a cross-product automatic frequency tracking loop, and extended Kalman filter, and finally, a fast Fourier transformation-aided cross-product frequency tracking loop. The tracking algorithms are compared on their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. The measured results are shown to agree with simulation results carried out and reported previously.

  13. The CDF II eXtremely fast tracker upgrade

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana /INFN, Pisa /Pisa U. /Ohio State U. /Baylor U. /UC, Davis /Athens Natl. Capodistrian U. /Purdue U. /Fermilab

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  14. Rover tracks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed 'Barnacle Bill.' The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration.

  15. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  16. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  17. Track Segment Finding with the CDFII Online Track Processor

    NASA Astrophysics Data System (ADS)

    Neu, Christopher

    2000-04-01

    With increased accelerator luminosity and detector upgrades, Run II at the Tevatron offers not only unprecedented physics opportunities, but also exciting new technical challenges. At CDF, the new Central Outer Tracker (COT) coupled with the decreased bunch spacing requires the design of a new track processor to identify tracks in the central detector. This critical component of the triggering system must be efficient, fast and accurate. The eXtremely Fast Tracker (XFT) meets these criteria. The XFT is divided into two major subsystems, the segment finder and the segment linker. We report on the XFT's role in the Level 1 triggering system at CDF and the Finder subsytem. The Finder identifies track segments within a 12-wire layer of the COT. The device is highly parallel and makes use of field programmable gate arrays. The design, testing and commissioning of the Finder are detailed.

  18. Investigation of magnetic damping on an air track

    NASA Astrophysics Data System (ADS)

    Xie, Xiao; Wang, Zhu-ying; Gu, Pingping; Jian, Zhi-jian; Chen, Xiao-lin; Xie, Zhong

    2006-11-01

    A more effective experimental method is used to analyze the effect of magnetic damping on a nonferromagnetic air track. Due to the continuous interaction between the horizontal air track and the moving magnets fixed on the air-track glider, the experiment can be easily done with low-cost photoelectric detecting techniques. A simple model is proposed based on Faraday's law, the Lorentz force law, and Ampere's law. Analytic expressions for the position, the velocity, and the magnetic damping force of the moving magnets as a function of time are obtained. Systematic measurements were performed and the results are in good agreement with the model. The method provides a simple teaching platform for introductory physics demonstrations and undergraduate courses in experimental physics.

  19. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  20. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-01

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  1. Probing the gravitational Faraday rotation using quasar X-ray microlensing

    PubMed Central

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  2. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  3. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    PubMed Central

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  4. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  5. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity.

    PubMed

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2012-05-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  6. Field effect tuning of microwave Faraday rotation and isolation with large-area graphene

    NASA Astrophysics Data System (ADS)

    Skulason, Helgi S.; Sounas, Dimitrios L.; Mahvash, Farzaneh; Francoeur, Sebastien; Siaj, Mohamed; Caloz, Christophe; Szkopek, Thomas

    2015-08-01

    We have demonstrated field effect tuning of microwave frequency Faraday rotation in magnetically biased large-area graphene in a hollow circular waveguide isolator geometry. Oxidized intrinsic silicon was used as a microwave transparent back-gate for large-area graphene devices. A 26 dB modulation of isolation in the K-band was achieved with a gate voltage modulation of 10 V corresponding to a carrier density modulation of 7 × 10 11 /cm2. We have developed a simple analytical model for transmission and isolation of the structure. Field effect modulation of Faraday rotation can be extended to other two dimensional electronic systems and is anticipated to be useful for gate voltage controlled isolators, circulators, and other non-reciprocal devices.

  7. The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Jacob, S. Daniel

    2007-01-01

    Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.

  8. Dual role of gravity on the Faraday threshold for immiscible viscous layers.

    PubMed

    Batson, W; Zoueshtiagh, F; Narayanan, R

    2013-12-01

    This work discusses the role of gravity on the Faraday instability, and the differences one can expect to observe in a low-gravity experiment when compared to an earth-based system. These differences are discussed in the context of the viscous linear theory for laterally infinite systems, and a surprising result of the analysis is the existence of a crossover frequency where an interface in low gravity switches from being less to more stable than an earth-based system. We propose this crossover exists in all Faraday systems, and the frequency at which it occurs is shown to be strongly influenced by layer height. In presenting these results physical explanations are provided for the behavior of the predicted forcing amplitude thresholds and wave number selection. PMID:24483552

  9. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    SciTech Connect

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-10-15

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  10. Closing remarks on Faraday Discussion 107: Interactions of acoustic waves with thin films and interfaces

    SciTech Connect

    Martin, S.J.

    1997-11-01

    The papers in this Faraday Discussion represent the state-of-the-art in using acoustic devices to measure the properties of thin films and interfaces. Sauerbrey first showed that the mass sensitivity of a quartz crystal could be used to measure the thickness of vacuum-deposited metals. Since then, significant progress has been made in understanding other interaction mechanisms between acoustic devices and contacting media. Bruckenstein and Shay and Kanazawa and Gordon showed that quartz resonators could be operated in a fluid to measure surface mass accumulation and fluid properties. The increased understanding of interactions between acoustic devices and contacting media has allowed new information to be obtained about thin films and interfaces. These closing remarks will summarize the current state of using acoustic techniques to probe thin films and interfaces, describe the progress reported in this Faraday Discussion, and outline some remaining problems. Progress includes new measurement techniques, novel devices, new applications, and improved modeling and data analysis.

  11. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  12. Explanation of the computer listings of Faraday factors for INTASAT users

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Llewellyn, S. K.; Bent, R. B.; Schmid, P. E.

    1974-01-01

    Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing.

  13. Universal Faraday Rotation in HgTe Wells with Critical Thickness.

    PubMed

    Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model. PMID:27661718

  14. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  15. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  16. Strong interband Faraday rotation in 3D topological insulator Bi2Se3.

    PubMed

    Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  17. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  18. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  19. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  20. Universal Faraday Rotation in HgTe Wells with Critical Thickness

    NASA Astrophysics Data System (ADS)

    Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  1. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  2. Tracking of deformable objects

    NASA Astrophysics Data System (ADS)

    Aswani, Parimal; Wong, K. K.; Chong, Man N.

    2000-12-01

    Tracking of moving-objects in image sequences is needed for several video processing applications such as content-based coding, object oriented compression, object recognition and more recently for video object plane extraction in MPEG-4 coding. Tracking is a natural follow-up of motion-based segmentation. It is a fast and efficient method to achieve coherent motion segments along the temporal axis. Segmenting out moving objects for each and every frame in a video sequence is a computationally expensive approach. Thus, for better performance, semi-automatic segmentation is an acceptable compromise as automatic segmentation approaches rely heavily on prior assumptions. In semi-automatic segmentation approaches, motion-segmentation is performed only on the initial frame and the moving object is tracked in subsequent frames using tracking algorithms. In this paper, a new model for object tracking is proposed, where the image features -- edges, intensity pattern, object motion and initial keyed-in contour (by the user) form the prior and likelihood model of a Markov Random Field (MRF) model. Iterated Conditional Mode (ICM) is used for the minimization of the global energy for the MRF model. The motion segment for each frame is initialized using the segment information from the previous frame. For the initial frame, the motion segment is obtained by manually keying in the object contour. The motion-segments obtained using the proposed model are coherent and accurate. Experimental results on tracking using the proposed algorithm for different sequences -- Bream, Alexis and Claire are presented in this paper. The results obtained are accurate and can be used for a variety of applications including MPEG-4 Video Object Plane (VOP) extraction.

  3. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  4. Analysis of photon-atom entanglement generated by Faraday rotation in a cavity

    SciTech Connect

    Lee, S. K. Y.; Law, C. K.

    2006-05-15

    Faraday rotation based on ac Stark shifts is a mechanism that can entangle the polarization states of photons and atoms. We study the entanglement dynamics inside an optical cavity, and characterize the photon-atom entanglement by using the Schmidt decomposition method. The time dependence of entanglement entropy and the effective Schmidt number are examined. We show that the entanglement can be enhanced by the cavity, and the entanglement entropy can be controlled by the initial fluctuations of atoms and photons.

  5. Faraday effect due to Pauli exclusion principle in 3D topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Leuenberger, Michael N.

    2014-05-01

    3D topological insulator (3D TI) materials have interesting surface states that are protected against scattering due to non-magnetic impurities. They turn out to be useful in quantum information processing. Here, using the 3D Dirac equation, we show that the transitions between positive and negative energy solutions in a 3D TI heterostructure junction and in a 3D TI quantum dot (QD) obey strict optical selection rules. We calculate the optical conductivity tensor of a 3D TI double interface made of a PbTe/Pb0:31Sn0:69Te/PbTe heterostructure using Maxwell's equations, which reveals a giant Faraday rotation effect due to Pauli exclusion principle. A transfer matrix method is employed to calculate the transmittance in a multilayer stacking of PbTe/Pb0:31Sn0:69Te/PbTe heterostructure. We show that while the Faraday rotation is giant for a single double interface, it takes about 60 double interfaces to absorb incoming radiation completely. We also present the model of a QD consisting of a spherical core-bulk heterostructure made of 3D TI materials, such as PbTe/Pb0:31Sn0:69Te/PbTe , with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. We calculate the Faraday rotation effect coming from the polarization of single electron-hole pairs. We show that the semi-classical Faraday effect can be used to read out spin quantum memory.

  6. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  7. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    SciTech Connect

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.

  8. A little help for a better understanding and application of Faraday's law

    NASA Astrophysics Data System (ADS)

    Benedetto, E.; Capriolo, M.; Feoli, A.; Tucci, D.

    2012-05-01

    In this letter, we examine Faraday's law of induction, analysing the electromotive force generated by a Lorentz force and the one generated by an electric field due to a changing magnetic field. We obtain the result in a didactically simple and appealing way. The final formula is derived considering explicitly the dependence of the magnetic field on the space coordinates, which is often neglected in standard textbooks.

  9. Investigation of the ionospheric Faraday rotation for use in orbit corrections

    NASA Technical Reports Server (NTRS)

    Llewellyn, S. K.; Bent, R. B.; Nesterczuk, G.

    1974-01-01

    The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form.

  10. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  11. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.

  12. Implementation of Positive Operator-Valued Measure in Passive Faraday Mirror Attack

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2015-03-01

    Passive Faraday-mirror (PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure (POVM) operators plays an important role in this attack. In this paper, we propose a simple scheme to implement the POVM in PFM attack on an Faraday-Michelson quantum cryptography system. Since the POVM can not be implemented directly with previous methods, in this scheme it needs to expand the states sent by Alice and the POVM operators in the attack into four-dimensional Hilbert space first, without changing the attacking effect by calculation. Based on the methods proposed by Ahnert and Payne, the linear-optical setup for implementing the POVM operators is derived. At last, the complete setup for realizing the PFM attack is presented with all parameters. Furthermore, our scheme can also be applied to realize PFM attack on a plug-and-play system by changing the parameters in the setup. Supported by National Natural Science Foundation of China under Grant Nos. 61472446, U1204602, and National High Technology Research and Development Program of China under Grant No. 2011AA010803, and the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No. 2013A14

  13. Giant Faraday rotation induced by the Berry phase in bilayer graphene under strong terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Xiaodong; Liu, Ren-Bao

    2014-04-01

    High-order terahertz (THz) sideband generation in semiconductors is a phenomenon with physics similar to that of high-order harmonic generation but in a regime of much lower frequency. Our previous paper [1] found that the electron-hole pair excited by a weak optical laser can accumulate a Berry phase along a cyclic trajectory under the driving of a strong elliptically polarized THz field. Furthermore, the Berry phase appears as the Faraday rotation angle of the emission signal under short-pulse excitation in monolayer MoS_{2}. In this paper, the theory of the Berry phase in THz extreme nonlinear optics is applied to biased bilayer graphene with Bernal stacking, which has similar Bloch band features and optical properties to monolayer MoS_{2}, such as the time-reversal related valleys and the valley contrasting optical selection rule. However, the biased bilayer graphene has much larger Berry curvature than monolayer MoS_{2}, which leads to a large Berry phase of the quantum trajectory and in turn a giant Faraday rotation of the optical emission (˜1 rad for a THz field with frequency 1 THz and strength 8 kV cm-1). This surprisingly big angle shows that the Faraday rotation can be induced more efficiently by the Berry curvature in momentum space than by the magnetic field in real space. It provides opportunities to use bilayer graphene and THz lasers for ultrafast electro-optical devices.

  14. High frequency current sensors using the Faraday effect in optical fibers

    SciTech Connect

    Cernosek, R.W.

    1994-09-01

    This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

  15. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  16. Full spin polarization of complex ferrimagnetic bismuth iron garnet probed by magneto-optical Faraday spectroscopy

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Popova, Elena; Fouchet, Arnaud; Keller, Niels

    2013-06-01

    We investigate the spin-dependent electronic density of states near and above the Fermi level in bismuth iron garnet (BIG), Bi3Fe5O12, by magnetic circular dichroism and magneto-optical Faraday spectroscopy. BIG is a recently synthesized material, as its preparation requires special nonequilibrium conditions. Its scientific and applicative interest resides in huge specific Faraday rotation of the incident light, useful for magneto-optic applications. We show experimentally the presence of spin gaps in the conduction band as recently predicted theoretically by Oikawa [T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn.JUPSAU0031-901510.1143/JPSJ.74.401 74, 401 (2005)]. In the range of photon energies, where full spin polarization is expected, completely asymmetric Faraday hysteresis loops were observed, similar to those observed in half-metals such as (Pr,La)0.7Ca0.3MnO3 and Fe3O4. These results were modeled using even and odd (with respect to magnetization) contributions into hysteresis loops. The odd contribution appears only in the energy ranges where the density of states is fully spin polarized and vanishes at the Curie temperature. These results open a new perspective for the use of bismuth iron garnet in optic spintronics at room temperature and above.

  17. Faraday-Effect Polarimeter Diagnostic for Internal Magnetic Field Fluctuation Measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ding, W. X.; Brower, D. L.

    2015-11-01

    A high-resolution Faraday-effect polarimeter-interferometer diagnostic currently under construction at the DIII-D tokamak has three overall measurement goals: (1) determine the current density dynamics at the magnetic axis, J(0,t), for torque-free plasmas (no NBI) and bootstrap current in the pedestal region; (2) resolve both coherent and broadband magnetic fluctuations [at the level δb <= 1 Gauss with up to 2 MHz bandwidth] associated with MHD perturbations, energetic particle driven modes and broadband turbulence (e.g. microtearing modes), and (3) identify non-axisymmetric structures and plasma response to externally applied RMP (resonant magnetic perturbation) fields being developed for ELM control as well as MHD events. These goals will be achieved using a 650-700 GHz source and heterodyne receiver system to measure the line-integrated Faraday-effect and density along three horizontal chords positioned at the magnetic axis and +/-15 cm off-axis. The system will be double-pass and cornercube retroreflectors have already been installed. Simultaneous measurement of density and Faraday effect allows isolation of the fluctuating magnetic field component in the radial direction. Supported by US DOE under DE-FG03-01ER54615 and DE-FC02-04ER54698.

  18. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Chang, S. C.; Chang, Y. C.

    2013-07-01

    An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001) single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  19. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  20. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  1. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Broderick, Avery E.; McKinney, Jonathan C. E-mail: jmckinne@stanford.ed

    2010-12-10

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  2. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  3. A low-mass faraday cup experiment for the solar wind

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.

    1993-01-01

    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.

  4. On interannual variations of the winter temperature at Faraday/Vernadsky Antarctic Station

    NASA Astrophysics Data System (ADS)

    Evtushevsky, A.; Kravchenko, V.; Grytsai, A.; Milinevsky, G.

    2009-04-01

    The interannual variations of the winter temperature at Faraday/Vernadsky Station, West Antarctic Peninsula are investigated. The meteorological READER surface air temperature and wind velocity/direction data for 1947-2007 period as well as the temperature and zonal/meridional wind distribution at 1000 hPa from the NCEP-NCAR reanalysis data (1979-2007) were used. The possible reasons of observed winter warming are discussed. The winter warming is accompanied by narrowing of the temperature variation range between -14°C and -4°C during 1950s to -8°C and -4°C in last decade. Positive trend in annual mean and winter mean temperature corresponds to lowering of the "depth" of cold winter anomalies, which can relate to the area located to the east of Antarctic Peninsula. The indications are seen from agreement between the interannual variations in winter temperature at Faraday/Vernadsky and the east-west migrations of quasistationary distribution of surface air temperature and zonal/meridional wind in Antarctic Peninsula region. The meteorological observations at Faraday/Vernadsky station display long-term changes in the wind distribution pattern: the appearance frequency of the "continental" wind (0°E±45° azimuth) observation has been reduced but the appearance frequency of the "ocean" wind (180°E±45° azimuth) has been increased threefold in the last two decades in comparison to 1950s-1970s. That is evidence of the structural change-over of circulation pattern in the region which is advantageous for warming. Results show that the changes in the quasistationary pattern in Antarctic troposphere contribute to the local climate change in Antarctic Peninsula region. The research was partly supported by National Taras Shevchenko University of Kyiv, project 06BF051-12.

  5. Highlights from Faraday Discussion 170: challenges and opportunities of modern mechanochemistry, Montreal, Canada, 2014.

    PubMed

    Friščić, Tomislav; James, Stuart L; Boldyreva, Elena V; Bolm, Carsten; Jones, William; Mack, James; Steed, Jonathan W; Suslick, Kenneth S

    2015-04-14

    The Faraday Discussion Mechanochemistry: From Functional Solids to Single Molecules which took place 21-23 May 2014 in Montreal, Canada, brought together a diversity of academic and industrial researchers, experimentalists and theoreticians, students, as well as experienced researchers, to discuss the changing face of mechanochemistry, an area with a long history and deep connections to manufacturing, that is currently undergoing vigorous renaissance and rapid expansion in a number of areas, including supramolecular chemistry, smart polymers, metal-organic frameworks, pharmaceutical materials, catalytic organic synthesis, as well as mineral and biomass processing and nanoparticle synthesis. PMID:25785352

  6. Conditions for the validity of Faraday's law of induction and their experimental confirmation

    NASA Astrophysics Data System (ADS)

    López-Ramos, A.; Menéndez, J. R.; Piqué, C.

    2008-09-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an experimental set-up, in which such conditions are experimentally tested, is included. The experiment is not complicated and the method we use, and similar methods used elsewhere, is widely considered as suitable laboratory practice for students of first university courses in physics and engineering.

  7. Faraday waves on finite thickness smectic A liquid crystal and polymer gel materials

    SciTech Connect

    Ovando-Vazquez, C.; Rodriguez, O. Vazquez; Hernandez-Contreras, M.

    2008-11-13

    We studied with linear stability theory the Faraday waves on the surface of a smectic A liquid crystal and polymer gel-vapor systems of finite thicknesses. Model smectic A material exhibits alternating subharmonic-harmonic patterns of stability curves in a plot of driving acceleration versus wave number. For the case of highly viscoelastic gel media there are coexisting surface modes of harmonic and subharmonic types that correspond to peaks in the plot of the critical acceleration as a function of wave frequency. Larger frequencies lead to subsequent peaks of coexisting subharmonic waves only.

  8. Tools for laser spectroscopy: The design and construction of a Faraday isolator

    NASA Astrophysics Data System (ADS)

    Winter, S.; Mok, C.; Kumarakrishnan, A.

    2006-09-01

    We discuss the design and construction of a Faraday isolator for diode laser spectroscopy using commercially available components. The design involves modelling the magnetic field of an assembly of cylindrical magnets and verifying the predictions using a sensor. We obtain an isolation ratio for optical feedback of similar to 35 dB at a wavelength of 780 nm. The cost is approximately one-fourth the cost of an equivalent commercially available device. We expect that the design can be widely used in experiments in laser spectroscopy and in advanced undergraduate laboratory experiments.

  9. Influence of cubic nonlinearity on compensation of thermally induced polarisation distortions in Faraday isolators

    SciTech Connect

    Kuzmina, M S; Khazanov, E A

    2013-10-31

    The problem on laser radiation propagation in a birefringent medium is solved with the allowance made for thermally induced linear birefringence under the conditions of cubic nonlinearity. It is shown that at high average and peak radiation powers the degree of isolation in a Faraday isolator noticeably reduces due to the cubic nonlinearity: by more than an order of magnitude when the B-integral is equal to unity. This effect is substantial for pulses with the energy of 0.2 – 3 J, duration of 10 ps to 4 ns and pulse repetition rate of 0.2 – 40 kHz. (components of laser devices)

  10. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    NASA Astrophysics Data System (ADS)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  11. A comparative study on the calibration of pole caps for a Faraday vacuum microbalance

    NASA Astrophysics Data System (ADS)

    Rais, A.; Yousif, A. A.

    1999-08-01

    Calibration curves for standard 177 mm diameter Henry profile pole caps of an electromagnet coupled to a Faraday vacuum microbalance are obtained from absolute magnetic susceptibility measurements. The pole caps are at gaps of 4.0 cm, 4.5 cm and 5.0 cm for maximum magnetic field strengths ranging from 173 kA m-1 to 549 kA m-1. Typical results on a few standard substances are compared with reported values. An error of less than 3% can be achieved for samples of limited size that are sufficiently free from ferromagnetic impurities.

  12. Hybrid Faraday rotation spectrometer for sub-ppm detection of atmospheric O2.

    PubMed

    Zhang, Eric J; Brumfield, Brian; Wysocki, Gerard

    2014-06-30

    Faraday rotation spectroscopy (FRS) of O(2) is performed at atmospheric conditions using a DFB diode laser and permanent rare-earth magnets. Polarization rotation is detected with a hybrid-FRS detection method that combines the advantages of two conventional approaches: balanced optical-detection and conventional FRS with an optimized analyzer offset angle for maximum sensitivity enhancement. A measurement precision of 0.6 ppmv·Hz(-1/2) for atmospheric O(2) has been achieved. The theoretical model of hybrid detection is described, and the calculated detection limits are in excellent agreement with experimental values.

  13. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  14. Chain-induced effects in the Faraday instability on ferrofluids in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Mekhonoshin, V. V.; Lange, Adrian

    2004-04-01

    The linear stability analysis of the Faraday instability on a viscous ferrofluid in a horizontal magnetic field is performed. Strong dipole-dipole interactions lead to the formation of chains elongated in the field direction. The formation of chains results in a qualitative new behavior of the ferrofluid. This new behavior is characterized by a neutral stability curve similar to that observed earlier for Maxwell viscoelastic liquids and causes a significant weakening of the energy dissipation at high frequencies. In the case of a ferrofluid with chains in a horizontal magnetic field, the effective viscosity is anisotropic and depends on the field strength as well as on the wave frequency.

  15. Magnetic fields in galaxy clusters: Faraday rotation and non thermal emission

    NASA Astrophysics Data System (ADS)

    Bonafede, Annalisa

    In this thesis we study the magnetic field in galaxy clusters and their connection with thermal and non-thermal phenomena in the Intra Cluster Medium. These topics are investigated through the analysis of the polarization properties of sources located behind and inside galaxy clusters as well as through MHD cosmological simulation. To this aim we have obtained observations at the Very Large Array (VLA) radio telescope (New Mexico USA) and we have investigated the magnetic field properties through different methods. We used the numerical code Faraday to interpret our results. We also used the brand new implementation within the Gadget3 code to investigate the properties of massive simulated galaxy clusters.

  16. Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice

    SciTech Connect

    Capuzzi, Pablo; Gattobigio, Mario; Vignolo, Patrizia

    2011-01-15

    We study the formation of Faraday waves in an elongated Bose-Einstein condensate in the presence of a one-dimensional optical lattice. The waves are parametrically excited by modulating the radial confinement of the condensate close to a transverse breathing mode of the system. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. We find that by increasing the potential depth the local sound velocity decreases, and when it equals the condensate local phase velocity, the condensate develops an incoherent superposition of several modes and the parametric excitation of Faraday waves is suppressed.

  17. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  18. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  19. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-03-15

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  20. The birth of the electric machines: a commentary on Faraday (1832) 'Experimental researches in electricity'.

    PubMed

    Al-Khalili, Jim

    2015-04-13

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750145