Maxwell's inductions from Faraday's induction law
NASA Astrophysics Data System (ADS)
Redžić, D. V.
2018-03-01
In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.
Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation
ERIC Educational Resources Information Center
Lopez-Ramos, A.; Menendez, J. R.; Pique, C.
2008-01-01
This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…
If Maxwell had worked between Ampère and Faraday: An historical fable with a pedagogical moral
NASA Astrophysics Data System (ADS)
Jammer, Max; Stachel, John
1980-01-01
If one drops the Faraday induction term from Maxwell's equations, they become exactly Galilei invariant. This suggests that if Maxwell had worked between Ampère and Faraday, he could have developed this Galilei-invariant electromagnetic theory so that Faraday's discovery would have confronted physicists with the dilemma: give up the Galileian relativity principle for electromagnetism (ether hypothesis), or modify it (special relativity). This suggests a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galileian relativity principle are introduced before the induction term is discussed.
Joseph Henry’s role in the discovery of electromagnetic induction
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2017-01-01
The discovery of electromagnetic induction in the early part of the 19th century is one of the greatest scientific achievements of all time, and it has had tremendous technological consequences. The credit for this discovery rightfully goes to the great English experimental physicist Michael Faraday. However, the American physicist Joseph Henry made some observations comparable to Faraday’s at nearly the same time, and for that reason, Faraday and Henry are often considered to be co-discoverers of some aspects of electromagnetic induction. We examine Henry’s early research on electromagnetism, starting from his efforts to improve the electromagnet, which led directly to his investigations of induction. We describe his earliest experiments on both mutual and self-induction, and pay particular attention to the relationship of Henry’s research to that of Faraday. The approach is one in which the experiments are described and then analysed using modern theory and terminology.
The gravitational analog of Faraday's induction law
NASA Astrophysics Data System (ADS)
Zile, Daniel; Overduin, James
2015-04-01
Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.
Faraday's first dynamo: A retrospective
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2013-12-01
In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.
Design and modeling of Faraday cages for substrate noise isolation
NASA Astrophysics Data System (ADS)
Wu, Joyce H.; del Alamo, Jesús A.
2013-07-01
A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.
Faraday diamagnetism under slowly oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke
2018-04-01
Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.
Electromagnetic Induction Rediscovered Using Original Texts.
ERIC Educational Resources Information Center
Barth, Michael
2000-01-01
Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)
Faraday's Investigation of Electromagnetic Induction. Experiment No. 21.
ERIC Educational Resources Information Center
Devons, Samuel
This paper focuses on Michael Faraday's experimental research in electricity in the 1830's. Historical notes related to his work are included as well as experiments, his objectives, and illustrations of equipment for the experiments. Examples from his diary are given so that students can attempt to emulate his honest and systematic manner of…
If Maxwell Had Worked between Ampere and Faraday: An Historical Fable with a Pedagogical Moral.
ERIC Educational Resources Information Center
Jammer, Max; Stachel, John
1980-01-01
Describes a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galilean relativity principle are introduced before discussion of the Faraday induction term. Rationale for the alternate order of introducing these concepts and laws is explained, relative to their historical development. (CS)
Various Paths to Faraday's Law
ERIC Educational Resources Information Center
Redzic, Dragan V.
2008-01-01
In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…
Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.
ERIC Educational Resources Information Center
Trumper, Ricardo; Gelbman, Moshe
2000-01-01
Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
Electromagnetic Induction Rediscovered Using Original Texts
NASA Astrophysics Data System (ADS)
Barth Tu, Michael
Some of Faraday's diary-entries from 1831 have been used frequently as starting point to introduce the phenomenon of electromagnetic induction. This has been done on various levels of knowledge and to pupils of different ages during the last 5 years. I try to let my pupils witness, how Faraday made his discovery, but to show as well, that we cannot infer from his notes, how he arrived at his ideas proper. Reading the original notes (in English), my pupils were expected to take out of it, what Faraday did at his lab, what apparatus he used and what his observations were. Why he did what he did was point of discussion later on. Just here, I expected, that my pupils learn a lot about the properties of electricity, of taking conclusions from experiment, of scientific methodology etc. In addition, we repeated some of Faradays experiments with modern quipment, realizing always to common surprise that the effects observed are extremely faint ones. Depending on knowledge, age and motivation of the group, Lenz's Law was rediscovered in succession. Here I myself try to find out, why Faradays initial mistake as for the direction of the induced current is likely to be overlooked even by the informed modern reader (myself included!). This may become part of a story, why this mistake of Faraday has found serious attention by historians of science only very recently. My approach was connected with group work with English courses, with the reading of more papers by Faraday and two times even with a visit of the Royal Institution at London. In any case, I always tried to put my pupils into the state of knowledge Faraday had at the time of his discovery before this unit, to make the process of discovery as correct as possible. For this claim is somewhat artificial at first glance, it may be an interesting point of discussion.
The Search for Electromagnetic Induction (1820-1831). Experiment No. 20.
ERIC Educational Resources Information Center
Devons, Samuel
This paper focuses on the search for electromagnetic induction from 1820 to 1831 and the efforts by Augustin Fresnel's colleague, Andre Marie Ampere, in electric and magnetic induction. Faraday's work is discussed with excerpts from his diary on electromagnetism. A variety of different experiments by researchers including Francoise Jean Arago,…
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-07-01
Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.
On Faraday's law in the presence of extended conductors
NASA Astrophysics Data System (ADS)
Bilbao, Luis
2018-06-01
The use of Faraday's Law of induction for calculating the induced currents in an extended conducting body is discussed. In a general case with arbitrary geometry, the solution to the problem of a moving metal object in the presence of a magnetic field is difficult and implies solving Maxwell's equations in a time-dependent situation. In many cases, including cases with good conductors (but not superconductors) Ampère's Law can be neglected and a simpler solution based solely in Faraday's law can be obtained. The integral form of Faraday's Law along any loop in the conducting body is equivalent to a Kirkhhoff's voltage law of a circuit. Therefore, a numerical solution can be obtained by solving a linear system of equations corresponding to a discrete number of loops in the body.
NASA Astrophysics Data System (ADS)
Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram
2008-11-01
We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.
Self-Paced Physics, Segments 37-40.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Four study segments of the Self-Paced Physics Course materials are presented in this eighth problems and solutions book used as a part of course assignments. The content is related to magnetic induction, Faraday's law, induced currents, Lenz's law, induced electromotive forces, time-varying magnetic fields, self-inductance, inductors,…
Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach
ERIC Educational Resources Information Center
Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro
2014-01-01
In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…
Electric Field Feature of Moving Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, You Jun
2001-05-01
A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law
EM Induction Experiment to Determine the Moment of a Magnet
ERIC Educational Resources Information Center
Najiya Maryam, K. M.
2014-01-01
If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…
Al-Khalili, Jim
2015-04-13
The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Al-Khalili, Jim
2015-01-01
The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject—the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750145
Faraday and the Philosophical Magazine
NASA Astrophysics Data System (ADS)
Weinberger, P.
2013-05-01
Faraday is considered to be one of the greatest scientists of all time. He not only was a meticulous experimentalist, a true experimental wizard, but also a very prolific author. The many important contributions (almost 50) that he published in the Philosophical Magazine make it highly desirable to catalogue his various inventions, 'discoveries' in his own words, in a scientific language so characteristic of the nineteenth century. It is the purpose of this commentary to guide the reader through his achievements in electrochemistry, magnetism, electric and electromagnetic induction, even 'industrial' applications; to enable him to address a present day audience by means of his contributions to the Philosophical Magazine.
Further investigation of examining students understanding of Lenz's law and Faraday's law
NASA Astrophysics Data System (ADS)
Sanchez, Casey W.; Loverude, Michael E.
2012-02-01
Magnetic induction has been known to be a particularly difficult concept in introductory physics. In this project, we build upon our previous research on probing the difficulties students have with magnetic flux in regards to Lenz's Law and Faraday's Law. This presentation will explore student responses when the format of the instrument was reversed, so that students had to use a flux vs. time graph to infer details of the physical situation. Although the newer version of the survey identifies other difficulties students have, the student responses suggest the value of this reverse process in both probing student thinking and in instruction on magnetic flux.
Electromagnetic Induction: A Computer-Assisted Experiment
ERIC Educational Resources Information Center
Fredrickson, J. E.; Moreland, L.
1972-01-01
By using minimal equipment it is possible to demonstrate Faraday's Law. An electronic desk calculator enables sophomore students to solve a difficult mathematical expression for the induced EMF. Polaroid pictures of the plot of induced EMF, together with the computer facility, enables students to make comparisons. (PS)
Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien
2015-08-25
We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
Every Day a New 3D Printing Material
ERIC Educational Resources Information Center
Hughes, Bill; Mona, Lynn; Wilson, Greg; Seamans, Jeff; McAninch, Steve; Stout, Heath
2017-01-01
A handful of technological episodes: fire, wheel and axle, Industrial Revolution, Faraday's discovery of electromagnetic induction, the transistor, and the digital age, have historically altered humanity. We are now witnessing/participating in the next transformational technology: 3D printing. Although dating back nearly 30 years, the technology…
Efficiency Measurement Using a Motor-Dynamo Module
ERIC Educational Resources Information Center
Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen
2009-01-01
In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)
Simple System to Measure the Earth's Magnetic Field
ERIC Educational Resources Information Center
Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib
2010-01-01
Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…
Taylor Elected to Royal Society of London
SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at statements must be verified by facts. Taylor will travel to London in the near future for his induction, part Isaac Newton and Michael Faraday. Taylor, a Canadian citizen, received his Ph.D. at Stanford in 1962 and
Experiments and Demonstrations in Physics: Bar-Ilan Physics Laboratory (2nd Edition)
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2014-08-01
The following sections are included: * Data-acquisition systems from PASCO * ScienceWorkshop 750 Interface and DataStudio software * 850 Universal Interface and Capstone software * Mass on spring * Torsional pendulum * Hooke's law * Characteristics of DC source * Digital storage oscilloscope * Charging and discharging a capacitor * Charge and energy stored in a capacitor * Speed of sound in air * Lissajous patterns * I-V characteristics * Light bulb * Short time intervals * Temperature measurements * Oersted's great discovery * Magnetic field measurements * Magnetic force * Magnetic braking * Curie's point I * Electric power in AC circuits * Faraday's law of induction I * Self-inductance and mutual inductance * Electromagnetic screening * LCR circuit I * Coupled LCR circuits * Probability functions * Photometric laws * Kirchhoff's rule for thermal radiation * Malus' law * Infrared radiation * Irradiance and illuminance
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).
Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance
NASA Astrophysics Data System (ADS)
Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema
2013-03-01
We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.
Electromagnetic Induction with Neodymium Magnets
NASA Astrophysics Data System (ADS)
Wood, Deborah; Sebranek, John
2013-09-01
In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831 Michael Faraday and Joseph Henry separately expanded on Ørsted's discovery by showing that a changing magnetic field produces an electric current. Heinrich Lenz found in 1833 that an induced current has the opposite direction from the electromagnetic force that produced it. This paper describes an experiment that can help students to develop an understanding of Faraday's law and Lenz's law by studying the emf generated as a magnet drops through a set of coils having increasing numbers of turns.
The Scattering of X-ray and the induction phenomenon
NASA Astrophysics Data System (ADS)
Fahd, Ziad A.; Mohanty, R. C., , Dr.
2004-11-01
This paper discusses the well-established Faraday's Law of Induction and the associated Lenz's law and compares these laws with a similar law which appears to exist in the triplet production process achieved by bombardment of emulsion with 0-9- Mev X-ray. This comparison shows that an induction-like process occurs during triplet production, leading to the supposition that a force which may be called the ``Matteromotive force'' exists for triplet production. An associated Lenz's-law-like law also appears to exist in this process. For this study, 1935 triplets were observed in 54433 fields of view of the microscopes; out of these, 1872 triplets were measured in the energy interval of 2-90 Mev. In addition, the angular distribution of recoil electrons was observed, and is presented in the paper.
Electrical power generation by mechanically modulating electrical double layers.
Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu
2013-01-01
Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.
2007-01-01
The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.
Induction magnetometer using a high-Tc superconductor coil
NASA Astrophysics Data System (ADS)
Sasada, Ichiro
2010-05-01
An induction magnetometer consisting of a search coil and an inverting operational amplifier is simple in structure and in signal transferring mechanism from the magnetic field input to the voltage output. Because this magnetometer is based on Faraday's law of induction, it has a lower cutoff frequency r/(2πL), where r is the resistance of the coil and L is its inductance. An attempt has been made to lower the cutoff frequency of the induction magnetometer by using a high-Tc superconductor coil. With a pancake coil (inner diameter ≈18 cm and outer diameter ≈23 cm, 92 turns, 3.23 mH) made of a Bismuth strontium calcium copper oxide (BSCCO) superconductor tape of 5 mm in width and 0.23 mm in thickness, the cutoff frequency achieved was 1.7 Hz which is much lower than that obtained with a bulky copper search coil which is typically in the range of 10-20 Hz. In the experiment, an inverting amplifier was made with a complementary metal-oxide semiconductor operational amplifier and was immersed in liquid nitrogen together with a BSCCO high-Tc superconducting coil. Discussion is made on the resolution of the induction magnetometer using a high-Tc superconductor search coil.
Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen
2016-05-28
We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
Intrinsic Magnetic Flux of the Electron's Orbital and Spin Motion
NASA Astrophysics Data System (ADS)
Wan, K. K.; Saglam, M.
2006-06-01
In analogy with the fact that there are magnetic moments associated respectively with the electron's orbital and spin motion in an atom we present several analyses on a proposal to introduce a concept of intrinsic magnetic flux associated with the electron's orbital and spin motion. It would be interesting to test or to demonstrate Faraday's and Lenz's laws of electromagnetic induction arising directly from the flux change due to transition of states in an atom and to examine applications of this concept of intrinsic flux.
A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces
NASA Astrophysics Data System (ADS)
Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.
2001-04-01
Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.
Rotational viscometers—a subject for student projects
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2010-11-01
Three variants of the rotational viscometer employing a dc motor are considered. The viscometers are highly suitable for liquids of high viscosity, such as glycerol or oils (that is, for η in the range 10-1000 mPa s). The set-ups are very simple and can serve as a first step to designing devices that are more complicated. Experimentation with the electrical motors used in the viscometers provides a deeper understanding of some of the fundamental laws of electricity and magnetism (Lorentz's force, Faraday's law of electromagnetic induction, and Lenz's law).
2008-10-01
which acts as a transformer with mutual inductance M. The value of M is a function of the current sheet position c. A i witch Bl ft...at an angle where the " film plane" of the camera is parallel to the plane FINAL REPORT FOR FA9550-06-1-0149: FARAD 45 Figure 3.3: Idealized...surface from time-integrated photographs obtained with a camera whose film plane is not parallel to the cone’s axis of symmetry. Due to these
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H
2010-01-01
Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less
Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng
2010-04-01
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10(21)/m(3) and 2-3 mm/micros, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.
NASA Astrophysics Data System (ADS)
Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng
2010-04-01
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 1021/m3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.
Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin
2018-01-01
Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9 three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated in the pig's head and in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).
Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
Chin, Jessie Yao; Steinle, Tobias; Wehlus, Thomas; Dregely, Daniel; Weiss, Thomas; Belotelov, Vladimir I; Stritzker, Bernd; Giessen, Harald
2013-01-01
Light propagation is usually reciprocal. However, a static magnetic field along the propagation direction can break the time-reversal symmetry in the presence of magneto-optical materials. The Faraday effect in magneto-optical materials rotates the polarization plane of light, and when light travels backward the polarization is further rotated. This is applied in optical isolators, which are of crucial importance in optical systems. Faraday isolators are typically bulky due to the weak Faraday effect of available magneto-optical materials. The growing research endeavour in integrated optics demands thin-film Faraday rotators and enhancement of the Faraday effect. Here, we report significant enhancement of Faraday rotation by hybridizing plasmonics with magneto-optics. By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in our experiment, while high transparency is maintained. We elucidate the enhanced Faraday effect by the interplay between plasmons and different photonic waveguide modes in our system.
Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography
NASA Astrophysics Data System (ADS)
Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu
2017-07-01
Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.
Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi
Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We showmore » that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length){sup 2}, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.« less
Optical pendulum generator based on photomechanical liquid-crystalline actuators.
Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng
2015-04-29
For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy.
Magnetic bead detection using nano-transformers.
Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol
2010-11-19
A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.
High-frequency magnetodielectric response in yttrium iron garnet at room temperature
NASA Astrophysics Data System (ADS)
Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming
2018-05-01
Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.
Earth-based observations of Faraday rotation in radio bursts from Jupiter
NASA Technical Reports Server (NTRS)
Phillips, J. A.; Ferree, Thomas C.; Wang, Joe
1989-01-01
New observations have been made of Faraday rotation in decameter-wavelength radio bursts from the planet Jupiter. Data obtained during six Io-B storms clearly indicate that an appreciable fraction of the observed Faraday rotation occurs in the Jovian magnetosphere. All of the Faraday rotation observed during a single Io-A storm can be accounted for by earth's ionosphere. Measurements of the Faraday effect in Io-B emissions indicate that the source is in Jupiter's northern magnetic hemisphere. Observations of the Faraday effect in Io-C emissions are proposed to determine its location as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Haijun; Zhu Jun; Chen Nan
2010-04-15
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ionsmore » are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.« less
Michael Faraday vs. the Spiritualists
NASA Astrophysics Data System (ADS)
Hirshfeld, Alan
2006-12-01
In the 1850s, renowned physicist Michael Faraday launched a public campaign against pseudoscience and spiritualism, which were rampant in England at the time. Faraday objected especially to claims that electrical or magnetic forces were responsible for paranormal phenomena, such as table-spinning and communication with the dead. Using scientific methods, Faraday unmasked the deceptions of spiritualists, clairvoyants and mediums and also laid bare the credulity of a public ill-educated in science. Despite his efforts, Victorian society's fascination with the paranormal swelled. Faraday's debacle anticipates current controversies about public science education and the interface between science and religion. This episode is one of many described in the new biography, The Electric Life of Michael Faraday (Walker & Co.), which chronicles Faraday's discoveries and his unlikely rise from poverty to the pinnacle of the English science establishment.
2009-09-01
elevated background pressure, compared nude Faraday probe designs, and evaluated design modifications to minimize uncertainty due to charge exchange...evaluated Faraday probe design and facility background pressure on collected ion current. A comparison of two nude Faraday probe designs concluded...140.5 Plasma potential in the region surrounding a nude Faraday probe has been measured to study the possibility of probe bias voltage acting as a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, X. H.; Akahori, Takuya; Anderson, C. S.
2015-02-01
Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faradaymore » structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, RM{sub wtd}, (2) the separation Δϕ of two Faraday components, and (3) the reduced chi-squared χ{sub r}{sup 2}. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for RM{sub wtd} but with significantly higher errors for Δϕ. All other methods, including standard Faraday synthesis, frequently identify only one component when Δϕ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented work well for Faraday thick components due to the narrow bandwidth. (4) There exist combinations of two Faraday components that produce a large range of acceptable fits and hence large uncertainties in the derived single RMs; in these cases, different RMs lead to the same Q, U behavior, so no method can recover a unique input model. Further exploration of all these issues is required before upcoming surveys will be able to provide reliable results on Faraday structures.« less
Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi
2013-05-21
We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.
Farhadi, Rozita; Farhadi, Bita
2014-01-01
Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152
Farhadi, Rozita; Farhadi, Bita
2014-01-01
Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.
Dani, Raj Kumar; Wang, Hongwang; Bossmann, Stefan H; Wysin, Gary; Chikan, Viktor
2011-12-14
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles. © 2011 American Institute of Physics
Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.
Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen
2012-09-21
We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.
Plasma Measurements in an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
Hu, Jing; Rovey, Joshua L
2011-07-01
A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 Ω characteristic impedance to match with 50 Ω standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fall time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a "double-humped" energy distribution.
2004-07-01
The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L.; Jiang, S.; Maricante, J.R.
2010-06-04
A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fibermore » isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.« less
Sun, L; Jiang, S; Marciante, J R
2010-06-07
A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .
A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.
Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng
2013-08-01
We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.
Exploring Novel Spintronic Responses from Advanced Functional Organic Materials
2015-08-13
optical properties of different organic molecules, mesogenics and conjugated polymers, mainly poly(3-alkylthiophene)s, have been investigated by Faraday ...of organic media we focused in our part of the project on studies of the Faraday rotation of an array of organic molecules and conjugated polymers...difficult to measure. However, χeem is easy accessible from Faraday rotation measurements. Faraday rotation, the rotation of the plane of polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Jing; Rovey, Joshua L.
A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 {Omega} characteristic impedance to match with 50 {Omega} standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fallmore » time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a ''double-humped'' energy distribution.« less
Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W
2011-10-01
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
Park, Bu S; Ma, Ge; Koch, William T; Rajan, Sunder S; Mastromanolis, Manuel; Lam, Johnny; Sung, Kyung; McCright, Brent
2018-06-15
Improve 19 F magnetic resonance imaging uniformity of perfluorocarbon (PFC)-labeled cells by using a secondary inductive resonator tuned to 287 MHz to enhance the induced radio frequency (RF) magnetic field (B 1 ) at 7.05 T. Following Faraday's induction law, the sign of induced B 1 made by the secondary resonator can be changed depending on the tuning of the resonator. A secondary resonator located on the opposite side of the phantom of the 19 F surface coil can be shown to enhance or subtract the induced B 1 field, depending upon its tuning. The numerical simulation results of rotating transmit B 1 magnitude (|B 1 + |) and corresponding experimental 19 F images were compared without and with the secondary resonator. With the secondary resonator tuned to 287 MHz, improvements of |B 1 + | and 19 F image uniformity were demonstrated. The use of the secondary resonator improved our ability to visualize transplanted cell location non-invasively over a period of 6 weeks. The secondary resonator tuned to enhance the induced B 1 results in improved image uniformity in a pre-clinical application, enabling cell tracking of PFC-labeled cells with the secondary resonator.
Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.
Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano
2016-04-08
We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.
Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi
2016-04-01
This study evaluated an effect of an coupling between the Faraday and Cotton-Mouton effect to a measurement signal of the Dodel-Kunz method which uses counter-circular-polarized probing-laser for measuring the Faraday effect. When the coupling is small (the Faraday effect is dominant and the characteristic eigenmodes are approximately circularly polarized), the measurement signal can be algebraically expressed and it is shown that the finite effect of the coupling is still significant. When the Faraday effect is not dominant, a numerical calculation is necessary. The numerical calculation under an ITER-like condition (Bt = 5.3 T, Ip = 15 MA, a = 2 m, ne = 10(20) m(-3) and λ = 119 μm) showed that difference between the pure Faraday rotation and the measurement signal of the Dodel-Kunz method was an order of one degree, which exceeds allowable error of ITER poloidal polarimeter. In conclusion, similar to other polarimeter techniques, the Dodel-Kunz method is not free from the coupling between the Faraday and Cotton-Mouton effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Lishev, Stiliyan; Shivarova, Antonia P.
The study combines experiments on probe diagnostics with laser-photodetachment-technique and Faraday-cup measurements directed towards determination of the position of the extraction device and its influence on the discharge structure. The measurements have been carried out in the second chamber of an inductively-driven tandem plasma source performed as small scale arrangements, with a magnetic filter located just after the transition between the two chambers of the source. Results for the axial profiles of the plasma parameters display the correlation of the ratio n lowbar /n{sub e} of the densities of the negative hydrogen ions and of the electrons and of themore » concentration of the negative ions with the electron density and temperature: The maxima of the (n lowbar /n{sub e})-ratio and of the density of the negative ions obtained are located at the position of maximum of the electron density behind the filter, in the region of the low electron temperature. Results from probe diagnostics and laser photodetachment measurements at a given axial position for different positions of the Faraday cup show the changes in the spatial distribution of the electron density and temperature and the reduction of the (n lowbar /n{sub e})-ratio and of the density of the negative ions caused by the extraction device.« less
BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J.
2015-12-10
We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information tomore » constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.« less
Johney Green Joins Inaugural Board of Trustees for the UK's Faraday
experience and leadership to the UKs Faraday Institution. Photo by Dennis Schroeder Johney Green speaks leadership to the UKs Faraday Institution. Photo by Dennis Schroeder Imagine driving an electric car from
A Left-Hand Rule for Faraday's Law
ERIC Educational Resources Information Center
Salu, Yehuda
2014-01-01
A left-hand rule for Faraday's law is presented here. This rule provides a simple and quick way of finding directional relationships between variables of Faraday's law without using Lenz's rule.
Faraday Rotation Measurement with the SMAP Radiometer
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Abraham, S.
2016-01-01
Faraday rotation is an issue that needs to be taken into account in remote sensing of parameters such as soil moisture and ocean salinity at L-band. This is especially important for SMAP because Faraday rotation varies with azimuth around the conical scan. SMAP retrieves Faraday rotation in situ using the ratio of the third and second Stokes parameters, a procedure that was demonstrated successfully by Aquarius. This manuscript reports the performance of this algorithm on SMAP. Over ocean the process works reasonably well and results compare favorably with expected values. But over land, the inhomogeneous nature of the scene results in much noisier, and in some cases unreliable estimates of Faraday rotation.
Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.
Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V
2015-05-01
A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.
Giant Faraday Rotation in Metal-Fluoride Nanogranular Films.
Kobayashi, N; Ikeda, K; Gu, Bo; Takahashi, S; Masumoto, H; Maekawa, S
2018-03-21
Magneto-optical Faraday effect is widely applied in optical devices and is indispensable for optical communications and advanced information technology. However, the bismuth garnet Bi-YIG is only the Faraday material since 1972. Here we introduce (Fe, FeCo)-(Al-,Y-fluoride) nanogranular films exhibiting giant Faraday effect, 40 times larger than Bi-YIG. These films have a nanocomposite structure, in which nanometer-sized Fe, FeCo ferromagnetic granules are dispersed in a Al,Y-fluoride matrix.
Using a PC and external media to quantitatively investigate electromagnetic induction
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-07-01
In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.
Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.
Tymchenko, Mykhailo; Nikitin, Alexey Yu; Martín-Moreno, Luis
2013-11-26
A single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene.
NASA Astrophysics Data System (ADS)
Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.
1987-04-01
An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.
Eddy current probe response to open and closed surface flaws
NASA Technical Reports Server (NTRS)
Auld, B. A.; Muennemann, F.; Winslow, D. K.
1981-01-01
A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.
Magnetic circuit modifications in resonant vibration harvesters
NASA Astrophysics Data System (ADS)
Szabo, Zoltan; Fiala, Pavel; Dohnal, Premysl
2018-01-01
The paper discusses the conclusions obtained from a research centered on a vibration-powered milli- or micro generator (MG) operating as a harvester to yield the maximum amount of energy transferred by the vibration of an independent system. The investigation expands on the results proposed within papers that theoretically define the properties characterizing the basic configurations of a generator based on applied Faraday's law of induction. We compared two basic principles of circuit closing in a magnetic circuit that, fully or partially, utilizes a ferromagnetic material, and a large number of generator design solutions were examined and tested. In the given context, the article brings a compact survey of the rules facilitating energy transformation and the designing of harvesters.
2009-12-30
FA9550-06-1-0107 for “A Study of the 3-D Reconstruction of Heliospheric Vector Magnetic Fields from Faraday-Rotation Inversion” for work performed...from 2005 – 2009 by the University of California at San Diego. There are three aspects to this research: 1) The inversion of simple synthetic Faraday...rotation measurements that can be used to demonstrate the feasibility of performing this inversion when and if Faraday-rotation observations become
Observation of two-dimensional Faraday waves in extremely shallow depth.
Li, Xiaochen; Yu, Zhengyue; Liao, Shijun
2015-09-01
A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.
A two-in-one Faraday rotator mirror exempt of active optical alignment.
Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming
2014-02-10
A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.
Faraday imaging at high temperatures
Hackel, L.A.; Reichert, P.
1997-03-18
A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.
Faraday imaging at high temperatures
Hackel, Lloyd A.; Reichert, Patrick
1997-01-01
A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.
Faraday effect in hybrid magneto-plasmonic photonic crystals.
Caballero, B; García-Martín, A; Cuevas, J C
2015-08-24
We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.
Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei
2016-02-15
The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.
Liu, Qiang; Gross, S; Dekker, P; Withford, M J; Steel, M J
2014-11-17
We consider the process of Faraday rotation in femtosecond laser direct-write waveguides. The birefringence commonly associated with such waveguides may be expected to impact the observable Faraday rotation. Here, we theoretically calculate and experimentally verify the competition between Faraday rotation and birefringence in two waveguides created by laser writing in a commercial magneto-optic glass. The magnetic field applied to induce Faraday rotation is nonuniform, and as a result, we find that the two effects can be clearly separated and used to accurately determine even weak birefringence. The birefringence in the waveguides was determined to be on the scale of Δn = 10(-6) to 10(-5). The reduction in Faraday rotation caused by birefringence of order Δn = 10(-6) was moderate and we obtained approximately 9° rotation in an 11 mm waveguide. In contrast, for birefringence of order 10(-5), a significant reduction in the polarization azimuth change was found and only 6° rotation was observed.
Faraday rotation measurement method and apparatus
NASA Technical Reports Server (NTRS)
Brockman, M. H. (Inventor)
1981-01-01
A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.
Active Faraday optical frequency standard.
Zhuang, Wei; Chen, Jingbiao
2014-11-01
We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.
Rethinking Faraday's Law for Teaching Motional Electromotive Force
ERIC Educational Resources Information Center
Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo
2012-01-01
This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Michael Faraday's Bicentenary.
ERIC Educational Resources Information Center
Williams, L. Pearce; And Others
1991-01-01
Six articles discuss the work of Michael Faraday, a chemist whose work revolutionized physics and led directly to both classical field and relativity theory. The scientist as a young man, the electromagnetic experiments of Faraday, his search for the gravelectric effect, his work on optical glass, his laboratory notebooks, and his creative use of…
Spin and Valley Noise in Two-Dimensional Dirac Materials
NASA Astrophysics Data System (ADS)
Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.
2014-07-01
We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.
Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo
2011-08-01
The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.
Real time Faraday spectrometer
Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.
1991-01-01
This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.
The RSC Faraday prize lecture of 1989 on platinum.
Thomas, John Meurig
2017-08-25
In 1861, Michael Faraday gave one of his last Friday Evening Discourses at the Royal Institution of Great Britain, London, on platinum, which he described as "this beautiful, magnificent and valuable metal". More than a hundred and twenty years later (in 1989), the author re-enacted, at the Royal Institution, many of the demonstrations that Faraday carried out in his memorable Discourse. This article outlines many of Faraday's views on, and experiments with, platinum. It also describes the continuing importance and utilization of platinum, both as perceived in 1989 and from present perspectives.
NASA Astrophysics Data System (ADS)
Sokolov, B. Yu.; Sharipov, M. Z.
2013-12-01
The temperature dependence of the Faraday effect in terbium garnet ferrite, Tb3Fe5O12, is investigated near its magnetic-compensation temperature, Т с = 249 K. A non-monotonous variation in the value of the Faraday rotation angle Ф is observed in a weak magnetic field as the temperature approaches Т с : the temperature plot of the Faraday rotation angle has two local maxima observed left and right of the magnetic compensation point. A theoretical model is proposed, which follows from the phenomenological theory of domain-boundary displacement under the action of a magnetic field, offering an unambiguous description of the principles of domain-structure influence on the Faraday effect in Tb3Fe5O12 near Т с .
Faraday anomalous dispersion optical tuners
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.
Induction-detection electron spin resonance with spin sensitivity of a few tens of spins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artzi, Yaron; Twig, Ygal; Blank, Aharon
2015-02-23
Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity.more » This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.« less
Lines of Force: Faraday's and Students' Views.
ERIC Educational Resources Information Center
Pocovi, M. Cecilia; Finley, Fred
2002-01-01
Analyzes how electric and magnetic lines of force were conceived by Faraday and how they are understood by a group of Argentine university students after receiving instruction. Results show that many students possess ideas similar to those of Faraday in that lines of force are conceived as real physical entities responsible for the transmission of…
NASA Astrophysics Data System (ADS)
Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas
2012-10-01
We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.
Faraday effect in Sn2P2S6 crystals.
Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav
2008-11-10
We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Hamidi, S. M.
2018-04-01
Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.
Enhanced modified faraday cup for determination of power density distribution of electron beams
Elmer, John W.; Teruya, Alan T.
2001-01-01
An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.
Active imaging system with Faraday filter
Snyder, James J.
1993-01-01
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
Active imaging system with Faraday filter
Snyder, J.J.
1993-04-13
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
NASA Astrophysics Data System (ADS)
Damideh, Vahid; Ali, Jalil; Saw, Sor Heoh; Rawat, Rajdeep Singh; Lee, Paul; Chaudhary, Kashif Tufail; Rizvi, Zuhaib Haider; Dabagh, Shadab; Ismail, Fairuz Diyana; Sing, Lee
2017-06-01
In this work, the design and construction of a 50 Ω fast Faraday cup and its results in correlation with the Lee Model Code for fast ion beam and ion time of flight measurements for a Deuterium filled plasma focus device are presented. Fast ion beam properties such as ion flux, fluence, speed, and energy at 2-8 Torr Deuterium are studied. The minimum 34 ns full width at half maximum ion signal at 12 kV, 3 Torr Deuterium in INTI PF was captured by a Faraday cup. The maximum ion energy of 67 ± 5 keV at 4 Torr Deuterium was detected by the Faraday cup. Ion time of flight measurements by the Faraday cup show consistent correlation with Lee Code results for Deuterium especially at near to optimum pressures.
The Faraday effect of natural and artificial ferritins.
Koralewski, M; Kłos, J W; Baranowski, M; Mitróová, Z; Kopčanský, P; Melníková, L; Okuda, M; Schwarzacher, W
2012-09-07
Measurements of the Faraday rotation at room temperature over the light wavelength range of 300-680 nm for horse spleen ferritin (HSF), magnetoferritin with different loading factors (LFs) and nanoscale magnetite and Fe(2)O(3) suspensions are reported. The Faraday rotation and the magnetization of the materials studied present similar magnetic field dependences and are characteristic of a superparamagnetic system. The dependence of the Faraday rotation on the magnetic field is described, excluding HSF and Fe(2)O(3), by a Langevin function with a log-normal distribution of the particle size allowing the core diameters of the substances studied to be calculated. It was found that the specific Verdet constant depends linearly on the LF. Differences in the Faraday rotation spectra and their magnetic field dependences allow discrimination between magnetoferritin with maghemite and magnetite cores which can be very useful in biomedicine.
Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar
2017-10-01
Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.
Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films.
Chandra Sekhar, M; Singh, Mahi R; Basu, Shantanu; Pinnepalli, Sai
2012-04-23
Thin films of Bi(x)Ce(3-x)Fe(5)O(12) with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of Bi(x)Ce(3-x)Fe(5)O(12) epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found. © 2012 Optical Society of America
Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors
2016-03-31
resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3 Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically
Experimental study of the mutual influence of fibre Faraday elements in a spun-fibre interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubin, V P; Morshnev, S K; Przhiyalkovsky, Ya V
2015-08-31
An all-spun-fibre linear reflective interferometer with two linked Faraday fibre coils is studied. It is found experimentally that there is mutual influence of Faraday fibre coils in this interferometer. It manifests itself as an additional phase shift of the interferometer response, which depends on the circular birefringence induced by the Faraday effect in both coils. In addition, the interferometer contrast and magneto-optical sensitivity of one of the coils change. A probable physical mechanism of the discovered effect is the distributed coupling of orthogonal polarised waves in the fibre medium, which is caused by fibre bend in the coil. (interferometry)
Miniature modified Faraday cup for micro electron beams
Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.
2008-05-27
A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.
Electrical control of Faraday rotation at a liquid-liquid interface.
Marinescu, Monica; Kornyshev, Alexei A; Flatté, Michael E
2015-01-01
A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid-liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption-desorption can be controlled with a voltage variation<1 V, providing electrovariable Faraday rotation. A calculation based on the Maxwell-Garnett theory predicts that the corresponding redistribution of 40 nm nanoparticles of yttrium iron garnet can switch a cavity with a quality factor larger than 10(4) for light of wavelength 500 nm at normal incidence.
Faraday polarization fluctuations of satellite beacon signals
NASA Technical Reports Server (NTRS)
Lee, M. C.; Klobuchar, J. A.
1988-01-01
The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.
Fabry-Perot enhanced Faraday rotation in graphene.
Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B
2013-10-21
We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.
NASA Technical Reports Server (NTRS)
Royden, H. N.; Green, D. W.; Walson, G. R.
1981-01-01
Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.
Position control of desiccation cracks by memory effect and Faraday waves.
Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio
2013-01-01
Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.
Faraday instability in a near-critical fluid under weightlessness.
Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D
2014-01-01
Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.
Tsai, Shirley C; Tsai, Chen S
2013-08-01
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
Design of an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.
Fara, Patricia
2006-03-01
Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles.
Optical Magnetometry for Detecting Underwater Objects
2015-09-21
underwater object. The two mechanisms responsible for the polarization rotation are the Surface Magneto-Optical Kerr Effect (SMOKE) and the Faraday effect...the underwater object itself ( Faraday effect). An analytical expression is obtained for the polarization-rotated field when the incident plane wave...Washington, DC 20375-5320 October 2014 – August 2015 NRL *University of Maryland, College Park, MD 20742-4111 Faraday SMOKE 67-4374-C4 1 Optical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.
2012-10-01
We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure andmore » the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.« less
Francois, N; Xia, H; Punzmann, H; Shats, M
2013-05-10
We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].
All-fiber Faraday Devices Based on Terbium-doped Fiber
NASA Astrophysics Data System (ADS)
Sun, Lei
Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T. An all-fiber wavelength-tunable laser based on Faraday rotation is proposed. It consists of an all-fiber wavelength-tunable filter in a conventional fiber laser cavity. The filter includes a fiber polarizer and a fiber Faraday mirror in which a chirped fiber Bragg grating is directly written onto the 65-wt% terbium fiber. The ytterbium-doped fiber in the laser is gain flattened using a. 1030/1090 rim WDM filter, resulting a net gain ripple that is measured to he less than 0.2 dB from 1047 to 1060 nm. The wavelength tuning range of the resulting fiber laser is therefore expected to be in this 1047 to 1060 nm range. Filamentation is one of the nonlinear peak-power-threshold limits in high-power fiber lasers. Starting from the paraxial wave equation, an analytic expression for the filamentation threshold in fiber lasers is derived using a perturbation method. The occurrence of filamentation is determined by the larger of two thresholds, one of perturbative gain and one of spatial confinement. The threshold value is around a few megawatts, depending on the parameters of the fiber.
Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals.
Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini
2015-08-03
We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems.
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope
Li, Xuyou; Guang, Xingxing; Xu, Zhenlong; Li, Guangchun
2017-01-01
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG. PMID:28880203
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.
Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun
2017-09-07
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.
Galactic foreground science: Faraday Tomography at low frequencies
NASA Astrophysics Data System (ADS)
Haverkorn, Marijke
2018-05-01
This contribution describes how low-frequency radio-spectropolarimetric imaging as done for Epoch of Reionization detection is used to investigate the nearby Galactic interstellar medium. The method of Faraday Tomography allows disentangling of every line of sight into various components in Faraday depth, which is a proxy for density-weighted magnetic field. I discuss instrumental biases and side effects of this method, and early results it has yielded.
Faraday rotation measurements at Ootacamund
NASA Technical Reports Server (NTRS)
Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.
1978-01-01
The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.
Evaluation of ion collection area in Faraday probes.
Brown, Daniel L; Gallimore, Alec D
2010-06-01
A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.
VLA Measurements of Faraday Rotation through Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.
2017-04-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun, which play an important role in space weather. Faraday rotation is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. Faraday rotation is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. Faraday-rotation observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1 - 2 GHz frequencies of a constellation of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 R_{⊙}. Two sources (0842+1835 and 0900+1832) were occulted by a single CME, and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. ( Solar Phys., 98, 341, 1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the Large Angle and Spectrometric Coronagraph (LASCO) C3 instrument to determine the Thomson-scattering brightness [BT], providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant-density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and Faraday rotation. The plasma densities (6 - 22×103 cm^{-3}) and axial magnetic-field strengths (2 - 12 mG) inferred from our models are consistent with the modeling work of Liu et al. ( Astrophys. J., 665, 1439, 2007) and Jensen and Russell ( Geophys. Res. Lett., 35, L02103, 2008), as well as previous CME Faraday-rotation observations by Bird et al. (1985).
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.
2008-01-01
Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.
NASA Astrophysics Data System (ADS)
Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan
2015-12-01
This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong
2015-01-01
Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.
Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong
2015-01-28
Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.
Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster (PREPRINT)
2010-12-13
nude Faraday probe, retarding potential analyzer, and ExB probe. Data from these probes were used to calculate utilization efficiencies from existing...USA Far-field plume measurements were performed on the X2 nested-channel Hall-effect thruster using an ar- ray of diagnostics, including a nude Faraday...mode to nested-channel mode by utilizing a traditional array of far-field diagnostics, which include a nude Faraday probe, retarding potential analyzer
Dilution Refrigerator Technology for Scalable Quantum Computing
2014-05-22
Faraday cage but we did not do this for vibration concerns. 3. 90 degree Aeroquip fitting This elbow can be used (or not) depending upon where you...place. 4. Gas ballast tanks We have them mounted inside of the Faraday cage 5. Gas handling system Everything in this picture is...lines will work for your installation. 11. Cryostat test stand and faraday cage We were not planning on sending the test stand because it is
Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Kao, M.
1997-01-01
The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.
Irregularities and Forecast Studies of Equatorial Spread
2016-07-13
less certain and requires investigation. It should be possible to observe the Faraday rotation of the signals received at Jicamarca. This is another...indication of the line-integrated electron number 9 DISTRIBUTION A: Distribution approved for public release. density. Like the phase delay, the Faraday ...angle is a modulo-two-pi quantity that is best used to constrain the time evolution of the ionosphere. Both the Faraday angle and the phase delay are
Diode-laser frequency stabilization based on the resonant Faraday effect
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.
Ultrafast Imaging of Electronic Motion in Atoms and Molecules
2016-01-12
pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in...100 fs. The charge and duration of the electron pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively... faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in-situ. The gun was shown to generate pulses
The Faraday rotation experiment. [solar corona
NASA Technical Reports Server (NTRS)
Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.
1984-01-01
The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.
2016-02-01
Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary
Dust Observations by Faraday Cups Onboard Spektr-R
NASA Astrophysics Data System (ADS)
Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.
2017-12-01
Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.
A Faraday laser lasing on Rb 1529 nm transition.
Chang, Pengyuan; Peng, Huanfa; Zhang, Shengnan; Chen, Zhangyuan; Luo, Bin; Chen, Jingbiao; Guo, Hong
2017-08-21
We present the design and performance characterization of a Faraday laser directly lasing on the Rb 1529 nm transition (Rb, 5P 3/2 - 4D 5/2 ) with high stability, narrow spectral linewidth and low cost. This system does not need an additional frequency-stabilized pump laser as a prerequisite to preparing Rb atom from 5S to 5P excited state. Just by using a performance-improved electrodeless discharge lamp-based excited-state Faraday anomalous dispersion optical filter (LESFADOF), we realized a heterogeneously Faraday laser with the frequency corresponding to atomic transition, working stably over a range of laser diode (LD) current from 85 mA to 171 mA and the LD temperature from 11 °C to 32 °C, as well as the 24-hour long-term frequency fluctuation range of no more than 600 MHz. Both the laser linewidth and relative intensity noisy (RIN) are measured. The Faraday laser lasing on Rb 1529 nm transition (telecom C-band) can be applied to further research on metrology, microwave photonics and optical communication systems. Besides, since the transitions correspongding to the populated excited-states of alkali atoms within lamp are extraordinarily rich, this scheme can increase the flexibility for choosing proper wavelengths for Faraday laser and greatly expand the coverage of wavelength corresponding to atomic transmission for laser frequency stabilization.
Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiaming; Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202; Luo, Le, E-mail: leluo@iupui.edu
2014-03-14
We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absencemore » of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.« less
Thermooptics of magnetoactive media: Faraday isolators for high average power lasers
NASA Astrophysics Data System (ADS)
Khazanov, E. A.
2016-09-01
The Faraday isolator, one of the key high-power laser elements, provides optical isolation between a master oscillator and a power amplifier or between a laser and its target, for example, a gravitational wave detector interferometer. However, the absorbed radiation inevitably heats the magnetoactive medium and leads to thermally induced polarization and phase distortions in the laser beam. This self-action process limits the use of Faraday isolators in high average power lasers. A unique property of magnetoactive medium thermooptics is that parasitic thermal effects arise on the background of circular birefringence rather than in an isotropic medium. Also, even insignificant polarization distortions of the radiation result in a worse isolation ratio, which is the key characteristic of the Faraday isolator. All possible laser beam distortions are analyzed for their deteriorating effect on the Faraday isolator parameters. The mechanisms responsible for and key physical parameters associated with different kinds of distortions are identified and discussed. Methods for compensating and suppressing parasitic thermal effects are described in detail, the published experimental data are systematized, and avenues for further research are discussed based on the results achieved.
In-vacuum optical isolation changes by heating in a Faraday isolator.
Acernese, Fausto; Alshourbagy, Mohamed; Amico, Paolo; Antonucci, Federica; Aoudia, S; Astone, P; Avino, Saverio; Ballardin, G; Baggio, L; Barone, Fabrizio; Barsotti, Lisa; Barsuglia, Matteo; Bauer, Th S; Bigotta, Stefano; Birindelli, Simona; Bizouard, Marie-Anne; Boccara, Albert-Claude; Bondu, François; Bosi, Leone; Braccini, Stefano; Bradaschia, Carlo; Brillet, Alain; Brisson, Violette; Buskulic, Damir; Cagnoli, G; Calloni, Enrico; Campagna, Enrico; Carbognani, Franco; Carbone, L; Cavalier, Fabien; Cavalieri, R; Cella, G; Cesarini, E; Chassande-Mottin, E; Chatterji, S; Cleva, F; Coccia, E; Corda, C; Corsi, A; Cottone, F; Coulon, J-P; Cuoco, E; D'Antonio, S; Dari, A; Dattilo, V; Davier, M; De Rosa, R; Del Prete, M; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Evans, M; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Fournier, J-D; Frasca, S; Frasconi, F; Gammaitoni, L; Garufi, F; Genin, E; Gennai, A; Giazotto, A; Giordano, L; Granata, V; Greverie, C; Grosjean, D; Guidi, G; Hamdani, S; Hebri, S; Heitmann, H; Hello, P; Huet, D; La Penna, P; Laval, M; Leroy, N; Letendre, N; Lopez, B; Lorenzini, M; Loriette, V; Losurdo, G; Mackowski, J-M; Majorana, E; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Menzinger, F; Milano, L; Minenkov, Y; Moins, C; Morgado, N; Mosca, S; Mours, B; Neri, I; Nocera, F; Pagliaroli, G; Palomba, C; Paoletti, F; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Piergiovanni, F; Pinard, L; Poggiani, R; Punturo, M; Puppo, P; Rabaste, O; Rapagnani, P; Regimbau, T; Remillieux, A; Ricci, F; Ricciardi, I; Rocchi, A; Rolland, L; Romano, R; Ruggi, P; Russo, G; Sentenac, D; Solimeno, S; Swinkels, B L; Tarallo, M; Terenzi, R; Toncelli, A; Tonelli, M; Tournefier, E; Travasso, F; Vajente, G; van den Brand, J F J; van der Putten, S; Verkindt, D; Vetrano, F; Viceré, A; Vinet, J-Y; Vocca, H; Yvert, M
2008-11-01
We describe a model evaluating changes in the optical isolation of a Faraday isolator when passing from air to vacuum in terms of different thermal effects in the crystal. The changes are particularly significant in the crystal thermal lensing (refraction index and thermal expansion) and in its Verdet constant and can be ascribed to the less efficient convection cooling of the magneto-optic crystal of the Faraday isolator. An isolation decrease by a factor of 10 is experimentally observed in a Faraday isolator that is used in a gravitational wave experiment (Virgo) with a 10 W input laser when going from air to vacuum. A finite element model simulation reproduces with a great accuracy the experimental data measured on Virgo and on a test bench. A first set of measurements of the thermal lensing has been used to characterize the losses of the crystal, which depend on the sample. The isolation factor measured on Virgo confirms the simulation model and the absorption losses of 0.0016 +/- 0.0002/cm for the TGG magneto-optic crystal used in the Faraday isolator.
Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong
2016-10-01
A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.
Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar
2017-04-01
Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.
Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.
Furdyna, J K
1967-04-01
The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.
Cavity-enhanced Faraday rotation measurement with auto-balanced photodetection.
Chang, Chia-Yu; Shy, Jow-Tsong
2015-10-01
Optical cavity enhancement for a tiny Faraday rotation is demonstrated with auto-balanced photodetection. This configuration is analyzed using the Jones matrix formalism. The resonant rotation signal is amplified, and thus, the angular sensitivity is improved. In the experiment, the air Faraday rotation is measured with an auto-balanced photoreceiver in single-pass and cavity geometries. The result shows that the measured Faraday rotation in the single-pass geometry is enhanced by a factor of 85 in the cavity geometry, and the sensitivity is improved to 7.54×10(-10) rad Hz(-1/2), which agrees well with the Jones matrix analysis. With this verification, we propose an AC magnetic sensor whose magnetic sensitivity is expected to achieve 10 pT Hz(-1/2).
Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.
Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A
2014-04-01
Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.
Keaveney, James; Hamlyn, William J; Adams, Charles S; Hughes, Ifan G
2016-09-01
We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.
NASA Astrophysics Data System (ADS)
Gluck, Paul
2004-03-01
The Faraday ice-pail experiment is performed when studying the distribution of charges in conductors: Inside a hollow conductor the net charge is zero, and any excess charge resides on the outside surface.
Graphite-ceramic rf Faraday-thermal shield and plasma limiter
Hwang, D.L.Q.; Hosea, J.C.
1983-05-05
The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.
Micro And Nanostructured Materials For Fluid And Ion Transport For Miniaturized Applications
2016-06-08
micromachined tip. The setup is shown in Figure 7(a). The RPA instrument consists of a Faraday cup collector and a set of grids placed in between the...collector. Therefore, by varying the retarding potential and measuring the current arriving to the Faraday cup, it is possible to obtain the beam energy...distribution. The instrument consists of seven grids followed by a Faraday cup. The first grid is a 90% transparent tungsten mesh, which is grounded
Intense Ion Pulses for Radiation Effects Research
2017-04-01
station; here, the time dependent beam current can be measured with a fast Faraday cup (ə ns time resolution). The transverse distribution of the...focused into a spot with a diameter of about 2 mm [8]. The helium ion current and the integrated charge ver- sus time, measured with the fast Faraday cup...target measured with the fast Faraday cup. The sharp peak in the current measurement shows the beam pulse compression from 1 μs to a few ns. The full
Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves
NASA Astrophysics Data System (ADS)
Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.
2014-01-01
In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.
NMT - A new individual ion counting method: Comparison to a Faraday cup
NASA Astrophysics Data System (ADS)
Burton, Michael; Gorbunov, Boris
2018-03-01
Two sample detectors used to analyze the emission from Gas Chromatography (GC) columns are the Flame Ionization Detector (FID) and the Electron Capture Detector (ECD). Both of these detectors involve ionization of the sample molecules and then measuring electric current in the gas using a Faraday cup. In this paper a newly discovered method of ion counting, Nanotechnology Molecular Tagging (NMT) is tested as a replacement to the Faraday cup in GCs. In this method the effective physical volume of individual molecules is enlarged up to 1 billion times enabling them to be detected by an optical particle counter. It was found that the sensitivity of NMT was considerably greater than the Faraday cup. The background in the NMT was circa 200 ions per cm3, corresponding to an extremely low electric current ∼10-17 A.
Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.
Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V
2016-07-13
Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.
NASA Astrophysics Data System (ADS)
Li, Xiaochen; Li, Xiaoming; Liao, Shijun
2018-01-01
A system of two coupled Faraday waves is experimentally observed at the two interfaces of the three layers of fluids (air, pure ethanol, and silicon oil) in a covered Hele-Shaw cell with periodic vertical vibration. Both the upper and lower Faraday waves are subharmonic, but they coexist in different forms: the upper one vibrates vertically, while the crests of the lower one oscillate horizontally with unchanged wave height, and the troughs of the lower one usually remain in the same place (relative to the basin). Besides, they are strongly coupled: the wave height of the lower Faraday waves is either a linear function (when forcing frequency is fixed) or a parabolic function (when acceleration amplitude is fixed) of that of the upper one with a same wavelength.
Basic research for development of the beam profile monitor based on a Faraday cup array system
NASA Astrophysics Data System (ADS)
Park, Mook-Kwang
2015-10-01
The basic design used to develop a beam profile monitor based on a Faraday cup array (FCA), which has the advantages of high robustness, reliability, and long-term stability, along with the ability to measure the ion current over a wide dynamic range, was developed. The total system is divided into three parts: i.e., a faraday cup, measuring electronics, and a display program part. The FCA was considered to consist of a collimator, suppressor, insulator frame, and 64 (8 × 8 array) tiny Faraday cups (FC). An electronic circuit using a multiplexer was applied to effectively address many signal lines and the printed circuit board (PCB) was designed to be divided into three parts, i.e., an electrode PCB (ELEC PCB), capacitance PCB (CAP PCB), and control PCB (CON PCB).
Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R
2016-11-01
Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.
Versatile, high-sensitivity faraday cup array for ion implanters
Musket, Ronald G.; Patterson, Robert G.
2003-01-01
An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.
Polycrystalline (TbXY1-X)2O3 Faraday rotator.
Ikesue, Akio; Aung, Yan Lin; Makikawa, Shinji; Yahagi, Akira
2017-11-01
We have succeeded for the first time in synthesizing an optical grade (Tb X Y 1-X ) 2 O 3 (X=0.5-1.0) ceramic Faraday rotator, which greatly exceeds the basic characteristics of the commercial terbium gallium garnet (TGG) (Tb 3 Ga 5 O 12 ) crystal. The Faraday rotation angle increased as the Tb concentration increased, and the Verdet constant increased from 2.1 (82 rad T -1 m -1 at X=0.5) to 3.8 times (154 rad T -1 m -1 at X=1.0) than the TGG single crystal, which is regarded as highest class. Therefore, it is possible to minimize the Faraday rotator length and the magnet in building an optical isolator. It was also confirmed that its optical quality was very comparable to the commercial TGG crystal.
Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets
NASA Astrophysics Data System (ADS)
Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.
2017-05-01
We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.
Rotation measure synthesis at the 2 m wavelength of the FAN region: unveiling screens and bubbles
NASA Astrophysics Data System (ADS)
Iacobelli, M.; Haverkorn, M.; Katgert, P.
2013-01-01
Context. Rotation measure synthesis of the Westerbork Synthesis Radio Telescope (WSRT) observations at λ ~ 2 m of the FAN region at l = 137°, b = +7° shows the morphology of structures in the ionized interstellar medium. Aims: We interpret the diffuse polarized synchrotron emission in terms of coherent structures in the interstellar medium and the properties of the interstellar magnetic field. Methods: We performed statistical analysis of the polarization data cube obtained through rotation measure synthesis. For the first time, cross-correlation is applied to identify and characterize polarized structures in Faraday depth space. Complementary information about the medium are derived from Hα emission, properties of nearby pulsars, and optical polarized starlight measurements. Results: We find an overall asymmetric Faraday dispersion function in a Faraday depth range of [-13, +5] rad m-2, which is peaked around -1 rad m-2. Three morphological patterns are recognized, showing structures on scales from degrees down to the beam size. The first structure is a nearby synchrotron emission component with low Faraday depth, filling the entire field of view. The second pattern is a circular polarization structure with enhanced (negative) Faraday depth, which has the same morphology as a low-emission region within the third component. This third component is interpreted as the background in which the circular structure is embedded. At low Faraday depth values, a low gradient across the imaged field is detected, almost aligned with the Galactic plane. Power spectra of polarized structures in Faraday depth space provide evidence of turbulence. Conclusions: A sign reversal in Faraday depth from the nearby component to the circular component indicates a reversal of the magnetic field component along the line of sight, from towards the observer and nearby to away from the observer at large distances. The distance to the nearby, extended component is estimated as ≲100 pc, which suggests that this structure corresponds to the Local Bubble wall. For the circular component, various physical interpretations are discussed. The most likely explanation is that the circular component seems to be the presence of a nearby (~200 pc away) relic Strömgren sphere, associated with an old unidentified white dwarf star and expanding in a low-density environment. Faraday rotation datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A56
Faraday instability on patterned surfaces
NASA Astrophysics Data System (ADS)
Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard
2013-11-01
We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.
Faraday effect on stimulated Raman scattering in the linear region
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.
2018-04-01
The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.
Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X
2018-01-01
A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.
Growth, Faraday and inverse Faraday characteristics of Tb2Ti2O7 crystal.
Guo, Feiyun; Sun, Yilin; Yang, Xiongsheng; Chen, Xin; Zhao, Bin; Zhuang, Naifeng; Chen, Jianzhong
2016-03-21
Tb2Ti2O7 (TTO) single crystal with dimensions of 20 × 20 × 16 mm3 was grown by the Czochralski method. Rietveld structure refinement of X-ray diffraction (XRD) data confirms that the compound crystallizes in the cubic system with pyrochlore structure. Transmission spectra, Magnetic circular dichroism (MCD) spectra, Faraday and inverse Faraday characteristics of TTO crystal have been measured and analyzed in detail. The results demonstrate that TTO crystal has high transmittance at 700-1400 nm waveband and a larger Verdat constant than that of TGG reported. Magnetic circular dichroism (MCD) spectra showed that the 4f→4f transitions of Tb3+ have significant contributions to the magneto-optical activity (MOA). In the time-resolved pump-probe spectroscopy, the rotation signals of the probe beam based on the inverse Faraday effect in magneto-optical crystal were observed at zero time delay, the full width at half maximum of the rotation and ellipticity signals can be as fast as ~500 fs, which indicates that TTO crystal can be a promising material for ultrafast all-optical magnetic switching.
Measurement and control systems for an imaging electromagnetic flow metre.
Zhao, Y Y; Lucas, G; Leeungculsatien, T
2014-03-01
Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.
Magnetic fields in noninvasive brain stimulation.
Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas
2014-04-01
The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.
Magnetic Field Response Measurement Acquisition System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)
2006-01-01
Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.
Efg Crystal Growth Apparatus And Method
Mackintosh, Brian H.; Ouellette, Marc
2003-05-13
An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.
2012-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.
The extraordinary impact of Michael Faraday on chemistry and related subjects.
Thomas, John Meurig
2017-08-25
Biographers of Michael Faraday, as well as many dictionaries of science, often describe him as a physicist, which he certainly was. But he was also an astonishingly effective chemist: in fact, he was the Fullerian Professor of Chemistry (at the Royal Institution, RI) from 1834 until the time of his death in August, 1867. To mark the sesquicentenary of his passing, this editorial, by one of his distant successors as Director and Fullerian Professor at the RI, focuses on Faraday's output and influence as a scientist.
Stripline fast faraday cup for measuring GHz structure of ion beams
Bogaty, John M.
1992-01-01
The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.
The Rb 780-nanometer Faraday anomalous dispersion optical filter: Theory and experiment
NASA Technical Reports Server (NTRS)
Yin, B.; Alvarez, L. S.; Shay, T. M.
1994-01-01
The Faraday anomalous dispersion optical filter may provide ultra-high background noise rejection for free-space laser communications systems. The theoretical model for the filter is reported. The experimental measurements and their comparison with theoretical results are discussed. The results show that the filter can provide a 56-dB solar background noise rejection with about a 2-GHz transmission bandwidth and no image degradation. To further increase the background noise rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is designed and experimentally demonstrated.
Fast Faraday fading of long range satellite signals.
NASA Technical Reports Server (NTRS)
Heron, M. L.
1972-01-01
20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.
NASA Astrophysics Data System (ADS)
Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.
2018-05-01
We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.
Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J., E-mail: chenjie@ucla.edu; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074; Ding, W. X.
2016-11-15
Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbationsmore » have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.« less
Michael Faraday on the Learning of Science and Attitudes of Mind
NASA Astrophysics Data System (ADS)
Crawford, Elspeth
The paper makes use of Michael Faraday's ideas about learning, in particular his thoughts about attitudes to the unknowns of science and the development of an attitude which improves scientific decision-making. An invented scenario involving nursery school children demonstrates some attitudes displayed there. Discussion of the scenario and variation in possible outcomes suggests that Faraday's views are relevant to scientific learning in general. The main thesis of the paper is that it is central to learning in science to acknowledge that there is an inner struggle involved in facing unknowns, and that empathy with the fears and expectations of learners is an essential quality if genuinely scientific thought is to develop. It is suggested, following Faraday, that understanding our own feelings while we teach is a pre-requisite to enabling such empathy and that only then will we be in a position to evaluate accurately whether or not our pupils are thinking scientifically.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.
2018-05-01
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.
Beloy, K; Zhang, X; McGrew, W F; Hinkley, N; Yoon, T H; Nicolodi, D; Fasano, R J; Schäffer, S A; Brown, R C; Ludlow, A D
2018-05-04
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Mode-locking via dissipative Faraday instability
Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.
2016-01-01
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708
Asraf, Sagie; Sintov, Yoav; Zalevsky, Zeev
2017-08-07
We propose a novel configuration for an improved and compact all fiber Faraday rotator based on phase matching between the Faraday rotation and bend-induced birefringence. The device utilizes a coiled fiber within two electro-magnetic toroids, such that the fiber length required for getting the beat length is quite long and several rounds of fiber are needed. Analysis of the capabilities of the proposed device and its sensitivity to different parameters is presented. Faraday rotation of 13° was experimentally measured in six meters of single mode silica fiber, with a magnetic field of about 0.06T at a wavelength of 1064nm. We show that phase matching between the two phenomena significantly improves the polarization rotation by a factor of 4-10. In addition, we demonstrate the ability to achieve higher rotation by using Fabry Perot resonator in low terbium doped glass.
Faraday waves under time-reversed excitation.
Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas
2013-03-01
Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.
Mode-locking via dissipative Faraday instability.
Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K
2016-08-09
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Chat, G.; Cohen, O.; Kasper, J. C.
Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photosphericmore » magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.« less
Comparison of methods for removing electromagnetic noise from electromyographic signals.
Defreitas, Jason M; Beck, Travis W; Stock, Matt S
2012-02-01
The purpose of this investigation was to compare three different methods of removing noise from monopolar electromyographic (EMG) signals: (a) electrical shielding with a Faraday cage, (b) denoising with a digital notch-filter and (c) applying a bipolar differentiation with another monopolar EMG signal. Ten men and ten women (mean age = 24.0 years) performed isometric muscle actions of the leg extensors at 10-100% of their maximal voluntary contraction on two separate occasions. One trial was performed inside a Faraday tent (a flexible Faraday cage made from conductive material), and the other was performed outside the Faraday tent. The EMG signals collected outside the Faraday tent were analyzed three separate ways: as a raw signal, as a bipolar signal, and as a signal digitally notch filtered to remove 60 Hz noise and its harmonics. The signal-to-noise ratios were greatest after notch-filtering (range: 3.0-33.8), and lowest for the bipolar arrangement (1.6-10.2). Linear slope coefficients for the EMG amplitude versus force relationship were also used to compare the methods of noise removal. The results showed that a bipolar arrangement had a significantly lower linear slope coefficient when compared to the three other conditions (raw, notch and tent). These results suggested that an appropriately filtered monopolar EMG signal can be useful in situations that require a large pick-up area. Furthermore, although it is helpful, a Faraday tent (or cage) is not required to achieve an appropriate signal-to-noise ratio, as long as the correct filters are applied.
Graphit-ceramic RF Faraday-thermal shield and plasma limiter
Hwang, David L.; Hosea, Joel C.
1989-01-01
The present invention is directed to a process of brazing a ceramic mater to graphite. In particular, the brazing procedure is directed to the production of a novel brazed ceramic graphite product useful as a Faraday shield.
One-Piece Faraday Generator: A Paradoxical Experiment from 1851
ERIC Educational Resources Information Center
Crooks, M. J.; And Others
1978-01-01
Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)
77 FR 3478 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... Marriott Tysons Corner, 1960--A Chain Bridge Road, McLean, VA 22102. Contact Person: Martha M Faraday, Ph.D... Marriott Tysons Corner, 1960-A Chain Bridge Road McLean, VA 22102. Contact Person: Martha M Faraday, Ph.D...
Measurements of high-current electron beams from X pinches and wire array Z pinches.
Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R
2008-10-01
Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.
Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster
2006-01-01
Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating
Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.
Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao
2011-12-01
We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America
Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere.
Jimenez, Jose L
2016-07-18
This article summarises the Concluding remarks from the Faraday Discussion on Chemistry in the Urban Atmosphere. The following themes are addressed: (a) new results that inform our understanding of the evolving sources and composition of the urban atmosphere ("News"); (b) results that identify gaps in our understanding that necessitate further work ("Gaps"); (c) the emerging instrumentation revolution and some of the challenges that it brings; (d) the structural issues of insufficient support for the analysis of field campaigns; and (e) some important areas that were missing from this Faraday Discussion and that should receive an increasing focus in the future.
NASA Astrophysics Data System (ADS)
Ostergaard, Jens C.
1989-01-01
The background, methodology and preliminary results of an investigation of Faraday rotation effects on the Meteor Scatter High Latitude Test Bed in Greenland are presented. A short review of polarization theory for radio waves, presenting basic properties and changes when reflected from the surface of the earth or propagated through the ionosphere is included. Material published by other workers is presented to give the background for the current interest in Faraday rotation on meteor scatter links. Propagation losses for meteor scatter paths originate from spatial spreading of RF energy, scattering losses at the meteor trail, ionospheric absorption and polarization mismatch at the receiving antenna. That part of the polarization mismatch generated by the ionosphere, the Faraday rotation, is described and evaluated. A method to compute the Faraday rotation is presented and results obtained for the AFGL MSHL Test Bed are given. An experiment, including the measurement of signal strength and polarization throughout the lifetime of the individual meteor scatter return is needed to fully assess the combined affects of absorption and depolarization during both quiet and disturbed ionospheric conditions. The measurement accuracy to be expected from a proposed experiment is evaluated. A few examples of meteor scatter returns obtained with a prototype experiment in Greenland are shown and discussed.
Recent VLA Measurements of CME-Induced Faraday Rotation
NASA Astrophysics Data System (ADS)
Kooi, Jason; Thomas, Najma; Guy, Michael; Spangler, Steven R.
2018-01-01
Observations of Faraday rotation, the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, have been used for decades to determine the strength and structure of the coronal magnetic field and plasma density. Similarly, observations of Faraday rotation through a coronal mass ejection (CME) have the potential to improve our understanding of the CME’s plasma structure. We report recent results from simultaneous white-light coronagraph and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of cosmic radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. A unique aspect of these observations is that the CME occulted several of these radio sources and, therefore, our Faraday rotation measurements provide information on the plasma structure in different regions of the CME. We successfully measured CME-induced Faraday rotation along multiple lines of sight because we made special arrangements with the staff at the National Radio Astronomy Observatory to trigger VLA observations when a candidate CME appeared low in the corona in near real-time images from the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument.
A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani
2013-01-01
This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.
Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai
2016-04-01
We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50 mm and the reflected optical path length was 2L=100 mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6 GHz and 4 MHz/h at a detuning of -5.2 GHz were also obtained for the transmitted and reflected light Faraday signal.
A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani
2013-01-01
This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes, the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.
NASA Technical Reports Server (NTRS)
Woo, R.
1998-01-01
The detection of coronal streamers in Doppler scintillation measurements revealed for the first time that variations in radio occultation measurements near the Sun could be caused by quasi-stationary raylike structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, R. J.; Ahn, J.W.; Bortolon, A.
The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards themore » low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.« less
More on Faraday's and Lenz's laws - Qualitative demonstrations
NASA Astrophysics Data System (ADS)
Hessel, Roberto
2011-03-01
A large variety of simple setups for demonstrating Faraday's and Lenz's laws have been described in the literature.1-4 For a few semesters, we tested some of these setups, especially those suggested in Ref. 1, but recently we decided to develop our own version.
Michael Faraday on the Learning of Science and Attitudes of Mind.
ERIC Educational Resources Information Center
Crawford, Elspeth
1998-01-01
Makes use of Michael Faraday's ideas on learning, focusing on his attitudes toward the unknowns of science and the development of an attitude that improves scientific decision making. This approach acknowledges that there is an inner struggle involved in facing unknowns. (DDR)
Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators
NASA Astrophysics Data System (ADS)
Karki, Dolendra; Stenger, Vincent; Pollick, Andrea; Levy, Miguel
2017-06-01
This report describes the fabrication, characterization, and transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth-substituted rare-earth iron garnets were produced from commercially available materials by mechanical lapping, dice polishing, and crystal-ion-slicing. Eleven- μ m -thick films were shown to retain the 45 ° Faraday rotation of the bulk material to within 2 ° at 1.55 μ m wavelength without re-poling. Anti-reflection coated films evince 0.09 dB insertion loses and better than -20 dB extinction ratios. Lower extinction ratios than the bulk are ascribed to multimode propagation. Significantly larger extinction ratios are predicted for single-mode waveguides. Faraday rotation, extinction ratios, and insertion loss tests on He-ion implanted slab waveguides of the same material yielded similar results. The work culminated with bond alignment and transfer of 7 μ m -thick crystal-ion-sliced 50 × 480 μ m 2 films onto silicon photonic substrates.
Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.
2016-02-15
Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
Magnetic resonance imaging of living systems by remote detection
Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah
2013-10-29
A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.
A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems
NASA Technical Reports Server (NTRS)
Oren, Abraham L.; Wolfe, Arthur M.
1995-01-01
We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately equal 1.
A modulation technique for the measurement of the DC longitudinal Faraday effect
NASA Astrophysics Data System (ADS)
Hunte, Carlos
2018-03-01
A modulation of light technique, using a lock-in amplifier, is described and tested to investigate the longitudinal Faraday effect in isotropic media. The Faraday rotation is measured directly from the lock-in amplifier. The Verdet constant and dispersion of lead-silica SF-59 Schott glass, at room temperature of 25 °C, were determined for varying wavelengths and expressions for their wavelength dependence were determined. The Verdet constant of water is also investigated. The results compare extremely well with other studies. The technique is suited to measure very small Verdet constants and can be easily conducted in an upper-level undergraduate laboratory.
Todd, Faraday and the electrical basis of brain activity.
Reynolds, Edward
2007-10-01
The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829).
VizieR Online Data Catalog: Faraday tomography of foreground towards IC342 (Van Eck+, 2017)
NASA Astrophysics Data System (ADS)
van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; de Bruyn, A. G.; Ensslin, T.; Farnes, J. S.; Ferriere, K.; Heald, G.; Horellou, C.; Horneffer, A.; Iacobelli, M.; Jelic, V.; Marti-Vidal, I.; Mulcahy, D. D.; Reich, W.; Rottgering, H. J. A.; Scaife, A. M. M.; Schnitzeler, D. H. F. M.; Sobey, C.; Sridhar, S. S.
2016-11-01
The Faraday depth cube of the IC342 field in polarized intensity, produced from LOFAR HBA observations as part of LOFAR proposal LC0_043. The cube is approximately 5x5 degrees in size, with 4-arcmin resolution, and covers Faraday depths from -25 to +25rad/m2. The detailed specifications are given in the table and in the FITS header. Selected frames from this cubes are shown in the paper in Figures 2 through 5. An extended description of the data processing leading to this cube is included in the paper. (2 data files).
NASA Astrophysics Data System (ADS)
Zheleznov, D. S.; Voitovich, A. V.; Mukhin, I. B.; Palashov, O. V.; Khazanov, E. A.
2006-04-01
It is shown experimentally that cooling of a Faraday isolator to liquid nitrogen temperature considerably suppresses the thermally induced depolarisation and reduces the thermal lens. This leads to an increase in the maximum average laser radiation power passing through the isolator by a factor of more than thirty for the same degree of isolation. It is shown that for the same level of cooling, conventional Faraday isolators can operate for powers up to 10 kW, while isolators with compensation of depolarisation and thermal lens can operate up to 100 kW.
Theoretical model for frequency locking a diode laser with a Faraday cell
NASA Technical Reports Server (NTRS)
Wanninger, P.; Shay, T. M.
1992-01-01
A new method was developed for frequency locking a diode lasers, called 'the Faraday anomalous dispersion optical transmitter (FADOT) laser locking', which is much simpler than other known locking schemes. The FADOT laser locking method uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. The FADOT method is vibration insensitive and exhibits minimal thermal expansion effects. The system has a frequency pull in the range of 443.2 GHz (9 A). The method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
Strong interband Faraday rotation in 3D topological insulator Bi2Se3.
Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M
2016-01-11
The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
A potassium Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1992-01-01
The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.
Faraday Cage Protects Against Lightning
NASA Technical Reports Server (NTRS)
Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.
1992-01-01
Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.
Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang
2015-05-29
Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.
Building a better Faraday cage
NASA Astrophysics Data System (ADS)
MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire
2015-11-01
In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.
NASA Technical Reports Server (NTRS)
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
Theoretical model for a Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1991-01-01
A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.
ERIC Educational Resources Information Center
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Fast Faraday Cup With High Bandwidth
Deibele, Craig E [Knoxville, TN
2006-03-14
A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.
Faraday's Law and Seawater Motion
ERIC Educational Resources Information Center
De Luca, R.
2010-01-01
Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…
Faraday Rotation for SMOS Retrievals of Ocean Salinity and Soil Moisture
NASA Technical Reports Server (NTRS)
El-Nimri, Salem; Le Vine, David M.
2016-01-01
Faraday rotation is a change in polarization as radiation propagates from the surface through the ionosphere to the sensor. At L-band (1.4 GHz) this change can be significant and can be important for the remote sensing of soil moisture and ocean salinity from space. Consequently, modern L-band radiometers (SMOS, Aquarius and SMOS) are polarimetric to measure Faraday rotation in situ so that a correction can be made. This is done using the ratio of the third and second Stokes parameters. In the case of SMOS this procedure has produced very noisy estimates. An alternate procedure is reported here in which the total electron content is estimated and averaged to reduce noise.
NASA Astrophysics Data System (ADS)
Wallenhorst, M.; Niemöller, M.; Dötsch, H.; Hertel, P.; Gerhardt, R.; Gather, B.
1995-04-01
Garnet films of composition Lu3-xBixFe5-yGayO12 are grown by liquid-phase epitaxy on [111]-oriented substrates of gadolinium gallium garnet. Faraday rotation and saturation magnetization are measured as a function of substitution levels, which range up to x=1.4 and y=1.8, respectively. Nonreciprocal propagation of the TM0 is studied at a wavelength of 1.3 μm. It is shown that the difference between forward and backward propagation constants can be optimized using double layers with opposite sign of the Faraday rotation. Agreement between experiments and calculations is excellent.
Faraday-effect polarimeter-interferometer system for current density measurement on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. Q.; Jie, Y. X., E-mail: yx-jie@ipp.ac.cn; Zou, Z. Y.
2014-11-15
A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.
Search for the Acoustic Faraday Effect in Superfluid ^3He-B
NASA Astrophysics Data System (ADS)
Lee, Y.; Haard, T. M.; Kycia, J. B.; Halperin, W. P.
1997-03-01
Transverse zero sound is another propagating mode predicted to exist in Fermi liquids by Landau. However, it has been difficult to achieve clear experimental evidence for propagating transverse zero sound in ^3He. A recent theoretical calculation(G.F. Moores and J.A. Sauls, JLTP 91), 13 (1993). showed that this mode may be rather easily detected at very low temperatures in the B-phase of superfluid ^3He. Futhermore, in the presence of a magnetic field the polarization of the sound wave rotates as it propagates, which is analogous to the Faraday effect in optics. We report our preliminary experimental results on the acoustic Faraday effect in ^3He-B.
Faraday waves in a Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun
2018-04-01
We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.
Characterization of beam-driven instabilities and current redistribution in MST plasmas
NASA Astrophysics Data System (ADS)
Parke, E.
2015-11-01
A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.
Faraday, Dickens and Science Education in Victorian Britain
ERIC Educational Resources Information Center
Melville, Wayne; Allingham, Philip V.
2011-01-01
The achievements of Michael Faraday in the fields of electricity and electrochemistry have led some to describe him as the greatest experimental scientist in history. Charles Dickens was the creative genius behind some of the most memorable characters in literature. In this article, we share an historical account of how the collaboration of these…
The Minus Sign in Faraday's Law Revisited
ERIC Educational Resources Information Center
O'Sullivan, Colm; Hurley, Donal
2013-01-01
By introducing the mathematical concept of orientation, the significance of the minus sign in Faraday's law may be made clear to students with some knowledge of vector calculus. For many students, however, the traditional approach of treating the law as a relationship between positive scalars and of relying on Lenz's law to provide the information…
Web life: Faraday's Cage Is Where You Put Schrödinger's Cat
NASA Astrophysics Data System (ADS)
2012-01-01
Faraday's Cage Is Where You Put Schrödinger's Cat (FCIWYPSC) is a blog written by Cherish Bauer-Reich, who is pursuing a PhD in geophysics at the University of Minnesota while also working part-time as a research engineer at North Dakota State University (NDSU), some 250 miles away.
Faraday rotation data analysis with least-squares elliptical fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Adam D.; McHale, G. Brent; Goerz, David A.
2010-10-15
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less
Development and first experimental tests of Faraday cup array.
Prokůpek, J; Kaufman, J; Margarone, D; Krůs, M; Velyhan, A; Krása, J; Burris-Mog, T; Busold, S; Deppert, O; Cowan, T E; Korn, G
2014-01-01
A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.
Demonstration of a mid-infrared NO molecular Faraday optical filter.
Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan
2017-12-11
A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.
2006-01-01
The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.
NASA Technical Reports Server (NTRS)
Scheid, J. A.
1985-01-01
When both S-band and X-band data are recorded for a signal which has passed through the ionosphere, it is possible to calculate the ionospheric contribution to signal delay. In Very Long Baseline Interferometry (VLBI) this method is used to calibrate the ionosphere. In the absence of dual frequency data, the ionospheric content measured by Faraday rotation, using a signal from a geostationary satellite, is mapped to the VLBI observing direction. The purpose here is to compare the ionospheric delay obtained by these two methods. The principal conclusions are: (1) the correlation between delays obtained by these two methods is weak; (2) in mapping Faraday rotation measurements to the VLBI observing direction, a simple mapping algorithm which accounts only for changes in hour angle and elevation angle is better than a more elaborate algorithm which includes solar and geomagnetic effects; (3) fluctuations in the difference in total electron content as seen by two antennas defining a baseline limit the application of Faraday rotation data to VLBI.
Effects of interband transitions on Faraday rotation in metallic nanoparticles.
Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar
2013-08-14
The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.
Effects of Faraday Rotation Observed in Filter Magnetograph Data
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.
1999-01-01
In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.
Faraday signature of magnetic helicity from reduced depolarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandenburg, Axel; Stepanov, Rodion
2014-05-10
Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter.more » The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.« less
NASA Astrophysics Data System (ADS)
Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei
2018-06-01
Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.
Faraday Rotation Studies of Indium Antimonide and CADMIUM(1-X) Manganese(x) Telluride
NASA Astrophysics Data System (ADS)
Jimenez Gonzalez, Hector J.
Faraday rotation has been studied in two material systems: narrow-gap InSb and wide-gap Cd_ {1-x}Mn_{x}Te. The measurements were done in the infrared region using high magnetic fields up to 150 kG. The Faraday rotation of n-type InSb has been measured for wavelengths between 8.0 and 13.0 μm at 9 K, using magnetic fields up to 150 kG. Measurements were made on samples with nominal carrier concentrations of 1 times 10^{14 }, 6 times 10 ^{14}, 1 times 10^{15}, and 5 times 10^{15} cm^{-3}. The experimental results have been successfully analyzed in terms of intraband and interband transitions at the Gamma point in the Brillouin zone, using a quantum-mechanical treatment. In this approach, there are three contributions to the Faraday rotation: (a) interband, (b) plasma, and (c) spin contributions. The interband contribution is dominant in the low concentration samples where the plasma and spin contributions, which are due to the free carriers, are small. At high carrier concentrations the spin and plasma contributions are dominant. In the low-magnetic -field regime the interband and plasma contributions are linearly proportional to the magnetic field and become small. This makes the spin contribution the leading contribution to the Faraday rotation at low magnetic fields. The 4 -band k cdot p Pidgeon and Brown model was used to calculate the energy levels and the matrix elements for these transitions. Quantum oscillatory effects were observed at low magnetic field. Cyclotron resonance absorption was observed in all samples for wavelengths _sp{~}{>}16.0 mum. The Faraday rotation of Cd_{1 -x}Mn_{x}Te has been measured for x = 0 to 0.27 at 300 and 77 K for photon energies between 0.1 and 1.5 eV, corresponding to wavelengths of 12.0 and 0.8 mum, respectively. We have developed a multioscillator model for the Faraday rotation using an analytical expression for the refractive index that includes contributions from interband transitions at the Gamma, L, and X points of the Brillouin zone as well as the lattice contribution from optical phonons. The multioscillator model explains the measured behavior of the Verdet constant as a function of photon energy for all the above values of x at both temperatures. This model has also been applied successfully to Faraday rotation data for Cd_ {1-x}Mn_{x}Te and Zn_{1-x}Mn _{x}Te from previous studies. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Reflections of a Faraday Challenge Day Leader
ERIC Educational Resources Information Center
Sewell, Keira
2014-01-01
Keira Sewell has just finished her second year as a Challenge Leader for the Faraday Challenge, a STEM-based scheme run by the Institution of Engineering and Technology. Aimed at 12-13 year-old students, its purpose is to engage students in future careers in engineering. Each year, a new challenge is held in over sixty schools and universities…
Stefan, Elena; Norby, Truls
2016-01-31
The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities.
ERIC Educational Resources Information Center
French, M. M. J.
2011-01-01
A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…
Following Michael Faraday's Footprints
ERIC Educational Resources Information Center
Galeano, Javier
2011-01-01
Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable…
Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes
ERIC Educational Resources Information Center
Kamata, Masahiro; Paku, Miei
2007-01-01
Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.
Aldous, Leigh; Bendova, Magdalena; Gonzalez-Miquel, Maria; Swadźba-Kwaśny, Małgorzata
2018-05-22
For the third time, a Faraday Discussion addressed ionic liquids. Encompassing the wealth of research in this field, the contributions ranged from fundamental insights to the diverse applications of ionic liquids. Lively discussions initiated in the lecture hall and during poster sessions then seamlessly continued during the social program.
A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles
ERIC Educational Resources Information Center
Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd
2008-01-01
As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Faraday-Michelson system for quantum cryptography.
Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can
2005-10-01
Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.
More vertical etch profile using a Faraday cage in plasma etching
NASA Astrophysics Data System (ADS)
Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup
1999-05-01
Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.
NASA Astrophysics Data System (ADS)
Mori, Hiroshi; Asahara, Yousuke
1996-03-01
We analyze the linearity and modulation depth of ac magnetic-field sensors or current sensors, using a ferrimagnetic or ferromagnetic film as the Faraday rotator and employing the detection of only the zeroth-order optical diffraction component from the rotator. It is theoretically shown that for this class of sensor the condition of a constant modulation depth and that of a constant ratio error give an identical series of curves for the relationship between Faraday rotation angle greater than or equals V and polarizer/analyzer relative angle Phi . We give some numerical examples to demonstrate the usefulness of the result with reference to a rare-earth iron garnet film as the rotator.
Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.
Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori
2016-07-20
Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.
Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.
Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József
2016-09-21
To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.
Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity
NASA Technical Reports Server (NTRS)
Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor
2011-01-01
The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
Magnetic-Field-Response Measurement-Acquisition System
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2006-01-01
A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.
NASA Astrophysics Data System (ADS)
Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.
2017-12-01
Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J., E-mail: craiga@physics.usyd.edu.au
We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple ). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us tomore » identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.« less
Interferometer using a 3 × 3 coupler and Faraday mirrors
NASA Astrophysics Data System (ADS)
Breguet, J.; Gisin, N.
1995-06-01
A new interferometric setup using a 3 \\times 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations.
2016-06-08
Yacovitch, E. Garand, J. B. Kim, C. Hock, T. Theis, and D. M. Neumark, Faraday Disc. 157, 399 (2012). [10] I. Yourshaw, T. Lenzer, G. Reiser, and D...University of Nottingham, Faraday Lecture Invited Lecture June 3-5, 2013 Quebec City, Quebec, Canada “Herbert P. Broida Prize Lecture: Probing
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.; Alvarez, L. S.
1993-01-01
The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.
Christofi, Aristi; Kawaguchi, Yuma; Alù, Andrea; Khanikaev, Alexander B
2018-04-15
In this Letter we introduce a new class of Fano-resonant all-dielectric metasurfaces for enhanced, high figure of merit magneto-optical response. The metasurfaces are formed by an array of magneto-optical bismuth-substituted yttrium iron garnet nano-disks embedded into a low-index matrix. The strong field enhancement in the magneto-optical disks, which results in over an order of magnitude enhancement of Faraday rotation, is achieved by engineering two (electric and magnetic) resonances. It is shown that while enhancement of rotation also takes place for spectrally detuned resonances, the resonant excitation inevitably results in stronger reflection and low figure of merit of the device. We demonstrate that this can be circumvented by overlapping electric and magnetic resonances of the nanodisks, yielding a sharp electromagnetically induced transparency peak in the transmission spectrum, which is accompanied by gigantic Faraday rotation. Our results show that one can simultaneously obtain a large Faraday rotation enhancement along with almost 100% transmittance in an all-dielectric metasurface as thin as 300 nm. A simple analytical model based on coupled-mode theory is introduced to explain the effects observed in first-principle finite element method simulations.
Mathematical representations in science: a cognitive-historical case history.
Tweney, Ryan D
2009-10-01
The important role of mathematical representations in scientific thinking has received little attention from cognitive scientists. This study argues that neglect of this issue is unwarranted, given existing cognitive theories and laws, together with promising results from the cognitive historical analysis of several important scientists. In particular, while the mathematical wizardry of James Clerk Maxwell differed dramatically from the experimental approaches favored by Michael Faraday, Maxwell himself recognized Faraday as "in reality a mathematician of a very high order," and his own work as in some respects a re-representation of Faraday's field theory in analytic terms. The implications of the similarities and differences between the two figures open new perspectives on the cognitive role of mathematics as a learned mode of representation in science. Copyright © 2009 Cognitive Science Society, Inc.
Nonresonant Faraday rotation in glassy semiconductors
NASA Astrophysics Data System (ADS)
van den Keybus, P.; Grevendonk, W.
1986-06-01
Nonresonant interband Faraday rotation in amorphous semiconductors, as a function of photon energy, may be described by an equation derived for direct transitions in crystalline semiconductors. In this paper it is shown how this equation may be obtained for the former case also, assuming a parabolic density of states function N(E) and a correlation between valence- and conduction-band states. The analysis of experiments on chalcogenide glasses reveals a Faraday-rotation energy gap EFRg that is significantly larger than the optical gap Eoptg. The effect is attributed to transitions between extended states, so that it is meaningful to compare EFRg with the mobility gap Eμg. For oxide glasses both gaps are comparable but for chalcogenide glasses EFRg is too large by a few tenths of 1 eV.
Probing the gravitational Faraday rotation using quasar X-ray microlensing.
Chen, Bin
2015-11-17
The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.
Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state
Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori
2016-01-01
Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710
ipole: Semianalytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Moscibrodzka, Monika; Gammie, Charles F.
2018-04-01
ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.
Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.
1996-01-01
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
CRADA Final Report, 2011S003, Faraday Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraday Technologies
2012-12-12
This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, whichmore » has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities. Another potential benefit would be for the medical industry that uses hydrofluoric acid to electropolish niobium-alloy materials. The FARADAYICSM Electropolishing process will eliminate the environmental hazards posed by the use of hydrofluoric acid employed by chemical polishing and conventional electropolishing. Further, improved performance benefits may be possible. The overall objective of the Phase I program was to demonstrate that FARADAYIC Electropolishing of niobium cavities in electrolytes free of hydrofluoric acid can meet the RF superconducting performance criteria of those cavities. The FARADAYIC Electropolishing Process developed in the Phase I program was used to polish 50 mm Nb disks to a surface roughness (RA) of < 1 nm over a small area through process and post-processing optimization. An excellent level of surface cleanliness was achieved. While the desired 2K RF performance has not yet been achieved, Faraday believes that surface oxide state can be controlled through manipulation of the process parameters, to meet the 2K RF standard. Faraday is establishing apparatus and facilities infrastructure for single-cell SRF cavity electropolishing, through a synergistic effort with the Fermi National Accelerator Facility (Fermilab) to scale-up electropolishing of superconducting RF cavities. Faraday proposes to commercialize the subject technology via an IP based strategic relationship with a partner with established market channels within two primary commercialization avenues: 1) the superconducting particle accelerator community, 2) the medical device and implant market. Faraday will initially maintain Low Rate Initial Production capabilities for an application, but latterly seek a strategic partner who is solely dedicated to high rate production.« less
NASA Technical Reports Server (NTRS)
Kogut, J.
1981-01-01
The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.
Design and construction of a Faraday cup for measurement of small electronic currents
NASA Technical Reports Server (NTRS)
Veyssiere, A.
1985-01-01
The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.
Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2011-01-15
We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less
Photoemission experiments of a large area scandate dispenser cathode
NASA Astrophysics Data System (ADS)
Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen
2010-09-01
A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.
Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak
NASA Astrophysics Data System (ADS)
Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team
2017-10-01
A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.
NASA Astrophysics Data System (ADS)
Balaram Atram, Dattatraya
2011-01-01
Fleming's right-hand rule and the right-flat-hand rule are generally applied for determining the direction of flow of induced emf/current in straight conductors. The right-hand-fingers rule is applied for coils only. The right-hand-thumb rule can be applied for either straight conductors or coils. Different rules have to be applied for different situations. Also, a formula for determining the direction of induced emf/current does not exist on the basis of these rules. In this article, based on Faraday's law of electromagnetic induction and Lenz's law, an 'imaginary closed circuit method' and a formula for determination of direction of induced emf/current has been proposed. The method is universal in the sense that it is applicable for conductors of any shape, for any kind of relative motion of the conductor with respect to the magnetic flux, and moreover it is applicable for the case of varying magnetic flux.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Wide field polarimetry around the Perseus cluster at 350 MHz
NASA Astrophysics Data System (ADS)
Brentjens, M. A.
2011-02-01
Aims: This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. Methods: A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2' × 3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m-2 in steps of 3 rad m-2. Results: There is emission all over the field at Faraday depths between -50 and +100 rad m-2. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m-2, coincides with a dark object in WHAM Hα maps at a kinematic distance of 0.5 ± 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/|B_∥| thick. Appendix is only available in electronic form at http://www.aanda.org
Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection
NASA Astrophysics Data System (ADS)
Gianella, Michele; Pinto, Tomas H. P.; Wu, Xia; Ritchie, Grant A. D.
2017-08-01
We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm-1), consisting of a linear cavity (finesse F =6300 ) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of Vmin=4.7 ×10-14 rad cm-1 G-1 H z-1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6 ×10-10 rad Hz-1/2 and a limit of detection of 0.21 ppbv Hz-1/2 NO.
The Effect of Faraday Waves on Gas Transport
NASA Astrophysics Data System (ADS)
Saylor, J. R.; Handler, R. A.
1996-11-01
The increase in the rate of gas transport at the onset of capillary wave formation is a frequently observed phenomenon. However, a causal relationship between the presence of capillary waves and enhanced gas transport has not been experimentally demonstrated. Here we present experimental results of CO2 transport rates across Faraday waves. The piston velocity versus wave slope data explicitly demonstrates an enhancement in gas transport due to these waves. The functional relationship between gas flux and wave slope is also obtained. The Faraday wave system permits investigation of capillary waves in the absence of the obfuscating effects of air turbulence, water turbulence, droplets and bubbles, all of which are present in wind/wave tank studies. Hence, our results are solely due to the effects of capillary wave action. Data for wave frequencies varying from 20Hz to 200Hz are presented.
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noel, J. M. A.
2017-12-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.
Probing the gravitational Faraday rotation using quasar X-ray microlensing
Chen, Bin
2015-01-01
The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051
Faraday rotation in the M87 radio/X-ray halo
NASA Technical Reports Server (NTRS)
Dennison, B.
1980-01-01
Comparison of polarization maps at various wavelengths demonstrates the existence of a large Faraday rotation uniform over the radio core of M87. Much of this rotation must be external to the core, lest it appear completely depolarized when the rotation is about 90 degrees. The Faraday rotation is shown to occur primarily in the surrounding radio/X-ray halo. Using the electron density inferred from X-ray observations, the magnetic field in the halo is found to be 2.5 microgauss. The deduced magnetic field strength permits an evaluation of the importance of Compton scattering of 3 K background photons by relativistic electrons in the radio halo. The emergent Compton-scattered spectrum is calculated, and its contribution to the observed X-ray flux is small, probably about a percent or so, while the rest is due to thermal bremsstrahlung.
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.
Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.
1996-09-10
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.
Universal Faraday Rotation in HgTe Wells with Critical Thickness.
Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A
2016-09-09
The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.
On intracluster Faraday rotation. II - Statistical analysis
NASA Technical Reports Server (NTRS)
Lawler, J. M.; Dennison, B.
1982-01-01
The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.
New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion
2012-11-01
IR Faraday Rotational Spectroscopy Method to quantify HO2 29 30 Brian Brumfield, Wenting Sun, Gerard Wysock, and Yinguang Ju, submitted...to JACS, 2012 7.1 μm Mid infra-red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 Quantitative HO2 Measurement (very challenging!): 2L + 1...paramagnetic species Polarization rotation detection Linearly-polarized laser light 610 Hz oscillating magnetic field 125 Gauss rms Sub-ppm level
Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui
2016-03-28
A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.
High-frequency Faraday rotation observations of the solar corona
NASA Astrophysics Data System (ADS)
Jensen, Elizabeth A.; Russell, Christopher T.
2008-10-01
This thesis, presented on January 31, 2007 under the supervision of Professor Christopher T. Russell, discusses the solar coronal magnetic field observations that can be obtained using the phenomenon of Faraday rotation. It was defended in the Department of Earth and Space Sciences at the University of California, Los Angeles (595 Charles E. Young, Dr. East, Los Angeles, CA 90095). A resume can be found at http://acs-consulting.com/.
Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors
NASA Astrophysics Data System (ADS)
Huang, S. C.; Lin, W. W.; Chen, M. H.
1995-06-01
A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.
Messias, Iracimara de Anchieta; Okuno, Emico; Colacioppo, Sérgio
2011-10-01
Measure physical therapists' exposure to the electric and magnetic fields produced by 17 shortwave diathermy devices in physical therapy clinics in the city of Presidente Prudente, São Paulo State, Brazil. Compare the observed values with the exposure levels recommended by the International Commission on Non-ionizing Radiation Protection (ICNIRP). Observe the efficacy of Faraday cages as a means of protecting physical therapists from exposure to oscillating electric and magnetic fields. Electric and magnetic field measurements were taken at four points during actual physical therapy sessions: in proximity to the operator's pelvis and head, the devices' electrical cables, and the electrodes. The measuring equipment was a Wandel & Goltermann EMR-200. The values obtained in proximity to the electrodes and cables were 10 to 30 times higher than ICNIRP's recommended occupational reference levels. In the shortwave diathermy treatment rooms with Faraday cages, the fields were even higher than in treatment rooms not so equipped-principally the magnetic field, where the values were more than 100 times higher than the ICNIRP exposure limit. The electric and magnetic field intensities obtained in this study are generally above the exposure levels recommend in ICNIRP standards. It was also observed that the Faraday cage offers physical therapists no protection, and instead, increases their level of exposure.
Faraday dispersion functions of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro
2014-09-01
The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, findmore » that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.« less
Klingenberg, H G; Möse, J R; Fischer, G; Porta, J; Sadjak, A
1975-10-01
Investigations were performed with the aim of establishing the influence of various environmental conditions (such as steady field conditions, climatized laboratories, Faraday's cage) on a number of enzymic activities in the rat (including glutamic oxaloacetic tic transaminase, glutamic pyruvic transaminase, lactic dehydrogenase, gamma-glutamyl transpeptidase, acid phosphatase), as well as the serum concentrations of triglycerides, the oxygen consumption of hepatic parenchyma cells, and the influence on the incorporation of 3H-thymidine (following partial hepatectomy). In the steady field, the activities of the cytoplasmic enzymes (GOT, GPT, LDH) were higher then under Faraday conditions. The same applies both to the hepatic oxygen consumption and to the neutral fat serum levels. The control values always remained within the range of the results obtained under steady field or Faraday conditions. In the structure-linked enzymes (gamma-glutamyl transpeptidase, acid phosphatase) the results were not uniform. Following partial hepatectomy, and under steady field conditions, the serum triglyceride concentrations showed a less pronounced drop than they did in the controls. Under selected environmental conditions, the results obtained lie within the physiological range. The present findings, therefore, do not permit definite conclusions to be drawn on favourable or unfavourable effects exerted by the different types of electroclimates.
Gaseous phase ion detection method based on laser-induced fluorescence for ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Guo, Kaitai; Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is widely used in the field of chemical composition analysis. Faraday cup is the most classical method to detect ions for IMS in the atmospheric pressure. However, the performance of Faraday plate was limited by many kinds of factors, including interfering electromagnetic waves, thermal(Johnson) noise, induced current , gain bandwidth product, etc. There is a theoretical limit in detection of ions at ambient condition which is approximately 106 ions per second. In this paper, we introduced a novel way using laser-induced fluorescence (LIF) to bypass the limitation of Faraday plate. Fluorescent ions which were selected by IMS get excited when they fly through the laser excitation area. The fluorescence emitted by the excited ions was captured exponentially and amplified through proper optoelectronic system. Rhodamine 6G (R6G) was selected as the fluorochrome for the reason that excitation wavelength, emission wavelength, and fluorescence quantum yield were more appropriate than others. An orthometric light path is designed to eliminate the adverse impact which was caused by induced laser. The experiment result shows that a fluorescence signal from the sample ions of the IMS could be observed. Compared with Faraday plate, the LIF-IMS may find a potential application in more system at the atmosphere condition.
Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek
2018-03-27
All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.
NASA Astrophysics Data System (ADS)
Hide, Raymond
1997-02-01
This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor by currents generated by self-exciting magnetohydrodynamic (MHD) dynamo action involving motional induction associated with buoyancy-driven flow in the liquid metallic outer core. The study of biased disk dynamos could bear on the theory of the magnetic fields of natural systems where a significant background field is present (e.g., Galilean satellites of Jupiter) or when the action of motional induction is modified by electromotive forces produced by other mechanisms, such as thermoelectric processes, as in certain stars.
2010-02-24
A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.
Anomalous Faraday effect of a system with extraordinary optical transmittance.
Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru
2007-05-28
It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.
NASA Astrophysics Data System (ADS)
Huang, J. G.; Slavcheva, G.; Hess, O.
2008-04-01
We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.
Non-destructive Faraday imaging of dynamically controlled ultracold atoms
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob
2013-05-01
We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.
NASA Astrophysics Data System (ADS)
Qing-hui, Yang; Huai-wu, Zhang; Ying-li, Liu; Qiye, Wen
2014-05-01
In this paper, high quality BiAlDyIG thin films with different bismuth contents have been prepared by using a sol-gel method and post-treated by a rapid recurrent thermal annealing (RRTA) method. Results indicate that the RRTA method improves the Faraday Effect of the films notably, a maximum Faraday angle of -4.9° in the 450 nm thickness film (Bi1.96Dy1.04Fe4AlO12) was obtained at the wavelength of 520 nm, which is about two times larger than that of the common thermal annealed sample, and furthermore the reason of giant Faraday angle was also analyzed in detail. These results are potentially helpful to improve the recording density and signal-to-noise ratio of magneto-optical disk.
Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Crocker, N. A.; Carter, T. A.
The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noël, J.-M.
2017-10-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.
Biology's built-in Faraday cages
NASA Astrophysics Data System (ADS)
Klee, Maurice M.
2014-05-01
Biological fluids are water-based, ionic conductors. As such, they have both high relative dielectric constants and substantial conductivities, meaning they are lossy dielectrics. These fluids contain charged molecules (free charges), whose movements play roles in essentially all cellular processes from metabolism to communication with other cells. Using the problem of a point source in air above a biological fluid of semi-infinite extent, the bound charges in the fluid are shown to perform the function of a fast-acting Faraday cage, which protects the interior of the fluid from external electric fields. Free charges replace bound charges in accordance with the fluid's relaxation time, thereby providing a smooth transition between the initial protection provided by the bound charges and the steady state protection provided by the free charges. The electric fields within the biological fluid are thus small for all times just as they would be inside a classical Faraday cage.
The impact of Faraday effects on polarized black hole images of Sagittarius A*.
NASA Astrophysics Data System (ADS)
Jiménez-Rosales, Alejandra; Dexter, Jason
2018-05-01
We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.
Universal Faraday Rotation in HgTe Wells with Critical Thickness
NASA Astrophysics Data System (ADS)
Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.
2016-09-01
The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.
Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.
2013-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
Brault, C; Gil, C; Boboc, A; Spuig, P
2011-04-01
On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones. © 2011 American Institute of Physics
Wafer scale oblique angle plasma etching
Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean
2017-05-23
Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.
Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection.
Gianella, Michele; Pinto, Tomas H P; Wu, Xia; Ritchie, Grant A D
2017-08-07
We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm -1 ), consisting of a linear cavity (finesse F=6300) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of V min =4.7×10 -14 rad cm -1 G -1 Hz -1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6×10 -10 rad Hz -1/2 and a limit of detection of 0.21 ppbv Hz -1/2 NO.
Explanation of the computer listings of Faraday factors for INTASAT users
NASA Technical Reports Server (NTRS)
Nesterczuk, G.; Llewellyn, S. K.; Bent, R. B.; Schmid, P. E.
1974-01-01
Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing.
The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band
NASA Technical Reports Server (NTRS)
LeVine, David M.; Jacob, S. Daniel
2007-01-01
Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.
Comparison of NAVSTAR satellite L band ionospheric calibrations with Faraday rotation measurements
NASA Technical Reports Server (NTRS)
Royden, H. N.; Miller, R. B.; Buennagel, L. A.
1984-01-01
It is pointed out that interplanetary navigation at the Jet Propulsion Laboratory (JPL) is performed by analyzing measurements derived from the radio link between spacecraft and earth and, near the target, onboard optical measurements. For precise navigation, corrections for ionospheric effects must be applied, because the earth's ionosphere degrades the accuracy of the radiometric data. These corrections are based on ionospheric total electron content (TEC) determinations. The determinations are based on the measurement of the Faraday rotation of linearly polarized VHF signals from geostationary satellites. Problems arise in connection with the steadily declining number of satellites which are suitable for Faraday rotation measurements. For this reason, alternate methods of determining ionospheric electron content are being explored. One promising method involves the use of satellites of the NAVSTAR Global Positioning System (GPS). The results of a comparative study regarding this method are encouraging.
NASA Technical Reports Server (NTRS)
Paul, M. P.
1982-01-01
Measurement of integrated columnar electron content and total electron content for the local ionosphere and the overlying protonosphere via Faraday rotation and group delay techniques has proven very useful. A field station was established having the geographic location of 31.5 deg N latitude and 91.06 deg W longitude to accomplish these objectives. A polarimeter receiving system was set up in the beginning to measure the Faraday rotation of 137.35 MHz radio signal from geostationary satellite ATS 3 to yield the integrated columnar electron content of the local ionosphere. The measurement was continued regularly, and the analysis of the data thus collected provided a synopsis of the statistical variation of the ionosphere along with the transient variations that occurred during the periods of geomagnetic and other disturbances.
Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu
2017-10-30
We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.
Laboratory-Model Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.
A flat spectral Faraday filter for sodium lidar.
Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng
2011-04-01
We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.
Molecular Weight Measurement of Biobased Furan Polyamides via Non-Aqueous Potentiometric Titration
2013-06-01
electromagnetic fields, all titrations were completed in a chemical hood, which acted as a Faraday cage (a shield used to blocks external static and...while using DMF as a solvent. Additionally, no Faraday cage was used in the experimental setup, so the titrations were conducted inside the chemical...monomer was becoming more soluble in glacial acetic acid and the amount of chlorobenzene had less of an effect on the solution properties (i.e
NASA Astrophysics Data System (ADS)
French, M. M. J.
2011-05-01
A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is described in some detail, and this is followed by a explanation of some demonstrations and experiments which I have used.
Highlights from Faraday Discussion 172: Carbon in Electrochemistry, Sheffield, UK, July 2014
Dyatkin, Boris; Ash, Philip A.; Sharma, Surbhi
2015-01-12
Faraday Discussions have been very true to their name, focusing genuinely on healthy, in-depth, and fruitful discussions rather than just serving as a platform for one to one researcher interaction and collaboration. So the first experience of a Faraday Discussion is always an eye-opener about how lively conference discussions can become. The format follows that presenters submit full papers a few months in advance which are lightly reviewed before all the papers are circulated to each of the registered participants. Participants arrive at the conference prepared with their queries and arguments after having read the circulated manuscripts. At the conferencemore » the authors present their work for five minutes each followed by extensive discussion of 20–25 minutes, which is practically a ‘‘live peer-review’’. Moreover, this experience of a discussion-cum-peer review with participants ranging for PhD students to experts in the relevant field is both a daunting and a very enriching experience at the same time. This has been the trend since the first Faraday Discussions held in London in 1907 in London which debated ‘‘osmotic pressure’’,1 and this format clearly sets it apart from any other conference to date. All discussions form part of the peer review process and are sequentially recorded and published with the accepted manuscripts.« less
NASA Astrophysics Data System (ADS)
Lei, Chengxin; Tang, Zhixiong; Wang, Sihao; Li, Daoyong; Chen, Leyi; Tang, Shaolong; Du, Youwei
2017-07-01
The properties of the optical and magneto-optical effects of an improved plasmonic nanohole arrays blocked by gold mushroom caps are investigated by using the finite difference time domain (FDTD) method. It is most noteworthy that the strongly enhanced Faraday rotation along with high transmittance has been achieved simultaneously by optimizing the parameters of nanostructure in a broad spectrum spanning visible to near-infrared frequencies, which is very important in practical application for designing novel optical and magneto-optical devices. In our designed structure, we obtained two extraordinary optical transmission (EOT) resonant peaks along with enhanced Faraday rotation and two peaks of the figure of merit (FOM). By optimizing the geometrical parameters of the structure, we can obtain an almost 10-fold enhancement of Faraday rotation with a corresponding transmittance 50%, and the FOM of 0.752 at the same wavelength. As expected, the optical and magneto-optical effects sensitively depends on the geometrical parameters of our structure, which can be simply tailored by the height of pillar, the diameter of mushroom cap, and the period of the structure, and so on. The physical mechanism of these physical phenomena in the paper has been explained in detail. These research findings are of great theoretical significance in developing the novel magneto-optical devices in the future.
Toward instructional design principles: Inducing Faraday's law with contrasting cases
NASA Astrophysics Data System (ADS)
Kuo, Eric; Wieman, Carl E.
2016-06-01
Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.
2018-04-01
We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.
Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.
Paudel, Hari P; Leuenberger, Michael N
2014-02-26
Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
L-C Measurement Acquisition Method for Aerospace Systems
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.
2003-01-01
This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.
NASA Astrophysics Data System (ADS)
Cavicchi, Elizabeth Mary
Physics is conventionally taught as a fixed curriculum which students must master. This thesis changes that: curriculum emerges from what learners try and question in experiments they invent. The thesis narrates: three adult students exploring wires, batteries and bulbs with me as teacher; nineteenth century investigations of electromagnetism; my laboratory work replicating historic instruments. In each case, learning arose through activity with materials. Evidences of this are analyzed within narratives and reflections. I used teaching-research, a method developed by Duckworth from Piaget's clinical interviewing, to research and simultaneously extend students' evolving understandings. What I learned through questioning students informed my next interactions; what they learned extended their experimenting. Similarly, I researched historical accounts interactively: improvising experiments to develop my understandings. Studying my own learning deepened my interpretations of students' learning. My students Laura, David and Jamie experimented by: soldering bulbs to wires, making series and parallel circuits, inserting resistive wire that dimmed bulbs, conducting electricity through salt water They noticed bulb brightness and battery heat, compared electricity's paths, questioned how voltage and current relate. They inferred electricity's effects manifest magnitudes of material properties. They found their experiences while learning were inseparable from what they learned. I researched investigations connected with Cavendish's leather fish, Galvani's frogs, Schweigger's wire spiraled around a compass needle, Henry's electromagnets, Faraday's induction ring, induction devices of Page, Callan, Hearder. Experimentally, I made galvanometers, electromagnets, induction rings, induction coil. I observed effects of electromagnetism, internal resistance, induced sparking. Across these investigations, learning developed with instrumental innovations; confusions were productive for further explorations. This thesis has implications for profoundly changing physics instruction. Physics education research seeks to supplant students' 'misconceptions' with correct explanations; by contrast, this thesis shows that students' original thinking provides their beginnings for moving to new understandings. Students and historic experimenters form and reform new, tentative understandings through many engagements with phenomena. As learners' questioning deepens in detail, its inclusiveness broadens. Evolving understandings are unique and consistent with nature. Wonder empowers continued learning. This thesis is a resource to inspire teachers in exploring the many possibilities within their learning, their students' learning, and physical phenomena.
Inverse Faraday effect driven by radiation friction
NASA Astrophysics Data System (ADS)
Liseykina, T. V.; Popruzhenko, S. V.; Macchi, A.
2016-07-01
A collective, macroscopic signature to detect radiation friction in laser-plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar ‘inverse Faraday effect’ is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities \\gt {10}23 {{{W}}{{cm}}}-2.
Bichromatic emission in a ring dye laser
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Sohrab Afzal, R.; Rabinovich, W. S.
1987-01-01
An experimental study of a high-Q Rhodamine 6G ring dye laser has been performed, and bichromatic emission (BE) with wavelength spacings as large as 110 A when the laser operated bidirectionally has been measured. The BE vanished at all excitations when the laser was forced into unidirectional operation using a Faraday isolator. However, when a weak reflected beam was allowed to make a single pass in the direction opposite to that allowed by the Faraday device, BE is recovered at the higher pump powers.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.
2012-09-01
Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.
Stray magnetic-field response of linear birefringent optical current sensors
NASA Astrophysics Data System (ADS)
MacDougall, Trevor W.; Hutchinson, Ted F.
1995-07-01
It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.
NASA Astrophysics Data System (ADS)
Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.
2009-11-01
We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.
Investigation of the ionospheric Faraday rotation for use in orbit corrections
NASA Technical Reports Server (NTRS)
Llewellyn, S. K.; Bent, R. B.; Nesterczuk, G.
1974-01-01
The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form.
Self-Induced Faraday Instability Laser
NASA Astrophysics Data System (ADS)
Perego, A. M.; Smirnov, S. V.; Staliunas, K.; Churkin, D. V.; Wabnitz, S.
2018-05-01
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.
Self-Induced Faraday Instability Laser.
Perego, A M; Smirnov, S V; Staliunas, K; Churkin, D V; Wabnitz, S
2018-05-25
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.
Effect of Faraday rotation on the circular polarization of the Crab Nebula
NASA Technical Reports Server (NTRS)
Gerver, M. J.
1974-01-01
The effect of Faraday rotation on the circular polarization of an electromagnetic wave propagating through a magnetized plasma is calculated for various limits of the plasma and wave parameters appropriate to a 30-Hz wave in the Crab Nebula. It is shown that a static magnetic field of the proper geometry and only a few times stronger than the wave field can reduce the circular polarization of the nonlinear inverse Compton radiation to a value below the observed upper limit.-
NASA Technical Reports Server (NTRS)
Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.;
2012-01-01
The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.
Protection characteristics of a Faraday cage compromised by lightning burnthrough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt
2012-01-01
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scopemore » and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).« less
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
NASA Astrophysics Data System (ADS)
Tweney, Ryan D.
2011-07-01
James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.
Analytical balance-based Faraday magnetometer
NASA Astrophysics Data System (ADS)
Riminucci, Alberto; Uhlarz, Marc; De Santis, Roberto; Herrmannsdörfer, Thomas
2017-03-01
We introduce a Faraday magnetometer based on an analytical balance in which we were able to apply magnetic fields up to 0.14 T. We calibrated it with a 1 mm Ni sphere previously characterized in a superconducting quantum interference device (SQUID) magnetometer. The proposed magnetometer reached a theoretical sensitivity of 3 × 10-8 A m2. We demonstrated its operation on magnetic composite scaffolds made of poly(ɛ-caprolactone)/iron-doped hydroxyapatite. To confirm the validity of the method, we measured the same scaffold properties in a SQUID magnetometer. The agreement between the two measurements was within 5% at 0.127 T and 12% at 24 mT. With the addition, for a small cost, of a permanent magnet and computer controlled linear translators, we were thus able to assemble a Faraday magnetometer based on an analytical balance, which is a virtually ubiquitous instrument. This will make simple but effective magnetometry easily accessible to most laboratories, in particular, to life sciences ones, which are increasingly interested in magnetic materials.
Growth and performance research of Tb3Ga5O12 magneto-optical crystal
NASA Astrophysics Data System (ADS)
Jin, Weizhao; Ding, Jingxin; Guo, Li; Gu, Qi; Li, Chun; Su, Liangbi; Wu, Anhua; Zeng, Fanming
2018-02-01
Tb3Ga5O12 (TGG) crystal was grown successfully by the Czochralski method in an iridium crucible with radio frequency (RF)-induced heating under high purity 80%N2 + 20% CO2 atmosphere. None impurity peaks could be found in the XRD patterns compared to standard cards of TGG. Transmittance spectrum was investigated in the visible-near infrared region (VIS-NIR) at room temperature, which indicated the TGG crystal had high transmittance at 500-1100 nm. The Faraday rotations, Verdet constants and magnetic susceptibility of (1 1 1), (1 0 0), (1 1 0) of as-grown crystal have been discussed in detail confirming that Faraday effects of the TGG crystals are anisotropic which is related with magnetic susceptibility, and the Faraday effects of [1 1 1] have been proved to be the best, and the Verdet constants of [1 1 1] was also investigated at different wavelength at room temperature. The thermal conductivity and laser induced damage threshold of the crystal were also analyzed in detailed.
Electroless plated maghemite for three-dimensional magneto photonic crystals
NASA Astrophysics Data System (ADS)
Mito, Shinichiro; Kawashima, Takuya; Kawaguchi, Takuma; Sasano, Junji; Takagi, Hiroyuki; Inoue, Mitsuteru
2017-05-01
Three-dimensional magneto photonic crystals (3D-MPCs) are promising material for manipulating light in 3D space. In this study, we fabricated 3D-MPC that is filling the air-gap of opal photonic crystal with magnetic material by electroless plating. The electroless plating is an attractive film-forming method which provides magnetic material films on various substrates in aqueous solution at 24-90 °C. As magnetic material for filling the air-gap, maghemite (γ-Fe2O3) film was plated in opal photonic crystal. The plated maghemite film showed a Faraday rotation of 0.6 deg./μm at 440 nm and significantly lower absorption than magnetite. The plated opal showed photonic band gap and magneto-optic response. Faraday rotation of the plated opal was enhanced at the band edge. The photonic band gap and the Faraday rotation spectra were changed as a function of incident angle of light. Electroless plating of maghemite could be promising technique for fabricating 3D-MPCs.
Examination of electromagnetic powers with the example of a uc(Faraday) disc dynamo
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Müller, Wolfgang H.
2018-03-01
This paper studies the mathematical form of electromagnetic powers and their influence on the balance of energy by using the example of a uc(Faraday) disc. First, two forms of energy (and balances thereof) are discussed. These employ different forms of powers, which can be distinguished w.r.t. their physical origins and their interpretations in context with the notions of supply and production. The stationary uc(Faraday) disc experiment is modeled following the description by Kovetz (Electromagnetic theory, Oxford University Press, Oxford, 2000). Concepts for formulating the electromagnetic field equations for the rotating disc are discussed, and the corresponding approximate analytical solutions are presented. Based on the obtained electromagnetic fields, the powers of the disc are analyzed for a stationary process. The conversion of mechanical power to heating and electromagnetic powering of an external resistor is explained. The paper concludes with the computation of the time evolution of the angular velocity for a magnetically induced breaking process of the disc.
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1972-01-01
Observation that calculations of the integrated electron content up to the height of the satellite, using a wide range of model ionospheres (with a peak at 300 km) could be up to four times the value deduced from Faraday rotation measurements. However, using a fixed mean field height of 400 km, the observed Faraday rotation gives the electron content up to a height h sub F of 2000 km with an accuracy of plus or minus 3%. For observations at different magnetic and geographic latitudes, and geostationary satellites at different longitudes, the optimum value of h sub F varies by only plus or minus 200 km. Nighttime increases in the height of the ionosphere have little effect on h sub F, but increase the mean field height to about 470 km. Using a fixed value of 420 km, with h sub F = 2000 km, gives an accuracy of plus or minus 5% under most conditions.
Resonant microsphere gyroscope based on a double Faraday rotator system.
Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun
2016-10-15
The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.
Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.
Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja
2016-11-25
Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D 1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.
Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.
Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi
2013-11-15
The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.
NASA Astrophysics Data System (ADS)
Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.
2017-12-01
During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.
Magneto-optical contrast in liquid-state optically detected NMR spectroscopy
Pagliero, Daniela; Meriles, Carlos A.
2011-01-01
We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736
Pulsed beam tests at the SANAEM RFQ beamline
NASA Astrophysics Data System (ADS)
Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.
2017-07-01
A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.
Love, Christopher J.; Zhang, Shuguang; Mershin, Andreas
2008-01-01
It has long been known that there is a sustained electrical potential (voltage) difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50–200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored. PMID:18698415
Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments
NASA Astrophysics Data System (ADS)
Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.
2009-12-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.
Shock initiation behavior of PBXN-9 determined by gas gun experiments
NASA Astrophysics Data System (ADS)
Sanchez, Nathaniel; Gustavsen, Richard; Hooks, Daniel
2009-06-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm^3 and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics are embedded magnetic gauges which are based on Faraday's law of induction along with photon Doppler velocimetry (PDV). The run distance to detonation vs. shock pressure, or ``Pop plot,'' was redefined as log (X*) = 2.14 -- 1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32 + 2.21 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 in addition to providing an increased understanding of HMX based explosives in varying formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M.; Jones, Perry T.; Li, Jan-Mou
As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less
The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim
2016-10-01
The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim
2017-10-01
Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter’s magnetosphere and vice versa.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Battista, C.; Case, A. W.; Cochrane, C.; Grey, M.; Jia, X.; Kivelson, M.; Kim, C.; Korth, H.; Khurana, K. K.; Krupp, N.; Paty, C. S.; Roussos, E.; Rymer, A. M.; Stevens, M. L.; Slavin, J. A.; Smith, H. T.; Saur, J.; Coren, D.
2017-12-01
The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa. Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents. In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan; Andrews, James
2012-04-01
Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption, where counterpropagating light fields are controllably converted into other degrees of freedom, we show that in a linear-conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. This highlights the necessity of time reversal odd processes (not just absorption) and coherence in perfect mode conversion and may inform device design.
Measurement of the magneto-optical correlation length in turbid media
NASA Astrophysics Data System (ADS)
Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg
2002-11-01
In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l scr>* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.
Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A
2010-10-01
The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.
1992-01-01
The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.
Di Martino, G; Fleming, H; Kamp, M; Lussier, F
2017-11-28
The 2017 Faraday Discussion on Surface Enhanced Raman Scattering (SERS) attracted more than a hundred delegates from a broad spectrum of backgrounds and experience levels, bringing together leading scientists involved in the long living field of SERS. The meeting gave an overview of the liveliness of the topic, characterised by open questions and fascinating science still to discover. In the following, we discuss the topics covered during this meeting and briefly highlight the content of each presentation.
Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure.
Bychkov, Igor V; Kuzmin, Dmitry A; Tolkachev, Valentine A; Plaksin, Pavel S; Shavrov, Vladimir G
2018-01-01
This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J; Low, D; Mutic, S
Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less
NASA Astrophysics Data System (ADS)
Beck, R.; Carilli, C. L.; Holdaway, M. A.; Klein, U.
1994-12-01
Radio continuum observations of the spiral galaxy NGC 253 with the Effelsberg and Very Large Array (VLA) telescopes reveal polarized emission from the bar and halo regions. Within the bar Faraday depolarization is strong at 1.5 and 5 GHz, due to ionized gas with ne approximately equal 0.1 - 3/cu cm which is mixed with turbulent magnetic fields of approximately equal 17 microG estimated strength. Even at 10 GHz the degree of polarization in the bar is low (only approximately equal 5% east and approximately equal 2% west of the nucleus) due to beam depolarization by unresolved tangled fields. In contrast, the magnetic fields in the halo are highly uniform, as indicated by fractional polarizations up to 40% at 10 GHz. Faraday depolarization in the halo at 1.5 GHz calls for a warm, clumpy gas component with ne approximately equal 0.02/cu cm and approximately equal 6 microG turbulent fields. We detected Faraday rotation in the bar, with rotation measures absolute value of RM approximately equal 100 rad/sq m (between 10 and 5 GHz) having different signs east and west of the nucleus. Below 5 GHz Faraday rotation is strongly reduced by the limited transparency for polarized emission in the bar. Faraday rotation in the halo in two regions at approximately 5 kpc above and below the plane with RM approximately equal -7 rad/sq m between 10 and 1.5 GHz can be ascribed to hot gas with mean value of ne approximately equal 0.002/cu cm and uniform fields along the line of sight of mean value of Bu parallel approximately equal -2 microG. The magnetic field structure in the bar and halo of NGC 253 is best described by the quadrupole-type dynamo mode SO, with a ring-like field in the bar and a field mainly parallel to the plane in a co-rotating halo. A major perturbation occurs in the east where the field is perpendicular to the plane and follows a 'spur'. The galactic wind is suppressed by the dominating plane-parallel field, except along the spur.
Broad-band, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.
2017-08-01
We present the results from a broad-band (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the Australia Telescope Compact Array, selected to be highly linearly polarized at 1.4 GHz. We use a general-purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or `RM components' of a source. Overall, 37 per cent/52 per cent/11 per cent of sources are best fitted by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index and have a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.
Inverse Faraday Effect Revisited
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Ali, S.; Davies, J. R.
2010-11-01
The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).
Jackson, Todd, and the concept of "discharge" in epilepsy.
Reynolds, Edward H
2007-11-01
To explore the historical origins of the modern concept of electrical discharges in the brain in epilepsy. I have examined the writings of Hughlings Jackson (1835-1911) and Robert Bentley Todd (1809-1860), especially their Lumleian Lectures on convulsive disorders to the Royal College of Physicians of 1890 and 1849, respectively; and also the influence of Herbert Spencer (1820-1903) on the former and Michael Faraday (1791-1867) on the latter. Contrary to the widely taught view that Jackson was the first to propose electrical discharges in epilepsy it is clear that the discharges suggested by Jackson, influenced by the evolutionary philosopher, Herbert Spencer, were chemical, based on katabolism and anabolism. Jackson had no understanding or proposal based on physics or electricity. On the other hand, Todd had earlier proposed and described electrical concepts of discharges in epilepsy, influenced by his contemporary and colleague in London, Michael Faraday, who at the time was laying the foundations of our modern understanding of electricity and magnetism. Todd and Faraday saw "nervous polarity" as another polar force interchangeable with the polar forces of electricity and magnetism.
MD studies of electron transfer at ambient and elevated pressures
NASA Astrophysics Data System (ADS)
Giles, Alex; Spooner, Jacob; Weinberg, Noham
2013-06-01
The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).
Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboc, A.; Zabeo, L.; Murari, A.
The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good controlmore » of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.« less
Kohane, M J; Tiller, W A
2001-06-01
The general hypothesis that quantum mechanics (QM) and thermodynamic concepts relate to biological systems is discussed and applied to the biological influence of: (1) electromagnetic fields (EMFs); and (2) EMFs that have been exposed to human intention. We illustrate our hypothesis with experiments involving four simultaneous treatments: exposure to ambient EMFs in the laboratory environment (C), exposure in a Faraday cage (F) and exposure in a Faraday cage with either: (i) an electronic device (IIED) which had been exposed to a specific human intention (d,j); or (ii) a non-exposed, physically identical, device (d,o). Experimental systems were fitness and energy metabolism in Drosophila melanogaster, in vitro enzyme activity and molecular concentration variability over time. Results indicated that shielding from ambient EMFs via a Faraday cage (F) made a significant difference relative to the unshielded control (C). Further, (d,o) had a significant lowering effect in the shielded environment. Finally, there was a strong 'intention' effect with the IIED (d,j) producing significant and positive effects in comparison to (d,o) in each experimental system. Copyright 2001 Harcourt Publishers Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Benyong, E-mail: chenby@zstu.edu.cn; Zhang, Enzheng; Yan, Liping
2014-10-15
Correct return of the measuring beam is essential for laser interferometers to carry out measurement. In the actual situation, because the measured object inevitably rotates or laterally moves, not only the measurement accuracy will decrease, or even the measurement will be impossibly performed. To solve this problem, a novel orthogonal return method for linearly polarized beam based on the Faraday effect is presented. The orthogonal return of incident linearly polarized beam is realized by using a Faraday rotator with the rotational angle of 45°. The optical configuration of the method is designed and analyzed in detail. To verify its practicabilitymore » in polarization interferometry, a laser heterodyne interferometer based on this method was constructed and precision displacement measurement experiments were performed. These results show that the advantage of the method is that the correct return of the incident measuring beam is ensured when large lateral displacement or angular rotation of the measured object occurs and then the implementation of interferometric measurement can be ensured.« less
Ultraviolet-visible optical isolators based on CeF{sub 3} Faraday rotator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Víllora, Encarnación G., E-mail: VILLORA.Garcia@nims.go.jp; Shimamura, Kiyoshi; Plaza, Gustavo R.
2015-06-21
The first ultraviolet (UV) and visible optical isolators based on CeF{sub 3} are demonstrated. CeF{sub 3} possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF{sub 3} rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulationsmore » have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF{sub 3} as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available.« less
Toroidal Ampere-Faraday Equations Solved Simultaneously with CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V. (Yuri); Forest, C. B.; La Haye, R. J.
2017-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). We discuss benchmarking and first applications of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to (1) resistive turn on of applied electron cyclotron current in the DIII-D tokamak giving initial back current adjacent to the direct CD region and having possible NTM stabilization implications, and (2) runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in pellet injection, massive gas injection, or a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we perform full-radius modeling and examine modifications due to the more complete Ampere-Faraday solution. Presently, the implementation relies on a fixed shape eqdsk, and this limitation will be addressed in future work. Research supported by USDOE FES award ER54744.
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
Faraday rotation in Hg1 - xMnxTe at 1.3 and 1.55 µm
NASA Astrophysics Data System (ADS)
Dillon, J. F., Jr.; Furdyna, J. K.; Debska, U.; Mycielski, A.
1990-05-01
The large Faraday rotations of Mn-containing diluted magnetic semiconductors have led to their consideration for use in magneto-optical isolators. With such applications in mind, we have examined the magneto-optical properties of Hg1-xMnxTe (x=0.26, 0.31, and 0.36). The samples are polished plates cut from single-crystal boules. The compositions were chosen to have their band edges in the vicinity of wavelengths of interest for fiber optical communications, 1.3 and 1.55 μm. Faraday rotation at 295, 77, and 1.7 K, as well as the absorption coefficient at 295 K, have been measured for these alloys and the data compared with the theoretical predictions. The measured rotations at the wavelengths of interest here are about 100-fold larger than those of other high-rotation paramagnetic materials, such as Tb3Al5O10 and various rare-earth glasses. However, the specific rotations available in reasonable fields (say, 3000 Oe) are about tenfold lower than those reported for Bi-doped ferrimagnetic garnets.
Continuous Faraday measurement of spin precession without light shifts
NASA Astrophysics Data System (ADS)
Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.
2017-12-01
We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.
IPOLE - semi-analytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Mościbrodzka, M.; Gammie, C. F.
2018-03-01
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.
Micro-position sensor using faraday effect
McElfresh, Michael [Livermore, CA; Lucas, Matthew [Pittsburgh, PA; Silveira, Joseph P [Tracy, CA; Groves, Scott E [Brentwood, CA
2007-02-27
A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.
Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-10-14
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.
Adiabatic Faraday effect in a two-level Hamiltonian formalism
NASA Astrophysics Data System (ADS)
Dasgupta, Basudeb; Raffelt, Georg G.
2010-12-01
The helicity of a photon traversing a magnetized plasma can flip when the B field along the trajectory slowly reverses. Broderick and Blandford have recently shown that this intriguing effect can profoundly change the usual Faraday effect for radio waves. We study this phenomenon in a formalism analogous to neutrino flavor oscillations: the evolution is governed by a Schrödinger equation for a two-level system consisting of the two photon helicities. Our treatment allows for a transparent physical understanding of this system and its dynamics. In particular, it allows us to investigate the nature of transitions at intermediate adiabaticities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Taheri Boroujeni, S.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir
2016-04-15
We reply to the Comment of Moradi [Phys. Plasmas 23, 044701 (2016)] on our paper [Phys. Plasmas 20, 122106 (2013)]. It is shown that TM surface waves can propagate on the surface of a semi-bounded quantum magnetized collisional plasma in the Faraday configuration in the electrostatic limit. In addition, in the Faraday configuration, one can neglect the coupling of TM and TE modes in the two limiting cases of weak magnetic field (low cyclotron frequency) and strong magnetic field (high cyclotron frequency).
A new Faraday rotator for high average power lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khazanov, E A
2001-04-30
The new design of a Faraday rotator is proposed which allows one to compensate partially the radiation depolarisation in magneto-optical elements induced by heating due to the laser radiation absorption. The new design is compared analytically and numerically with a conventional design for the cases of glass and crystal magneto-optical media. It is shown that a rotator, which provides the compensation for birefringence in active elements with the accuracy up to 1 % at the average laser radiation power of 1 kW in the rotator, can be created. (laser applications and other topics in quantum electronics)
Faraday-cup-type lost fast ion detector on Heliotron J.
Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T
2016-11-01
A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 ∘ -140 ∘ , especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.
Large Faraday effect of borate glasses with high Tb3+ content prepared by containerless processing
NASA Astrophysics Data System (ADS)
Suzuki, Futoshi; Sato, Fumio; Oshita, Hiroyuki; Yao, Situ; Nakatsuka, Yuko; Tanaka, Katsuhisa
2018-02-01
Borate glasses containing a large amount of Tb3+ ions have been prepared by containerless processing. The content of Tb2O3 reached 60 mol%. The glass bearing the highest content of Tb3+ ions showed a large Faraday effect; the Verdet constant was 234 rad/T m. Annealing of the glasses in H2/N2 atmosphere resulted in a low optical absorption coefficient, leading to an extremely large magneto-optical figure of merit that was ∼1.7 times higher than that of Tb3Ga5O12 single crystal.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
Addicoat, Matthew A; Bennett, Thomas D; Stassen, Ivo
2017-09-28
A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.
NASA Technical Reports Server (NTRS)
Tanton, George; Kesmodel, Roy; Burden, Judy; Su, Ching-Hua; Cobb, Sharon D.; Lehoczky, S. L.
2000-01-01
HgZnSe and HgZnTe are electronic materials of interest for potential IR detector and focal plane array applications due to their improved strength and compositional stability over HgCdTe, but they are difficult to grow on Earth and to fully characterize. Conventional contact methods of characterization, such as Hall and van der Paw, although adequate for many situations are typically labor intensive and not entirely suitable where only very small samples are available. To adequately characterize and compare properties of electronic materials grown in low earth orbit with those grown on Earth, innovative techniques are needed that complement existing methods. This paper describes the implementation and test results of a unique non-contact method of characterizing uniformity, mobility, and carrier concentration together with results from conventional methods applied to HgZnSe and HgZnTe. The innovative method has advantages over conventional contact methods since it circumvents problems of possible contamination from alloying electrical contacts to a sample and also has the capability to map a sample. Non- destructive mapping, the determination of the carrier concentration and mobility at each place on a sample, provides a means to quantitatively compare, at high spatial resolution, effects of microgravity on electronic properties and uniformity of electronic materials grown in low-Earth orbit with Earth grown materials. The mapping technique described here uses a 1mm diameter polarized beam of radiation to probe the sample. Activation of a magnetic field, in which the sample is placed, causes the plane of polarization of the probe beam to rotate. This Faraday rotation is a function of the free carrier concentration and the band parameters of the material. Maps of carrier concentration, mobility, and transmission generated from measurements of the Faraday rotation angles over the temperature range from 300K to 77K will be presented. New information on band parameters, obtained by combining results from conventional Hall measurements of the free carrier concentration with Faraday rotation measurements, will also be presented. One example of how this type of information was derived is illustrated in the following figure which shows Faraday rotation vs wavelength modeled for Hg(l-x)ZnxSe at a temperature of 300K and x=0.07. The plasma contribution, total Faraday rotation, and interband contribution to the Faraday rotation, are designated in the Figure as del(p), FR tot, and del(i) respectively. Experimentally measured values of FR tot, each indicated by + , agree acceptably well with the model at the probe wavelength of 10.6 microns. The model shows that at the probe wavelength, practically all the rotation is due to the plasma component, which can be expressed as delta(sub p)= 2pi(e(sup 3))NBL/c(sup 2)nm*(sup 2) omega(sup 2). In this equation, delta(sub p) is the rotation angle due to the free carrier plasma, N is the free carrier concentration, B the magnetic field strength, L the thickness of the sample, n the index of refraction, omega the probe radiation frequency, c the speed of light, e the electron charge, and m* the effective mass. A measurement of N by conventional techniques, combined with a measurement of the Faraday rotation angle allows m* to be accurately determined since it is an inverse square function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu, E-mail: akahori@physics.usyd.edu.au, E-mail: bryan.gaensler@sydney.edu.au, E-mail: ryu@sirius.unist.ac.kr
2014-08-01
Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detectedmore » in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.« less
Measurements of coronal Faraday rotation at 4.6 R {sub ☉}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.
2014-03-20
Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faradaymore » rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Lebedev, S. V.; Hall, G. N.
2016-05-01
Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. Our paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. Our experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Lebedev, S. V.; Hall, G. N.
2016-05-15
Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less
A low-mass faraday cup experiment for the solar wind
NASA Technical Reports Server (NTRS)
Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.
1993-01-01
Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.
Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2001-01-01
The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 see) exceeded that computed for an equivalent nozzleless rocket (120 see).
Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Lyles, Garry M. (Technical Monitor)
2001-01-01
The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 sec) exceeded that computed for an equivalent nozzleless rocket (120 sec).
El-Sayed, Mostafa A
2014-01-01
This Faraday meeting was indeed very educational and important. We should all thank the organizing committee, and especially our Chair, Professor Nguyen TK Thanh, for a job well done. The Faraday Discussion format is certainly very creative and effective. Getting each presenter of one of the excellent posters to summarize the topic of their poster in five minutes was very important in encouraging the delegates to spend their time in the poster sessions with the speakers working on research that overlapped with his or her own.
NASA Astrophysics Data System (ADS)
Delaney, P.; Greer, J. C.
2004-01-01
Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius.
Cavity enhanced atomic magnetometry
Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer
2015-01-01
Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853
C 60 as a chemical Faraday cage for three ferromagnetic Fe atoms
NASA Astrophysics Data System (ADS)
Gao, Guohua; Kang, Hong Seok
2008-09-01
Based on calculations using density functional theory, we show that C 60 can act as a chemical Faraday cage in which a highly magnetic metal cluster with a high chemical reactivity can be encapsulated. As an example, we find that C 60 can encapsulate a Fe 3 cluster, while it is much less likely to encapsulate a Fe 2 cluster. Spin multiplicity (=9) of the Fe 3@C 60 is very high, being comparable to that (=11) of a free Fe 3 cluster. Geometrically, the triangular plane of the cluster is perpendicular to a S6 axis of the fullerene.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in y and z directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available.
Charge amplifier with bias compensation
Johnson, Gary W.
2002-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
Vibration-resistant Er-doped superfluorescent fiber source incorporating a Faraday rotator mirror
NASA Astrophysics Data System (ADS)
Zhang, Enkang; Yang, Liu; Gao, Zhongxing; Xue, Bing; Zhang, Yonggang
2018-04-01
Improvement in the mean wavelength vibration stability is crucial to the realization of a high-precision fiber-optic gyroscope. We design a vibration-resistant Er-doped superfluorescent fiber source (VR-EDSFS) incorporated with a Faraday rotator mirror and compare it with the conventional Er-doped superfluorescent fiber source (ED-SFS) under different vibration conditions. As shown by experimental results, the mean wavelength vibration stability of the VR-EDSFS is much better than that of the conventional ED-SFS. Under the 1000 to 2000 Hz vibration condition, the former is just 3.4 ppm, which is about 7 ppm less than the latter over 2 h.
Response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Optical frequency comb Faraday rotation spectroscopy
NASA Astrophysics Data System (ADS)
Johansson, Alexandra C.; Westberg, Jonas; Wysocki, Gerard; Foltynowicz, Aleksandra
2018-05-01
We demonstrate optical frequency comb Faraday rotation spectroscopy (OFC-FRS) for broadband interference-free detection of paramagnetic species. The system is based on a femtosecond doubly resonant optical parametric oscillator and a fast-scanning Fourier transform spectrometer (FTS). The sample is placed in a DC magnetic field parallel to the light propagation. Efficient background suppression is implemented via switching the direction of the field on consecutive FTS scans and subtracting the consecutive spectra, which enables long-term averaging. In this first demonstration, we measure the entire Q- and R-branches of the fundamental band of nitric oxide in the 5.2-5.4 µm range and achieve good agreement with a theoretical model.
NASA Astrophysics Data System (ADS)
Kuzmenko, P. J.
1985-12-01
The plasma electrical conductivity is a key parameter in determining the efficiency of an magnetohydrodynamic (MHD) generator. Electromagnetic waves offer an accurate, non-intrusive probe. The electron concentration and mobility may be deduced from the refractive index and absorption coefficient measured with an interferometer. The first experiment used an HCOOH laser at 393.6 microns feeding a Michelson interferometer mounted around a combustor duct with open ports. Simultaneous measurements of positive ion density and plasma temperature made with a Langmuir probe and line reversal apparatus verified the operation of the interferometer. With a magnetic field present, measurement of the polarization rotation and induced ellipticity in a wave traveling along the field provides information on the plasma conductivity. Compared to interferometry, diagnostic apparatus based on Faraday rotation offers simpler optics and requires far less stringent mechanical stability at a cost of lower sensitivity. An advanced detection scheme, using a polarizing beam splitter improved the sensitivity to be comparable to that of interferometry. Interferometry is the preferred technique for small scale, high accuracy measurements, with Faraday rotation reserved for large systems or measurements within a working generator.
Surfactants non-monotonically modify the onset of Faraday waves
NASA Astrophysics Data System (ADS)
Strickland, Stephen; Shearer, Michael; Daniels, Karen
2017-11-01
When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.
NASA Technical Reports Server (NTRS)
Beck, S. M.
1975-01-01
A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.
Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-01-01
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876
Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer
Wang, Yin; Nikodem, Michal; Wysocki, Gerard
2013-01-01
A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1. PMID:23388967
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Roth, Titus
1988-01-01
Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage.
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Jiang, Mu-Sheng; Liang, Lin-Mei
2011-06-01
The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve’s attack changes slightly with the degree of the FM imperfection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L.
2014-07-15
A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulationmore » technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.« less
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
Electrostatic risk to reticles in the nanolithography era
NASA Astrophysics Data System (ADS)
Rider, Gavin C.
2016-04-01
Reticles can be damaged by electric field as well as by the conductive transfer of charge. As device feature sizes have moved from the micro- into the nano-regime, reticle sensitivity to electric field has been increasing owing to the physics of field induction. Hence, the predominant risk to production reticles today is from exposure to electric field. Measurements of electric field that illustrate the extreme risk faced by today's production reticles are presented. It is shown that some of the standard methods used for prevention of electrostatic discharge in semiconductor manufacturing, being based on controlling static charge and voltage, do not offer reticles adequate protection against electric field. In some cases, they actually increase the risk of reticle damage. Methodology developed specifically to protect reticles against electric field is required, which is described in SEMI Standard E163. Measurements are also presented showing that static dissipative plastic is not an ideal material to use for the construction of reticle pods as it both generates and transmits transient electric field. An appropriate combination of insulating material and metallic shielding is shown to provide the best electrostatic protection for reticles, with fail-safe protection only being possible if the reticle is fully shielded within a metal Faraday cage.
ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's
Miller, John M.; Jones, Perry T.; Li, Jan-Mou; ...
2015-05-21
As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less
A role for bioelectric effects in the induction of bystander signals by ionizing radiation?
Mothersill, C; Moran, G; McNeill, F; Gow, M D; Denbeigh, J; Prestwich, W; Seymour, C B
2007-04-03
The induction of "bystander effects" i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy (60)Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10 min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure.
A Role for Bioelectric Effects in the Induction of Bystander Signals by Ionizing Radiation?
Mothersill, C.; Moran, G.; McNeill, F.; Gow, M.D.; Denbeigh, J.; Prestwich, W.; Seymour, C.B.
2007-01-01
The induction of “bystander effects” i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy 60Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure. PMID:18648606
Platzner, I; Ehrlich, S; Halicz, L
2001-07-01
The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.
Advances in Optical Fiber-Based Faraday Rotation Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A D; McHale, G B; Goerz, D A
2009-07-27
In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreementmore » with our FRDs and other current sensors.« less
NASA Astrophysics Data System (ADS)
Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.
2013-03-01
The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.
Theory of nanotube faraday cage
NASA Astrophysics Data System (ADS)
Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.
2003-03-01
Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.
Coherent Perfect Rotation: The conservative analogue of CPA
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan; Andrews, James
2012-06-01
The two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption (CPA) resonances, where counter-propagating light fields are completely converted into other degrees of freedom, we show that in a linear conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of any arbitrarily oriented polarization of light into the other orthogonal polarization via the application of phased counter-propagating light fields. This contributes to the understanding of the importance of time reversal symmetry in perfect mode conversion that may be of use in optical device design.
NASA Astrophysics Data System (ADS)
Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun
Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (<0.5 Watt). The resulting battery-run clogging-free droplet generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.
High sensitivity charge amplifier for ion beam uniformity monitor
Johnson, Gary W.
2001-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
Detection of linear polarization from SNR Cassiopeia A at low radio frequencies
NASA Astrophysics Data System (ADS)
Raja, Wasim; Deshpande, A.
We report detection of the weak but significant linear polarization from the Supernova Remnant Cas A at low radio frequencies (327 MHz) using the GMRT. The spectro-polarimetric data was analyzed using the new technique of Faraday Tomography (RM-synthesis). The problems of disentangling weak sky polarization from any residual instrumental polarization is discussed. A novel technique to establish association of the apparent polarization to the source, even in the presence of instrumental leakage is demonstrated. The anti-correlation of the polarized emission with soft X-ray counts seen at various Faraday-depths provides direct evidence of the co-existence of thermal and non-thermal plasmas within the source.
Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons
NASA Astrophysics Data System (ADS)
Have, Jonas; Pedersen, Thomas G.
2018-03-01
The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.
Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations
NASA Astrophysics Data System (ADS)
Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo
2016-10-01
Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.
The First Deep WSRT 150~MHz Full Polarization Observations
NASA Astrophysics Data System (ADS)
de Bruyn, A. G.; Bernardi, G.; Lofar Eor-Team
2009-09-01
We present the first deep total intensity and full polarization observations with the WSRT at frequencies from 116-162 MHz. Under stable ionospheric conditions we can image regions as large as 20°diameter with a single direction independent selfcalibration without detectable non-isoplanaticity effects. Deep imaging at low frequencies, however, requires removal of the brightest northern hemisphere radio sources (the A-team). A noise level of about 3 mJy, limited by classical confusion, can be achieved in Stokes I with the WSRT within a single 12 h synthesis in this frequency band. Thermal noise levels of 0.5 mJy have been reached in 6×12 h syntheses. These images have dynamic range in excess of about 20,000:1. In one such deep synthesis of the FAN region we have detected strong linear polarization over a range of Faraday depths from -6 to +2 rad m-2. The properties of a 3°diameter ring-like structure, first studied in detail by \\citeauthor{hav2003} (\\citeyear{hav2003}), suggest that we are dealing with a spherical `Faraday bubble', a region with strongly enhanced Faraday rotation. We have also detected, for the first time, structure on a scale of about 10 arcmin in the diffuse Galactic synchrotron foreground.
Behavioral study of selected microorganisms in an aqueous electrohydrodynamic liquid bridge.
Paulitsch-Fuchs, Astrid H; Zsohár, Andrea; Wexler, Adam D; Zauner, Andrea; Kittinger, Clemens; de Valença, Joeri; Fuchs, Elmar C
2017-07-01
An aqueous electrohydrodynamic (EHD) floating liquid bridge is a unique environment for studying the influence of protonic currents (mA cm -2 ) in strong DC electric fields (kV cm -1 ) on the behavior of microorganisms. It forms in between two beakers filled with water when high-voltage is applied to these beakers. We recently discovered that exposure to this bridge has a stimulating effect on Escherichia coli. . In this work we show that the survival is due to a natural Faraday cage effect of the cell wall of these microorganisms using a simple 2D model. We further confirm this hypothesis by measuring and simulating the behavior of Bacillus subtilis subtilis , Neochloris oleoabundans, Saccharomyces cerevisiae and THP-1 monocytes. Their behavior matches the predictions of the model: cells without a natural Faraday cage like algae and monocytes are mostly killed and weakened, whereas yeast and Bacillus subtilis subtilis survive. The effect of the natural Faraday cage is twofold: First, it diverts the current from passing through the cell (and thereby killing it); secondly, because it is protonic it maintains the osmotic pressure in the cell wall, thereby mitigating cytolysis which would normally occur due to the low osmotic pressure of the surrounding medium. The method presented provides the basis for selective disinfection of solutions containing different microorganisms.
NASA Astrophysics Data System (ADS)
Cushley, Alex Clay
The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).
Andrews, Evan; Katla, Sai; Kumar, Challa; ...
2015-09-12
Nanoscale Au electrocatalysts demonstrate the extraordinary ability to reduce CO 2 at low overpotentials with high selectivity to CO. Here, we investigate the role of surface chemistry on CO 2 reduction behavior using Au 25 and 5 nm Au nanoparticles. Onset potentials for CO 2 reduction at Au 25 nanoparticles in Nafion binders are shifted anodically by 190 mV while the hydrogen evolution reaction is shifted cathodically by 300 mV relative to Au foil. The net effect of this beneficial separation in onset potentials is relatively high Faradayic efficiencies for CO (90% at 0.8 V versus RHE) at high currentmore » densities. Experimental results show Faradayic efficiencies for CO are greatest using electrodes made with Nafion-immobilized Au 25 nanoparticles. Likewise, CO 2 reduction onset potential shifts are greater for smaller nanoparticles and when Nafion binders are used instead of (sulfonate-free) polyvinylidene fluoride. X-ray photoelectron spectroscopy analysis reveals Au nanoparticles may react with the sulfonates of Nafion binders. Here, the results suggest sulfonate interfaces may alter the binding energies of key species or lead to favorable reconstructions, either of which ultimately results in remarkable improvements in Faradayic efficiencies relative to Au foil electrodes.« less
Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements
NASA Astrophysics Data System (ADS)
Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico
2009-11-01
A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore
Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta
2017-03-01
A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL -1 and broad detection range of 10 pg mL -1 ≲ c BSA ≲ 100 µg mL -1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL -1 ≲ c BSA ≲ 500 ng mL -1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic field analysis of the bow and terminal shock of the SS 433 jet
NASA Astrophysics Data System (ADS)
Sakemi, Haruka; Machida, Mami; Akahori, Takuya; Nakanishi, Hiroyuki; Akamatsu, Hiroki; Kurahara, Kohei; Farnes, Jamie
2018-03-01
We report a polarization analysis of the eastern region of W 50, observed with the Australia Telescope Compact Array (ATCA) at 1.4-3.0 GHz. In order to study the physical structures in the region where the SS 433 jet and W 50 interact, we obtain an intrinsic magnetic field vector map of that region. We find that the orientation of the intrinsic magnetic field vectors are aligned along the total intensity structures, and that there are characteristic, separate structures related to the jet, the bow shock, and the terminal shock. The Faraday rotation measures (RMs), and the results of Faraday tomography suggest that a high-intensity, filamentary structure in the north-south direction of the eastern-edge region can be separated into at least two parts to the north and south. The results of Faraday tomography also show that there are multiple components along the line of sight and/or within the beam area. In addition, we analyze the X-ray ring-like structure observed with XMM-Newton. While the possibility still remains that this X-ray ring is "real", it seems that the structure is not ring-like at radio wavelengths. Finally, we suggest that the structure is a part of the helical structure that coils the eastern ear of W 50.
Faraday effect on the Rb D{sub 1} line in a cell with a thickness of half the wavelength of light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargsyan, A., E-mail: sarmeno@mail.ru, E-mail: sargsyanarmen85@gmail.com; Pashayan-Leroy, Y.; Leroy, C.
2016-09-15
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D{sub 1} line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D{sub 1} line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocellmore » had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power P{sub L} ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the F{sub g} = 3 → F{sub e} = 2 transition of the {sup 85}Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.« less
NASA Astrophysics Data System (ADS)
2000-01-01
From 18 January until 28 March the 2000 IEE Faraday Lecture will be touring venues in the UK, aiming to inspire and encourage students to choose a career in science and engineering. The lecture tour is being supported by communications and IT company, Marconi, and it is being presented by University College London. Interactive experiments for the audience of 14 - 16 year-olds will combine with a multimedia presentation on the theme `Time and Place in the Communications Age', exploring our ability to make precise measurements of time, place and space and how these impact on our personal and business lives. Among the curious facts from the lecture is the discovery that Cornwall rises and falls by 20 cm every time the tide moves in and out. The whole of the UK rises and falls by 50 cm every time the Moon goes by and the UK is actually 20 m shorter than was thought ten years ago, before the Global Positioning Satellite system was in operation. Attendance at the lectures is free and schools interested in booking tickets should visit the Faraday website at www.faraday.org.uk . Further details of the tour are available from the Faraday Lecture Office, Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, Herts SG1 2AY (tel: 01438 313311, fax: 01438 742856, e-mail: faraday@iee.org.uk ). Among the `Strands' on the programme at the 2000 Edinburgh international science festival on 2 - 18 April are: visions of the future; time; the natural world; new materials; science book festival; science film festival. Festival programmes should be available soon from the festival office at 8 Lochend Road, Edinburgh EH6 8BR (tel: 0131 530 2001, fax: 0131 530 2002, e-mail: esf@scifest.demon.co.uk ). BA2000 will be one of the key features of the `creating SPARKS' festival where the sciences meet the arts in London during 6 - 30 September. Centred on South Kensington, and led by the British Association, creating SPARKS will be staged at such famous institutions as Imperial College, the Royal Albert Hall, the Royal College of Art, the Natural History and Science Museums and the Royal Geographical Society. Under the heading `Shaping the future together' BA2000 will explore science, engineering and technology in their wider cultural context. Further information about this event on 6 - 12 September may be obtained from Sandra Koura, BA2000 Festival Manager, British Association for the Advancement of Science, 23 Savile Row, London W1X 2NB (tel: 0171 973 3075, e-mail: sandra.koura@britassoc.org.uk ). Details of the creating SPARKS events may be obtained from creating.sparks@britassoc.org.uk or from the website www.britassoc.org.uk . Other events 3 - 7 July, Porto Alegre, Brazil VII Interamerican conference on physics education: The preparation of physicists and physics teachers in contemporary society. Info: IACPE7@if.ufrgs.br or cabbat1.cnea.gov.ar/iacpe/iacpei.htm 27 August - 1 September, Barcelona, Spain GIREP conference: Physics teacher education beyond 2000. Info: www.blues.uab.es/phyteb/index.html
Electrically controlled magnetic circular dichroism and Faraday rotation in graphene
NASA Astrophysics Data System (ADS)
Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome
Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2016-07-01
In a recent paper Abdel Aziz [Phys. Lett. A 376 (2012) 169] obtained the dispersion properties of TE surface modes propagating at the interface between a magnetized quantum plasma and vacuum in the Faraday configuration, where these TE surface waves are excited during the interaction of relativistic electron beam with magnetized quantum plasma. The present Comment points out that in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the TE surface waves cannot propagate on surface of the present system and the general dispersion relations for surface waves, derived by Abdel Aziz are incorrect.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
Note: An approach to 1000 T using the electro-magnetic flux compression.
Nakamura, D; Sawabe, H; Takeyama, S
2018-01-01
The maximum magnetic field obtained by the electro-magnetic flux compression technique was investigated with respect to the initial seed magnetic field. It was found that the reduction in the seed magnetic field from 3.8 T to 3.0 T led to a substantial increase in the final peak magnetic field. The optical Faraday rotation method with a minimal size probe evades disturbances from electromagnetic noise and shockwave effects to detect such final peak fields in a reduced space of an inner wall of the imploding liner. The Faraday rotation signal recorded the maximum magnetic field increased significantly to the highest magnetic field of 985 T approaching 1000 T, ever achieved by the electro-magnetic flux compression technique as an indoor experiment.
NASA Astrophysics Data System (ADS)
Scholkmann, F.; Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2017-03-01
Recently we reported (Milián-Sánchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.
ICANT, a code for the self-consistent computation of ICRH antenna coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecoul, S.; Heuraux, S.; Koch, R.
1996-02-01
The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are verymore » close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}« less
Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus.
Mohammadnejad, M; Pestehe, S J; Mohammadi, M A
2013-07-01
The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.
Advanced MOKE magnetometry in wide-field Kerr-microscopy
NASA Astrophysics Data System (ADS)
Soldatov, I. V.; Schäfer, R.
2017-10-01
The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.
The response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Effects of irregularity anisotropy on Faraday polarization fluctuations
NASA Technical Reports Server (NTRS)
Lee, M. C.; Nghiem, S. V.; Yoo, C.
1989-01-01
The previous model (Lee et al., 1982) of the Faraday polarization fluctuations (FPF) is extended after taking into account the anisotropic nature of the commonly observed, rodlike and sheetlike ionospheric irregularities. Striking effects of irregularity anisotropy are found in the longitudinal radio propagation. However, if the wave propagation angle is not small (say, greater than 5 deg), the effects of irregularity anisotropy on FPF introduced by rodlike irregularities weaken significantly, while those caused by sheetlike irregularities remain prominent. Therefore, under the same ionospheric propagation conditions, sheetlike ionospheric irregularities are more effective than rodlike ionospheric irregularities in causing the FPF of radio waves. It is expected that intense FPF of VHF radio signals can be observed not only near the equatorial anomaly but also in the auroral region.
Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.
Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N
2017-02-08
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.
Helios-1 Faraday rotation experiment - Results and interpretations of the solar occultations in 1975
NASA Technical Reports Server (NTRS)
Volland, H.; Bird, M. K.; Levy, G. S.; Stelzried, C. T.; Seidel, B. L.
1977-01-01
The first of two solar occultations of the satellite Helios-1 in 1975 occurred in April when the satellite's ray path approached the west limb of the sun to a minimum distance of 1.63 solar radii. The second occultation took place in late August/early September when Helios-1 was totally eclipsed by the photosphere. Measurements of the polarization angle of the linearly polarized telemetry signal were performed with automatic tracking polarimeters at the 64 m Goldstone Tracking Station in California and also at the 100 m radio telescope in Effelsberg, West Germany. The coronal Faraday rotation as a function of the solar offset for both occultations is shown in graphs. The theoretical significance of the observations is investigated.
Tomographic determination of the power distribution in electron beams
Teruya, Alan T.; Elmer, John W.
1996-01-01
A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.
Tomographic determination of the power distribution in electron beams
Teruya, A.T.; Elmer, J.W.
1996-12-10
A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.
Effect of electromagnetic radiation on the coils used in aneurysm embolization.
Lv, Xianli; Wu, Zhongxue; Li, Youxiang
2014-06-01
This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday's electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study.
NASA Astrophysics Data System (ADS)
Ko, J.; Chung, J.
2017-06-01
The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.
A Well-Known But Still Surprising Generator
NASA Astrophysics Data System (ADS)
Haugland, Ole Anton
2014-12-01
The bicycle generator is often mentioned as an example of a method to produce electric energy. It is cheap and easily accessible, so it is a natural example to use in teaching. There are different types, but I prefer the old side-wall dynamo. The most common explanation of its working principle seems to be something like the illustration in Fig. 1. The illustration is taken from a popular textbook in the Norwegian junior high school.1 Typically it is explained as a system of a moving magnet or coils that directly results in a varying magnetic field through the coils. According to Faraday's law a voltage is induced in the coils. Simple and easy! A few times I have had a chance to glimpse into a bicycle generator, and I was somewhat surprised to sense that the magnet rotated parallel to the turns of the coil. How could the flux through the coil change and induce a voltage when the magnet rotated parallel to the turns of the coil? When teaching electromagnetic induction I have showed the students a dismantled generator and asked them how this could work. They naturally found that this was more difficult to understand than the principle illustrated in Fig. 1. Other authors in this journal have discussed even more challenging questions concerning electric generators.2,3
A magnetoelectric flux gate: new approach for weak DC magnetic field detection.
Chu, Zhaoqiang; Shi, Huaduo; PourhosseiniAsl, Mohammad Javad; Wu, Jingen; Shi, Weiliang; Gao, Xiangyu; Yuan, Xiaoting; Dong, Shuxiang
2017-08-17
The magnetic flux gate sensors based on Faraday's Law of Induction are widely used for DC or extremely low frequency magnetic field detection. Recently, as the fast development of multiferroics and magnetoelectric (ME) composite materials, a new technology based on ME coupling effect is emerging for potential devices application. Here, we report a magnetoelectric flux gate sensor (MEFGS) for weak DC magnetic field detection for the first time, which works on a similar magnetic flux gate principle, but based on ME coupling effect. The proposed MEFGS has a shuttle-shaped configuration made of amorphous FeBSi alloy (Metglas) serving as both magnetic and magnetostrictive cores for producing a closed-loop high-frequency magnetic flux and also a longitudinal vibration, and one pair of embedded piezoelectric PMN-PT fibers ([011]-oriented Pb(Mg,Nb)O 3 -PbTiO 3 single crystal) serving as ME flux gate in a differential mode for detecting magnetic anomaly. In this way, the relative change in output signal of the MEFGS under an applied DC magnetic anomaly of 1 nT was greatly enhanced by a factor of 4 to 5 in comparison with the previous reports. The proposed ME flux gate shows a great potential for magnetic anomaly detections, such as magnetic navigation, magnetic based medical diagnosis, etc.
Multi-directional electromagnetic vibration energy harvester using circular Halbach array
NASA Astrophysics Data System (ADS)
Qiu, Jing; Liu, Xin; Hu, Zhenwen; Chang, Qijie; Gao, Yuan; Yang, Jin; Wen, Jing; Tang, Xiaosheng; Hu, Wei
2017-05-01
In this paper, a multi-directional electromagnetic vibration energy harvester (EVEH) using the circular Halbach array (HA) is presented based on the Faraday's law of electromagnetic induction. The circular HA is a specific arrangement of permanent magnets which could concentrate the magnetic field inside the circular array by a certain rule, while reduce the magnetic field outside the circular array to almost zero at the same time. The HA could break through the limitation of the related published vibration energy harvesters that could work in only one single direction. Thus, it could optimize the collecting efficiency. The experimental results show that the presented harvester could generate considerable electric output power in all vibrating directions. An optimal output power is 9.32 mW at a resonant frequency of 15.40 Hz with an acceleration of 0.5 g (with g=9.8 m/s2) across a 700-turn coil in the vibrating direction of 90°, which is 1.53 times than the minimum optimal one in the direction of 45°. The EVEH using the circular HA could work in all directions and generate considerable electric output power, which validates the feasibility of the EVEH that works in all directions and is beneficial for improving the practical application.
A divergence-cleaning scheme for cosmological SPMHD simulations
NASA Astrophysics Data System (ADS)
Stasyszyn, F. A.; Dolag, K.; Beck, A. M.
2013-01-01
In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.
NASA Astrophysics Data System (ADS)
Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.
2015-03-01
Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.
NASA Astrophysics Data System (ADS)
Baranowska, Angelika; Rizzo, Antonio; Coriani, Sonia
2006-07-01
A computational analysis of the effects (intensity-dependent change in the refractive index and the optical Faraday effect, OFE) induced in an achiral fluid by circularly polarized, linearly polarized or unpolarized light is presented. The connection between the molecular parameters appearing in the expression of the observable, as derived by Woźniak in the 1990s, and the appropriate linear and cubic frequency dependent response functions is made for the general case of both chiral and non-chiral fluid. The parameters which are non-vanishing in the case of achiral systems are then computed employing a coupled cluster singles and doubles wave function model and a wide choice of correlation consistent basis sets, for a set of reference systems, including a rare gas (neon), a non-dipolar (N2) and a dipolar (CO) molecule. Contributions due to magnetic and quadrupolar interactions between the fields and the gases are neglected, since they are in principle of much less importance than the purely electric dipolar interactions. Nevertheless a rough estimate of their size is given. The aim of the study is to assess the detectability of OFE. To this end, the ab initio results are compared with those obtained in this work for the closely related optical Kerr effect (OKE) and with those yielded by the classical Faraday effect.
Sunrise effects on VLF signals propagating over a long north-south path
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.
1999-07-01
We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.
NASA Astrophysics Data System (ADS)
Jang, Il-Yong; Huh, Sung-Min; Moon, Seong-Yong; Woo, Sang-Gyun; Lee, Jin-Kwan; Moon, Sang Heup; Cho, HanKu
2008-10-01
A patterned TaN substrate, which is candidate for a mask absorber in extreme ultra-violet lithography (EUVL), was etched to have inclined sidewalls by using a Faraday cage system under the condition of a 2-step process that allowed the high etch selectivity of TaN over the resist. The sidewall angle (SWA) of the patterned substrate, which was in the shape of a parallelogram after etching, could be controlled by changing the slope of a substrate holder that was placed in the Faraday cage. The performance of an EUV mask, which contained the TaN absorber of an oblique pattern over the molybdenum/silicon multi-layer, was simulated for different cases of SWA. The results indicated that the optical properties, such as the critical dimension (CD), an offset in the CD bias between horizontal and vertical patterns (H-V bias), and a shift in the image position on the wafer, could be controlled by changing the SWA of the absorber stack. The simulation result showed that the effect of the SWA on the optical properties became more significant at larger thicknesses of the absorber and smaller sizes of the target CD. Nevertheless, the contrast of the aerial images was not significantly decreased because the shadow effect caused by either sidewall of the patterned substrate cancelled with each other.
Fischer, G
1977-08-01
Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.
EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo, E-mail: fyuan@shao.ac.cn
2016-10-20
Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emissionmore » originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.« less
Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.
Valverde, Jose Manuel
2015-06-01
Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.
Lu, Jing; Wu, Lin; Hu, Yufang; Wang, Sui; Guo, Zhiyong
2018-06-30
In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe 3 O 4 @SiO 2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen) 3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen) 3 2+ as a signal readout pathway. All these signal molecules could take part in electrochemical reactions, thus further enhancing the ECL signal drastically. Therefore, the proposed sensor constructed by integrating HCR with Faraday cage-type strategy displayed an ultrasensitive detection platform for the miRNA-141 with a low detection limit of 0.03 fM. In addition, this proposed biosensor provides a universal platform for analysis of other microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.
Nonreciprocal gain control for ring laser
NASA Technical Reports Server (NTRS)
Dueker, G.; Lee, P.
1967-01-01
Nonreciprocal gain control is used in a ring laser where the two contracirculating beams may have differing intensities because of the residual Faraday rotation and other secondary nonreciprocal effects.
Faraday Rotation Due to Surface States in the Topological Insulator (Bi 1–xSbx) 2Te 3
Shao, Yinming; Post, Kirk W.; Wu, Jhih-Sheng; ...
2016-12-29
For this research, using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. Finally, the FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way formore » observing many exotic quantum phenomena in topological insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-04-15
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the mainmore » result of the work by Niknam et al. is incorrect.« less