ERIC Educational Resources Information Center
Chaplin, Hannah; Davidova, Sophia; Gorton, Matthew
2004-01-01
Survey evidence from three Central European Countries (Czech Republic, Hungary and Poland) is analysed to identify the degree of non-agricultural farm diversification and the factors facilitating or impeding it in individual and corporate farms. The effect of diversification on rural job creation and household incomes is investigated. The results…
NASA Astrophysics Data System (ADS)
Wei, Zhou
2017-05-01
Based on the diversification and cultivation scale, the rice cropping data of rural fixed observation points in 2011 were selected and the effect of diversification degree on rice productivity was analyzed by the Tobit model. The empirical results of the model show that diversification of sample farm will lead to loss of rice production efficiency. With the increase of rice planting scale, the loss of rice production efficiency will need to be further increased by diversification. Thus, we should stick to the family farm of specialized production operation. The transfer of land, the price and quantity of leasing, respecting the law of the market; the raising of funds can be considered non-subsidized capital market financing to help, while maintaining a certain degree of diversification, to avoid idle assets, low resource efficiency loss.
Farm Diversification into Tourism--Implications for Social Identity?
ERIC Educational Resources Information Center
Brandth, Berit; Haugen, Marit S.
2011-01-01
This article deals with how diversification and transformation of farming into tourism may influence the social identity of farmers. Based on a study of 19 farms run by couples engaged with agritourism, it shows how the development of tourism on the farms can be understood in a perspective of repeasantization; and how the couples draw on their…
NASA Astrophysics Data System (ADS)
Anwar, S.; Setyohadi, D. P. S.; Utami, M. M. D.; Damanhuri; Hariono, B.
2018-01-01
Bojonegoro, Tulungagung, and Ponorogo districts are an agrarian area and become one of the leading food crops producers in East Java Province. Diversification of farming in this region is done by applying season-based cropping pattern, which is cultivating various commodities in rotation. Farmers need diversification programs wetland cannot provide an optimal contribution to the income of farmers caused because farmers are not able to cultivate high value-added commodities due to limited capital. This research is to identify the characteristics of farming and to analyse the farming system to know the pattern of planting suggestion and prospect. The research used descriptive method, profit farming analysis, and SWOT. The results showed that each region has a specific planting pattern with rice as the main commodity grown in the rainy season followed by crops and horticultural crops and a suggested planting pattern that needs to be implemented by farmers to increase their income. The prospect of diversification of farming development through the implementation of the proposed planting pattern is very suitable with the character of the region and the market demand.
Lichtenberg, Elinor M; Kennedy, Christina M; Kremen, Claire; Batáry, Péter; Berendse, Frank; Bommarco, Riccardo; Bosque-Pérez, Nilsa A; Carvalheiro, Luísa G; Snyder, William E; Williams, Neal M; Winfree, Rachael; Klatt, Björn K; Åström, Sandra; Benjamin, Faye; Brittain, Claire; Chaplin-Kramer, Rebecca; Clough, Yann; Danforth, Bryan; Diekötter, Tim; Eigenbrode, Sanford D; Ekroos, Johan; Elle, Elizabeth; Freitas, Breno M; Fukuda, Yuki; Gaines-Day, Hannah R; Grab, Heather; Gratton, Claudio; Holzschuh, Andrea; Isaacs, Rufus; Isaia, Marco; Jha, Shalene; Jonason, Dennis; Jones, Vincent P; Klein, Alexandra-Maria; Krauss, Jochen; Letourneau, Deborah K; Macfadyen, Sarina; Mallinger, Rachel E; Martin, Emily A; Martinez, Eliana; Memmott, Jane; Morandin, Lora; Neame, Lisa; Otieno, Mark; Park, Mia G; Pfiffner, Lukas; Pocock, Michael J O; Ponce, Carlos; Potts, Simon G; Poveda, Katja; Ramos, Mariangie; Rosenheim, Jay A; Rundlöf, Maj; Sardiñas, Hillary; Saunders, Manu E; Schon, Nicole L; Sciligo, Amber R; Sidhu, C Sheena; Steffan-Dewenter, Ingolf; Tscharntke, Teja; Veselý, Milan; Weisser, Wolfgang W; Wilson, Julianna K; Crowder, David W
2017-11-01
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes. © 2017 John Wiley & Sons Ltd.
Farm Diversification, Tenancy and CAP Reform: Results from a Survey of Tenant Farmers in England
ERIC Educational Resources Information Center
Maye, Damian; Ilbery, Brian; Watts, David
2009-01-01
Little work has considered explicitly the role of farm tenancy in influencing the uptake (or not) of diversification activities. The need to examine this link has been heightened because of the 2003 CAP reforms and the decision to tie Single Farm Payment (SFP) entitlement to the land rather than what is produced on that land. The main objective of…
Agricultural diversification as an important strategy for achieving food security in Africa.
Waha, Katharina; van Wijk, Mark T; Fritz, Steffen; See, Linda; Thornton, Philip K; Wichern, Jannike; Herrero, Mario
2018-03-31
Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi-scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off-farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500-1,000 mm annual rainfall and 17%-22% rainfall variability. Forty-three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Paul, Carola; Weber, Michael; Knoke, Thomas
2017-06-01
Increasing land-use conflicts call for the development of land-use systems that reconcile agricultural production with the provisioning of multiple ecosystem services, including climate change mitigation. Agroforestry has been suggested as a global solution to increase land-use efficiency, while reducing environmental impacts and economic risks for farmers. Past research has often focused on comparing tree-crop combinations with agricultural monocultures, but agroforestry has seldom been systematically compared to other forms of land-use diversification, including a farm mosaic. This form of diversification mixes separate parcels of different land uses within the farm. The objective of this study was to develop a modelling approach to compare the performance of the agroforestry and farm mosaic diversification strategies, accounting for tree-crop interaction effects and economic and climate uncertainty. For this purpose, Modern Portfolio Theory and risk simulation were coupled with the process-based biophysical simulation model WaNuLCAS 4.0. For an example application, we used data from a field trial in Panama. The results show that the simulated agroforestry systems (Taungya, alley cropping and border planting) could outperform a farm mosaic approach in terms of cumulative production and return. Considering market and climate uncertainty, agroforestry showed an up to 21% higher economic return at the same risk level (i.e. standard deviation of economic returns). Farm compositions with large shares of land allocated to maize cultivation were also more severely affected by an increasing drought frequency in terms of both risks and returns. Our study demonstrates that agroforestry can be an economically efficient diversification strategy, but only if the design allows for economies of scope, beneficial interactions between trees and crops and higher income diversification compared to a farm mosaic. The modelling approach can make an important contribution to support land-use decisions at the farm level and reduce land-use conflicts at the landscape level. Copyright © 2017 Elsevier B.V. All rights reserved.
Biological factors contributing to bark and ambrosia beetle species diversification.
Gohli, Jostein; Kirkendall, Lawrence R; Smith, Sarah M; Cognato, Anthony I; Hulcr, Jiri; Jordal, Bjarte H
2017-05-01
The study of species diversification can identify the processes that shape patterns of species richness across the tree of life. Here, we perform comparative analyses of species diversification using a large dataset of bark beetles. Three examined covariates-permanent inbreeding (sibling mating), fungus farming, and major host type-represent a range of factors that may be important for speciation. We studied the association of these covariates with species diversification while controlling for evolutionary lag on adaptation. All three covariates were significantly associated with diversification, but fungus farming showed conflicting patterns between different analyses. Genera that exhibited interspecific variation in host type had higher rates of species diversification, which may suggest that host switching is a driver of species diversification or that certain host types or forest compositions facilitate colonization and thus allopatric speciation. Because permanent inbreeding is thought to facilitate dispersal, the positive association between permanent inbreeding and diversification rates suggests that dispersal ability may contribute to species richness. Bark beetles are ecologically unique; however, our results indicate that their impressive species diversity is largely driven by mechanisms shown to be important for many organism groups. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson
2016-01-01
This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.
Farm Household Survival Strategies and Diversification on Marginal Farms
ERIC Educational Resources Information Center
Meert, H.; Van Huylenbroeck, G.; Vernimmen, T.; Bourgeois, M.; van Hecke, E.
2005-01-01
On marginal farms, and in agriculture in general, sustainability is largely guaranteed by a broad range of survival strategies, closely interlinked and embedded in the household structure of typical family farms. This paper reports results of a socio-economic study carried out among Belgian farmers, focusing specifically on the opportunities…
Grigorakis, Kriton
2017-09-22
Species diversification in Mediterranean mariculture involves various important fish that contribute to the diet of many human populations. These include meagres (Sciaenidae), flatfishes, mullets, and various sparids. Their quality aspects (yields, fillet proximate composition, and lipid quality) are discussed in this review. Their filleting yield is mostly 40-45%. The viscerosomatic index ranges from 1.5% to 14%, depending on species. Low muscle fat contents of flatfishes and meagres differentiate them from the rest of the farmed species. Farmed fish contain high n-3 polyunsaturates fatty acids (PUFA; 12.3-36.3% vs. 5.48-37.2% in the wild) and have higher muscle fat and n-6 PUFA contents (mainly 18:2 n-6) than their wild counterparts. The aquaculture management, diet, and season can affect fillet composition and fatty acids, while season (i.e. food availability and maturation) largely affects lipid quality in wild fish. Data on the sensory quality of Mediterranean-farmed species are mainly limited to whether specific management differentiates the sensory quality; thus, further development of tools for sensory analysis is required. Observations on the quality features in farmed Mediterranean fish indicate that species diversification can also provide product diversification based on different commercial weights and fillet quality specifications.
ERIC Educational Resources Information Center
Franklin, Douglas R.
In view of continuing trends in farming and the trend toward increasing farm diversification and specialization, the National Association of State Universities and Land Grant Colleges and individual researchers have proposed their own lists of the skills that will be needed by farm management researchers in the future. Because farm management…
Capital Strategy in Diversification Farming Efforts Using SWOT Analysis
NASA Astrophysics Data System (ADS)
Damanhuri; Setyohadi, D. P. S.; Utami, M. M. D.; Kurnianto, M. F.; Hariono, B.
2018-01-01
Wetland farm diversification program in the district of Bojonegoro, Tulungagung, and Ponorogo can not provide an optimal contribution to the income of farmers caused because farmers are not able to cultivate high value-added commodities due to limited capital. This study aims to identify the characteristics of farming, capital pattern, stakeholder role, to analyze farming to know the pattern of planting suggestions and prospects, and to formulate capital facilitation strategy. Farming capital is obtained through loans in financial institutions with different patterns. Small farmers tend to utilize savings and credit cooperatives, microcredit, and loan sharks, while farmers with large wetland holdings tend to utilize commercial banks. P enelitian using descriptive method of farming profit analysis, and SWOT. The government through the banking institutions have provided much facilitation in the form of low-interest loans with flexible payment method. The generic strategy of selected capital facilitation is to empower farmers through farmer groups who have the capability in managing the capital needs of their members.
NASA Astrophysics Data System (ADS)
Solér, Cecilia; Sandström, Cecilia; Skoog, Hanna
2017-02-01
This article investigates the outcomes of mainstream coffee voluntary sustainability standards for high-biodiversity coffee diversification. By viewing voluntary sustainability standards certifications as performative marketing tools, we address the question of how such certification schemes affect coffee value creation based on unique biodiversity conservation properties in coffee farming. To date, the voluntary sustainability standards literature has primarily approached biodiversity conservation in coffee farming in the context of financial remuneration to coffee farmers. The performative analysis of voluntary sustainability standards certification undertaken in this paper, in which such certifications are analyzed in terms of their effect on mutually reinforcing representational, normalizing and exchange practices, provides an understanding of coffee diversification potential as dependent on standard criteria and voluntary sustainability standards certification as branding tools. We draw on a case of high-biodiversity, shade-grown coffee-farming practice in Kodagu, South-West India, which represents one of the world's biodiversity "hotspots".
Solér, Cecilia; Sandström, Cecilia; Skoog, Hanna
2017-02-01
This article investigates the outcomes of mainstream coffee voluntary sustainability standards for high-biodiversity coffee diversification. By viewing voluntary sustainability standards certifications as performative marketing tools, we address the question of how such certification schemes affect coffee value creation based on unique biodiversity conservation properties in coffee farming. To date, the voluntary sustainability standards literature has primarily approached biodiversity conservation in coffee farming in the context of financial remuneration to coffee farmers. The performative analysis of voluntary sustainability standards certification undertaken in this paper, in which such certifications are analyzed in terms of their effect on mutually reinforcing representational, normalizing and exchange practices, provides an understanding of coffee diversification potential as dependent on standard criteria and voluntary sustainability standards certification as branding tools. We draw on a case of high-biodiversity, shade-grown coffee-farming practice in Kodagu, South-West India, which represents one of the world's biodiversity "hotspots".
Diversification and intensification of agricultural adaptation from global to local scales.
Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke; Läderach, Peter
2018-01-01
Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa.
Diversification and intensification of agricultural adaptation from global to local scales
Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke
2018-01-01
Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa. PMID:29727457
ERIC Educational Resources Information Center
Barbieri, Carla; Mahoney, Edward
2009-01-01
State agencies have been encouraging the development of different enterprises to diversify farm incomes in an effort to retain farmers in business, attract new entrants to agriculture and promote regional development. Entrepreneurship and farming are known to be driven by a complex set of goals including those which are economic and intrinsic in…
7 CFR 3430.604 - Project types and priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... markets. (10) Conservation assistance. (11) Risk management education. (12) Diversification and marketing... and ranchers. (4) Innovative farm and ranch transfer strategies. (5) Entrepreneurship and business training. (6) Model land leasing contracts. (7) Financial management training. (8) Whole farm planning. (9...
Ripoll-Bosch, R; Joy, M; Bernués, A
2014-08-01
Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.
ERIC Educational Resources Information Center
Izumi, Betty T.; Wright, D. Wynne; Hamm, Michael W.
2010-01-01
Activists and academics are increasingly advocating for public procurement of locally grown food as a key market opportunity for farmers. In the United States, linking farmers directly with school cafeterias through farm to school programs are among the efforts that advocates say can provide a significant boost to rural economies. Through an…
New Venture Creation in the Farm Sector--Critical Resources and Capabilities
ERIC Educational Resources Information Center
Grande, Jorunn
2011-01-01
New venture activities and diversification at farms seem to be perceived as inherently beneficial both to farmers and to rural development. However, the benefit of such efforts and the critical resources and capabilities leading to them seem not to be well understood yet. The purpose of this paper is therefore to explore critical resources and…
7 CFR 1465.1 - Purposes and applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... production diversification or resource conservation practices including soil erosion control, integrated pest management, or the transition to organic farming. AMA is applicable in Connecticut, Delaware, Hawaii, Maine...
7 CFR 1465.1 - Purposes and applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... production diversification or resource conservation practices including soil erosion control, integrated pest management, or the transition to organic farming. AMA is applicable in Connecticut, Delaware, Hawaii, Maine...
7 CFR 1465.1 - Purposes and applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... production diversification or resource conservation practices including soil erosion control, integrated pest management, or the transition to organic farming. AMA is applicable in Connecticut, Delaware, Hawaii, Maine...
7 CFR 1465.1 - Purposes and applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... production diversification or resource conservation practices including soil erosion control, integrated pest management, or the transition to organic farming. AMA is applicable in Connecticut, Delaware, Hawaii, Maine...
7 CFR 1465.1 - Purposes and applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... production diversification or resource conservation practices including soil erosion control, integrated pest management, or the transition to organic farming. AMA is applicable in Connecticut, Delaware, Hawaii, Maine...
45 CFR 1336.75 - Allowable loan activities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of cooperatives engaged in the production and marketing of farm products, equipment, or supplies; the...; and (f) Promotion of economic diversification, e.g. targeting firms in growth industries that have not...
Sustainable integrated farming system: A solution for national food security and sovereignty
NASA Astrophysics Data System (ADS)
Ansar, M.; Fathurrahman
2018-05-01
This paper provides a comprehensive review of literature related to food security. The world food crisis is a threat to all countries, including Indonesia. The problem of food security in Indonesia is still happening, particularly, aspects of production and increasingly unbalanced food availability. Due to the increasing rate of population growth, land functional shift, degradation of land resources and water, as well as environmental pollution and climate change. Food production has not been able to meet the needs of the population continuously. Therefore, the food policy paradigm applied in Indonesia must change from food security to food independence. Thus, Indonesia is not dependent on other countries. Food diversification is one of the best policies to be implemented in achieving food independence and anticipating the food crisis. Food diversification utilizes land optimally by developing an integrated farming system. The integrated farming system is an efficient and environmentally agricultural system. It is able to utilize sustainable agriculture development, followed by the development of participatory technology (Participatory Technology Development) which refers to the local wisdom of the community.
Murendo, Conrad; Nhau, Brighton; Mazvimavi, Kizito; Khanye, Thamsanqa; Gwara, Simon
2018-01-01
Nutrition education is crucial for improved nutrition outcomes. However, there are no studies to the best of our knowledge that have jointly analysed the roles of nutrition education, farm production diversity and commercialization on household, women and child dietary diversity. This article jointly analyses the role of nutrition education, farm production diversity and commercialization on household, women and children dietary diversity in Zimbabwe. In addition, we analyze separately the roles of crop and livestock diversity and individual agricultural practices on dietary diversity. Data were collected from 2,815 households randomly selected in eight districts. Negative binomial regression was used for model estimations. Nutrition education increased household, women, and child dietary diversity by 3, 9 and 24%, respectively. Farm production diversity had a strong and positive association with household and women dietary diversity. Crop diversification led to a 4 and 5% increase in household and women dietary diversity, respectively. Furthermore, livestock diversification and market participation were positively associated with household, women, and children dietary diversity. The cultivation of pulses and fruits increased household, women, and children dietary diversity. Vegetable production and goat rearing increased household and women dietary diversity. Nutrition education and improving access to markets are promising strategies to improve dietary diversity at both household and individual level. Results demonstrate the value of promoting nutrition education; farm production diversity; small livestock; pulses, vegetables and fruits; crop-livestock integration; and market access for improved nutrition.
Murendo, Conrad; Nhau, Brighton; Mazvimavi, Kizito; Khanye, Thamsanqa; Gwara, Simon
2018-01-01
Background Nutrition education is crucial for improved nutrition outcomes. However, there are no studies to the best of our knowledge that have jointly analysed the roles of nutrition education, farm production diversity and commercialization on household, women and child dietary diversity. Objective This article jointly analyses the role of nutrition education, farm production diversity and commercialization on household, women and children dietary diversity in Zimbabwe. In addition, we analyze separately the roles of crop and livestock diversity and individual agricultural practices on dietary diversity. Design Data were collected from 2,815 households randomly selected in eight districts. Negative binomial regression was used for model estimations. Results Nutrition education increased household, women, and child dietary diversity by 3, 9 and 24%, respectively. Farm production diversity had a strong and positive association with household and women dietary diversity. Crop diversification led to a 4 and 5% increase in household and women dietary diversity, respectively. Furthermore, livestock diversification and market participation were positively associated with household, women, and children dietary diversity. The cultivation of pulses and fruits increased household, women, and children dietary diversity. Vegetable production and goat rearing increased household and women dietary diversity. Conclusions Nutrition education and improving access to markets are promising strategies to improve dietary diversity at both household and individual level. Results demonstrate the value of promoting nutrition education; farm production diversity; small livestock; pulses, vegetables and fruits; crop-livestock integration; and market access for improved nutrition.
Evolution of the Fusarium–Euwallacea ambrosia beetle mutualism
USDA-ARS?s Scientific Manuscript database
The Euwallacea – Fusarium mutualistic symbiosis represents one of the independent evolutionary origins of fungus-farming. Diversification time estimates place the evolutionary origin of this mutualism in the early Miocene approximately 21 million years ago. Fusarium is best known as one of the most ...
Energy cane as a multiple-products alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, A.G.
1984-01-01
CANE SUGAR planting as it was formerly known is in serious and essentially irreversible trouble. Diversification of sugarcane to alternative farm crops is indicated in some instances. Yet, for the most part, the more logical alternative is an internal diversification to a multiple-products biomass commodity. Sometimes termed the energy cane approach, its keystones are the management of sugarcane as a quantitative rather than qualitative entity, and the inclusion of certain tropical-grass relatives to assist cane in its year-round supply of biomass to industrial consumers. Managed in this way, absolute tonnages of whole cane are increased materially beyond what is possiblemore » from sugar-crop management. Juice quality declines but sugar yields are significant as a function of high biomass tonnages per acre. Usage of the lignocellulose can range from low-quality humid boiler fuel in furnaces designed for refuse incineration, to higher-quality fuels in more efficient boilers, to proprietary fuels and chemical products, and to lignocellulose supply as the feedstock for primary chemicals production. The latter might include, for example, synthesis gas and petrochemicals in tropical regions lacking natural gas, naphtha, or coal as starting materials. Diversification of sugarcane to completely new farm commodities is opposed in favor of internal diversification to a high-growth, multiple-products commodity. Decisive issues here are as much educational as they are technical. The energy cane concept maintains that sugarcane is a future resource of enormous national and international value. It should develop accordingly where decision-taking is by persons who respect the cane plant and who have done their homework on its alternative-use potentials. 35 references, 5 figures, 6 tables.« less
Understanding the Nature and Extent of Farm and Ranch Diversification in North America
ERIC Educational Resources Information Center
Barbieri, Carla; Mahoney, Edward; Butler, Larry
2008-01-01
Pressure to adopt enhanced production technologies, changing government support policies, increasing and more diverse competition, and changing markets have posed economic challenges to North American farmers over the past two decades. As a response, farmers are adjusting their production model by incorporating agricultural related enterprises.…
USDA-ARS?s Scientific Manuscript database
Diversification of farm enterprises is important to maintain sustainable production systems. Systems that integrate crops and livestock may prove beneficial to each enterprise. Our objectives were to determine the effects of annual crops grazed in the fall and early-winter period on cow and calf gro...
USDA-ARS?s Scientific Manuscript database
Economics and environmental footprints of beef cattle raised on natural pasture or combined with soybean in specific biomes are still not well evaluated. The objective of this research was to simulate and evaluate the economics of three common pastured beef grazing systems in southern Brazil along w...
ERIC Educational Resources Information Center
Gorton, Matthew; Douarin, Elodie; Davidova, Sophia; Latruffe, Laure
2008-01-01
Farmers' attitudes, to agricultural production, diversification and policy support, and behavioural intentions in five Member States of the EU (France, Lithuania, Slovakia, Sweden, England) are analysed comparatively. Groups of farmers with similarly held attitudes are identified using cluster analysis to investigate whether differences in…
Costs and returns of producing wild-simulated ginseng in established tree plantations
Kim Ha; Shadi Atallah; Tamara Benjamin; Lenny Farlee; Lori Hoagland; Keith. Woeste
2017-01-01
Forest farming in North America is becoming a popular practice that provides short-term income for owners of new forest plantations while their trees reach maturity. This income diversification is particularly relevant for many of the Indiana hardwood plantations planted in the last decade, but will not fulfill their economic potential until 60â70 years from...
Jones, Andrew D
2017-01-01
The declining diversity of agricultural production and food supplies worldwide may have important implications for global diets. The primary objective of this review is to assess the nature and magnitude of the associations of agricultural biodiversity with diet quality and anthropometric outcomes in low- and middle-income countries. A comprehensive review of 5 databases using a priori exclusion criteria and application of a systematic, qualitative analysis to the findings of identified studies revealed that agricultural biodiversity has a small but consistent association with more diverse household- and individual-level diets, although the magnitude of this association varies with the extent of existing diversification of farms. Greater on-farm crop species richness is also associated with small, positive increments in young child linear stature. Agricultural diversification may contribute to diversified diets through both subsistence- and income-generating pathways and may be an important strategy for improving diets and nutrition outcomes in low- and middle-income countries. Six research priorities for future studies of the influence of agricultural biodiversity on nutrition outcomes are identified based on gaps in the research literature. PMID:29028270
Farm cooperation to improve sustainability.
Andersson, Hans; Larsén, Karin; Lagerkvist, Carl-Johan; Andersson, Chrisitian; Blad, Fredrik; Samuelsson, Johan; Skargren, Per
2005-06-01
In this paper, it is demonstrated that partnership arrangements between farmers might be a way to secure the economic viability of their farms as well as to increase profitability. The article discusses empirical analyses of three different forms of collaboration, with an emphasis on the environmental improvements associated with collaboration. Collaboration between a dairy farm and a crop farm is analyzed in the first case. The results show that potential gains from improved diversification and crop rotation are substantial, and even larger when the collaboration also involves machinery. The second analysis considers external integration between farrowing and finishing-pig operations. Gains from collaboration originate from biological and technical factors, such as improved growth rate of the pigs and better utilization of buildings. Finally, an evaluation of a group of collaborating crop farmers is performed. In this case, the benefits that arise are mainly due to reduced machinery costs and/or gains due to other factors, such as improved crop rotation and managerial/marketing strategies.
Kahiluoto, Helena; Kaseva, Janne
2016-01-01
Efficiency in the use of resources stream-lined for expected conditions could lead to reduced system diversity and consequently endanger resilience. We tested the hypothesis of a trade-off between farm resource-use efficiency and land-use diversity. We applied stochastic frontier production models to assess the dependence of resource-use-efficiency on land-use diversity as illustrated by the Shannon-Weaver index. Total revenue in relation to use of capital, land and labour on the farms in Southern Finland with a size exceeding 30 ha was studied. The data were extracted from the Finnish Profitability Bookkeeping data. Our results indicate that there is either no trade-off or a negligible trade-off of no economic importance. The small dependence of resource-use efficiency on land-use diversity can be positive as well as negative. We conclude that diversification as a strategy to enhance farm resilience does not necessarily constrain resource-use efficiency. PMID:27662475
ERIC Educational Resources Information Center
Markantoni, Marianna; van Hoven, Bettina
2012-01-01
Over the past 20 years, rural areas in Western societies have transformed from a production to a consumption space. Much research on rural diversification and revitalization has focused on farmers and their wives. However, it is useful to examine side activities run by non-farm women which have slowly emerged in the last few years. In view of…
Mahapatra, Ajay Kumar; Tewari, D D; Baboo, Biplab
2015-08-01
A large volume of literature describes adverse consequences of conservation-induced displacement on indigenous communities depended on natural resources of wildlife habitat. Resettlement policies in protected areas the world over are mainly designed and implemented without consideration of social and economic costs of exclusion. This study examined income and poverty profile of tribal residents in Similipal Tiger and Biosphere Reserve in India, relative to the households relocated out of the reserve. The income from different sources and livelihood diversification of displaced reserve dwellers reflected changes resulting from the loss of access to natural and household assets. The results contradicted common perception about impoverishment outcome of relocation. It showed an increase in the per capita income for poorer segments with an overall 8% increase in absolute household income and corresponding improvement in the poverty ratio (head count ratio) and FGT index (0.241) for the relocated community. Contrary to other studies, the finding did not observe social alignment or marginalization; however, on-farm livelihood diversification reduced with increased dependence on off-farm sources. Expulsion of people from forest reserves to support conservation is inadequate in restricting habitat use of locals unless suitable alternative livelihood options are available for forest dependent was proven from the study.
NASA Astrophysics Data System (ADS)
Mahapatra, Ajay Kumar; Tewari, D. D.; Baboo, Biplab
2015-08-01
A large volume of literature describes adverse consequences of conservation-induced displacement on indigenous communities depended on natural resources of wildlife habitat. Resettlement policies in protected areas the world over are mainly designed and implemented without consideration of social and economic costs of exclusion. This study examined income and poverty profile of tribal residents in Similipal Tiger and Biosphere Reserve in India, relative to the households relocated out of the reserve. The income from different sources and livelihood diversification of displaced reserve dwellers reflected changes resulting from the loss of access to natural and household assets. The results contradicted common perception about impoverishment outcome of relocation. It showed an increase in the per capita income for poorer segments with an overall 8 % increase in absolute household income and corresponding improvement in the poverty ratio (head count ratio) and FGT index (0.241) for the relocated community. Contrary to other studies, the finding did not observe social alignment or marginalization; however, on-farm livelihood diversification reduced with increased dependence on off-farm sources. Expulsion of people from forest reserves to support conservation is inadequate in restricting habitat use of locals unless suitable alternative livelihood options are available for forest dependent was proven from the study.
Jones, Andrew D
2017-10-01
The declining diversity of agricultural production and food supplies worldwide may have important implications for global diets. The primary objective of this review is to assess the nature and magnitude of the associations of agricultural biodiversity with diet quality and anthropometric outcomes in low- and middle-income countries. A comprehensive review of 5 databases using a priori exclusion criteria and application of a systematic, qualitative analysis to the findings of identified studies revealed that agricultural biodiversity has a small but consistent association with more diverse household- and individual-level diets, although the magnitude of this association varies with the extent of existing diversification of farms. Greater on-farm crop species richness is also associated with small, positive increments in young child linear stature. Agricultural diversification may contribute to diversified diets through both subsistence- and income-generating pathways and may be an important strategy for improving diets and nutrition outcomes in low- and middle-income countries. Six research priorities for future studies of the influence of agricultural biodiversity on nutrition outcomes are identified based on gaps in the research literature. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.
Roy Chowdhury, Rinku
2010-03-30
Forest cover transitions in the developing tropics are conditioned by agricultural change. The expansion, intensification, and diversification of agricultural land uses are tied to regional economic/environmental regimes and decisions of local farming households. Land change science and agrarian systems research share an interest in the drivers of household strategies, land use impacts, and typologies of those land uses/drivers. This study derives a typology of farming households in southern Mexico based on emergent patterns in their land use combinations and analyzes their household and policy drivers. The results reveal broadly diversified household land use portfolios as well as three emergent clusters of farmstead production orientation: (i) extensive subsistence-oriented conservationists, (ii), dual extensive-intensive farmers, and (iii) nonextensive diversified land users. Household membership in these clusters is uneven and strongly related to tenancy, land endowments, wage labor, and policy subsidies. Although most households are following a nonextensive agricultural strategy incorporating off-farm incomes, the likelihood of a regional forest transition remains debatable because of the disproportionate deforestation impacts of the less common strategies. Conservation development policies in the region need to accommodate diverse smallholder farming rationales, increase off-farm opportunities, and target sustainable development with the assistance of community conservation leaders.
Use of meteorological information in the risk analysis of a mixed wind farm and solar
NASA Astrophysics Data System (ADS)
Mengelkamp, H.-T.; Bendel, D.
2010-09-01
Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.
Drivers of household food availability in sub-Saharan Africa based on big data from small farms
Frelat, Romain; Lopez-Ridaura, Santiago; Herrero, Mario; Douxchamps, Sabine; Djurfeldt, Agnes Andersson; Erenstein, Olaf; Henderson, Ben; Kassie, Menale; Paul, Birthe K.; Rigolot, Cyrille; Ritzema, Randall S.; Rodriguez, Daniel; van Asten, Piet J. A.; van Wijk, Mark T.
2016-01-01
We calculated a simple indicator of food availability using data from 93 sites in 17 countries across contrasted agroecologies in sub-Saharan Africa (>13,000 farm households) and analyzed the drivers of variations in food availability. Crop production was the major source of energy, contributing 60% of food availability. The off-farm income contribution to food availability ranged from 12% for households without enough food available (18% of the total sample) to 27% for the 58% of households with sufficient food available. Using only three explanatory variables (household size, number of livestock, and land area), we were able to predict correctly the agricultural determined status of food availability for 72% of the households, but the relationships were strongly influenced by the degree of market access. Our analyses suggest that targeting poverty through improving market access and off-farm opportunities is a better strategy to increase food security than focusing on agricultural production and closing yield gaps. This calls for multisectoral policy harmonization, incentives, and diversification of employment sources rather than a singular focus on agricultural development. Recognizing and understanding diversity among smallholder farm households in sub-Saharan Africa is key for the design of policies that aim to improve food security. PMID:26712016
Drivers of household food availability in sub-Saharan Africa based on big data from small farms.
Frelat, Romain; Lopez-Ridaura, Santiago; Giller, Ken E; Herrero, Mario; Douxchamps, Sabine; Andersson Djurfeldt, Agnes; Erenstein, Olaf; Henderson, Ben; Kassie, Menale; Paul, Birthe K; Rigolot, Cyrille; Ritzema, Randall S; Rodriguez, Daniel; van Asten, Piet J A; van Wijk, Mark T
2016-01-12
We calculated a simple indicator of food availability using data from 93 sites in 17 countries across contrasted agroecologies in sub-Saharan Africa (>13,000 farm households) and analyzed the drivers of variations in food availability. Crop production was the major source of energy, contributing 60% of food availability. The off-farm income contribution to food availability ranged from 12% for households without enough food available (18% of the total sample) to 27% for the 58% of households with sufficient food available. Using only three explanatory variables (household size, number of livestock, and land area), we were able to predict correctly the agricultural determined status of food availability for 72% of the households, but the relationships were strongly influenced by the degree of market access. Our analyses suggest that targeting poverty through improving market access and off-farm opportunities is a better strategy to increase food security than focusing on agricultural production and closing yield gaps. This calls for multisectoral policy harmonization, incentives, and diversification of employment sources rather than a singular focus on agricultural development. Recognizing and understanding diversity among smallholder farm households in sub-Saharan Africa is key for the design of policies that aim to improve food security.
Comparing crop rotations between organic and conventional farming.
Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas
2017-10-23
Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.
Soil fertility, crop biodiversity, and farmers' revenues: Evidence from Italy.
Di Falco, Salvatore; Zoupanidou, Elisavet
2017-03-01
This paper analyzes the interplay between soil fertility, crop biodiversity, and farmers' revenues. We use a large, original, farm-level panel dataset. Findings indicate that both crop biodiversity and soil fertility have positive effects on farmers' revenues. It is also shown that crop biodiversity and soil fertility may act as substitutes. These results provide evidence for the important role of diversity in the resilience of agroecosystems. Crop diversification can be a potential strategy to support productivity when soils are less fertile.
Parker, Pete; Thapa, Brijesh; Jacob, Aerin
2015-12-01
To alleviate poverty and enhance conservation in resource dependent communities, managers must identify existing livelihood strategies and the associated factors that impede household access to livelihood assets. Researchers increasingly advocate reallocating management power from exclusionary central institutions to a decentralized system of management based on local and inclusive participation. However, it is yet to be shown if decentralizing conservation leads to diversified livelihoods within a protected area. The purpose of this study was to identify and assess factors affecting household livelihood diversification within Nepal's Kanchenjunga Conservation Area Project, the first protected area in Asia to decentralize conservation. We randomly surveyed 25% of Kanchenjunga households to assess household socioeconomic and demographic characteristics and access to livelihood assets. We used a cluster analysis with the ten most common income generating activities (both on- and off-farm) to group the strategies households use to diversify livelihoods, and a multinomial logistic regression to identify predictors of livelihood diversification. We found four distinct groups of household livelihood strategies with a range of diversification that directly corresponded to household income. The predictors of livelihood diversification were more related to pre-existing socioeconomic and demographic factors (e.g., more landholdings and livestock, fewer dependents, receiving remittances) than activities sponsored by decentralizing conservation (e.g., microcredit, training, education, interaction with project staff). Taken together, our findings indicate that without direct policies to target marginalized groups, decentralized conservation in Kanchenjunga will continue to exclude marginalized groups, limiting a household's ability to diversify their livelihood and perpetuating their dependence on natural resources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Does aquaculture add resilience to the global food system?
Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart
2014-09-16
Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
Does aquaculture add resilience to the global food system?
Troell, Max; Naylor, Rosamond L.; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H.; Folke, Carl; Arrow, Kenneth J.; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R.; Gren, Åsa; Kautsky, Nils; Levin, Simon A.; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H.; Xepapadeas, Tasos; de Zeeuw, Aart
2014-01-01
Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111
Giving sustainable agriculture really good odds through innovative rainfall index insurance
NASA Astrophysics Data System (ADS)
Muneepeerakul, C. P.; Muneepeerakul, R.
2017-12-01
Population growth, increasing demands for food, and increasingly uncertain and limited water availability amidst competing demands for water by other users and the environment call for a novel approach to manage water in food production systems to be developed now. Tapping into broad popularity of crop insurance as a risk management intervention, we propose an innovative rainfall index insurance program as a novel systems approach that addresses water conservation in food production systems by exploiting two common currencies that tie the food production systems and others together, namely water and money. Our novel methodology allows for optimizing diverse farm and financial strategies together, revealing strategy portfolios that result in greater water use efficiency and higher incomes at a lower level of water use. Furthermore, it allows targeted interventions to achieve reduction in irrigation water, while providing financial protection to farmers against the increasing uncertainty in water availability. Not only would such a tool result in efficiently less use of water, it would also encourage diversification in farm practices, which reduces the farm's vulnerability against crop price volatility and pest or disease outbreaks and contributes to more sustainable agriculture.
The role of trees in agroecology and sustainable agriculture in the tropics.
Leakey, Roger R B
2014-01-01
Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.
Rahman, Syed Ajijur; Sunderland, Terry; Roshetko, James M; Healey, John Robert
2017-08-01
Under changing land use in tropical Asia, there is evidence of forest product diversification through implementation of tree-based farming by smallholders. This paper assesses in two locations, West Java, Indonesia and eastern Bangladesh, current land use conditions from the perspective of smallholder farmers, the factors that facilitate their adoption of tree farming, and the potential of landscape-scale approaches to foster sustainable land management. Data were collected through rapid rural appraisals, focus group discussions, field observations, semi-structured interviews of farm households and key informant interviews of state agricultural officers. Land at both study sites is typically fragmented due to conversion of forest to agriculture and community settlement. Local land use challenges are associated with pressures of population increase, poverty, deforestation, shortage of forest products, lack of community-scale management, weak tenure, underdeveloped markets, government decision-making with insufficient involvement of local people, and poor extension services. Despite these challenges, smallholder tree farming is found to be successful from farmers' perspectives. However, constraints of local food crop cultivation traditions, insecure land tenure, lack of capital, lack of knowledge, lack of technical assistance, and perceived risk of investing in land due to local conflict (in Bangladesh) limit farmers' willingness to adopt this land use alternative. Overcoming these barriers to adoption will require management at a landscape scale, including elements of both segregation and integration of land uses, supported by competent government policies and local communities having sufficiently high social capital. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roullier, C; Kambouo, R; Paofa, J; McKey, D; Lebot, V
2013-01-01
New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm previous results, suggesting that New Guinea landraces are principally derived from the Northern neotropical genepool (Camote and Batata lines, from the Caribbean and Central America). However, chloroplast data suggest that South American clones (early Kumara line clones or, more probably, later reintroductions) were also introduced into New Guinea and then recombined with existing genotypes. The frequency distribution of pairwise distances between New Guinea landraces suggests that sexual reproduction, rather than somaclonal variation, has played a predominant role in the diversification of sweet potato. The frequent incorporation of plants issued from true seed by farmers, and the geographical and cultural barriers constraining crop diffusion in this topographically and linguistically heterogeneous island, has led to the accumulation of an impressive number of variants. As the diversification of sweet potato in New Guinea is primarily the result of farmers' management of the reproductive biology of their crop, we argue that on-farm conservation programmes that implement distribution of core samples (clones representing the useful diversity of the species) and promote on-farm selection of locally adapted variants may allow local communities to fashion relatively autonomous strategies for coping with ongoing global change. PMID:23531982
Staple Food Self-Sufficiency of Farmers Household Level in The Great Solo
NASA Astrophysics Data System (ADS)
Darsono
2017-04-01
Analysis of food security level of household is a novelty of measurement standards which usually includes regional and national levels. With household approach is expected to provide the basis of sharp food policy formulation. The purpose of this study are to identify the condition of self-sufficiency in staple foods, and to find the main factors affecting the dynamics of self-sufficiency in staple foods on farm household level in Great Solo. Using primary data from 50 farmers in the sample and secondary data in Great Solo (Surakarta city, Boyolali, Sukoharjo, Karanganyar, Wonogiri, Sragen and Klaten). Compiled panel data were analyzed with linear probability regression models to produce a good model. The results showed that farm households in Great Solo has a surplus of staple food (rice) with an average consumption rate of 96.8 kg/capita/year. This number is lower than the national rate of 136.7 kg/capita/year. The main factors affecting the level of food self-sufficiency in the farmer household level are: rice production, rice consumption, land tenure, and number of family members. Key recommendations from this study are; improvement scale of the land cultivation for rice farming and non-rice diversification consumption.
Trading biodiversity for pest problems.
Lundgren, Jonathan G; Fausti, Scott W
2015-07-01
Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species' abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function.
Trading biodiversity for pest problems
Lundgren, Jonathan G.; Fausti, Scott W.
2015-01-01
Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species’ abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function. PMID:26601223
The role of materials in global competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A symposium on global competitiveness was sponsored by ASM`s Advisory Technical Awareness Council during Materials Week in Cleveland last October. Carpenter Technology`s approach to internationalization and diversification involves three steps: internationalization of core businesses, diversification into engineered products, and focused research and development. Aluminum`s potential was the basis of the Audi-Alcoa relationship, and the result was a true breakthrough: a spaceframe structure designed to integrate every component surface as a structural entity, featuring straight and curved extruded sections joined by complex diecast nodes at key intersections and connection points. Through the support of research and development, many federal departments andmore » agencies have long been involved directly or indirectly in the support of civilian as well as defense industries. New copper alloys and fabrication techniques are enhancing global competitiveness, based largely on copper`s natural advantages of conductivity and corrosion resistance. The heavy equipment industry is a major transformer and user of steel, rubber, aluminum, welding consumables and equipment; glass, plastics, microprocessors and electronics; machine tools, and energy. It comprises the construction, farming, mining, and powertrain equipment manufacturers.« less
Akerele, D; Sanusi, R A; Fadare, O A; Ashaolu, O F
2017-01-01
This study examined the influence of food consumption diversity on adequate intakes of food calories, proteins and micronutrients among households in rural Nigeria within the framework of panel data econometrics using a nationally representative data. We found that substantial proportion of households suffered deficiency of calories, proteins and certain micronutrients; with higher percentage of sufferer households occurring in the post-planting season. The different measures of dietary diversity (constructed and used for analysis) consistently indicate significant and positive influence of dietary diversity on the likelihood of adequate consumption of food nutrients. While higher level of income, education and non-farm enterprise engagement may strongly stimulate adequate nutrient intakes, increases in the number of adolescents would substantially diminish it. Although our findings call for renewed attention on diet diverseness, we stress the complementary/synergistic roles of education and rural income improvement, especially through non-farm enterprise diversification in tackling multiple nutritional deficiencies in rural Nigeria.
Smale, Melinda; Assima, Amidou; Kergna, Alpha; Thériault, Véronique; Weltzien, Eva
2018-01-01
Uptake of improved sorghum varieties in the Sudan Savanna of West Africa has been limited, despite the economic importance of the crop and long-term investments in sorghum improvement. One reason why is that attaining substantial yield advantages has been difficult in this harsh, heterogeneous growing environment. Release in Mali of the first sorghum hybrids in Sub-Saharan Africa that have been developed primarily from local germplasm has the potential to change this situation. Utilizing plot data collected in Mali, we explain the adoption of improved seed with an ordered logit model and apply a multivalued treatment effects model to measure impacts on farm families, differentiating between improved varieties and hybrids. Since farm families both consume and sell their sorghum, we consider effects on consumption patterns as well as productivity. Status within the household, conferred by gender combined with marital status, generation, and education, is strongly related to the improvement status of sorghum seed planted in these extended family households. Effects of hybrid use on yields are large, widening the range of food items consumed, reducing the share of sorghum in food purchases, and contributing to a greater share of the sorghum harvest sold. Use of improved seed appears to be associated with a shift toward consumption of other cereals, and also to greater sales shares. Findings support on-farm research concerning yield advantages, also suggesting that the use of well-adapted sorghum hybrids could contribute to diet diversification and the crop's commercialization by smallholders.
Abdulai, Issaka; Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.
Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers’ livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers’ coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific. PMID:29659629
Hatt, Séverin; Boeraeve, Fanny; Artru, Sidonie; Dufrêne, Marc; Francis, Frédéric
2018-04-15
Spatial diversification of crop and non-crop habitats in farming systems is promising for enhancing natural regulation of insect pests. Nevertheless, results from recent syntheses show variable effects. One explanation is that the abundance and diversity of pests and natural enemies are affected by the composition, design and management of crop and non-crop habitats. Moreover, interactions between both local and landscape elements and practices carried out at different spatial scales may affect the regulation of insect pests. Hence, research is being conducted to understand these interdependencies. However, insects are not the only pests and pests are not the only elements to regulate in agroecosystems. Broadening the scope could allow addressing multiple issues simultaneously, but also solving them together by enhancing synergies. Indeed, spatial diversification of crop and non-crop habitats can allow addressing the issues of weeds and pathogens, along with being beneficial to several other regulating services like pollination, soil conservation and nutrient cycling. Although calls rise to develop multifunctional landscapes that optimize the delivery of multiple ecosystem services, it still represents a scientific challenge today. Enhancing interdisciplinarity in research institutions and building interrelations between scientists and stakeholders may help reach this goal. Despite obstacles, positive results from research based on such innovative approaches are encouraging for engaging science in this path. Hence, the aim of the present paper is to offer an update on these issues by exploring the most recent findings and discussing these results to highlight needs for future research. Copyright © 2017 Elsevier B.V. All rights reserved.
Majekodunmi, Ayodele O; Dongkum, Charles; Langs, Tok; Shaw, Alexandra P M; Welburn, Susan C
2017-01-01
This paper presents an in-depth investigation of the livelihood strategies of Fulani pastoralists in north central Nigeria. Results show a diversified crop-livestock system aimed at spreading risk and reducing cattle offtake, adapted to natural resource competition and insecurity by extensification, with further diversification into off-farm activities to spread risk, increase livelihood security and capture opportunities. However, significant costs were associated with extensification, and integration of crop and livestock enterprises was limited. Mean total income per capita in the study area was $554 or $1.52/person/day with 42% of households earning less than 1.25/person/day. Income levels were positively correlated with income diversity and price received per animal sold, rather than herd size. The outcomes of this livelihood strategy were favourable across the whole community, but when individual households are considered, there was evidence of moderate economic inequality in total income, cash income and herd size (Gini coefficient 0.32, 0.35 and 0.43 respectively). The poorest households were quite vulnerable, with low assets, income and income diversity. Implications for sustainability are discussed given the likelihood that the negative trends of reduced access to natural resources and insecurity will continue.
How does economic risk aversion affect biodiversity?
Mouysset, L; Doyen, L; Jiguet, F
2013-01-01
Significant decline of biodiversity in farmlands has been reported for several decades. To limit the negative impact of agriculture, many agro-environmental schemes have been implemented, but their effectiveness remains controversial. In this context, the study of economic drivers is helpful to understand the role played by farming on biodiversity. The present paper analyzes the impact of risk aversion on farmland biodiversity. Here "risk aversion" means a cautious behavior of farmers facing uncertainty. We develop a bio-economic model that articulates bird community dynamics and representative farmers selecting land uses within an uncertain macro-economic context. It is specialized and calibrated at a regional scale for France through national databases. The influence of risk aversion is assessed on ecological, agricultural, and economic outputs through projections at the 2050 horizon. A high enough risk aversion appears sufficient to both manage economic risk and promote ecological performance. This occurs through a diversification mechanism on regional land uses. However, economic calibration leads to a weak risk-aversion parameter, which is consistent with the current decline of farmland birds. Spatial disparities however suggest that public incentives could be necessary to reinforce the diversification and bio-economic effectiveness.
Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Thornton, Philip K.; Herrero, Mario
2015-09-01
Mixed crop-livestock systems are the backbone of African agriculture, providing food security and livelihood options for hundreds of millions of people. Much is known about the impacts of climate change on the crop enterprises in the mixed systems, and some, although less, on the livestock enterprises. The interactions between crops and livestock can be managed to contribute to environmentally sustainable intensification, diversification and risk management. There is relatively little information on how these interactions may be affected by changes in climate and climate variability. This is a serious gap, because these interactions may offer some buffering capacity to help smallholders adapt to climate change.
NASA Astrophysics Data System (ADS)
Zarina, Livija; Zarina, Liga
2017-04-01
The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.
Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis
2010-09-01
This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Diversification: Far term (2000 - )
NASA Technical Reports Server (NTRS)
1975-01-01
Diversification, intended to underly the far term of the energy conservation program, was defined to imply conservation through substitution for scarce energy resources by maximizing the total number of viable energy system types in every sector. The following requirements or aspects of diversification that must be studied were given: fuel mix and end use patterns for various alternative diversification plans, current status of diversification, advantages and disadvantages of diversification, constraints and criteria, diversification actions and their controls, and means for implementing the chosen diversification strategy. The following advantages resulting from diversification were described: competition, crisis-related situations, local energy production, decentralized plant locations, long range energy policy, and environmental overloads. The major criteria by which a diversification program should be judged, the major constraints affecting the approaches, and the road to diversification, were elaborated.
NASA Astrophysics Data System (ADS)
Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis
2010-09-01
This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.
NASA Astrophysics Data System (ADS)
Gourdji, S.; Zelaya Martinez, C.; Martinez Valle, A.; Mejia, O.; Laderach, P.; Lobell, D. B.
2013-12-01
Climate variability and change impact farmers at different timescales, but both are of concern for livelihoods and long-term viability of small farms in tropical, rain-fed agricultural systems. This study uses a historical dataset to analyze the impact of 40-year climate trends in Nicaragua on bean production, a staple crop that is an important source of calories and protein in the local diet, particularly in rural areas and in lower income classes. Bean yields are sensitive to rising temperatures, but also frequently limited by seasonal drought and low soil fertility. We use an empirical model to relate department-level yields to spatial variation and inter-annual fluctuations in historical precipitation, temperature and extreme rain events. We then use this model to quantify the impact on yields of long-term observed warming in day and night temperatures, increases in rainfall intensity, longer gaps between rain events, a shorter rainy season and overall drying in certain regions of the country. Preliminary results confirm the negative impacts of warming night temperatures, higher vapor pressure deficits, and longer gaps between rain events on bean yields, although some drying at harvest time has helped to reduce rotting. Across all bean-growing areas, these climate trends have led to a ~10% yield decline per decade relative to a stationary climate and production system, with this decline reaching up to ~20% in the dry northern highlands. In regions that have been particularly impacted by these trends, we look for evidence of farm abandonment, increases in off-farm employment, or on-farm adaptation solutions through crop diversification, use of drought or heat-tolerant seed, and adoption of rainwater harvesting. We will also repeat the modeling exercise for maize, another staple crop providing ~25% of daily calories at the national scale, but which is projected to be more resilient to climate trends.
He, Liang-Ying; Ying, Guang-Guo; Liu, You-Sheng; Su, Hao-Chang; Chen, Jun; Liu, Shuang-Shuang; Zhao, Jian-Liang
2016-01-01
Swine feedlots are widely considered as a potential hotspot for promoting the dissemination of antibiotic resistance genes (ARGs) in the environment. ARGs could enter the environment via discharge of animal wastes, thus resulting in contamination of soil, water, and food. We investigated the dissemination and diversification of 22 ARGs conferring resistance to sulfonamides, tetracyclines, chloramphenicols, and macrolides as well as the occurrence of 18 corresponding antibiotics from three swine feedlots to the receiving water, soil environments and vegetables. Most ARGs and antibiotics survived the on-farm waste treatment processes in the three swine farms. Elevated diversity of ARGs was observed in the receiving environments including river water and vegetable field soils when compared with respective controls. The variation of ARGs along the vertical soil profiles of vegetable fields indicated enrichment and migration of ARGs. Detection of various ARGs and antibiotic residues in vegetables fertilized by swine wastes could be of great concern to the general public. This research demonstrated the contribution of swine wastes to the occurrence and development of antibiotic resistance determinants in the receiving environments and potential risks to food safety and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per
2017-06-01
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
How did Humans Adapt in the Eastern Farming-pastoral zone during the Medieval Warm Period?
NASA Astrophysics Data System (ADS)
Jia, X.
2017-12-01
With its extremely warm climate, the "medieval warm period" is considered analogous to the climate change humans are likely to face due to future global warming. Thus, the ability of humans to adapt to an extremely warm climate during the medieval period in Eurasia's farming-pastoral zone has attracted some attention. The warmth of the climate during this period (900-1300 BC) is demonstrated by evidence of bamboo in charcoal remains and phytoliths found in the settlement sites and tomb murals of the Western Liao river basin in Northeast China. This warmth probably promoted agricultural diversification, as the presence of foxtail millet, broomcorn millet, wheat, barley, soybean, hemp, and buckwheat in this region can be seen in plant seeds and phytoliths found in archaeological sites. The bones of deer and birds also provide evidence of hunting, and the practice of animal husbandry is indicated in pig, dog, cattle, ovicaprid, horse and camel bones. Diversity in food structures is also shown in stable isotopes from human and animal bones. Competence in animal husbandry and hunting, and the availability of stable food resources may have contributed to the rise of the Liao people in military prowess and power, and promoted the expansion of Khitan-Liao culture.
Testing the Relationships between Diversification, Species Richness, and Trait Evolution.
Kozak, Kenneth H; Wiens, John J
2016-11-01
Understanding which traits drive species diversification is essential for macroevolutionary studies and to understand patterns of species richness among clades. An important tool for testing if traits influence diversification is to estimate rates of net diversification for each clade, and then test for a relationship between traits and diversification rates among clades. However, this general approach has become very controversial. Numerous papers have now stated that it is inappropriate to analyze net diversification rates in groups in which clade richness is not positively correlated with clade age. Similarly, some have stated that variation in net diversification rates does not explain variation in species richness patterns among clades across the Tree of Life. Some authors have also suggested that strong correlations between richness and diversification rates are a statistical artifact and effectively inevitable. If this latter point is true, then correlations between richness and diversification rates would be uninformative (or even misleading) for identifying how much variation in species richness among clades is explained by variation in net diversification rates. Here, we use simulations (based on empirical data for plethodontid salamanders) to address three main questions. First, how is variation in net diversification rates among clades related to the relationship between clade age and species richness? Second, how accurate are these net diversification rate estimators, and does the age-richness relationship have any relevance to their accuracy? Third, is a relationship between species richness and diversification rates an inevitable, statistical artifact? Our simulations show that strong, positive age-richness relationships arise when diversification rates are invariant among clades, whereas realistic variation in diversification rates among clades frequently disrupts this relationship. Thus, a significant age-richness relationship should not be a requirement for utilizing net diversification rates in macroevolutionary studies. Moreover, we find no difference in the accuracy of net diversification rate estimators between conditions in which there are strong, positive relationships between clade age and richness and conditions in which these strong relationships are absent. We find that net diversification rate estimators are reasonably accurate under many conditions (true and estimated rates are strongly corrrelated, and typically differ by ∼10-20%), but become more accurate when clades are older and less accurate when using incorrect assumptions about extinction. We also find that significant relationships between richness and diversification rates fail to arise under many conditions, especially when there are faster rates in younger clades. Therefore, a significant relationship between richness and diversification rates is not inevitable. Given this latter result, we suggest that relationships between richness and diversification should be tested for when attempting to explain the causes of richness patterns, to avoid potential misinterpretations (e.g., high diversification rates associated with low-richness clades). Similarly, our results also provide some support for previous studies suggesting that variation in diversification rates might explain much of the variation in species richness among major clades, based on strong relationships between clade richness and diversification rates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Herbivory increases diversification across insect clades
Wiens, John J.; Lapoint, Richard T.; Whiteman, Noah K.
2015-01-01
Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life. PMID:26399434
Herbivory increases diversification across insect clades.
Wiens, John J; Lapoint, Richard T; Whiteman, Noah K
2015-09-24
Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.
Price, Shauna L; Etienne, Rampal S; Powell, Scott
2016-04-01
Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Tank, David C; Eastman, Jonathan M; Pennell, Matthew W; Soltis, Pamela S; Soltis, Douglas E; Hinchliff, Cody E; Brown, Joseph W; Sessa, Emily B; Harmon, Luke J
2015-07-01
Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of 'nested radiations' - increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Natural Constraints to Species Diversification.
Lewitus, Eric; Morlon, Hélène
2016-08-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity.
Technological Diversification of Japanese Industry.
ERIC Educational Resources Information Center
Kodama, Fumio
1986-01-01
Describes an approach for measuring industrial technological diversification behavior. Identifies sectoral patterns of Japanese industry as related to diversification behaviors. Delineates the mechanisms and effectiveness of Japanese corporate and government policies relevant to diversification. (ML)
Environmental impact assessment of alfalfa (Medicago sativa L.) hay production.
Bacenetti, Jacopo; Lovarelli, Daniela; Tedesco, Doriana; Pretolani, Roberto; Ferrante, Valentina
2018-09-01
On-farm production of hay and high-protein-content feed has several advantages such as diversification of on-farm cultivated crops, reduction of off-farm feed concentrates transported over long distances and a reduction in runoff during the winter season if grown crops are perennial. Among those crops cultivated for high-protein-content feed, alfalfa (Medicago sativa L.) is one of the most important in the Italian context. Nevertheless, up to now, only a few studies have assessed the environmental performance of alfalfa hay production. In this study, using the Life Cycle Assessment approach, the environmental impact of alfalfa hay production in Northern Italy was analyzed. More in detail, two production practices (without and with irrigation) were compared. The results show that alfalfa hay production in irrigated fields has a better environmental performance compared to non-irrigated production, mainly because of the yield increase achieved with irrigation. In particular, for the Climate Change impact category, the impact is equal to 84.54 and 80.21kgCO 2 /t of hay for the scenario without and with irrigation, respectively. However, for two impact categories (Ozone Depletion and Human Toxicity-No Cancer Effect), the impact of irrigation completely offsets the yield increase, and the cultivation practice without irrigation shows the best environmental performance. For both scenarios, the mechanization of harvest is the main environmental hotspot, mostly due to fuel consumption and related combustion emissions. Wide differences were highlighted by comparing the two scenarios with the Ecoinvent process of alfalfa hay production; these differences are mostly due to the cultivation practice and, in particular, to the more intensive fertilization in Swiss production. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, Hengwu; Wang, Hui; Zhang, Chenling; Jin, Hong; Chang, Qing; Kan, Xianzhao; Zhang, Baowei
2017-01-01
The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.
Natural Constraints to Species Diversification
Lewitus, Eric; Morlon, Hélène
2016-01-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity. PMID:27505866
NASA Astrophysics Data System (ADS)
Chellasamy, Menaka; Ferré, Ty Paul Andrew; Greve, Mogens Humlekrog
2016-07-01
Beginning in 2015, Danish farmers are obliged to meet specific crop diversification rules based on total land area and number of crops cultivated to be eligible for new greening subsidies. Hence, there is a need for the Danish government to extend their subsidy control system to verify farmers' declarations to warrant greening payments under the new crop diversification rules. Remote Sensing (RS) technology has been used since 1992 to control farmers' subsidies in Denmark. However, a proper RS-based approach is yet to be finalised to validate new crop diversity requirements designed for assessing compliance under the recent subsidy scheme (2014-2020); This study uses an ensemble classification approach (proposed by the authors in previous studies) for validating the crop diversity requirements of the new rules. The approach uses a neural network ensemble classification system with bi-temporal (spring and early summer) WorldView-2 imagery (WV2) and includes the following steps: (1) automatic computation of pixel-based prediction probabilities using multiple neural networks; (2) quantification of the classification uncertainty using Endorsement Theory (ET); (3) discrimination of crop pixels and validation of the crop diversification rules at farm level; and (4) identification of farmers who are violating the requirements for greening subsidies. The prediction probabilities are computed by a neural network ensemble supplied with training samples selected automatically using farmers declared parcels (field vectors containing crop information and the field boundary of each crop). Crop discrimination is performed by considering a set of conclusions derived from individual neural networks based on ET. Verification of the diversification rules is performed by incorporating pixel-based classification uncertainty or confidence intervals with the class labels at the farmer level. The proposed approach was tested with WV2 imagery acquired in 2011 for a study area in Vennebjerg, Denmark, containing 132 farmers, 1258 fields, and 18 crops. The classification results obtained show an overall accuracy of 90.2%. The RS-based results suggest that 36 farmers did not follow the crop diversification rules that would qualify for the greening subsidies. When compared to the farmers' reported crop mixes, irrespective of the rule, the RS results indicate that false crop declarations were made by 8 farmers, covering 15 fields. If the farmers' reports had been submitted for the new greening subsidies, 3 farmers would have made a false claim; while remaining 5 farmers obey the rules of required crop proportion even though they have submitted the false crop code due to their small holding size. The RS results would have supported 96 farmers for greening subsidy claims, with no instances of suggesting a greening subsidy for a holding that the farmer did not report as meeting the required conditions. These results suggest that the proposed RS based method shows great promise for validating the new greening subsidies in Denmark.
Diversification of energy sources
NASA Technical Reports Server (NTRS)
1975-01-01
The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.
Divergence and diversification in North American Psoraleeae (Fabaceae) due to climate change
Egan, Ashley N; Crandall, Keith A
2008-01-01
Background Past studies in the legume family (Fabaceae) have uncovered several evolutionary trends including differential mutation and diversification rates across varying taxonomic levels. The legume tribe Psoraleeae is shown herein to exemplify these trends at the generic and species levels. This group includes a sizable diversification within North America dated at approximately 6.3 million years ago with skewed species distribution to the most recently derived genus, Pediomelum, suggesting a diversification rate shift. We estimate divergence dates of North American (NAm) Psoraleeae using Bayesian MCMC sampling in BEAST based on eight DNA regions (ITS, waxy, matK, trnD-trnT, trnL-trnF, trnK, trnS-trnG, and rpoB-trnC). We also test the hypothesis of a diversification rate shift within NAm Psoraleeae using topological and temporal methods. We investigate the impact of climate change on diversification in this group by (1) testing the hypothesis that a shift from mesic to xeric habitats acted as a key innovation and (2) investigating diversification rate shifts along geologic time, discussing the impact of Quaternary climate oscillations on diversification. Results NAm Psoraleeae represents a recent, rapid radiation with several genera originating during the Pleistocene, 1 to 2 million years ago. A shift in diversification rate is supported by both methods with a 2.67-fold increase suggested around 2 million years ago followed by a 8.73-fold decrease 440,000 years ago. The hypothesis that a climate regime shift from mesic to xeric habitats drove increased diversification in affected taxa was not supported. Timing of the diversification rate increase supports the hypothesis that glaciation-induced climate changes during the Quaternary influenced diversification of the group. Nonrandom spatial diversification also exists, with greater species richness in the American Southwest. Conclusion This study outlines NAm Psoraleeae as a model example of a recent, rapid radiation. Diversification rate shifts in NAm Psoraleeae are not due to current climate regimes as represented by habitat, but instead to past global climate change resulting from Quaternary glaciations. NAm Psoraleeae diversification is a good example of how earthly dynamics including global climate change and topography work together to shape biodiversity. PMID:19091055
Impact of whole-genome duplication events on diversification rates in angiosperms.
Landis, Jacob B; Soltis, Douglas E; Li, Zheng; Marx, Hannah E; Barker, Michael S; Tank, David C; Soltis, Pamela S
2018-03-01
Polyploidy or whole-genome duplication (WGD) pervades the evolutionary history of angiosperms. Despite extensive progress in our understanding of WGD, the role of these events in promoting diversification is still not well understood. We seek to clarify the possible association between WGD and diversification rates in flowering plants. Using a previously published phylogeny spanning all land plants (31,749 tips) and WGD events inferred from analyses of the 1000 Plants (1KP) transcriptome data, we analyzed the association of WGDs and diversification rates following numerous WGD events across the angiosperms. We used a stepwise AIC approach (MEDUSA), a Bayesian mixture model approach (BAMM), and state-dependent diversification analyses (MuSSE) to investigate patterns of diversification. Sister-clade comparisons were used to investigate species richness after WGDs. Based on the density of 1KP taxon sampling, 106 WGDs were unambiguously placed on the angiosperm phylogeny. We identified 334-530 shifts in diversification rates. We found that 61 WGD events were tightly linked to changes in diversification rates, and state-dependent diversification analyses indicated higher speciation rates for subsequent rounds of WGD. Additionally, 70 of 99 WGD events showed an increase in species richness compared to the sister clade. Forty-six of the 106 WGDs analyzed appear to be closely associated with upshifts in the rate of diversification in angiosperms. Shifts in diversification do not appear more likely than random within a four-node lag phase following a WGD; however, younger WGD events are more likely to be followed by an upshift in diversification than older WGD events. © 2018 Botanical Society of America.
Cyriac, Vivek Philip; Kodandaramaiah, Ullasa
2017-11-01
Understanding how and why diversification rates vary across evolutionary time is central to understanding how biodiversity is generated and maintained. Recent mathematical models that allow estimation of diversification rates across time from reconstructed phylogenies have enabled us to make inferences on how biodiversity copes with environmental change. Here, we explore patterns of temporal diversification in Uropeltidae, a diverse fossorial snake family. We generate a time-calibrated phylogenetic hypothesis for Uropeltidae and show a significant correlation between diversification rate and paleotemperature during the Cenozoic. We show that the temporal diversification pattern of this group is punctuated by one rate shift event with a decrease in diversification and turnover rate between ca. 11Ma to present, but there is no strong support for mass extinction events. The analysis indicates higher turnover during periods of drastic climatic fluctuations and reduced diversification rates associated with contraction and fragmentation of forest habitats during the late Miocene. Our study highlights the influence of environmental fluctuations on diversification rates in fossorial taxa such as uropeltids, and raises conservation concerns related to present rate of climate change. Copyright © 2017 Elsevier Inc. All rights reserved.
Diversification and Competition in Higher Education.
ERIC Educational Resources Information Center
Ruegg, Walter
1987-01-01
Understanding the issues involved in the diversifications of missions and functions in higher education requires (1) distinguishing between vertical and horizontal diversification, either between or within institutions and (2) identifying the agents and mechanisms causing diversification within different higher education systems, including both…
Testing for coevolutionary diversification: linking pattern with process.
Althoff, David M; Segraves, Kari A; Johnson, Marc T J
2014-02-01
Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Courting disaster: How diversification rate affects fitness under risk
Ratcliff, William C; Hawthorne, Peter; Libby, Eric
2015-01-01
Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this article provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals. PMID:25410817
The Cook Agronomy Farm LTAR: Knowledge Intensive Precision Agro-ecology
NASA Astrophysics Data System (ADS)
Huggins, D. R.
2015-12-01
Drowning in data and starving for knowledge, agricultural decision makers require evidence-based information to enlighten sustainable intensification. The agro-ecological footprint of the Cook Agronomy Farm (CAF) Long-Term Agro-ecosystem Research (LTAR) site is embedded within 9.4 million ha of diverse land uses primarily cropland (2.9 million ha) and rangeland (5.3 million ha) that span a wide annual precipitation gradient (150 mm through 1400 mm) with diverse social and natural capital (see Figure). Sustainable intensification hinges on the development and adoption of precision agro-ecological practices that rely on meaningful spatio-temporal data relevant to land use decisions at within-field to regional scales. Specifically, the CAF LTAR will provide the scientific foundation (socio-economical and bio-physical) for enhancing decision support for precision and conservation agriculture and synergistic cropping system intensification and diversification. Long- and short-term perspectives that recognize and assess trade-offs in ecosystem services inherent in any land use decision will be considered so as to promote the development of more sustainable agricultural systems. Presented will be current and future CAF LTAR research efforts required for the development of sustainable agricultural systems including cropping system cycles and flows of nutrients, water, carbon, greenhouse gases and other biotic and abiotic factors. Evaluation criteria and metrics associated with long-term agro-ecosystem provisioning, supporting, and regulating services will be emphasized.
Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J
2016-01-18
Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.
Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.
2016-01-01
Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170
Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu
2017-04-01
Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The risks of innovation in health care.
Enzmann, Dieter R
2015-04-01
Innovation in health care creates risks that are unevenly distributed. An evolutionary analogy using species to represent business models helps categorize innovation experiments and their risks. This classification reveals two qualitative categories: early and late diversification experiments. Early diversification has prolific innovations with high risk because they encounter a "decimation" stage, during which most experiments disappear. Participants face high risk. The few decimation survivors can be sustaining or disruptive according to Christensen's criteria. Survivors enter late diversification, during which they again expand, but within a design range limited to variations of the previous surviving designs. Late diversifications carry lower risk. The exception is when disruptive survivors "diversify," which amplifies their disruption. Health care and radiology will experience both early and late diversifications, often simultaneously. Although oversimplifying Christensen's concepts, early diversifications are likely to deliver disruptive innovation, whereas late diversifications tend to produce sustaining innovations. Current health care consolidation is a manifestation of late diversification. Early diversifications will appear outside traditional care models and physical health care sites, as well as with new science such as molecular diagnostics. They warrant attention because decimation survivors will present both disruptive and sustaining opportunities to radiology. Radiology must participate in late diversification by incorporating sustaining innovations to its value chain. Given the likelihood of disruptive survivors, radiology should seriously consider disrupting itself rather than waiting for others to do so. Disruption entails significant modifications of its value chain, hence, its business model, for which lessons may become available from the pharmaceutical industry's current simultaneous experience with early and late diversifications. Copyright © 2015. Published by Elsevier Inc.
Fordyce, James A
2010-07-23
Phylogenetic hypotheses are increasingly being used to elucidate historical patterns of diversification rate-variation. Hypothesis testing is often conducted by comparing the observed vector of branching times to a null, pure-birth expectation. A popular method for inferring a decrease in speciation rate, which might suggest an early burst of diversification followed by a decrease in diversification rate is the gamma statistic. Using simulations under varying conditions, I examine the sensitivity of gamma to the distribution of the most recent branching times. Using an exploratory data analysis tool for lineages through time plots, tree deviation, I identified trees with a significant gamma statistic that do not appear to have the characteristic early accumulation of lineages consistent with an early, rapid rate of cladogenesis. I further investigated the sensitivity of the gamma statistic to recent diversification by examining the consequences of failing to simulate the full time interval following the most recent cladogenic event. The power of gamma to detect rate decrease at varying times was assessed for simulated trees with an initial high rate of diversification followed by a relatively low rate. The gamma statistic is extraordinarily sensitive to recent diversification rates, and does not necessarily detect early bursts of diversification. This was true for trees of various sizes and completeness of taxon sampling. The gamma statistic had greater power to detect recent diversification rate decreases compared to early bursts of diversification. Caution should be exercised when interpreting the gamma statistic as an indication of early, rapid diversification.
Diversity spurs diversification in ecological communities
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-01-01
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss. PMID:28598423
Diversity spurs diversification in ecological communities
NASA Astrophysics Data System (ADS)
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-06-01
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.
Diversity spurs diversification in ecological communities.
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-06-09
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.
Curriculum Diversification Re-examined--A Case Study of Sierra Leone.
ERIC Educational Resources Information Center
Wright, Cream A. H.
This paper deals with a case study of secondary curriculum diversification as a vocationalization strategy in Sierra Leone. It explores diversification issues from four crucial standpoints that are distinct but highly interrelated. First, diversification is dealt with as a policy that was adopted and actively pursued by Sierra Leone for over a…
Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae).
Seeholzer, Glenn F; Claramunt, Santiago; Brumfield, Robb T
2017-03-01
Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic-niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic-niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic-niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic-niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Fields, Dail; Riesenmy, Kelly; Roman, Paul M
2015-10-01
Implementation of the Affordable Care Act (ACA) creates both environmental uncertainties and opportunities for substance use disorder (SUD) treatment providers. One managerial response to uncertainties and emergent opportunities is strategic diversification of various dimensions of organizational activity. This paper explored organizational outcomes related to diversification of funding sources, services offered, and referral sources in a national sample of 590 SUD treatment organizations. Funding diversification was related to higher average levels of census, organization size, and recent expansion of operations. Service diversification was related to higher average levels of use of medication-assisted treatment (MAT), organization size, and expansion. Referral source diversification was related only to greater average use of MAT. Overall, strategic diversification in the three areas explored was related to positive organizational outcomes. Considering alternative strategies of diversification may help position SUD treatment centers to deliver more innovative treatments such as MAT as well as enhance capacity to satisfy current unmet treatment needs of individuals with behavioral health coverage provided under the ACA. Copyright © 2015 Elsevier Inc. All rights reserved.
Garcia-Porta, Joan; Morales, Hernán E; Gómez-Díaz, Elena; Sindaco, Roberto; Carranza, Salvador
2016-05-01
In this study we used the complete fauna of geckos of the Socotra Archipelago to test whether the three gecko genera co-occurring in the islands (Pristurus, Hemidactylus and Haemodracon) produced similar outcomes of morphological and climatic diversification. To test this, we produced a time-calibrated tree of 346 geckos including all 16 endemic species of the archipelago and 26 potential close-relatives in the continent. Our dating estimates revealed that most of the diversity of geckos in the archipelago was the consequence of in situ diversification. However not all genera shared similar patterns of diversification. While in Hemidactylus and Haemodracon this involved great differences in body size and low levels of climatic diversification (mostly involving sympatric distributions), an opposite pattern appeared in Pristurus in which most of the diversification involved shifts in climatic envelopes (mostly involving allopatric and parapatric distributions) but almost no size differentiation. Consistently with this, Pristurus was the only genus in which rates of size diversification in islands were substantially lower than in the continent. This illustrates how different groups can greatly differ in their patterns of intra-island diversification and highlights the importance of taxon-dependent factors at determining different patterns of diversification in the same insular context. Copyright © 2016 Elsevier Inc. All rights reserved.
Bars-Closel, Melissa; Kohlsdorf, Tiana; Moen, Daniel S; Wiens, John J
2017-09-01
Patterns of species richness among clades can be directly explained by the ages of clades or their rates of diversification. The factors that most strongly influence diversification rates remain highly uncertain, since most studies typically consider only a single predictor variable. Here, we explore the relative impacts of macroclimate (i.e., occurring in tropical vs. temperate regions) and microhabitat use (i.e., terrestrial, fossorial, arboreal, aquatic) on diversification rates of squamate reptile clades (lizards and snakes). We obtained data on microhabitat, macroclimatic distribution, and phylogeny for >4000 species. We estimated diversification rates of squamate clades (mostly families) from a time-calibrated tree, and used phylogenetic methods to test relationships between diversification rates and microhabitat and macroclimate. Across 72 squamate clades, the best-fitting model included microhabitat but not climatic distribution. Microhabitat explained ∼37% of the variation in diversification rates among clades, with a generally positive impact of arboreal microhabitat use on diversification, and negative impacts of fossorial and aquatic microhabitat use. Overall, our results show that the impacts of microhabitat on diversification rates can be more important than those of climate, despite much greater emphasis on climate in previous studies. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
May, Michael R; Moore, Brian R
2016-11-01
Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified [Formula: see text] of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers-in order to clarify whether these methods can make reliable inferences from empirical datasets-and to theoretical biologists-in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
May, Michael R.; Moore, Brian R.
2016-01-01
Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified ≈30% of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers—in order to clarify whether these methods can make reliable inferences from empirical datasets—and to theoretical biologists—in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.] PMID:27037081
Meyer, Andreas L S; Wiens, John J
2018-01-01
Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Quantitative traits and diversification.
FitzJohn, Richard G
2010-12-01
Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.
Diversification rates have declined in the Malagasy herpetofauna.
Scantlebury, Daniel P
2013-09-07
The evolutionary origins of Madagascar's biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island's accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives.
Courting disaster: How diversification rate affects fitness under risk.
Ratcliff, William C; Hawthorne, Peter; Libby, Eric
2015-01-01
Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this article provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP
Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin
2013-01-01
The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754
Putting all your eggs in one basket: life-history strategies, bet hedging, and diversification.
White, Andrew Edward; Li, Yexin Jessica; Griskevicius, Vladas; Neuberg, Steven L; Kenrick, Douglas T
2013-05-01
Diversification of resources is a strategy found everywhere from the level of microorganisms to that of giant Wall Street investment firms. We examine the functional nature of diversification using life-history theory-a framework for understanding how organisms navigate resource-allocation trade-offs. This framework suggests that diversification may be adaptive or maladaptive depending on one's life-history strategy and that these differences should be observed under conditions of threat. In three studies, we found that cues of mortality threat interact with one index of life-history strategy, childhood socioeconomic status (SES), to affect diversification. Among those from low-SES backgrounds, mortality threat increased preferences for diversification. However, among those from high-SES backgrounds, mortality threat had the opposite effect, inclining people to put all their eggs in one basket. The same interaction pattern emerged with a potential biomarker of life-history strategy, oxidative stress. These findings highlight when, and for whom, different diversification strategies can be advantageous.
Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures
Moore, Brian R.; Höhna, Sebastian; May, Michael R.; Rannala, Bruce; Huelsenbeck, John P.
2016-01-01
Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM. PMID:27512038
Epistasis can accelerate adaptive diversification in haploid asexual populations.
Griswold, Cortland K
2015-03-07
A fundamental goal of the biological sciences is to determine processes that facilitate the evolution of diversity. These processes can be separated into ecological, physiological, developmental and genetic. An ecological process that facilitates diversification is frequency-dependent selection caused by competition. Models of frequency-dependent adaptive diversification have generally assumed a genetic basis of phenotype that is non-epistatic. Here, we present a model that indicates diversification is accelerated by an epistatic basis of phenotype in combination with a competition model that invokes frequency-dependent selection. Our model makes use of a genealogical model of epistasis and insights into the effects of balancing selection on the genealogical structure of a population to understand how epistasis can facilitate diversification. The finding that epistasis facilitates diversification may be informative with respect to empirical results that indicate an epistatic basis of phenotype in experimental bacterial populations that experienced adaptive diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Regional Diversity and Diversification in Mammals.
Machac, Antonin; Graham, Catherine H
2017-01-01
The effects of regional diversity on diversification remain controversial. The classic hypothesis that diversification decelerates as regional diversity increases has been recently revived. Yet, there is little geographic evidence for slower diversification across regions of high diversity, and diversity is often thought to promote diversification through its effects on ecological divergence and speciation. Here, we use the newest phylogeny for mammals (4,990 species) and two different methods to test the effects of regional diversity on diversification. We find that regions of high diversity are dominated by expanding clades that are far from their estimated carrying capacities. Regions of low diversity host clades that are small and mostly saturated. These results were supported across mammals and their six largest orders. They were corroborated by the two methods when controlling for clade relatedness, clade nestedness, and clade size. Together, these results reject the hypothesis that high geographic concentration of mammals effectively suppresses their further diversification. Instead, highly diverse regions (especially the tropics) seem to act as the engine of mammalian richness.
2009-01-01
Background Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes. Results Diversification patterns within early labrids did not reflect rapid initial radiation. Much of modern labrid diversity stems from two recent rapid diversification events; one within julidine fishes and the other with the origin of the most species-rich clade of reef-associated parrotfishes. A secondary pharyngeal jaw innovation was correlated with rapid diversification within the parrotfishes. However diversification rate shifts within parrotfishes are more strongly correlated with the evolution of extreme dichromatism than with pharyngeal jaw modifications. Conclusion The temporal lag between pharyngeal jaw modifications and changes in diversification rates casts doubt on the key innovation hypothesis as a simple explanation for much of the richness seen in labrids and scarines. Although the possession of a secondarily modified PJA was correlated with increased diversification rates, this pattern is better explained by the evolution of extreme dichromatism (and other social and behavioral characters relating to sexual selection) within Scarus and Chlorurus. The PJA-innovation hypothesis also fails to explain the most dominant aspect of labrid lineage diversification, the radiation of the julidines. We suggest that pharyngeal jaws might have played a more important role in enabling morphological evolution of the feeding apparatus in labrids and scarines rather than in accelerating lineage diversification. PMID:19849854
Couvreur, Thomas L. P.; Kissling, W. Daniel; Condamine, Fabien L.; Svenning, Jens-Christian; Rowe, Nick P.; Baker, William J.
2015-01-01
Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs. PMID:25620977
Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J
2014-01-01
Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.
Are rates of species diversification and body size evolution coupled in the ferns?
Testo, Weston L; Sundue, Michael A
2018-03-01
Understanding the relationship between phenotypic evolution and lineage diversification is a central goal of evolutionary biology. To extend our understanding of the role morphological evolution plays in the diversification of plants, we examined the relationship between leaf size evolution and lineage diversification across ferns. We tested for an association between body size evolution and lineage diversification using a comparative phylogenetic approach that combined a time-calibrated phylogeny and leaf size data set for 2654 fern species. Rates of leaf size change and lineage diversification were estimated using BAMM, and rate correlations were performed for rates obtained for all families and individual species. Rates and patterns of rate-rate correlation were also analyzed separately for terrestrial and epiphytic taxa. We find no significant correlation between rates of leaf area change and lineage diversification, nor was there a difference in this pattern when growth habit is considered. Our results are consistent with the findings of an earlier study that reported decoupled rates of body size evolution and diversification in the Polypodiaceae, but conflict with a recent study that reported a positive correlation between body size evolution and lineage diversification rates in the tree fern family Cyatheaceae. Our findings indicate that lineage diversification in ferns is largely decoupled from shifts in body size, in contrast to several other groups of organisms. Speciation in ferns appears to be primarily driven by hybridization and isolation along elevational gradients, rather than adaptive radiations featuring prominent morphological restructuring. The exceptional diversity of leaf morphologies in ferns appears to reflect a combination of ecophysiological constraints and adaptations that are not key innovations. © 2018 Botanical Society of America.
Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan
2016-01-01
The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.
Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes
Near, Thomas J.; Dornburg, Alex; Eytan, Ron I.; Keck, Benjamin P.; Smith, W. Leo; Kuhn, Kristen L.; Moore, Jon A.; Price, Samantha A.; Burbrink, Frank T.; Friedman, Matt; Wainwright, Peter C.
2013-01-01
Spiny-rayed fishes, or acanthomorphs, comprise nearly one-third of all living vertebrates. Despite their dominant role in aquatic ecosystems, the evolutionary history and tempo of acanthomorph diversification is poorly understood. We investigate the pattern of lineage diversification in acanthomorphs by using a well-resolved time-calibrated phylogeny inferred from a nuclear gene supermatrix that includes 520 acanthomorph species and 37 fossil age constraints. This phylogeny provides resolution for what has been classically referred to as the “bush at the top” of the teleost tree, and indicates acanthomorphs originated in the Early Cretaceous. Paleontological evidence suggests acanthomorphs exhibit a pulse of morphological diversification following the end Cretaceous mass extinction; however, the role of this event on the accumulation of living acanthomorph diversity remains unclear. Lineage diversification rates through time exhibit no shifts associated with the end Cretaceous mass extinction, but there is a global decrease in lineage diversification rates 50 Ma that occurs during a period when morphological disparity among fossil acanthomorphs increases sharply. Analysis of clade-specific shifts in diversification rates reveal that the hyperdiversity of living acanthomorphs is highlighted by several rapidly radiating lineages including tunas, gobies, blennies, snailfishes, and Afro-American cichlids. These lineages with high diversification rates are not associated with a single habitat type, such as coral reefs, indicating there is no single explanation for the success of acanthomorphs, as exceptional bouts of diversification have occurred across a wide array of marine and freshwater habitats. PMID:23858462
Diversification rates have declined in the Malagasy herpetofauna
Scantlebury, Daniel P.
2013-01-01
The evolutionary origins of Madagascar's biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island's accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives. PMID:23843388
Diversification rates and species richness across the Tree of Life.
Scholl, Joshua P; Wiens, John J
2016-09-14
Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. © 2016 The Author(s).
Diversification rates and species richness across the Tree of Life
Scholl, Joshua P.
2016-01-01
Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. PMID:27605507
Dynamics of clade diversification on the morphological hypercube
Gavrilets, S.
1999-01-01
Understanding the relationship between taxonomic and morphological changes is important in identifying the reasons for accelerated morphological diversification early in the history of animal phyla. Here, a simple general model describing the joint dynamics of taxonomic diversity and morphological disparity is presented and applied to the data on the diversification of blastozoans. I show that the observed patterns of deceleration in clade diversification can be explicable in terms of the geometric structure of the morphospace and the effects of extinction and speciation on morphological disparity without invoking major declines in the size of morphological transitions or taxonomic turnover rates. The model allows testing of hypotheses about patterns of diversification and estimation of rates of morphological evolution. In the case of blastozoans, I find no evidence that major changes in evolutionary rates and mechanisms are responsible for the deceleration of morphological diversification seen during the period of this clade's expansion. At the same time, there is evidence for a moderate decline in overall rates of morphological diversification concordant with a major change (from positive to negative values) in the clade's growth rate.
Distinct Processes Drive Diversification in Different Clades of Gesneriaceae.
Roalson, Eric H; Roberts, Wade R
2016-07-01
Using a time-calibrated phylogenetic hypothesis including 768 Gesneriaceae species (out of [Formula: see text]3300 species) and more than 29,000 aligned bases from 26 gene regions, we test Gesneriaceae for diversification rate shifts and the possible proximal drivers of these shifts: geographic distributions, growth forms, and pollination syndromes. Bayesian Analysis of Macroevolutionary Mixtures analyses found five significant rate shifts in Beslerieae, core Nematanthus, core Columneinae, core Streptocarpus, and Pacific Cyrtandra These rate shifts correspond with shifts in diversification rates, as inferred by Binary State Speciation and Extinction Model and Geographic State Speciation and Extinction model, associated with hummingbird pollination, epiphytism, unifoliate growth, and geographic area. Our results suggest that diversification processes are extremely variable across Gesneriaceae clades with different combinations of characters influencing diversification rates in different clades. Diversification patterns between New and Old World lineages show dramatic differences, suggesting that the processes of diversification in Gesneriaceae are very different in these two geographic regions. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A comparative study of diversification events: the early Paleozoic versus the Mesozoic
NASA Technical Reports Server (NTRS)
Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1987-01-01
We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.
Has the connection between polyploidy and diversification actually been tested?
Kellogg, Elizabeth A
2016-04-01
Many major clades of angiosperms have several whole genome duplications (polyploidization events) in their distant past, suggesting that polyploidy drives or at least permits diversification. However, data on recently diverged groups are more equivocal, finding little evidence of elevated diversification following polyploidy. The discrepancy may be attributable at least in part to methodology. Many studies use indirect methods, such as chromosome numbers, genome size, and Ks plots, to test polyploidy, although these approaches can be misleading, and often lack sufficient resolution. A direct test of diversification following polyploidy requires a sequence-based approach that traces the history of nuclear genomes rather than species. These methods identify the point of coalescence of ancestral genomes, but may be misleading about the time and thus the extent of diversification. Limitations of existing methods mean that the connection between polyploidy and diversification has not been rigorously tested and remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diversification and Challenges of Software Engineering Standards
NASA Technical Reports Server (NTRS)
Poon, Peter T.
1994-01-01
The author poses certain questions in this paper: 'In the future, should there be just one software engineering standards set? If so, how can we work towards that goal? What are the challenges of internationalizing standards?' Based on the author's personal view, the statement of his position is as follows: 'There should NOT be just one set of software engineering standards in the future. At the same time, there should NOT be the proliferation of standards, and the number of sets of standards should be kept to a minimum.It is important to understand the diversification of the areas which are spanned by the software engineering standards.' The author goes on to describe the diversification of processes, the diversification in the national and international character of standards organizations, the diversification of the professional organizations producing standards, the diversification of the types of businesses and industries, and the challenges of internationalizing standards.
Phylogenetic estimates of diversification rate are affected by molecular rate variation.
Duchêne, D A; Hua, X; Bromham, L
2017-10-01
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Evolutionary history, immigration history, and the extent of diversification in community assembly.
Knope, Matthew L; Forde, Samantha E; Fukami, Tadashi
2011-01-01
During community assembly, species may accumulate not only by immigration, but also by in situ diversification. Diversification has intrigued biologists because its extent varies even among closely related lineages under similar ecological conditions. Recent research has suggested that some of this puzzling variation may be caused by stochastic differences in the history of immigration (relative timing and order of immigration by founding populations), indicating that immigration and diversification may affect community assembly interactively. However, the conditions under which immigration history affects diversification remain unclear. Here we propose the hypothesis that whether or not immigration history influences the extent of diversification depends on the founding populations' prior evolutionary history, using evidence from a bacterial experiment. To create genotypes with different evolutionary histories, replicate populations of Pseudomonas fluorescens were allowed to adapt to a novel environment for a short or long period of time (approximately 10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved genotype was then introduced to a new habitat either before or after a standard competitor genotype. Most genotypes diversified to a greater extent when introduced before, rather than after, the competitor. However, introduction order did not affect the extent of diversification when the evolved genotype had previously adapted to the environment for a long period of time without exploiters. Diversification of these populations was low regardless of introduction order. These results suggest that the importance of immigration history in diversification can be predicted by the immigrants' evolutionary past. The hypothesis proposed here may be generally applicable in both micro- and macro-organisms.
Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan
2016-01-01
The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself. PMID:27555851
Disposal of pesticide waste from agricultural production in the Al-Batinah region of Northern Oman.
Al Zadjali, Said; Morse, Stephen; Chenoweth, Jonathan; Deadman, Mike
2013-10-01
During the last two decades Oman has experienced rapid economic development but this has been accompanied by environmental problems. Manufacturing and agricultural output have increased substantially but initially this was not balanced with sufficient environmental management. Although agriculture in Oman is not usually considered a major component of the economy, government policy has been directed towards diversification of national income and as a result there has been an increasing emphasis on revenue from agriculture and an enhancement of production via the use of irrigation, machinery and inputs such as pesticides. In recent years this has been tempered with a range of interventions to encourage more sustainable production. Certain pesticides have been prohibited; there has been a promotion of organic agriculture and an emphasis on education and awareness programs for farmers. The last point is of especial relevance given the nature of the farm labour market in Oman and a reliance on expatriate and often untrained labour. The research, through a detailed stratified survey, explores the state of knowledge at farm-level regarding the safe disposal of pesticide waste and what factors could enhance or indeed operate against the spread and implementation of that knowledge. Members of the recently constituted Farmers Association expressed greater environmental awareness than their non-member counterparts in that they identified a more diverse range of potential risks associated with pesticide use and disposed of pesticide waste more in accordance with government policy, albeit government policy with gaps. Workers on farms belonging to Association members were also more likely to adhere to government policy in terms of waste disposal. The Farmers Association appears to be an effective conduit for the diffusion of knowledge about pesticide legislation and general awareness, apparently usurping the state agricultural extension service. Copyright © 2013 Elsevier B.V. All rights reserved.
Pincheira-Donoso, Daniel; Harvey, Lilly P; Ruta, Marcello
2015-08-07
Adaptive radiation theory posits that ecological opportunity promotes rapid proliferation of phylogenetic and ecological diversity. Given that adaptive radiation proceeds via occupation of available niche space in newly accessed ecological zones, theory predicts that: (i) evolutionary diversification follows an 'early-burst' process, i.e., it accelerates early in the history of a clade (when available niche space facilitates speciation), and subsequently slows down as niche space becomes saturated by new species; and (ii) phylogenetic branching is accompanied by diversification of ecologically relevant phenotypic traits among newly evolving species. Here, we employ macroevolutionary phylogenetic model-selection analyses to address these two predictions about evolutionary diversification using one of the most exceptionally species-rich and ecologically diverse lineages of living vertebrates, the South American lizard genus Liolaemus. Our phylogenetic analyses lend support to a density-dependent lineage diversification model. However, the lineage through-time diversification curve does not provide strong support for an early burst. In contrast, the evolution of phenotypic (body size) relative disparity is high, significantly different from a Brownian model during approximately the last 5 million years of Liolaemus evolution. Model-fitting analyses also reject the 'early-burst' model of phenotypic evolution, and instead favour stabilizing selection (Ornstein-Uhlenbeck, with three peaks identified) as the best model for body size diversification. Finally, diversification rates tend to increase with smaller body size. Liolaemus have diversified under a density-dependent process with slightly pronounced apparent episodic pulses of lineage accumulation, which are compatible with the expected episodic ecological opportunity created by gradual uplifts of the Andes over the last ~25My. We argue that ecological opportunity can be strong and a crucial driver of adaptive radiations in continents, but may emerge less frequently (compared to islands) when major events (e.g., climatic, geographic) significantly modify environments. In contrast, body size diversification conforms to an Ornstein-Uhlenbeck model with multiple trait optima. Despite this asymmetric diversification between both lineages and phenotype, links are expected to exist between the two processes, as shown by our trait-dependent analyses of diversification. We finally suggest that the definition of adaptive radiation should not be conditioned by the existence of early-bursts of diversification, and should instead be generalized to lineages in which species and ecological diversity have evolved from a single ancestor.
HIV/AIDS and time allocation in rural Malawi
Bignami-Van Assche, Simona; Van Assche, Ari; Anglewicz, Philip; Fleming, Peter; van de Ruit, Catherine
2012-01-01
AIDS-related morbidity and mortality are expected to have a large economic impact in rural Malawi, because they reduce the time that adults can spend on production for subsistence and on income-generating activities. However, households may compensate for production losses by reallocating tasks among household members. The data demands for measuring these effects are high, limiting the amount of empirical evidence. In this paper, we utilize a unique combination of qualitative and quantitative data, including biomarkers for HIV, collected by the 2004 Malawi Diffusion and Ideational Change Project, to analyze the association between AIDS-related morbidity and mortality, and time allocation decisions in rural Malawian households. We find that AIDS-related morbidity and mortality have important economic effects on women’s time, whereas men’s time is unresponsive to the same shocks. Most notably, AIDS is shown to induce diversification of income sources, with women (but not men) reallocating their time, generally from work-intensive (typically farming and heavy chores) to cash-generating tasks (such as casual labor). PMID:22639544
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-01-01
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source. DOI: http://dx.doi.org/10.7554/eLife.20062.001 PMID:27849518
Przedsiębiorczość agroturystyczna w województwie podkarpackim
NASA Astrophysics Data System (ADS)
Chrapek, Grzegorz; Surmiak, Marzena
2009-01-01
Agrotourism enterprise in Podkarpackie voivodeship creates a great chance for the development of rural areas of this region. Agrotourism seen as the tool generating economic activity among the examined communities leads to the transformation of usual farms into multifunctional economic subjects, which results in creating new realities of rural life. This process has a positive influence on socio-economic transformations in rural areas to be observed in job creation, changes in population structure and diminishing migration. From economic point of view, agrotourism development creates favourable conditions for the diversification of the income of local people. There is no doubt that anthropogenic and environmental values of Podkarpackie voivodeship, which uniqueness is of which confirmed by the existence of a great number of protected areas, make this region attractive for tourism. These elements in connection with typically rural character of Podkarpackie voivodeship create ideal conditions for agrotourism. The spatial diversity, however, significantly limits the growth rate of this kind of tourism in the research region.
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-11-16
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.
Toward ethnocultural diversification of higher education.
Hall, Gordon C Nagayama; Martinez, Charles R; Tuan, Mia; McMahon, Timothy R; Chain, Jennifer
2011-07-01
Attitudes toward ethnocultural diversification in higher education mirror attitudes toward paying taxes. Dissenters are opposed to paying taxes or to ethnocultural diversification. Passive Supporters value the benefits of taxes or ethnocultural diversification, but pay taxes or engage in diversity efforts only when required to do so. Active Supporters pay taxes or support diversity efforts even if they are not required to do so. Mandatory approaches to decrease the resistance of Dissenters to ethnocultural diversification may be necessary, whereas compelling voluntary approaches may be useful to mobilize Passive Supporters. Solutions need to be tailored to the needs of European Americans and persons of color. This article offers a conceptual framework for future research and interventions.
Toward Ethnocultural Diversification of Higher Education
Nagayama Hall, Gordon C.; Martinez, Charles R.; Tuan, Mia; McMahon, Timothy R.; Chain, Jennifer
2011-01-01
Attitudes toward ethnocultural diversification in higher education mirror attitudes toward paying taxes. Dissenters are opposed to paying taxes or to ethnocultural diversification. Passive Supporters value the benefits of taxes or ethnocultural diversification, but pay taxes or engage in diversity efforts only when required to do so. Active Supporters pay taxes or support diversity efforts even if they are not required to do so. Mandatory approaches to decrease the resistance of Dissenters to ethnocultural diversification may be necessary, whereas compelling voluntary approaches may be useful to mobilize Passive Supporters. Solutions need to be tailored to the needs of European Americans and persons of color. This article offers a conceptual framework for future research and interventions. PMID:21787056
Alarcón, J A; Immink, M D; Méndez, L F
1989-12-01
The present study was conducted as part of an evaluation of the economic and nutritional effects of a crop diversification program for small-scale farmers in the Western highlands of Guatemala. Linear programming models are employed in order to obtain optimal combinations of traditional and non-traditional food crops under different ecological conditions that: a) provide minimum cost diets for auto-consumption, and b) maximize net income and market availability of dietary energy. Data used were generated by means of an agroeconomic survey conducted in 1983 among 726 farming households. Food prices were obtained from the Institute of Agrarian Marketing; data on production costs, from the National Bank of Agricultural Development in Guatemala. The gestation periods for each crop were obtained from three different sources, and then averaged. The results indicated that the optimal cropping pattern for the minimum-cost diets for auto consumption include traditional foods (corn, beans, broad bean, wheat, potato), non-traditional foods (carrots, broccoli, beets) and foods of animal origin (milk, eggs). A significant number of farmers included in the sample did not have sufficient land availability to produce all foods included in the minimum-cost diet. Cropping patterns which maximize net incomes include only non-traditional foods: onions, carrots, broccoli and beets for farmers in the low highland areas, and raddish, broccoli, cauliflower and carrots for farmers in the higher parts. Optimal cropping patterns which maximize market availability of dietary energy include traditional and non-traditional foods; for farmers in the lower areas: wheat, corn, beets, carrots and onions; for farmers in the higher areas: potato, wheat, raddish, carrots and cabbage.
Chen, Xin; Lemmon, Alan R; Lemmon, Emily Moriarty; Pyron, R Alexander; Burbrink, Frank T
2017-06-01
Globally distributed groups may show regionally distinct rates of diversification, where speciation is elevated given timing and sources of ecological opportunity. However, for most organisms, nearly complete sampling at genomic-data scales to reduce topological error in all regions is unattainable, thus hampering conclusions related to biogeographic origins and rates of diversification. We explore processes leading to the diversity of global ratsnakes and test several important hypotheses related to areas of origin and enhanced diversification upon colonizing new continents. We estimate species trees inferred from phylogenomic scale data (304 loci) while exploring several strategies that consider topological error from each individual gene tree. With a dated species tree, we examine taxonomy and test previous hypotheses that suggest the ratsnakes originated in the Old World (OW) and dispersed to New World (NW). Furthermore, we determine if dispersal to the NW represented a source of ecological opportunity, which should show elevated rates of species diversification. We show that ratsnakes originated in the OW during the mid-Oligocene and subsequently dispersed to the NW by the mid-Miocene; diversification was also elevated in a subclade of NW taxa. Finally, the optimal biogeographic region-dependent speciation model shows that the uptick in ratsnake diversification was associated with colonization of the NW. We consider several alternative explanations that account for regionally distinct diversification rates. Copyright © 2017 Elsevier Inc. All rights reserved.
Defense mutualisms enhance plant diversification
Weber, Marjorie G.; Agrawal, Anurag A.
2014-01-01
The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity. PMID:25349406
Rolland, Jonathan; Clark, John L.; Salamin, Nicolas
2017-01-01
The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant–hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. PMID:28381621
Rodrigues, João Fabrício Mota; Diniz-Filho, José Alexandre Felizola
2016-08-01
Habitat may be viewed as an important life history component potentially related to diversification patterns. However, differences in diversification rates between aquatic and terrestrial realms are still poorly explored. Testudines is a group distributed worldwide that lives in aquatic and terrestrial environments, but until now no-one has evaluated the diversification history of the group as a whole. We aim here to investigate the diversification history of turtles and to test if habitat influenced speciation rate in these animals. We reconstructed the phylogeny of the modern species of chelonians and estimated node divergence dates using molecular markers and a Bayesian approach. Then, we used Bayesian Analyses of Macroevolutionary Mixtures to evaluate the diversification history of turtles and evaluate the effect of habitat on this pattern. Our reconstructed phylogeny covered 300 species (87% of the total diversity of the group). We found that the emydid subfamily Deirochelyinae, which forms the turtle hotspot in south-eastern United States, had an increase in its speciation rate, and that Galapagos tortoises had similar increases. Current speciation rates are lower in terrestrial turtles, contradicting studies supporting the idea terrestrial animals diversify more than aquatic species. Our results suggest that habitat, ecological opportunities, island invasions, and climatic factors are important drivers of diversification in modern turtles and reinforce the importance of habitat as a diversification driver. Copyright © 2016 Elsevier Inc. All rights reserved.
Peña, Carlos; Espeland, Marianne
2015-01-01
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910
Peña, Carlos; Espeland, Marianne
2015-01-01
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.
Defense mutualisms enhance plant diversification.
Weber, Marjorie G; Agrawal, Anurag A
2014-11-18
The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity.
Serrano-Serrano, Martha Liliana; Rolland, Jonathan; Clark, John L; Salamin, Nicolas; Perret, Mathieu
2017-04-12
The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant-hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. © 2017 The Author(s).
Chazot, Nicolas; De-Silva, Donna Lisa; Willmott, Keith R; Freitas, André V L; Lamas, Gerardo; Mallet, James; Giraldo, Carlos E; Uribe, Sandra; Elias, Marianne
2018-04-01
The Neotropical region is the most biodiverse on Earth, in a large part due to the highly diverse tropical Andean biota. The Andes are a potentially important driver of diversification within the mountains and for neighboring regions. We compared the role of the Andes in diversification among three subtribes of Ithomiini butterflies endemic to the Neotropics, Dircennina, Oleriina, and Godyridina. The diversification patterns of Godyridina have been studied previously. Here, we generate the first time-calibrated phylogeny for the largest ithomiine subtribe, Dircennina, and we reanalyze a published phylogeny of Oleriina to test different biogeographic scenarios involving the Andes within an identical framework. We found common diversification patterns across the three subtribes, as well as major differences. In Dircennina and Oleriina, our results reveal a congruent pattern of diversification related to the Andes with an Andean origin, which contrasts with the Amazonian origin and multiple Andean colonizations of Godyridina. In each of the three subtribes, a clade diversified in the Northern Andes at a faster rate. Diversification within Amazonia occurred in Oleriina and Godyridina, while virtually no speciation occurred in Dircennina in this region. Dircennina was therefore characterized by higher diversification rates within the Andes compared to non-Andean regions, while in Oleriina and Godyridina, we found no difference between these regions. Our results and discussion highlight the importance of comparative approaches in biogeographic studies.
A parametric method for assessing diversification-rate variation in phylogenetic trees.
Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A
2013-02-01
Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Comparative analysis reveals that polyploidy does not decelerate diversification in fish.
Zhan, S H; Glick, L; Tsigenopoulos, C S; Otto, S P; Mayrose, I
2014-02-01
While the proliferation of the species-rich teleost fish has been ascribed to an ancient genome duplication event at the base of this group, the broader impact of polyploidy on fish evolution and diversification remains poorly understood. Here, we investigate the association between polyploidy and diversification in several fish lineages: the sturgeons (Acipenseridae: Acipenseriformes), the botiid loaches (Botiidae: Cypriniformes), Cyprininae fishes (Cyprinidae: Cypriniformes) and the salmonids (Salmonidae: Salmoniformes). Using likelihood-based evolutionary methodologies, we co-estimate speciation and extinction rates associated with polyploid vs. diploid fish lineages. Family-level analysis of Acipenseridae and Botiidae revealed no significant difference in diversification rates between polyploid and diploid relatives, while analysis of the subfamily Cyprininae revealed higher polyploid diversification. Additionally, order-level analysis of the polyploid Salmoniformes and its diploid sister clade, the Esociformes, did not support a significantly different net diversification rate between the two groups. Taken together, our results suggest that polyploidy is generally not associated with decreased diversification in fish - a pattern that stands in contrast to that previously observed in plants. While there are notable differences in the time frame examined in the two studies, our results suggest that polyploidy is associated with different diversification patterns in these two major branches of the eukaryote tree of life. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
78 FR 40828 - Proposed Collection; Comment Request for Notice 2006-107
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... Notice 2006-107, Diversification Requirements for Qualified Defined Contribution Plans Holding Publicly...: Title: Diversification Requirements for Qualified Defined Contribution Plans Holding Publicly Traded... diversification rights with respect to publicly traded employer securities held by a defined contribution plan...
75 FR 21149 - Proposed Collection; Comment Request for Notice 2006-107
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Notice 2006-107, Diversification Requirements for Qualified Defined Contribution Plans Holding Publicly... INFORMATION: Title: Diversification Requirements for Qualified Defined Contribution Plans Holding Publicly... provides diversification rights with respect to publicly traded employer securities held by a defined...
Reaney, Ashley M; Saldarriaga-Córdoba, Mónica; Pincheira-Donoso, Daniel
2018-02-06
Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel environments. This mode of diversification contrasts dramatically with its sister lineage Liolaemus, which geographically overlaps with Phymaturus, but exploits all possible microhabitats in these and other bioclimatic areas. Our study contributes importantly to consolidate these lizards (liolaemids) as promising model systems to investigate the entire spectrum of modes of species formations, from the adaptive to the non-adaptive extremes of the continuum.
Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander
2012-12-07
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.
Leander, Brian S.
2014-01-01
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands. PMID:24762929
Sex-specific evolution during the diversification of live-bearing fishes.
Culumber, Zachary W; Tobler, Michael
2017-08-01
Natural selection is often assumed to drive parallel functional diversification of the sexes. But males and females exhibit fundamental differences in their biology, and it remains largely unknown how sex differences affect macroevolutionary patterns. On microevolutionary scales, we understand how natural and sexual selection interact to give rise to sex-specific evolution during phenotypic diversification and speciation. Here we show that ignoring sex-specific patterns of functional trait evolution misrepresents the macroevolutionary adaptive landscape and evolutionary rates for 112 species of live-bearing fishes (Poeciliidae). Males and females of the same species evolve in different adaptive landscapes. Major axes of female morphology were correlated with environmental variables but not reproductive investment, while male morphological variation was primarily associated with sexual selection. Despite the importance of both natural and sexual selection in shaping sex-specific phenotypic diversification, species diversification was overwhelmingly associated with ecological divergence. Hence, the inter-predictability of mechanisms of phenotypic and species diversification may be limited in many systems. These results underscore the importance of explicitly addressing sex-specific diversification in empirical and theoretical frameworks of evolutionary radiations to elucidate the roles of different sources of selection and constraint.
Temperate radiations and dying embers of a tropical past: the diversification of Viburnum.
Spriggs, Elizabeth L; Clement, Wendy L; Sweeney, Patrick W; Madriñán, Santiago; Edwards, Erika J; Donoghue, Michael J
2015-07-01
We used a near-complete phylogeny for the angiosperm clade Viburnum to assess lineage diversification rates, and to examine possible morphological and ecological factors driving radiations. Maximum-likelihood and Bayesian approaches identified shifts in diversification rate and possible links to character evolution. We inferred the ancestral environment for Viburnum and changes in diversification dynamics associated with subsequent biome shifts. Viburnum probably diversified in tropical forests of Southeast Asia in the Eocene, with three subsequent radiations in temperate clades during the Miocene. Four traits (purple fruits, extrafloral nectaries, bud scales and toothed leaves) were statistically associated with higher rates of diversification. However, we argue that these traits are unlikely to be driving diversification directly. Instead, two radiations were associated with the occupation of mountainous regions and a third with repeated shifts between colder and warmer temperate forests. Early-branching depauperate lineages imply that the rare lowland tropical species are 'dying embers' of once more diverse lineages; net diversification rates in Viburnum likely decreased in these tropical environments after the Oligocene. We suggest that 'taxon pulse' dynamics might characterize other temperate plant lineages. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Hybridisation and diversification in the adaptive radiation of clownfishes.
Litsios, Glenn; Salamin, Nicolas
2014-11-30
The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown. We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids. Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
Structuring evolution: biochemical networks and metabolic diversification in birds.
Morrison, Erin S; Badyaev, Alexander V
2016-08-25
Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.
Burbrink, Frank T.; Chen, Xin; Myers, Edward A.; Brandley, Matthew C.; Pyron, R. Alexander
2012-01-01
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification. PMID:23034709
Hospital diversification strategy.
Eastaugh, Steven R
2014-01-01
To determine the impact of health system restructuring on the levels of hospital diversification and operating ratio this article analyzed 94 teaching hospitals and 94 community hospitals during the period 2008-2013. The 47 teaching hospitals are matched with 47 other teaching hospitals experiencing the same financial market position in 2008, but with different levels of preference for risk and diversification in their strategic plan. Covariates in the analysis included levels of hospital competition and the degree of local government planning (for example, highly regulated in New York, in contrast to Texas). Moreover, 47 nonteaching community hospitals are matched with 47 other community hospitals in 2008, having varying manager preferences for service-line diversification and risk. Diversification and operating ratio are modeled in a two-stage least squares (TSLS) framework as jointly dependent. Institutional diversification is found to yield better financial position, and the better operating profits provide the firm the wherewithal to diversify. Some services are in a growth phase, like bariatric weight-loss surgery and sleep disorder clinics. Hospital managers' preferences for risk/return potential were considered. An institution life cycle hypothesis is advanced to explain hospital behavior: boom and bust, diversification, and divestiture, occasionally leading to closure or merger.
Ants sow the seeds of global diversification in flowering plants.
Lengyel, Szabolcs; Gove, Aaron D; Latimer, Andrew M; Majer, Jonathan D; Dunn, Robert R
2009-01-01
The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000-300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances. Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions. Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on large-scale diversification.
Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon
2016-01-01
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.
26 CFR 1.351-1 - Transfer to corporation controlled by transferor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... diversification of the transferors' interests, and (ii) The transferee is (a) a regulated investment company, (b... stock outstanding. (5) A transfer ordinarily results in the diversification of the transferors... be disregarded in determining whether diversification has occurred. If there is only one transferor...
7 CFR 4290.740 - Portfolio diversification (“overline” limitation).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Portfolio diversification (âoverlineâ limitation). 4290.740 Section 4290.740 Agriculture Regulations of the Department of Agriculture (Continued) RURAL... Enterprise for Rbic Financing § 4290.740 Portfolio diversification (“overline” limitation). (a) Without the...
Funding Reforms and Revenue Diversification--Patterns, Challenges and Rhetoric
ERIC Educational Resources Information Center
Teixeira, Pedro; Koryakina, Tatyana
2013-01-01
In recent years, much has been written about the challenging financial context faced by many European higher education institutions, and the pressures towards funding diversification. However, the evidence available indicates that funding diversification has seldom lived up to the rhetorical expectations of marketization and privatization that…
Changing Tertiary Education in Modern European Society.
ERIC Educational Resources Information Center
Council for Cultural Cooperation, Strasbourg (France).
Reports on recent developments and problems in the diversification of tertiary education in seven Western European countries are presented by members of the Working Party on the Diversification of Tertiary Education. Policy analysis and evaluation and recommendations for future policy are also provided. As a policy, diversification refers to the…
13 CFR 107.740 - Portfolio diversification (“overline” limitation).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Portfolio diversification (âoverlineâ limitation). 107.740 Section 107.740 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Eligibility of A Small Business for Sbic Financing § 107.740 Portfolio diversification (“overline” limitation...
Primate diversification inferred from phylogenies and fossils.
Herrera, James P
2017-12-01
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Marramà, Giuseppe; Carnevale, Giorgio; Santini, Francesco
2016-01-01
Various factors may impact the processes of diversification of a clade. In the marine realm, it has been shown that coral reef environments have promoted diversification in various fish groups. With the exception of requiem sharks, all the groups showing a higher level of diversity in reefs than in non-reef habitats have diets based predominantly on plankton, algae or benthic invertebrates. Here we explore the pattern of diversification of carangoid fishes, a clade that includes numerous piscivorous species (e.g. trevallies, jacks and dolphinfishes), using time-calibrated phylogenies as well as ecological and morphological data from both extant and fossil species. The study of carangoid morphospace suggests that reef environments played a role in their early radiation during the Eocene. However, contrary to the hypothesis of a reef-association-promoting effect, we show that habitat shifts to non-reef environments have increased the rates of morphological diversification (i.e. size and body shape) in extant carangoids. Piscivory did not have a major impact on the tempo of diversification of this group. Through the ecological radiation of carangoid fishes, we demonstrate that non-reef environments may sustain and promote processes of diversification of different marine fish groups, at least those including a large proportion of piscivorous species. PMID:27807262
Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes.
Nevado, Bruno; Contreras-Ortiz, Natalia; Hughes, Colin; Filatov, Dmitry A
2018-06-04
Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
What Explains Patterns of Diversification and Richness among Animal Phyla?
Jezkova, Tereza; Wiens, John J.
2016-01-01
Animal phyla vary dramatically in species richness (from 1 species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g. sponges), parasitic worms (e.g. nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ~74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, non-marine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (~67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g. head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species. PMID:28221832
Brocklehurst, Neil; Ruta, Marcello; Müller, Johannes; Fröbisch, Jörg
2015-01-01
Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts. PMID:26592209
Liu, Shang-Yin Vanson; Frédérich, Bruno; Lavoué, Sébastien; Chang, Jonathan; Erdmann, Mark V; Mahardika, Gusti Ngurah; Barber, Paul H
2018-08-01
At the macroevolutionary level, many mechanisms have been proposed to explain explosive species diversification. Among them morphological and/or physiological novelty is considered to have a great impact on the tempo and the mode of diversification. Meiacanthus is a genus of Blenniidae possessing a unique buccal venom gland at the base of an elongated canine tooth. This unusual trait has been hypothesized to aid escape from predation and thus potentially play an important role in their pattern of diversification. Here, we produce the first time-calibrated phylogeny of Blenniidae and we test the impact of two morphological novelties on their diversification, i.e. the presence of swim bladder and buccal venom gland, using various comparative methods. We found an increase in the tempo of lineage diversification at the root of the Meiacanthus clade, associated with the evolution of the buccal venom gland, but not the swim bladder. Neither morphological novelty was associated with the pattern of size disparification in blennies. Our results support the hypothesis that the buccal venom gland has contributed to the explosive diversification of Meiacanthus, but further analyses are needed to fully understand the factors sustaining this burst of speciation. Copyright © 2018 Elsevier Inc. All rights reserved.
Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon
2017-08-30
Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.
Frédérich, Bruno; Marramà, Giuseppe; Carnevale, Giorgio; Santini, Francesco
2016-11-16
Various factors may impact the processes of diversification of a clade. In the marine realm, it has been shown that coral reef environments have promoted diversification in various fish groups. With the exception of requiem sharks, all the groups showing a higher level of diversity in reefs than in non-reef habitats have diets based predominantly on plankton, algae or benthic invertebrates. Here we explore the pattern of diversification of carangoid fishes, a clade that includes numerous piscivorous species (e.g. trevallies, jacks and dolphinfishes), using time-calibrated phylogenies as well as ecological and morphological data from both extant and fossil species. The study of carangoid morphospace suggests that reef environments played a role in their early radiation during the Eocene. However, contrary to the hypothesis of a reef-association-promoting effect, we show that habitat shifts to non-reef environments have increased the rates of morphological diversification (i.e. size and body shape) in extant carangoids. Piscivory did not have a major impact on the tempo of diversification of this group. Through the ecological radiation of carangoid fishes, we demonstrate that non-reef environments may sustain and promote processes of diversification of different marine fish groups, at least those including a large proportion of piscivorous species. © 2016 The Author(s).
Givnish, Thomas J
2015-07-01
Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
Sabath, Niv; Goldberg, Emma E; Glick, Lior; Einhorn, Moshe; Ashman, Tia-Lynn; Ming, Ray; Otto, Sarah P; Vamosi, Jana C; Mayrose, Itay
2016-02-01
Dioecy, the sexual system in which male and female organs are found in separate individuals, allows greater specialization for sex-specific functions and can be advantageous under various ecological and environmental conditions. However, dioecy is rare among flowering plants. Previous studies identified contradictory trends regarding the relative diversification rates of dioecious lineages vs their nondioecious counterparts, depending on the methods and data used. We gathered detailed species-level data for dozens of genera that contain both dioecious and nondioecious species. We then applied a probabilistic approach that accounts for differential speciation, extinction, and transition rates between states to examine whether there is an association between dioecy and lineage diversification. We found a bimodal distribution, whereby dioecious lineages exhibited higher diversification in certain genera but lower diversification in others. Additional analyses did not uncover an ecological or life history trait that could explain a context-dependent effect of dioecy on diversification. Furthermore, in-depth simulations of neutral characters demonstrated that such bimodality is also found when simulating neutral characters across the observed trees. Our analyses suggest that - at least for these genera with the currently available data - dioecy neither consistently places a strong brake on diversification nor is a strong driver. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong
2017-05-01
Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
What Explains Patterns of Diversification and Richness among Animal Phyla?
Jezkova, Tereza; Wiens, John J
2017-03-01
Animal phyla vary dramatically in species richness (from one species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g., sponges), parasitic worms (e.g., nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ∼74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, nonmarine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (∼67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g., head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species.
A glimpse on the pattern of rodent diversification: a phylogenetic approach
2012-01-01
Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. PMID:22697210
Darwinism for the Genomic Age: Connecting Mutation to Diversification
Hua, Xia; Bromham, Lindell
2017-01-01
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification. PMID:28224003
Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila.
Morales-Hojas, Ramiro; Vieira, Jorge
2012-01-01
Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic). Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.
Ants Sow the Seeds of Global Diversification in Flowering Plants
Lengyel, Szabolcs; Gove, Aaron D.; Latimer, Andrew M.; Majer, Jonathan D.; Dunn, Robert R.
2009-01-01
Background The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances. Methodology/Principal Findings Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions. Conclusions/Significance Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on large-scale diversification. PMID:19436714
Darwinism for the Genomic Age: Connecting Mutation to Diversification.
Hua, Xia; Bromham, Lindell
2017-01-01
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.
Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes?
Escudero, M; Balao, F; Martín-Bravo, S; Valente, L; Valcárcel, V
2018-01-01
The Mediterranean Basin region, home to 25,000 plant species, is included in the worldwide list of hotspots of biodiversity. Despite the indisputably important role of chromosome transitions in plant evolution and diversification, no reference study to date has dealt with the possible relationship between chromosome evolution and lineage diversification in the Mediterranean Basin. Here we study patterns of diversification, patterns of chromosome number transition (either polyploidy or dysploidy) and the relationship between the two for 14 Mediterranean Basin angiosperm lineages using previously published phylogenies. We found a mixed pattern, with half of the lineages displaying a change in chromosome transition rates after the onset of the Mediterranean climate (six increases, one decrease) and the other half (six) experiencing constant rates of chromosome transitions through time. We have also found a heterogeneous pattern regarding diversification rates, with lineages exhibiting moderate (five phylogenies) or low (six) initial diversification rates that either increased (six) or declined (five) through time. Our results reveal no clear link between diversification rates and chromosome number transition rates. By promoting the formation of new habitats and driving the extinction of many species, the Mediterranean onset and the posterior Quaternary climatic oscillations could have been key for the establishment of new chromosomal variants in some plant phylogenies but not in others. While the biodiversity of the Mediterranean Basin may be partly influenced by the chromosomal diversity of its lineages, this study concludes that lineage diversification in the region is largely decoupled from karyotypic evolution. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Barker, F Keith; Burns, Kevin J; Klicka, John; Lanyon, Scott M; Lovette, Irby J
2013-03-01
Recent analyses suggest that a few major shifts in diversification rate may be enough to explain most of the disparity in diversity among vertebrate lineages. At least one significant increase in diversification rate appears to have occurred within the birds; however, several nested lineages within birds have been identified as hyperdiverse by different studies. A clade containing the finches and relatives (within the avian order Passeriformes), including a large radiation endemic to the New World that comprises ~8% of all bird species, may be the true driver of this rate increase. Understanding the patterns and processes of diversification of this diverse lineage may go a long way toward explaining the apparently rapid diversification rates of both passerines and of birds as a whole. We present the first multilocus phylogenetic analyses of this endemic New World radiation of finch relatives that include sampling of all recognized genera, a relaxed molecular clock analysis of its divergence history, and an analysis of its broad-scale diversification patterns. These analyses recovered 5 major lineages traditionally recognized as avian families, but identified an additional 10 relatively ancient lineages worthy of recognition at the family level. Time-calibrated diversification analyses suggested that at least 3 of the 15 family-level lineages were significantly species poor given the entire group's background diversification rate, whereas at least one-the tanagers of family Thraupidae-appeared significantly more diverse. Lack of an age-diversity relationship within this clade suggests that, due to rapid initial speciation, it may have experienced density-dependent ecological limits on its overall diversity.
Diversification Management at Tertiary Education Level: A Review
ERIC Educational Resources Information Center
Takwate, Kwaji Tizhe
2016-01-01
This paper examines the concept of management of diversification at tertiary education level in view of the growth of national secondary education system which vested high scramble for tertiary education was made in relation to question of access and expansion. This paper examines management of diversification at tertiary education level as a…
ERIC Educational Resources Information Center
Benavot, Aaron
2006-01-01
Secondary education continues to expand rapidly worldwide. Equally important is its diversification. The present paper contends that the diversification of secondary education, while acknowledged, is not well studied. Despite the widespread expansion of secondary education in different world regions, the information available to researchers--and…
29 CFR 2560.502c-7 - Civil penalties under section 502(c)(7).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) of the Act), who fails or refuses to provide notice of diversification rights to applicable... a notice of diversification rights shall mean a failure or refusal, in whole or in part, to provide notice of diversification rights to an applicable individual at the time and in the manner prescribed by...
Vertical integration and diversification of acute care hospitals: conceptual definitions.
Clement, J P
1988-01-01
The terms vertical integration and diversification, although used quite frequently, are ill-defined for use in the health care field. In this article, the concepts are defined--specifically for nonuniversity acute care hospitals. The resulting definitions are more useful than previous ones for predicting the effects of vertical integration and diversification.
Tran, Lucy A P
2014-04-22
Exceptional species and phenotypic diversity commonly are attributed to ecological opportunity (EO). The conventional EO model predicts that rates of lineage diversification and phenotypic evolution are elevated early in a radiation only to decline later in response to niche availability. Foregut fermentation is hypothesized to be a key innovation that allowed colobine monkeys (subfamily Colobinae), the only primates with this trait, to successfully colonize folivore adaptive zones unavailable to other herbivorous species. Therefore, diversification rates also are expected to be strongly linked with the evolution of traits related to folivory in these monkeys. Using dated molecular phylogenies and a dataset of feeding morphology, I test predictions of the EO model to evaluate the role of EO conferred by foregut fermentation in shaping the African and Asian colobine radiations. Findings from diversification methods coupled with colobine biogeographic history provide compelling evidence that decreasing availability of new adaptive zones during colonization of Asia together with constraints presented by dietary specialization underlie temporal changes in diversification in the Asian but not African clade. Additionally, departures from the EO model likely reflect iterative diversification events in Asia.
Diversification of land plants: insights from a family-level phylogenetic analysis.
Fiz-Palacios, Omar; Schneider, Harald; Heinrichs, Jochen; Savolainen, Vincent
2011-11-21
Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.
Diversification of visual media retrieval results using saliency detection
NASA Astrophysics Data System (ADS)
Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.
2013-03-01
Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.
Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.
Beaulieu, Jeremy M; O'Meara, Brian C
2016-07-01
The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mercati, F; Catarcione, G; Paolacci, A R; Abenavoli, M R; Sunseri, F; Ciaffi, M
2015-08-01
The landraces are considered important sources of valuable germplasm for breeding activities to face climatic changes as well as to satisfy the requirement of new varieties for marginal areas. Runner bean (Phaseolus coccineus L.) is one of the most cultivated Phaseolus species worldwide, but few studies have been addressed to assess the genetic diversity and structure within and among landrace populations. In the present study, 20 different populations of a runner bean landrace from Central Italy named "Fagiolone," together with 41 accessions from Italy and Mesoamerica, were evaluated by using 14 nuclear SSRs to establish its genetic structure and distinctiveness. Results indicated that "Fagiolone" landrace can be considered as a dynamic evolving open-pollinated population that shows a significant level of genetic variation, mostly detected within populations, and the presence of two main genetic groups, of which one distinguished from other Italian runner bean landraces. Results highlighted also a relevant importance of farmers' management practices able to influence the genetic structure of this landrace, in particular the seed exchanges and selection, and the past introduction in cultivation of landraces/cultivars similar to seed morphology, but genetically rather far from "Fagiolone." The most suitable on-farm strategies for seed collection, conservation and multiplication will be defined based on our results, as a model for threatened populations of other allogamous crop species. STRUCTURE and phylogenetic analyses indicated that Mesoamerican accessions and Italian landraces belong to two distinct gene pools confirming the hypothesis that Europe could be considered a secondary diversification center for P. coccineus.
Transformation and diversification in early mammal evolution.
Luo, Zhe-Xi
2007-12-13
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.
Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E.
2016-01-01
Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this ‘ancient’ fern lineage across the tropics. PMID:27412279
2013-01-01
Background Pseudomonas aeruginosa populations within the cystic fibrosis lung exhibit extensive phenotypic and genetic diversification. The resultant population diversity is thought to be crucial to the persistence of infection and may underpin the progression of disease. However, because cystic fibrosis lungs represent ecologically complex and hostile environments, the selective forces driving this diversification in vivo remain unclear. We took an experimental evolution approach to test the hypothesis that sub-inhibitory antibiotics can drive diversification of P. aeruginosa populations. Replicate populations of P. aeruginosa LESB58 were cultured for seven days in artificial sputum medium with and without sub-inhibitory concentrations of various clinically relevant antibiotics. We then characterised diversification with respect to 13 phenotypic and genotypic characteristics. Results We observed that higher population diversity evolved in the presence of azithromycin, ceftazidime or colistin relative to antibiotic-free controls. Divergence occurred due to alterations in antimicrobial susceptibility profiles following exposure to azithromycin, ceftazidime and colistin. Alterations in colony morphology and pyocyanin production were observed following exposure to ceftazidime and colistin only. Diversification was not observed in the presence of meropenem. Conclusions Our study indicates that certain antibiotics can promote population diversification when present in sub-inhibitory concentrations. Hence, the choice of antibiotic may have previously unforeseen implications for the development of P. aeruginosa infections in the lungs of cystic fibrosis patients. PMID:23879797
Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E
2016-07-13
Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. © 2016 The Author(s).
A Robust Semi-Parametric Test for Detecting Trait-Dependent Diversification.
Rabosky, Daniel L; Huang, Huateng
2016-03-01
Rates of species diversification vary widely across the tree of life and there is considerable interest in identifying organismal traits that correlate with rates of speciation and extinction. However, it has been challenging to develop methodological frameworks for testing hypotheses about trait-dependent diversification that are robust to phylogenetic pseudoreplication and to directionally biased rates of character change. We describe a semi-parametric test for trait-dependent diversification that explicitly requires replicated associations between character states and diversification rates to detect effects. To use the method, diversification rates are reconstructed across a phylogenetic tree with no consideration of character states. A test statistic is then computed to measure the association between species-level traits and the corresponding diversification rate estimates at the tips of the tree. The empirical value of the test statistic is compared to a null distribution that is generated by structured permutations of evolutionary rates across the phylogeny. The test is applicable to binary discrete characters as well as continuous-valued traits and can accommodate extremely sparse sampling of character states at the tips of the tree. We apply the test to several empirical data sets and demonstrate that the method has acceptable Type I error rates. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
75 FR 3871 - Promoting Diversification of Ownership in Broadcast Services; Suspension of Filing Date
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket Nos. 07-294, 06-121, 02-277, 04-228; MM Docket Nos. 01-235, 01-317, 00-244; DA 09-2618] Promoting Diversification of Ownership in...); Promoting Diversification in the Broadcasting Services, Order, DA 09-2165 (rel. Oct. 2, 2009). See also...
Place of Manufacture Diversification in Cyclical Development of the Enterprise
ERIC Educational Resources Information Center
Erofeev, Alexander G.; Smolin, Georgy K.
2016-01-01
The relevance of the researched problem is caused by the fact that diversification is one of the best options for reforming enterprises. The aim of the research: to consider changes in production of outputs in development cycles of the enterprise. This will help to reveal the nature of manufacture diversification. The leading method to the…
Valcárcel, V; Guzmán, B; Medina, N G; Vargas, P; Wen, J
2017-06-22
Hedera (ivies) is one of the few temperate genera of the primarily tropical Asian Palmate group of the Araliaceae, which extends its range out of Asia to Europe and the Mediterranean basin. Phylogenetic and phylogeographic results suggested Asia as the center of origin and the western Mediterranean region as one of the secondary centers of diversification. The bird-dispersed fleshy fruits of ivies suggest frequent dispersal over long distances (e.g. Macaronesian archipelagos), although reducing the impact of geographic barriers to gene flow in mainland species. Genetic isolation associated with geographic barriers and independent polyploidization events have been postulated as the main driving forces of diversification. In this study we aim to evaluate past and present diversification patterns in Hedera within a geographic and temporal framework to clarify the biogeographic history of the genus. Phylogenetic (biogeographic, time divergence and diversification) and phylogeographic (coalescence) analyses using four DNA regions (nrITS, trnH-psbA, trnT-trnL, rpl32) revealed a complex spatial pattern of lineage divergence. Scarce geographic limitation to gene flow and limited diversification are observed during the early-mid Miocene, followed by a diversification rate increase related to geographic divergence from the Tortonian/Messinian. Genetic and palaeobotanical evidence points the origin of the Hedera clade in Asia, followed by a gradual E-W Asian extinction and the progressive E-W Mediterranean colonization. The temporal framework for the E Asia - W Mediterranean westward colonization herein reported is congruent with the fossil record. Subsequent range expansion in Europe and back colonization to Asia is also inferred. Uneven diversification among geographic areas occurred from the Tortonian/Messinian onwards with limited diversification in the newly colonized European and Asian regions. Eastern and western Mediterranean regions acted as refugia for Miocene and post-Miocene lineages, with a similar role as consecutive centers of centrifugal dispersal (including islands) and speciation. The Miocene Asian extinction and European survival of Hedera question the general pattern of Tertiary regional extinction of temperate angiosperms in Europe while they survived in Asia. The Tortonian/Messinian diversification increase of ivies in the Mediterranean challenges the idea that this aridity period was responsible for the extinction of the Mediterranean subtropical Tertiary flora. Differential responses of Hedera to geographic barriers throughout its evolutionary history, linked to spatial isolation related to historical geologic and climatic constraints may have shaped diversification of ivies in concert with recurrent polyploidy.
Patel, Swati; Weckstein, Jason D; Patané, José S L; Bates, John M; Aleixo, Alexandre
2011-01-01
We use the small-bodied toucan genus Pteroglossus to test hypotheses about diversification in the lowland Neotropics. We sequenced three mitochondrial genes and one nuclear intron from all Pteroglossus species and used these data to reconstruct phylogenetic trees based on maximum parsimony, maximum likelihood, and Bayesian analyses. These phylogenetic trees were used to make inferences regarding both the pattern and timing of diversification for the group. We used the uplift of the Talamanca highlands of Costa Rica and western Panama as a geologic calibration for estimating divergence times on the Pteroglossus tree and compared these results with a standard molecular clock calibration. Then, we used likelihood methods to model the rate of diversification. Based on our analyses, the onset of the Pteroglossus radiation predates the Pleistocene, which has been predicted to have played a pivotal role in diversification in the Amazon rainforest biota. We found a constant rate of diversification in Pteroglossus evolutionary history, and thus no support that events during the Pleistocene caused an increase in diversification. We compare our data to other avian phylogenies to better understand major biogeographic events in the Neotropics. These comparisons support recurring forest connections between the Amazonian and Atlantic forests, and the splitting of cis/trans Andean species after the final uplift of the Andes. At the subspecies level, there is evidence for reciprocal monophyly and groups are often separated by major rivers, demonstrating the important role of rivers in causing or maintaining divergence. Because some of the results presented here conflict with current taxonomy of Pteroglossus, new taxonomic arrangements are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.
Widespread correlations between climatic niche evolution and species diversification in birds.
Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A
2016-07-01
The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Diversification patterns in cosmopolitan earthworms: similar mode but different tempo.
Fernández, Rosa; Novo, Marta; Marchán, Daniel F; Díaz Cosín, Darío J
2016-01-01
Comparative phylogeography of widespread species that span the same geographic areas can elucidate the influence of historical events on current patterns of biodiversity, identify patterns of co-vicariance, and therefore aid the understanding of general evolutionary processes. Soil-dwelling animals present characteristics that make them suitable for testing the effect of the palaeogeographical events on their distribution and diversification, such as their low vagility and population structure. In this study, we shed light on the spatial lineage diversification and cladogenesis of two widely-distributed cosmopolitan and invasive earthworms (Aporrectodea rosea and A. trapezoides) in their putative ancestral area of origin, the Western Palearctic, and a few populations in North America. Molecular analyses were conducted on mitochondrial and nuclear markers from 220 (A. rosea) and 198 (A. trapezoides) individuals collected in 56 and 57 localities, respectively. We compared the lineage diversification pattern, genetic variability and cladogenesis in both species. Our findings showed that both species underwent a similar diversification from the Western Mediterranean plates to (i) Northern Europe and (ii) the Iberian Peninsula, establishing their two main lineages. Their diversification was in concordance with the main palaeogeographical events in the Iberian Peninsula and Western Mediterranean, followed by a later colonization of North America from individuals derived exclusively from the Eurosiberian lineage. Their diversification occurred at different times, with the diversification of A. rosea being potentially more ancient. Cladogenesis in both species seems to have been modelled only by the Mediterranean plate shifts, ignoring historical climatic oscillations such as the Messinian salinity crisis. Their high genetic variability, strong population structure, lack of gene flow and stepping-stone-like cladogenesis suggest the existence of different cryptic lineages. Our results may indicate a recurrent event in invasive earthworms within their ancestral distribution areas in the Western Palearctic. Copyright © 2015 Elsevier Inc. All rights reserved.
Asynchronous diversification in a specialized plant-pollinator mutualism.
Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E
2011-09-23
Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.
Viviparity stimulates diversification in an order of fish.
Helmstetter, Andrew J; Papadopulos, Alexander S T; Igea, Javier; Van Dooren, Tom J M; Leroi, Armand M; Savolainen, Vincent
2016-04-12
Species richness is distributed unevenly across the tree of life and this may be influenced by the evolution of novel phenotypes that promote diversification. Viviparity has originated ∼150 times in vertebrates and is considered to be an adaptation to highly variable environments. Likewise, possessing an annual life cycle is common in plants and insects, where it enables the colonization of seasonal environments, but rare in vertebrates. The extent to which these reproductive life-history traits have enhanced diversification and their relative importance in the process remains unknown. We show that convergent evolution of viviparity causes bursts of diversification in fish. We built a phylogenetic tree for Cyprinodontiformes, an order in which both annualism and viviparity have arisen, and reveal that while both traits have evolved multiple times, only viviparity played a major role in shaping the patterns of diversity. These results demonstrate that changes in reproductive life-history strategy can stimulate diversification.
Competition both drives and impedes diversification in a model adaptive radiation
Bailey, Susan F.; Dettman, Jeremy R.; Rainey, Paul B.; Kassen, Rees
2013-01-01
Competitors are known to be important in governing the outcome of evolutionary diversification during an adaptive radiation, but the precise mechanisms by which they exert their effects remain elusive. Using the model adaptive radiation of Pseudomonas fluorescens, we show experimentally that the effect of competition on diversification of a focal lineage depends on both the strength of competition and the ability of the competitors to diversify. We provide evidence that the extent of diversification in the absence of interspecific competitors depends on the strength of resource competition. We also show that the presence of competitors can actually increase diversity by increasing interspecific resource competition. Competitors that themselves are able to diversify prevent diversification of the focal lineage by removing otherwise available ecological opportunities. These results suggest that the progress of an adaptive radiation depends ultimately on the strength of resource competition, an effect that can be exaggerated or impeded by the presence of competitors. PMID:23843392
Host shifts and evolutionary radiations of butterflies
Fordyce, James A.
2010-01-01
Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven's model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today. PMID:20610430
Viviparity stimulates diversification in an order of fish
Helmstetter, Andrew J.; Papadopulos, Alexander S. T.; Igea, Javier; Van Dooren, Tom J. M.; Leroi, Armand M.; Savolainen, Vincent
2016-01-01
Species richness is distributed unevenly across the tree of life and this may be influenced by the evolution of novel phenotypes that promote diversification. Viviparity has originated ∼150 times in vertebrates and is considered to be an adaptation to highly variable environments. Likewise, possessing an annual life cycle is common in plants and insects, where it enables the colonization of seasonal environments, but rare in vertebrates. The extent to which these reproductive life-history traits have enhanced diversification and their relative importance in the process remains unknown. We show that convergent evolution of viviparity causes bursts of diversification in fish. We built a phylogenetic tree for Cyprinodontiformes, an order in which both annualism and viviparity have arisen, and reveal that while both traits have evolved multiple times, only viviparity played a major role in shaping the patterns of diversity. These results demonstrate that changes in reproductive life-history strategy can stimulate diversification. PMID:27070759
Castel, Guillaume; Tordo, Noël; Plyusnin, Alexander
2017-04-02
Because of the great variability of their reservoir hosts, hantaviruses are excellent models to evaluate the dynamics of virus-host co-evolution. Intriguing questions remain about the timescale of the diversification events that influenced this evolution. In this paper we attempted to estimate the first ever timing of hantavirus diversification based on thirty five available complete genomes representing five major groups of hantaviruses and the assumption of co-speciation of hantaviruses with their respective mammal hosts. Phylogenetic analyses were used to estimate the main diversification points during hantavirus evolution in mammals while host diversification was mostly estimated from independent calibrators taken from fossil records. Our results support an earlier developed hypothesis of co-speciation of known hantaviruses with their respective mammal hosts and hence a common ancestor for all hantaviruses carried by placental mammals. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative diversification dynamics among palaeocontinents during the Ordovician Radiation
NASA Technical Reports Server (NTRS)
Miller, A. I.
1997-01-01
The Ordovician Radiation was among the most extensive intervals of diversification in the history of life. However, a delineation of the proximal cause(s) of the Radiation remains elusive. Any such determination should involve an analysis of geographic overprints on diversification: did the Radiation occur randomly around the world or, alternatively, was it focused in particular geographic or depositional regimes? Here, I present a comparative evaluation of Ordovician diversification among several palaeocontinents to determine whether biotas associated with certain palaeocontinents exhibited different diversification patterns than others; in part, this involves a numerical "correction" to raw diversity trajectories. Clear disparities among palaeocontinents are indicated by the data, which appear to reflect differences in the extent of siliciclastic input partly in association with tectonic activity. Further testing will be required to fully substantiate the implication that siliciclastic influx was a predominant factor in the Ordovician Radiation, affecting a variety of higher taxa among all three Phanerozoic evolutionary faunas.
Pérez-Escobar, Oscar Alejandro; Chomicki, Guillaume; Condamine, Fabien L; de Vos, Jurriaan M; Martins, Aline C; Smidt, Eric C; Klitgård, Bente; Gerlach, Günter; Heinrichs, Jochen
2017-10-10
Environmental sex determination (ESD) - a change in sexual function during an individual life span driven by environmental cues - is an exceedingly rare sexual system among angiosperms. Because ESD can directly affect reproduction success, it could influence diversification rate as compared with lineages that have alternative reproductive systems. Here we test this hypothesis using a solid phylogenetic framework of Neotropical Catasetinae, the angiosperm lineage richest in taxa with ESD. We assess whether gains of ESD are associated with higher diversification rates compared to lineages with alternative systems while considering additional traits known to positively affect diversification rates in orchids. We found that ESD has evolved asynchronously three times during the last ~5 Myr. Lineages with ESD have consistently higher diversification rates than related lineages with other sexual systems. Habitat fragmentation due to mega-wetlands extinction, and climate instability are suggested as the driving forces for ESD evolution.
The dynamics and limits of corporate growth in health care.
Robinson, J C
1996-01-01
This paper analyzes the economic dynamics of five forms of organizational growth in health care: horizontal integration within a single geographic market; horizontal integration across different geographic markets; diversification among multiple products and types of service; diversification among multiple distribution channels; and vertical integration with suppliers. These principles are illustrated through brief case studies of three firms that have grown by way of internal expansion, mergers, acquisitions, and diversification: WellPoint Health Networks, UniHealth America, and Mullikin Medical Enterprises. The paper analyzes the potential limits of organizational growth in health care and explores the implications of integration and diversification for antitrust policy.
Rapid diversification and dispersal during periods of global warming by plethodontid salamanders
Vieites, David R.; Min, Mi-Sook; Wake, David B.
2007-01-01
A phylogeny and timescale derived from analyses of multilocus nuclear DNA sequences for Holarctic genera of plethodontid salamanders reveal them to be an old radiation whose common ancestor diverged from sister taxa in the late Jurassic and underwent rapid diversification during the late Cretaceous. A North American origin of plethodontids was followed by a continental-wide diversification, not necessarily centered only in the Appalachian region. The colonization of Eurasia by plethodontids most likely occurred once, by dispersal during the late Cretaceous. Subsequent diversification in Asia led to the origin of Hydromantes and Karsenia, with the former then dispersing both to Europe and back to North America. Salamanders underwent rapid episodes of diversification and dispersal that coincided with major global warming events during the late Cretaceous and again during the Paleocene–Eocene thermal optimum. The major clades of plethodontids were established during these episodes, contemporaneously with similar phenomena in angiosperms, arthropods, birds, and mammals. Periods of global warming may have promoted diversification and both inter- and transcontinental dispersal in northern hemisphere salamanders by making available terrain that shortened dispersal routes and offered new opportunities for adaptive and vicariant evolution. PMID:18077422
Diversification of land plants: insights from a family-level phylogenetic analysis
2011-01-01
Background Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. Results We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. Conclusions This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario. PMID:22103931
Tree of Life Reveals Clock-Like Speciation and Diversification
Hedges, S. Blair; Marin, Julie; Suleski, Michael; Paymer, Madeline; Kumar, Sudhir
2015-01-01
Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process. PMID:25739733
Competition, virulence, host body mass and the diversification of macro-parasites
Rascalou, Guilhem; Gourbière, Sébastien
2014-01-01
Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard ‘pleiotropic scenario’. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum. PMID:24522783
Tran, Lucy A. P.
2014-01-01
Exceptional species and phenotypic diversity commonly are attributed to ecological opportunity (EO). The conventional EO model predicts that rates of lineage diversification and phenotypic evolution are elevated early in a radiation only to decline later in response to niche availability. Foregut fermentation is hypothesized to be a key innovation that allowed colobine monkeys (subfamily Colobinae), the only primates with this trait, to successfully colonize folivore adaptive zones unavailable to other herbivorous species. Therefore, diversification rates also are expected to be strongly linked with the evolution of traits related to folivory in these monkeys. Using dated molecular phylogenies and a dataset of feeding morphology, I test predictions of the EO model to evaluate the role of EO conferred by foregut fermentation in shaping the African and Asian colobine radiations. Findings from diversification methods coupled with colobine biogeographic history provide compelling evidence that decreasing availability of new adaptive zones during colonization of Asia together with constraints presented by dietary specialization underlie temporal changes in diversification in the Asian but not African clade. Additionally, departures from the EO model likely reflect iterative diversification events in Asia. PMID:24598417
Heterostyly accelerates diversification via reduced extinction in primroses.
de Vos, Jurriaan M; Hughes, Colin E; Schneeweiss, Gerald M; Moore, Brian R; Conti, Elena
2014-06-07
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.
Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape.
Bryson, Robert W; García-Vázquez, Uri Omar; Riddle, Brett R
2012-01-01
The widespread montane Mexican horned lizard Phrynosoma orbiculare (Squamata: Phrynosomatidae) represents an ideal species to investigate the relative impacts of Neogene vicariance and Quaternary climate change on lineage diversification across the Mexican highlands. We used mitochondrial DNA to examine the maternal history of P. orbiculare and estimate the timing and tempo of lineage diversification. Based on our results, we inferred 11 geographically structured, well supported mitochondrial lineages within this species, suggesting P. orbiculare represents a species complex. Six divergences between lineages likely occurred during the Late Miocene and Pliocene, and four splits probably happened during the Pleistocene. Diversification rate appeared relatively constant through time. Spatial and temporal divergences between lineages of P. orbiculare and co-distributed taxa suggest that a distinct period of uplifting of the Transvolcanic Belt around 7.5-3 million years ago broadly impacted diversification in taxa associated with this mountain range. To the north, several river drainages acting as filter barriers differentially subdivided co-distributed highland taxa through time. Diversification patterns observed in P. orbiculare provide additional insight into the mechanisms that impacted differentiation of highland taxa across the complex Mexican highlands. Copyright © 2011 Elsevier Inc. All rights reserved.
Heterostyly accelerates diversification via reduced extinction in primroses
de Vos, Jurriaan M.; Hughes, Colin E.; Schneeweiss, Gerald M.; Moore, Brian R.; Conti, Elena
2014-01-01
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower–pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification. PMID:24759859
Individual-based models for adaptive diversification in high-dimensional phenotype spaces.
Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael
2016-02-07
Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Independent evolution of the sexes promotes amphibian diversification
De Lisle, Stephen P.; Rowe, Locke
2015-01-01
Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models—that the sexes share a common adaptive landscape—leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. PMID:25694616
Impact of catch shares on diversification of fishers' income and risk.
Holland, Daniel S; Speir, Cameron; Agar, Juan; Crosson, Scott; DePiper, Geret; Kasperski, Stephen; Kitts, Andrew W; Perruso, Larry
2017-08-29
Many fishers diversify their income by participating in multiple fisheries, which has been shown to significantly reduce year-to-year variation in income. The ability of fishers to diversify has become increasingly constrained in the last few decades, and catch share programs could further reduce diversification as a result of consolidation. This could increase income variation and thus financial risk. However, catch shares can also offer fishers opportunities to enter or increase participation in catch share fisheries by purchasing or leasing quota. Thus, the net effect on diversification is uncertain. We tested whether diversification and variation in fishing revenues changed after implementation of catch shares for 6,782 vessels in 13 US fisheries that account for 20% of US landings revenue. For each of these fisheries, we tested whether diversification levels, trends, and variation in fishing revenues changed after implementation of catch shares, both for fishers that remained in the catch share fishery and for those that exited but remained active in other fisheries. We found that diversification for both groups was nearly always reduced. However, in most cases, we found no significant change in interannual variation of revenues, and, where changes were significant, variation decreased nearly as often as it increased.
Modeling bivalve diversification: the effect of interaction on a macroevolutionary system
NASA Technical Reports Server (NTRS)
Miller, A. I.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1988-01-01
The global diversification of the class Bivalvia has historically received two conflicting interpretations. One is that a major upturn in diversification was associated with, and a consequence of, the Lake Permian mass extinction. The other is that mass extinctions have had little influence and that bivalves have experienced slow but nearly steady exponential diversification through most of their history, unaffected by interactions with other clades. We find that the most likely explanation lies between these two interpretations. Through most of the Phanerozoic, the diversity of bivalves did indeed exhibit slow growth, which was not substantially altered by mass extinctions. However, the presence of "hyperexponential bursts" in diversification during the initial Ordovician radiation and following the Late Permian and Late Cretaceous mass extinctions suggests a more complex history in which a higher characteristic diversification rate was dampened through most of the Phanerozoic. The observed pattern can be accounted for with a two-phase coupled (i.e., interactive) logistic model, where one phase is treated as the "bivalves" and the other phase is treated as a hypothetical group of clades with which the "bivalves" might have interacted. Results of this analysis suggest that interactions with other taxa have substantially affected bivalve global diversity through the Phanerozoic.
Kazancioglu, Erem; Near, Thomas J; Hanel, Reinhold; Wainwright, Peter C
2009-10-07
Scaridae (parrotfishes) is a prominent clade of 96 species that shape coral reef communities worldwide through their actions as grazing herbivores. Phylogenetically nested within Labridae, the profound ecological impact and high species richness of parrotfishes suggest that their diversification and ecological success may be linked. Here, we ask whether parrotfish evolution is characterized by a significant burst of lineage diversification and whether parrotfish diversity is shaped more strongly by sexual selection or modifications of the feeding mechanism. We first examined scarid diversification within the greater context of labrid diversity. We used a supermatrix approach for 252 species to propose the most extensive phylogenetic hypothesis of Labridae to date, and time-calibrated the phylogeny with fossil and biogeographical data. Using divergence date estimates, we find that several parrotfish clades exhibit the highest diversification rates among all labrid lineages. Furthermore, we pinpoint a rate shift at the shared ancestor of Scarus and Chlorurus, a scarid subclade characterized by territorial behaviour and strong sexual dichromatism, suggesting that sexual selection was a major factor in parrotfish diversification. Modifications of the pharyngeal and oral jaws that happened earlier in parrotfish evolution may have contributed to this diversity by establishing parrotfishes as uniquely capable reef herbivores.
Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E
2011-07-01
Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Impact of catch shares on diversification of fishers’ income and risk
Speir, Cameron; Agar, Juan; Crosson, Scott; DePiper, Geret; Kasperski, Stephen; Kitts, Andrew W.; Perruso, Larry
2017-01-01
Many fishers diversify their income by participating in multiple fisheries, which has been shown to significantly reduce year-to-year variation in income. The ability of fishers to diversify has become increasingly constrained in the last few decades, and catch share programs could further reduce diversification as a result of consolidation. This could increase income variation and thus financial risk. However, catch shares can also offer fishers opportunities to enter or increase participation in catch share fisheries by purchasing or leasing quota. Thus, the net effect on diversification is uncertain. We tested whether diversification and variation in fishing revenues changed after implementation of catch shares for 6,782 vessels in 13 US fisheries that account for 20% of US landings revenue. For each of these fisheries, we tested whether diversification levels, trends, and variation in fishing revenues changed after implementation of catch shares, both for fishers that remained in the catch share fishery and for those that exited but remained active in other fisheries. We found that diversification for both groups was nearly always reduced. However, in most cases, we found no significant change in interannual variation of revenues, and, where changes were significant, variation decreased nearly as often as it increased. PMID:28808006
Lin, Li; Tang, Liang; Bai, Yun-Jun; Tang, Zhi-Yao; Wang, Wei; Chen, Zhi-Duan
2015-09-03
The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group.
Amorim, Pedro F.; Mattos, José Leonardo O.
2018-01-01
The Caatinga is the largest nucleus of seasonally dry tropical forests in South America, but little is known about the evolutionary history and biogeography of endemic organisms. Evolutionary diversification and distribution of terrestrial vertebrates endemic to the Caatinga have been explained by palaeogeographical Neogene episodes, mostly related to changes in the course of the São Francisco River, the largest river in the region. Our objective is to estimate the timing of divergence of two endemic groups of short-lived seasonal killifishes inhabiting all ecoregions of the Caatinga, testing the occurrence of synchronic events of spatial diversification in light of available data on regional palaeogeography. We performed independent time-calibrated phylogenetic molecular analyses for two clades of sympatric and geographically widespread seasonal killifishes endemic to the Caatinga, the Hypsolebias antenori group and the Cynolebias alpha-clade. Our results consistently indicate that species diversification took place synchronically in both groups, as well as it is contemporary to diversification of other organisms adapted to life in the semi-arid Caatinga, including lizards and small mammals. Both groups originated during the Miocene, but species diversification started between the Late Miocene and Early Pliocene, when global cooling probably favoured the expansion of semi-arid areas. Synchronic diversification patterns found are chronologically related to Tertiary palaeogeographical reorganizations associated to continental drift and to Quaternary climatic changes, corroborating the recent proposal that South American biodiversity has been continuously shaped between the Late Paleogene and Pleistocene. PMID:29451915
Costa, Wilson J E M; Amorim, Pedro F; Mattos, José Leonardo O
2018-01-01
The Caatinga is the largest nucleus of seasonally dry tropical forests in South America, but little is known about the evolutionary history and biogeography of endemic organisms. Evolutionary diversification and distribution of terrestrial vertebrates endemic to the Caatinga have been explained by palaeogeographical Neogene episodes, mostly related to changes in the course of the São Francisco River, the largest river in the region. Our objective is to estimate the timing of divergence of two endemic groups of short-lived seasonal killifishes inhabiting all ecoregions of the Caatinga, testing the occurrence of synchronic events of spatial diversification in light of available data on regional palaeogeography. We performed independent time-calibrated phylogenetic molecular analyses for two clades of sympatric and geographically widespread seasonal killifishes endemic to the Caatinga, the Hypsolebias antenori group and the Cynolebias alpha-clade. Our results consistently indicate that species diversification took place synchronically in both groups, as well as it is contemporary to diversification of other organisms adapted to life in the semi-arid Caatinga, including lizards and small mammals. Both groups originated during the Miocene, but species diversification started between the Late Miocene and Early Pliocene, when global cooling probably favoured the expansion of semi-arid areas. Synchronic diversification patterns found are chronologically related to Tertiary palaeogeographical reorganizations associated to continental drift and to Quaternary climatic changes, corroborating the recent proposal that South American biodiversity has been continuously shaped between the Late Paleogene and Pleistocene.
Drakos, Nicole E; Wahl, Lindi M
2015-12-01
Theoretical approaches are essential to our understanding of the complex dynamics of mobile genetic elements (MGEs) within genomes. Recently, the birth-death-diversification model was developed to describe the dynamics of mobile promoters (MPs), a particular class of MGEs in prokaryotes. A unique feature of this model is that genetic diversification of elements was included. To explore the implications of diversification on the longterm fate of MGE lineages, in this contribution we analyze the extinction probabilities, extinction times and equilibrium solutions of the birth-death-diversification model. We find that diversification increases both the survival and growth rate of MGE families, but the strength of this effect depends on the rate of horizontal gene transfer (HGT). We also find that the distribution of MGE families per genome is not necessarily monotonically decreasing, as observed for MPs, but may have a peak in the distribution that is related to the HGT rate. For MPs specifically, we find that new families have a high extinction probability, and predict that the number of MPs is increasing, albeit at a very slow rate. Additionally, we develop an extension of the birth-death-diversification model which allows MGEs in different regions of the genome, for example coding and non-coding, to be described by different rates. This extension may offer a potential explanation as to why the majority of MPs are located in non-promoter regions of the genome. Copyright © 2015 Elsevier Inc. All rights reserved.
Character combinations, convergence and diversification in ectoparasitic arthropods.
Poulin, Robert
2009-08-01
Different lineages of organisms diversify over time at different rates, in part as a consequence of the characteristics of the species in these lineages. Certain suites of traits possessed by species within a clade may determine rates of diversification, with some particular combinations of characters acting synergistically to either limit or promote diversification; the most successful combinations may also emerge repeatedly in different clades via convergent evolution. Here, the association between species characters and diversification is investigated amongst 21 independent lineages of arthropods ectoparasitic on vertebrate hosts. Using nine characters (each with two to four states) that capture general life history strategy, transmission mode and host-parasite interaction, each lineage was described by the set of character states it possesses. The results show, firstly, that most possible pair-wise combinations of character states have been adopted at least once, sometimes several times independently by different lineages; thus, ectoparasitic arthropods have explored most of the life history character space available to them. Secondly, lineages possessing commonly observed combinations of character states are not necessarily the ones that have experienced the highest rates of diversification (measured as a clade's species-per-genus ratio). Thirdly, some specific traits are associated with higher rates of diversification. Using more than one host per generation, laying eggs away from the host and intermediate levels of fecundity are features that appear to have promoted diversification. These findings indicate that particular species characters may be evolutionary drivers of diversity, whose effects could also apply in other taxa.
Trait-based diversification shifts reflect differential extinction among fossil taxa.
Wagner, Peter J; Estabrook, George F
2014-11-18
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.
Pimentel, Manuel; Escudero, Marcial; Sahuquillo, Elvira; Minaya, Miguel Ángel; Catalán, Pilar
2017-01-01
The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding ( ndhF , matk ) and three non-coding ( trnH-psbA , trnT-L and trnL-F ), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae.
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot.
Xing, Yaowu; Ree, Richard H
2017-04-25
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.
Escudero, Marcial; Sahuquillo, Elvira; Minaya, Miguel Ángel; Catalán, Pilar
2017-01-01
The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding (ndhF, matk) and three non-coding (trnH-psbA, trnT-L and trnL-F), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae. PMID:28951814
Bloom, Devin D; Weir, Jason T; Piller, Kyle R; Lovejoy, Nathan R
2013-07-01
Freshwater habitats make up only ∼0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time-calibrated phylogeny and a state-dependent speciation-extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state-dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage-through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Zha, Qiang
2009-01-01
The expansion and diversification of higher education are twin phenomena that have been associated with the development of higher education in many countries around the world. This study attempts to use enrolment expansion as a lens to examine the effects of governmental intervention and market forces on diversification of the Chinese system,…
Chakrabarty, Prosanta; Davis, Matthew P; Smith, W Leo; Baldwin, Zachary H; Sparks, John S
2011-07-01
Sexual selection may facilitate genetic isolation among populations and result in increased rates of diversification. As a mechanism driving diversification, sexual selection has been invoked and upheld in numerous empirical studies across disparate taxa, including birds, plants and spiders. In this study, we investigate the potential impact of sexual selection on the tempo and mode of ponyfish evolution. Ponyfishes (Leiognathidae) are bioluminescent marine fishes that exhibit sexually dimorphic features of their unique light-organ system (LOS). Although sexual selection is widely considered to be the driving force behind ponyfish speciation, this hypothesis has never been formally tested. Given that some leiognathid species have a sexually dimorphic LOS, whereas others do not, this family provides an excellent system within which to study the potential role of sexual selection in diversification and morphological differentiation. In this study, we estimate the phylogenetic relationships and divergence times for Leiognathidae, investigate the tempo and mode of ponyfish diversification, and explore morphological shape disparity among leiognathid clades. We recover strong support for a monophyletic Leiognathidae and estimate that all major ponyfish lineages evolved during the Paleogene. Our studies of ponyfish diversification demonstrate that there is no conclusive evidence that sexually dimorphic clades are significantly more species rich than nonsexually dimorphic lineages and that evidence is lacking to support any significant diversification rate increases within ponyfishes. Further, we detected a lineage-through-time signal indicating that ponyfishes have continuously diversified through time, which is in contrast to many recent diversification studies that identify lineage-through-time patterns that support mechanisms of density-dependent speciation. Additionally, there is no evidence of sexual selection hindering morphological diversity, as sexually dimorphic taxa are shown to be more disparate in overall shape morphology than nonsexually dimorphic taxa. Our results suggest that if sexual selection is occurring in ponyfish evolution, it is likely acting only as a genetic isolating mechanism that has allowed ponyfishes to continuously diversify over time, with no overall impact on increases in diversification rate or morphological disparity. © 2011 Blackwell Publishing Ltd.
Salim, Hossan Md; Huque, Khan Shahidul; Kamaruddin, Kazi M; Beg, M D Anwarul Haque
2018-03-01
A growing global concern of antibiotic use in poultry diets due to its potential adverse effects on birds and human health, food safety and the environment has led to a complete ban or restricted use in some countries, and, at the same time, expanding options for the use of alternative feed additives. Multiple, rather than a single additive may replace antibiotic growth promoters (AGPs) in poultry. Blending of feeding additives and hygienic farm management, vaccination and biosecurity may help achieve good intestinal health, stabilise enteric ecosystems and result in sustainable and cost effective production performance of birds. Moreover, controlling unsolicited ingredients at the production level must have the support of different markets responsible for the supply of safe and quality poultry products for consumers. This requires the further increase and diversification of value added poultry products and the expansion of their markets through strategic planning and gradual limitation of live bird markets. More research is warranted in order to explore suitable, reliable and cost effective alternatives to AGPs for commercial use, and strategic poultry value chain development.
Tracking environmental dynamics and agricultural intensification in southern Mali
Tappan, G. Gray; McGahuey, M.
2007-01-01
The Office de la Haute Vallée du Fleuve Niger (OHVN) zone in southern Mali is a small but important agricultural production region. Against a background of environmental degradation including decades of declining rainfall, soil erosion, and human pressure on forest resources, numerous farming communities stand out through the use of improved soil and water management practices that have improved agricultural and environmental conditions. Field surveys conducted in 1998–2001 indicated that environmental and agricultural conditions have improved in the past decade. In an effort to better quantify environmental trends, we conducted a study using medium- and high-resolution remotely sensed images from 1965 to 2001 in order to analyze land use and land cover trends in 21 village territories. The trends show clear indications of agricultural intensification and diversification among villages that have received assistance from the OHVN agricultural development agency. Some communities have improved environmental conditions by protecting their forest resources through community management actions. Four decades of remotely sensed images played a practical role in tracking and quantifying environmental and agricultural conditions over time.
Tougard, Christelle; García Dávila, Carmen R; Römer, Uwe; Duponchelle, Fabrice; Cerqueira, Frédérique; Paradis, Emmanuel; Guinand, Bruno; Angulo Chávez, Carlos; Salas, Vanessa; Quérouil, Sophie; Sirvas, Susana; Renno, Jean-François
2017-01-01
Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary.
García Dávila, Carmen R.; Römer, Uwe; Duponchelle, Fabrice; Cerqueira, Frédérique; Paradis, Emmanuel; Guinand, Bruno; Angulo Chávez, Carlos; Salas, Vanessa; Quérouil, Sophie; Sirvas, Susana; Renno, Jean-François
2017-01-01
Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary. PMID:28873089
Condamine, Fabien L
2018-03-01
Mountainous areas contain a substantial part of the world species richness, but the evolutionary origins and diversification of this biodiversity remain elusive. Diversification may result from differences in clade age (longer time to diversify), net diversification rates (faster speciation rate) or carrying capacities (number of niches). The likelihood of these macroevolutionary scenarios was assessed for six clades of Apollo swallowtails ( Parnassius ) that diversified mainly in the Himalayan-Tibetan region. The analyses suggest that neither the clade age nor the speciation rate could explain the mountain butterfly diversification. Instead diversity-dependence models were strongly supported for each group. Models further estimated clades' carrying capacities, which approximate to the current number of species, indicating that diversity equilibrium has been reached (or close to being reached). The results suggest that diversification of mountain butterflies was controlled by ecological limits, which governed the number of niches, and provide macroevolutionary justification for regarding mountains as islands. © 2018 The Author(s).
Independent evolution of the sexes promotes amphibian diversification.
De Lisle, Stephen P; Rowe, Locke
2015-03-22
Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models-that the sexes share a common adaptive landscape-leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Diet and Diversification in the Evolution of Coral Reef Fishes
Lobato, Fabio L.; Barneche, Diego R.; Siqueira, Alexandre C.; Liedke, Ana M. R.; Lindner, Alberto; Pie, Marcio R.; Bellwood, David R.; Floeter, Sergio R.
2014-01-01
The disparity in species richness among evolutionary lineages is one of the oldest and most intriguing issues in evolutionary biology. Although geographical factors have been traditionally thought to promote speciation, recent studies have underscored the importance of ecological interactions as one of the main drivers of diversification. Here, we test if differences in species richness of closely related lineages match predictions based on the concept of density-dependent diversification. As radiation progresses, ecological niche-space would become increasingly saturated, resulting in fewer opportunities for speciation. To assess this hypothesis, we tested whether reef fish niche shifts toward usage of low-quality food resources (i.e. relatively low energy/protein per unit mass), such as algae, detritus, sponges and corals are accompanied by rapid net diversification. Using available molecular information, we reconstructed phylogenies of four major reef fish clades (Acanthuroidei, Chaetodontidae, Labridae and Pomacentridae) to estimate the timing of radiations of their subclades. We found that the evolution of species-rich clades was associated with a switch to low quality food in three of the four clades analyzed, which is consistent with a density-dependent model of diversification. We suggest that ecological opportunity may play an important role in understanding the diversification of reef-fish lineages. PMID:25029229
2018-01-01
Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. PMID:29514970
Bright, Lydia J.; Gout, Jean-Francois; Lynch, Michael
2017-01-01
New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. PMID:28251922
NASA Astrophysics Data System (ADS)
Fine, P.; Zapata, F.; Daly, D.
2014-12-01
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.
Hernández-Hernández, Tania; Brown, Joseph W; Schlumpberger, Boris O; Eguiarte, Luis E; Magallón, Susana
2014-06-01
Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Matos-Maraví, Pável
2016-07-01
Different diversification scenarios have been proposed to explain the origin of extant biodiversity. However, most existing meta-analyses of time-calibrated phylogenies rely on approaches that do not quantitatively test alternative diversification processes. Here, I highlight the shortcomings of using species divergence ranks, which is a method widely used in meta-analyses. Divergence ranks consist of categorizing cladogenetic events to certain periods of time, typically to either Pleistocene or to pre-Pleistocene ages. This approach has been claimed to shed light on the origin of most extant species and the timing and dynamics of diversification in any biogeographical region. However, interpretations drawn from such method often confound two fundamental questions in macroevolutionary studies, tempo (timing of evolutionary rate shifts) and mode ("how" and "why" of speciation). By using simulated phylogenies under four diversification scenarios, constant-rate, diversity-dependence, high extinction, and high speciation rates in the Pleistocene, I showed that interpretations based on species divergence ranks might have been seriously misleading. Future meta-analyses of dated phylogenies need to be aware of the impacts of incomplete taxonomic sampling, tree topology, and divergence time uncertainties, as well as they might be benefited by including quantitative tests of alternative diversification models that acknowledge extinction and diversity dependence. © 2016 The Author(s).
Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation.
Jahner, Joshua P; Forister, Matthew L; Parchman, Thomas L; Smilanich, Angela M; Miller, James S; Wilson, Joseph S; Walla, Thomas R; Tepe, Eric J; Richards, Lora A; Quijano-Abril, Mario Alberto; Glassmire, Andrea E; Dyer, Lee A
2017-12-01
The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper-diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping-by-sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper-diverse lineages. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.
Moen, Daniel S; Wiens, John J
2017-07-01
A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.
Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics.
Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang
2017-05-01
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Increased diversification rates follow shifts to bisexuality in liverworts.
Laenen, Benjamin; Machac, Antonin; Gradstein, S Robbert; Shaw, Blanka; Patiño, Jairo; Désamoré, Aurélie; Goffinet, Bernard; Cox, Cymon J; Shaw, A Jonathan; Vanderpoorten, Alain
2016-05-01
Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Cassidy, Elizabeth J; Bath, Eleanor; Chenoweth, Stephen F; Bonduriansky, Russell
2014-02-01
The consequences of sex-specific selection for patterns of diversification remain poorly known. Because male secondary sexual traits are typically costly to express, and both costs and benefits are likely to depend on ambient environment and individual condition, such traits may be expected to diversify via changes in reaction norms as well as the scaling of trait size with body size (static allometry). We investigated morphological diversification within two species of Australian neriid flies (Telostylinus angusticollis, Telostylinus lineolatus) by rearing larvae from several populations on larval diets varying sixfold in nutrient concentration. Mean body size varied among populations of T. angusticollis, but body size reaction norms did not vary within either species. However, we detected diversification of reaction norms for body shape in males and females within both species. Moreover, unlike females, males also diversified in static allometry slope and reaction norms for static allometry slope of sexual and nonsexual traits. Our findings reveal qualitative sex differences in patterns of morphological diversification, whereby shape-size relationships diversify extensively in males, but remain conserved in females despite extensive evolution of trait means. Our results highlight the importance of incorporating plasticity and allometry in studies of adaptation and diversification. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Fuchs, Jérôme; Johnson, Jeff A; Mindell, David P
2015-01-01
Understanding how and why lineages diversify is central to understanding the origins of biological diversity. The avian family Falconidae (caracaras, forest-falcons, falcons) has an uneven distribution of species among multiple well-supported clades, and provides a useful system for testing hypotheses about diversification rate and correlation with environmental changes. We analyzed eight independent loci for 1-7 individuals from each of the 64 currently recognized Falconidae species, together with two fossil falconid temporal calibrations, to assess phylogeny, absolute divergence times and potential shifts in diversification rate. Our analyses supported similar diversification ages in the Early to Middle Miocene for the three traditional subfamilies, Herpetotherinae, Polyborinae and Falconinae. We estimated that divergences within the subfamily Falconinae began about 16mya and divergences within the most species-rich genus, Falco, including about 60% of all Falconidae species, began about 7.5mya. We found evidence for a significant increase in diversification rate at the basal phylogenetic node for the genus Falco, and the timing for this rate shift correlates generally with expansion of C4 grasslands beginning around the Miocene/Pliocene transition. Concomitantly, Falco lineages that are distributed primarily in grassland or savannah habitats, as opposed to woodlands, and exhibit migratory, as opposed to sedentary, behavior experienced a higher diversification rate. Published by Elsevier Inc.
Reyes, Elisabeth; Morlon, Hélène; Sauquet, Hervé
2015-07-01
The Proteaceae is a large angiosperm family displaying the common pattern of uneven distribution of species among genera. Previous studies have shown that this disparity is a result of variation in diversification rates across lineages, but the reasons for this variation are still unclear. Here, we tested the impact of floral symmetry and occurrence in Mediterranean climate regions on speciation and extinction rates in the Proteaceae. A rate shift analysis was conducted on dated genus-level phylogenetic trees of the Proteaceae. Character-dependent analyses were used to test for differences in diversification rates between actinomorphic and zygomorphic lineages and between lineages located within or outside Mediterranean climate regions. The rate shift analysis identified 5-10 major diversification rate shifts in the Proteaceae tree. The character-dependent analyses showed that speciation rates, extinction rates and net diversification rates of the Proteaceae were significantly higher for lineages occurring in Mediterranean hotspots. Higher speciation and extinction rates were also detected for zygomorphic species, but net diversification rates appeared to be similar in actinomorphic and zygomorphic Proteaceae. Presence in Mediterranean hotspots favors Proteaceae diversification. In contrast with observations at the scale of angiosperms, floral symmetry is not a trait that strongly influences their evolutionary success. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau
Wen, Jun; Zhang, Jian-Qiang; Nie, Ze-Long; Zhong, Yang; Sun, Hang
2014-01-01
The Qinghai-Tibetan Plateau (QTP) is the highest and one of the most extensive plateaus in the world. Phylogenetic, phylogeographic, and ecological studies support plant diversifications on the QTP through multiple mechanisms such as allopatric speciation via geographic isolation, climatic oscillations and divergences, pollinator-mediated isolation, diploid hybridization and introgression, and allopolyploidy. These mechanisms have driven spectacular radiations and/or species diversifications in various groups of plants such as Pedicularis L., Saussurea DC., Rhododendron L., Primula L., Meconopsis Vig., Rhodiola L., and many lineages of gymnosperms. Nevertheless, much work is needed toward understanding the evolutionary mechanisms of plant diversifications on the QTP. Well-sampled biogeographic analyses of the QTP plants in the broad framework of the Northern Hemisphere as well as the Southern Hemisphere are still relatively few and should be encouraged in the next decade. This paper reviews recent evidence from phylogenetic and biogeographic studies in plants, in the context of rapid radiations, mechanisms of species diversifications on the QTP, and the biogeographic significance of the QTP in the broader context of both the Northern and Southern Hemisphere biogeography. Integrative multidimensional analyses of phylogeny, morphological innovations, geography, ecology, development, species interactions and diversifications, and geology are needed and should shed insights into the patterns of evolutionary assembly and radiations in this fascinating region. PMID:24575120
Marshall, Charles R.; Quental, Tiago B.
2016-01-01
There is no agreement among palaeobiologists or biologists as to whether, or to what extent, there are limits on diversification and species numbers. Here, we posit that part of the disagreement stems from: (i) the lack of explicit criteria for defining the relevant species pools, which may be defined phylogenetically, ecologically or geographically; (ii) assumptions that must be made when extrapolating from population-level logistic growth to macro-evolutionary diversification; and (iii) too much emphasis being placed on fixed carrying capacities, rather than taking into account the opportunities for increased species richness on evolutionary timescales, for example, owing to increased biologically available energy, increased habitat complexity and the ability of many clades to better extract resources from the environment, or to broaden their resource base. Thus, we argue that a more effective way of assessing the evidence for and against the ideas of bound versus unbound diversification is through appropriate definition of the relevant species pools, and through explicit modelling of diversity-dependent diversification with time-varying carrying capacities. Here, we show that time-varying carrying capacities, either increases or decreases, can be accommodated through changing intrinsic diversification rates (diversity-independent effects), or changing the effects of crowding (diversity-dependent effects). PMID:26977059
Bryson, Robert W; García-Vázquez, Uri Omar; Riddle, Brett R
2012-01-01
Neogene vicariance during the Miocene and Pliocene and Quaternary climate change have synergistically driven diversification in Mexican highland taxa. We investigated the impacts of these processes on genetic diversification in the widely distributed bunchgrass lizards in the Sceloporus scalaris group. We searched for correlations between timing in diversification and timing of (1) a period of marked volcanism across the Trans-Mexican Volcanic Belt in central Mexico 3-7.5million years ago (Ma) and (2) a transition to larger glacial-interglacial cycles during the mid-Pleistocene. From our phylogenetic analyses of mitochondrial DNA we identified two major clades that contained 13 strongly supported lineages. One clade contained lineages from the two northern sierras of Mexico, and the other clade included lineages associated with the Trans-Mexican Volcanic Belt and Central Mexican Plateau. Results provided support for Neogene divergences within the S. scalaris group in response to uplift of the Trans-Mexican Volcanic Belt, a pattern observed in several co-distributed taxa, and suggested that Quaternary climate change likely had little effect on diversification between lineages. Uplift of the Trans-Mexican Volcanic Belt during specific time periods appears to have strongly impacted diversification in Mexican highland taxa. Copyright © 2011 Elsevier Inc. All rights reserved.
Trait-based diversification shifts reflect differential extinction among fossil taxa
Wagner, Peter J.; Estabrook, George F.
2014-01-01
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898
Kong, Hanghui; Condamine, Fabien L; Harris, A J; Chen, Junlin; Pan, Bo; Möller, Michael; Hoang, Van Sam; Kang, Ming
2017-11-01
Karst ecosystems in southern China are species-rich and have high levels of endemism, yet little is known regarding the evolutionary processes responsible for the origin and diversification of karst biodiversity. The genus Primulina (Gesneriaceae) comprises ca. 170 species endemic to southern China with high levels of ecological (edaphic) specialization, providing an exceptional model to study the plant diversification in karsts. We used molecular data from nine chloroplast and 11 nuclear regions and macroevolutionary analyses to assess the origin and cause of species diversification due to palaeoenvironmental changes and edaphic specialization in Primulina. We found that speciation was positively associated with changes in past temperatures and East Asian monsoons through the evolutionary history of Primulina. Climatic change around the mid-Miocene triggered an early burst followed by a slowdown of diversification rate towards the present with the climate cooling. We detected different speciation rates among edaphic types, and transitions among soil types were infrequently and did not impact the overall speciation rate. Our findings suggest that both global temperature changes and East Asian monsoons have played crucial roles in floristic diversification within the karst ecosystems in southern China, such that speciation was higher when climate was warmer and wetter. This is the first study to directly demonstrate that past monsoon activity is positively correlated with speciation rate in East Asia. This case study could motivate further investigations to assess the impacts of past environmental changes on the origin and diversification of biodiversity in global karst ecosystems, most of which are under threat. © 2017 John Wiley & Sons Ltd.
Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki
2017-04-01
Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Early diversification trend and Asian origin for extent bat lineages.
Yu, W; Wu, Y; Yang, G
2014-10-01
Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
The influence of habitat on the evolution of plants: a case study across Saxifragales
de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.
2016-01-01
Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029
The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.
Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L
2010-12-01
Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.
Drummond, Christopher S; Eastwood, Ruth J; Miotto, Silvia T S; Hughes, Colin E
2012-05-01
Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations" in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World.
Condamine, Fabien L; Silva-Brandão, Karina L; Kergoat, Gael J; Sperling, Felix A H
2012-06-12
The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.
2012-01-01
Background The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. Results The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33–42 Ma) origin in North America. Two independent lineages (Battus and Euryades + Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the “museum model” of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. Conclusions This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies. PMID:22690927
Microscale vicariance and diversification of Western Balkan caddisflies linked to karstification.
Previšić, Ana; Schnitzler, Jan; Kučinić, Mladen; Graf, Wolfram; Ibrahimi, Halil; Kerovec, Mladen; Pauls, Steffen U
2014-03-01
The karst areas in the Dinaric region of the Western Balkan Peninsula are a hotspot of freshwater biodiversity. Many investigators have examined diversification of the subterranean freshwater fauna in these karst systems. However, diversification of surface-water fauna remains largely unexplored. We assessed local and regional diversification of surface-water species in karst systems and asked whether patterns of population differentiation could be explained by dispersal-diversification processes or allopatric diversification following karst-related microscale vicariance. We analyzed mitochondrial cytochrome c oxidase subunit I (mtCOI) sequence data of 4 caddisfly species (genus Drusus ) in a phylogeographic framework to assess local and regional population genetic structure and Pliocene/Pleistocene history. We used BEAST software to assess the timing of intraspecific diversification of the target species. We compared climate envelopes of the study species and projected climatically suitable areas during the last glacial maximum (LGM) to assess differences in the species climatic niches and infer potential LGM refugia. The haplotype distribution of the 4 species (324 individuals from 32 populations) was characterized by strong genetic differentiation with few haplotypes shared among populations (16%) and deep divergence among populations of the 3 endemic species, even at local scales. Divergence among local populations of endemics often exceeded divergence among regional and continental clades of the widespread D. discolor . Major divergences among regional populations dated to 2.0 to 0.5 Mya. Species distribution model projections and genetic structure suggest that the endemic species persisted in situ and diversified locally throughout multiple Pleistocene climate cycles. The pattern for D. discolor was different and consistent with multiple invasions into the region. Patterns of population genetic structure and diversification were similar for the 3 regional endemic Drusus species and consistent with microscale vicariance after the onset of intensified karstification in the Dinaric region. Karstification may induce microscale vicariance of running surface-water habitats and probably promotes allopatric fragmentation of stream insects at small spatial scales.
Evolutionary Roots and Diversification of the Genus Aeromonas.
Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J G; Fusté, M C
2017-01-01
Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes.
Evolutionary Roots and Diversification of the Genus Aeromonas
Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J. G.; Fusté, M. C.
2017-01-01
Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes. PMID:28228750
Freudenstein, John V; Chase, Mark W
2015-03-01
The largest subfamily of orchids, Epidendroideae, represents one of the most significant diversifications among flowering plants in terms of pollination strategy, vegetative adaptation and number of species. Although many groups in the subfamily have been resolved, significant relationships in the tree remain unclear, limiting conclusions about diversification and creating uncertainty in the classification. This study brings together DNA sequences from nuclear, plastid and mitochrondrial genomes in order to clarify relationships, to test associations of key characters with diversification and to improve the classification. Sequences from seven loci were concatenated in a supermatrix analysis for 312 genera representing most of epidendroid diversity. Maximum-likelihood and parsimony analyses were performed on this matrix and on subsets of the data to generate trees and to investigate the effect of missing values. Statistical character-associated diversification analyses were performed. Likelihood and parsimony analyses yielded highly resolved trees that are in strong agreement and show significant support for many key clades. Many previously proposed relationships among tribes and subtribes are supported, and some new relationships are revealed. Analyses of subsets of the data suggest that the relatively high number of missing data for the full analysis is not problematic. Diversification analyses show that epiphytism is most strongly associated with diversification among epidendroids, followed by expansion into the New World and anther characters that are involved with pollinator specificity, namely early anther inflexion, cellular pollinium stalks and the superposed pollinium arrangement. All tested characters show significant association with speciation in Epidendroideae, suggesting that no single character accounts for the success of this group. Rather, it appears that a succession of key features appeared that have contributed to diversification, sometimes in parallel. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Burning phylogenies: fire, molecular evolutionary rates, and diversification.
Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando
2007-09-01
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.
Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae
Biffin, Ed; Lucas, Eve J.; Craven, Lyn A.; Ribeiro da Costa, Itayguara; Harrington, Mark G.; Crisp, Michael D.
2010-01-01
Background and Aims The angiosperm family Myrtaceae comprises 17 tribes with more than half of the estimated 5500 species being referred to the fleshy-fruited and predominantly rainforest associated Syzygieae and Myrteae. Previous studies suggest that fleshy fruits have evolved separately in these lineages, whereas generally shifts in fruit morphology have been variously implicated in diversification rate shifts among angiosperms. A phylogenetic hypothesis and estimate divergence times for Myrtaceae is developed as a basis to explore the evidence for, and drivers of, elevated diversification rates among the fleshy-fruited tribes of Myrtaceae. Methods Bayesian phylogenetic analyses of plastid and nuclear DNA sequences were used to estimate intertribal relationships and lineage divergence times in Myrtaceae. Focusing on the fleshy-fruited tribes, a variety of statistical approaches were used to assess diversification rates and diversification rate shifts across the family. Key Results Analyses of the sequence data provide a strongly supported phylogenetic hypothesis for Myrtaceae. Relative to previous studies, substantially younger ages for many of the clades are reported, and it is argued that the use of flexible calibrations to incorporate fossil data provides more realistic divergence estimates than the use of errorless point calibrations. It is found that Syzygieae and Myrteae have experienced elevated diversification rates relative to other lineages of Myrtaceae. Positive shifts in diversification rate have occurred separately in each lineage, associated with a shift from dry to fleshy fruit. Conclusions Fleshy fruits have evolved independently in Syzygieae and Myrteae, and this is accompanied by exceptional diversification rate shifts in both instances, suggesting that the evolution of fleshy fruits is a key innovation for rainforest Myrtaceae. Noting the scale dependency of this hypothesis, more complex explanations may be required to explain diversification rate shifts occurring within the fleshy-fruited tribes, and the suggested phylogenetic hypothesis provides an appropriate framework for this undertaking. PMID:20462850
Wender, Paul A; Billingsley, Kelvin L
2013-01-01
The design, synthesis, and biological evaluation of a novel class of C13-diversified bryostatin analogues are described. An innovative and general strategy based on a Prins macrocyclization-nucleophilic trapping cascade was used to achieve late-stage diversification. In vitro analysis of selected library members revealed that modification at the C13 position of the bryostatin scaffold can be used as a diversification handle to regulate biological activity.
Can Google Trends search queries contribute to risk diversification?
Kristoufek, Ladislav
2013-01-01
Portfolio diversification and active risk management are essential parts of financial analysis which became even more crucial (and questioned) during and after the years of the Global Financial Crisis. We propose a novel approach to portfolio diversification using the information of searched items on Google Trends. The diversification is based on an idea that popularity of a stock measured by search queries is correlated with the stock riskiness. We penalize the popular stocks by assigning them lower portfolio weights and we bring forward the less popular, or peripheral, stocks to decrease the total riskiness of the portfolio. Our results indicate that such strategy dominates both the benchmark index and the uniformly weighted portfolio both in-sample and out-of-sample.
Can Google Trends search queries contribute to risk diversification?
Kristoufek, Ladislav
2013-01-01
Portfolio diversification and active risk management are essential parts of financial analysis which became even more crucial (and questioned) during and after the years of the Global Financial Crisis. We propose a novel approach to portfolio diversification using the information of searched items on Google Trends. The diversification is based on an idea that popularity of a stock measured by search queries is correlated with the stock riskiness. We penalize the popular stocks by assigning them lower portfolio weights and we bring forward the less popular, or peripheral, stocks to decrease the total riskiness of the portfolio. Our results indicate that such strategy dominates both the benchmark index and the uniformly weighted portfolio both in-sample and out-of-sample. PMID:24048448
Impacts and responses to environmental change in coastal livelihoods of south-west Bangladesh.
Hossain, Mostafa A R; Ahmed, Munir; Ojea, Elena; Fernandes, Jose A
2018-05-12
Aquatic ecosystems are of global importance for maintaining high levels of biodiversity and ecosystem services, and for the number of livelihoods dependent on them. In Bangladesh, coastal and delta communities rely on these systems for a livelihood, and the sustainability of the productivity is seriously threatened by both climate change and unsustainable management. These multiple drivers of change shape the livelihood dependence and adaptation responses, where a better understanding is needed to achieve sustainable management in these systems, while maintaining and improving dependent livelihoods. This need has been addressed in this study in the region of Satkhira, in the southwest coast of Bangladesh, where livelihoods are highly dependent on aquatic systems for food supply and income. Traditional wild fish harvest in the rivers and aquaculture systems, including ghers, ponds, and crab points have been changing in terms of the uses and intensity of management, and suffering from climate change impacts as well. By means of six focus groups with 50 participants total, and validated by expert consultations, we conduct an analysis to understand the main perceived impacts from climate and human activities; and the adaptation responses from the aquatic system livelihoods. We find that biodiversity has decreased drastically, while farmed species have increased and shrimp gher farming turned more intensive becoming the main source of income. All these changes have important implications for food supply in the region and environmental sustainability. Dramatic responses taken in the communities include exit the fisheries and migration, and more adaptive responses include species diversification, crab fattening and working more on the pond and gher infrastructure. This study evidences the results of the combination of multiple stressors in productive systems and the barriers to adaptation in aquatic ecosystem dependent communities. Copyright © 2017 Elsevier B.V. All rights reserved.
Water for rice farming and biodiversity: Exploring choices for adaptation in Doñana, southern Spain
NASA Astrophysics Data System (ADS)
De Stefano, Lucia; Hernández Mora, Nuria; Iglesias, Ana; Sánchez, Berta
2015-04-01
This paper showcases the tension between the need of higher in-stream flows in the Lower Gualdaquivir River Basin, in Sothern Spain, to sustain its ecosystems and the high dependence of rice farming on large amounts of water for irrigation. Climate change projections suggest that this tension is likely to be exacerbated due to a reduction in precipitation and an increase in temperature. The main actors of the Lower Guadalquivir do perceive changes in water availability and quality as well as climatic conditions and are exploring options to cope with them. Equally important for the future of the area are economic and political factors such as the evolution of rice prices in international markets and subsidies of the European Common Agricultural Policy. Stakeholders in the area believe that rice farming is likely to remain central in the socio-economic structure of the Lower Guadalquivir, but are increasingly aware that new development strategies need to be adopted to face a changing world. Discussed options combine technical measures to improve the guarantee of water provision - modernization of irrigation systems, water works to control water salinity - with 'soft' measures that should improve water use and governance - transfer of research results, higher control of land and water uses, water trading and farmers training and advice. Moreover, there is a general awareness of the compelling needs for diversification of economic activity to reduce the risks linked to monoculture and for increasing the competitiveness of economic activities. Perhaps the main barrier to adaptation is that adapting to shrinking and more variable water resources creates a dilemma between water for rice farming or water for nature - mainly the Gualdaquivir estuary and the associated ecosystems. However, there are a number of adaptation measures that could help harmonize those two apparently conflicting interests. To identify and reach a consensus about possible strategies to adapt to climate change the first step is to actually agree upon the fact that climate is changing and that the future will not look like the past or present. This change of mindset is needed to avoid implementing short-term measures or maladaptation. Adaptation strategies should consider water quantity and quality issues, as they are strongly intertwined. In any case, open dialogue and information exchange among local stakeholders is crucial to widen their view on possible solutions and open up new opportunities for strengthening the local economy while preserving biodiversity.
The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia
2014-01-01
Background Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation. Results We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity. Conclusions Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region. It appears that the exceptionally high diversification rate in the Canarian clade was mainly driven by allopatric speciation (including intra- and interisland diversification). Several intrinsic (e.g. breeding system, polyploid origin, seed dispersal syndrome) and extrinsic (e.g. fragmented landscape, isolated habitats, climatic and geological changes) factors probably contributed to the progressive differentiation of populations resulting in numerous microendemisms. Finally, hybridization events and emerging ecological adaptation may have also reinforced the diversification process. PMID:24888240
The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia.
Vitales, Daniel; Garnatje, Teresa; Pellicer, Jaume; Vallès, Joan; Santos-Guerra, Arnoldo; Sanmartín, Isabel
2014-06-02
Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation. We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity. Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region. It appears that the exceptionally high diversification rate in the Canarian clade was mainly driven by allopatric speciation (including intra- and interisland diversification). Several intrinsic (e.g. breeding system, polyploid origin, seed dispersal syndrome) and extrinsic (e.g. fragmented landscape, isolated habitats, climatic and geological changes) factors probably contributed to the progressive differentiation of populations resulting in numerous microendemisms. Finally, hybridization events and emerging ecological adaptation may have also reinforced the diversification process.
Burns, Kevin J; Shultz, Allison J; Title, Pascal O; Mason, Nicholas A; Barker, F Keith; Klicka, John; Lanyon, Scott M; Lovette, Irby J
2014-06-01
Thraupidae is the second largest family of birds and represents about 4% of all avian species and 12% of the Neotropical avifauna. Species in this family display a wide range of plumage colors and patterns, foraging behaviors, vocalizations, ecotypes, and habitat preferences. The lack of a complete phylogeny for tanagers has hindered the study of this evolutionary diversity. Here, we present a comprehensive, species-level phylogeny for tanagers using six molecular markers. Our analyses identified 13 major clades of tanagers that we designate as subfamilies. In addition, two species are recognized as distinct branches on the tanager tree. Our topologies disagree in many places with previous estimates of relationships within tanagers, and many long-recognized genera are not monophyletic in our analyses. Our trees identify several cases of convergent evolution in plumage ornaments and bill morphology, and two cases of social mimicry. The phylogeny produced by this study provides a robust framework for studying macroevolutionary patterns and character evolution. We use our new phylogeny to study diversification processes, and find that tanagers show a background model of exponentially declining diversification rates. Thus, the evolution of tanagers began with an initial burst of diversification followed by a rate slowdown. In addition to this background model, two later, clade-specific rate shifts are supported, one increase for Darwin's finches and another increase for some species of Sporophila. The rate of diversification within these two groups is exceptional, even when compared to the overall rapid rate of diversification found within tanagers. This study provides the first robust assessment of diversification rates for the Darwin's finches in the context of the larger group within which they evolved. Copyright © 2014 Elsevier Inc. All rights reserved.
Harrington, S; Reeder, T W
2017-02-01
The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
De-Nova, José Arturo; Sánchez-Reyes, Luna L; Eguiarte, Luis E; Magallón, Susana
2018-09-01
Arid biomes are particularly prominent in the Neotropics providing some of its most emblematic landscapes and a substantial part of its species diversity. To understand some of the evolutionary processes underlying the speciation of lineages in the Mexican Deserts, the diversification of Fouquieria is investigated, which includes eleven species, all endemic to the warm deserts and dry subtropical regions of North America. Using a phylogeny from plastid DNA sequences with samples of individuals from populations of all the species recognized in Fouquieria, we estimate divergence times, test for temporal diversification heterogeneity, test for geographical structure, and conduct ancestral area reconstruction. Fouquieria is an ancient lineage that diverged from Polemoniaceae ca. 75.54 Ma. A Mio-Pliocene diversification of Fouquieria with vicariance, associated with Neogene orogenesis underlying the early development of regional deserts is strongly supported. Test for temporal diversification heterogeneity indicates that during its evolutionary history, Fouquieria had a drastic diversification rate shift at ca.12.72 Ma, agreeing with hypotheses that some of the lineages in North American deserts diversified as early as the late Miocene to Pliocene, and not during the Pleistocene. Long-term diversification dynamics analyses suggest that extinction also played a significant role in Fouquieria's evolution, with a very high rate at the onset of the process. From the late Miocene onwards, Fouquieria underwent substantial diversification change, involving high speciation decreasing to the present and negligible extinction, which is congruent with its scant fossil record during this period. Geographic phylogenetic structure and the pattern of most sister species inhabiting different desert nucleus support that isolation by distance could be the main driver of speciation. Copyright © 2018 Elsevier Inc. All rights reserved.
Nagy, László G; Házi, Judit; Szappanos, Balázs; Kocsubé, Sándor; Bálint, Balázs; Rákhely, Gábor; Vágvölgyi, Csaba; Papp, Tamás
2012-07-01
Bursts of diversification are known to have contributed significantly to the extant morphological and species diversity, but evidence for many of the theoretical predictions about adaptive radiations have remained contentious. Despite their tremendous diversity, patterns of evolutionary diversification and the contribution of explosive episodes in fungi are largely unknown. Here, using the genus Coprinellus (Psathyrellaceae, Agaricales) as a model, we report the first explosive fungal radiation and infer that the onset of the radiation correlates with a change from a multilayered to a much simpler defense structure on the fruiting bodies. We hypothesize that this change constitutes a key innovation, probably relaxing constraints on diversification imposed by nutritional investment into the development of protective tissues of fruiting bodies. Fossil calibration suggests that Coprinellus mushrooms radiated during the Miocene coinciding with global radiation of large grazing mammals following expansion of dry open grasslands. In addition to diversification rate-based methods, we test the hard polytomy hypothesis, by analyzing the resolvability of internal nodes of the backbone of the putative radiation using Reversible-Jump MCMC. We discuss potential applications and pitfalls of this approach as well as how biologically meaningful polytomies can be distinguished from alignment shortcomings. Our data provide insights into the nature of adaptive radiations in general by revealing a deceleration of morphological diversification through time. The dynamics of morphological diversification was approximated by obtaining the temporal distribution of state changes in discrete traits along the trees and comparing it with the tempo of lineage accumulation. We found that the number of state changes correlate with the number of lineages, even in parts of the tree with short internal branches, and peaks around the onset of the explosive radiation followed by a slowdown, most likely because of the decrease in available niches.
The influence of habitat on the evolution of plants: a case study across Saxifragales.
de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E
2016-12-01
Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Farmer's response to changing climate in North East India
NASA Astrophysics Data System (ADS)
De, Utpal Kumar
2015-02-01
Diversification of land use in the cultivation of various crops provides an alternative way to moderate the climate risk. By choosing alternative crops that are resilient to various weather parameters, farmers can reduce the crop damage and achieve optimum output from their limited land resources. Apart from other adaptation measures, crop diversity can reflect farmers' response towards changing climate uncertainty. This paper tries to examine the changing climatic condition through spatio-temporal variation of two important weather variables (precipitation and temperature) in the largest North-East Indian state, Assam, since 1950. It is examined by the variation in crop diversification index. We have used (1) Herfindahl Index for measuring degree of diversification and (2) locational quotient for measuring the changes in the regional crop concentration. The results show that, in almost all the districts, crop specialization has been taking place slowly and that happened mostly in the last phase of our study. The hilly and backward districts recorded more diversification but towards lower value crops. It goes against the normal feature of crop diversification where farmers diversify in favour of high value crops. Employing ordinary least squares method and/or Fixed Effect model, irrigation is found to have significant impact on crop diversification; while the flood plain zones and hill zones are found to have better progress in this regard, which has been due to the survival necessity of poor farmers living the zone. Thus crop diversity does not reflect very significant response from the farmers' side towards changing weather factors (except rainfall) though they have significant impact on the productivity of various crops, and thus profitability. The study thus suggests the necessity for rapid and suitable diversification as alternative climate change mitigation in the long run.
Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago
Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E.
2018-01-01
Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns. PMID:29657753
Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago.
Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E; Pellissier, Loïc
2018-03-01
Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns.
Gibson, Rosalind S; Anderson, Victoria P
2009-03-01
Dietary diversification or modification has the potential to prevent deficiencies of zinc and other coexisting limiting micronutrients simultaneously, without risk of antagonistic interactions. In this review, we have addressed the following. The first section focuses on strategies with the potential to enhance intake and/or bioavailability of zinc, and includes interventions (with and without nutrition education) based on agriculture, production or promotion of animal-source foods through animal husbandry or aquaculture, and commercial and household processing strategies to enhance zinc absorption. Outcome indicators include intakes of foods or nutrients (although rarely zinc) and, in some cases, zinc status, or zinc-related functional responses. The next two sections address whether dietary diversification or modification can achieve increases in absorbable zinc that are sufficient to enhance zinc status or zinc-related functional responses in breastfed infants and toddlers and in older children and women of reproductive age. Evidence for the impact of dietary diversification or modification on behavior change and on nutritional status in the short and long term, and the possible role of modifying factors (e.g., baseline nutritional status, socioeconomic status, infection, sex, age, and life-stage group) is the emphasis of the next section. The following section highlights the evidence for three potential adverse effects of dietary diversification or modification: aflatoxin contamination from germinated cereals, loss of water-soluble nutrients, and displacement of breastmilk. Finally, an example of a dietary diversification or modification program (Homestead Food Production) developed and implemented by Helen Keller International is given, together with the critical steps needed to scale up dietary diversification or modification for programs and future research needs.
Diversification strategy and performance: implications for health services research.
Rivers, P A; Glover, S H; Munchus, G
1999-01-01
Health care represents a promising area of research due to its uniqueness. In recent years, considerable progress has been made in diversification strategy and performance research but not the study of health services strategy research. This article reviews diversification strategy and performance in health services domains. Adopting Datta, Rajagopalan, and Rasheed's (1991) framework, the authors evaluate the theoretical and empirical contributions of this research. The limitations and theoretical implications of these efforts are also explored.
Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G
2014-11-19
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.
Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.
2014-01-01
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197
Plural provision of primary medical care in England, 2002-2012.
Sheaff, Rod
2013-10-01
Health care reforms often include provider diversification, including privatization, to increase competition and thereby health care quality and efficiency. Donabedian's organizational theory implies that the consequences will vary according to the providers' ownership. The aim was to examine how far that theory applies to changes in English NHS primary medical care (general practice) since 1998, and the consequences for patterns of service provision. Framework analysis whose categories and structure reflected Donabedian's theory and its implications, populated with data from a systematic review, administrative sources and press rapportage. Two patterns of provider diversification occurred: 'native' diversification among existing providers and plural provision as providers with different types of ownership were introduced. Native diversification occurred through: extensive recruitment of salaried GPs; extending the range of services provided by general practices; introducing limited liability partnerships; establishing GPs with special clinical interests; and introducing a wider range of services for GPs to refer to. All of these had little apparent effect on competition between general practices. Plural provision involved: increased primary care provision by corporations; introducing GP-owned firms; establishing social enterprises (initially mostly out-of-hours cooperatives); and Primary Care Trusts taking over general practices. Plural provision was on a smaller scale than native diversification and appeared to go into reverse in 2011. Although the available data confirm the implications of Donabedian's theory, there are exceptions. Native diversification and plural provision policies differ in their implications for service development.
Higher speciation and lower extinction rates influence mammal diversity gradients in Asia.
Tamma, Krishnapriya; Ramakrishnan, Uma
2015-02-04
Little is known about the patterns and correlates of mammal diversity gradients in Asia. In this study, we examine patterns of species distributions and phylogenetic diversity in Asia and investigate if the observed diversity patterns are associated with differences in diversification rates between the tropical and non-tropical regions. We used species distribution maps and phylogenetic trees to generate species and phylogenetic diversity measures for 1° × 1° cells across mainland Asia. We constructed lineage-through-time plots and estimated diversification shift-times to examine the temporal patterns of diversifications across orders. Finally, we tested if the observed gradients in Asia could be associated with geographical differences in diversification rates across the tropical and non-tropical biomes. We estimated speciation, extinction and dispersal rates across these two regions for mammals, both globally and for Asian mammals. Our results demonstrate strong latitudinal and longitudinal gradients of species and phylogenetic diversity with Southeast Asia and the Himalayas showing highest diversity. Importantly, our results demonstrate that differences in diversification (speciation, extinction and dispersal) rates between the tropical and the non-tropical biomes influence the observed diversity gradients globally and in Asia. For the first time, we demonstrate that Asian tropics act as both cradles and museums of mammalian diversity. Temporal and spatial variation in diversification rates across different lineages of mammals is an important correlate of species diversity gradients observed in Asia.
Diversity-dependent evolutionary rates in early Palaeozoic zooplankton.
Foote, Michael; Cooper, Roger A; Crampton, James S; Sadler, Peter M
2018-02-28
The extent to which biological diversity affects rates of diversification is central to understanding macroevolutionary dynamics, yet no consensus has emerged on the importance of diversity-dependence of evolutionary rates. Here, we analyse the species-level fossil record of early Palaeozoic graptoloids, documented with high temporal resolution, to test directly whether rates of diversification were influenced by levels of standing diversity within this major clade of marine zooplankton. To circumvent the statistical regression-to-the-mean artefact, whereby higher- and lower-than-average values of diversity tend to be followed by negative and positive diversification rates, we construct a non-parametric, empirically scaled, diversity-independent null model by randomizing the observed diversification rates with respect to time. Comparing observed correlations between diversity and diversification rate to those expected from this diversity-independent model, we find evidence for negative diversity-dependence, accounting for up to 12% of the variance in diversification rate, with maximal correlation at a temporal lag of approximately 1 Myr. Diversity-dependence persists throughout the Ordovician and Silurian, despite a major increase in the strength and frequency of extinction and speciation pulses in the Silurian. By contrast to some previous work, we find that diversity-dependence affects rates of speciation and extinction nearly equally on average, although subtle differences emerge when we compare the Ordovician and Silurian. © 2018 The Author(s).
Fine, Paul V A; Zapata, Felipe; Daly, Douglas C
2014-07-01
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Aridification driven diversification of fan-throated lizards from the Indian subcontinent.
Deepak, V; Karanth, Praveen
2018-03-01
The establishment of monsoon climate and the consequent aridification has been one of the most important climate change episodes in the Indian subcontinent. However, little is known about how these events might have shaped the diversification patterns among the widely distributed taxa. Fan-throated lizards (FTL) (Genus: Sitana, Sarada) are widespread, diurnal and restricted to the semi-arid zones of the Indian subcontinent. We sampled FTL in 107 localities across its range. We used molecular species delimitation method and delineated 15 species including six putative species. Thirteen of them were distinguishable based on morphology but two sister species were indistinguishable and have minor overlaps in distribution. Five fossils were used to calibrate and date the phylogeny. Diversification of fan-throated lizards lineage started ~18 mya and higher lineage diversification was observed after 11 my. The initial diversification corresponds to the time when monsoon climate was established and the latter was a period of intensification of monsoon and initiation of aridification. Thirteen out of the fifteen FTL species delimited are from Peninsular India; this is probably due to the landscape heterogeneity in this region. The species poor sister genus Otocryptis is paraphyletic and probably represents relict lineages which are now confined to forested areas. Thus, the seasonality led changes in habitat, from forests to open habitats appear to have driven diversification of fan-throated lizards. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernández, Rosa; Kallal, Robert J; Dimitrov, Dimitar; Ballesteros, Jesús A; Arnedo, Miquel A; Giribet, Gonzalo; Hormiga, Gustavo
2018-05-07
Dating back to almost 400 mya, spiders are among the most diverse terrestrial predators [1]. However, despite considerable effort [1-9], their phylogenetic relationships and diversification dynamics remain poorly understood. Here, we use a synergistic approach to study spider evolution through phylogenomics, comparative transcriptomics, and lineage diversification analyses. Our analyses, based on ca. 2,500 genes from 159 spider species, reject a single origin of the orb web (the "ancient orb-web hypothesis") and suggest that orb webs evolved multiple times since the late Triassic-Jurassic. We find no significant association between the loss of foraging webs and increases in diversification rates, suggesting that other factors (e.g., habitat heterogeneity or biotic interactions) potentially played a key role in spider diversification. Finally, we report notable genomic differences in the main spider lineages: while araneoids (ecribellate orb-weavers and their allies) reveal an enrichment in genes related to behavior and sensory reception, the retrolateral tibial apophysis (RTA) clade-the most diverse araneomorph spider lineage-shows enrichment in genes related to immune responses and polyphenic determination. This study, one of the largest invertebrate phylogenomic analyses to date, highlights the usefulness of transcriptomic data not only to build a robust backbone for the Spider Tree of Life, but also to address the genetic basis of diversification in the spider evolutionary chronicle. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kennedy, Jonathan D; Borregaard, Michael K; Jønsson, Knud A; Holt, Ben; Fjeldså, Jon; Rahbek, Carsten
2017-01-01
Regional variation in clade richness can be vast, reflecting differences in the dynamics of historical dispersal and diversification among lineages. Although it has been proposed that dispersal into new biogeographic regions may facilitate diversification, to date there has been limited assessment of the importance of this process in the generation, and maintenance, of broad-scale biodiversity gradients. To address this issue, we analytically derive biogeographic regions for a global radiation of passerine birds (the Corvides, c. 790 species) that are highly variable in the geographic and taxonomic distribution of species. Subsequently, we determine rates of historical dispersal between regions, the dynamics of diversification following regional colonization, and spatial variation in the distribution of species that differ in their rates of lineage diversification. The results of these analyses reveal spatiotemporal differences in the build-up of lineages across regions. The number of regions occupied and the rate of transition between regions both predict family richness well, indicating that the accumulation of high clade richness is associated with repeated expansion into new geographic areas. However, only the largest family (the Corvidae) had significantly heightened rates of both speciation and regional transition, implying that repeated regional colonization is not a general mechanism promoting lineage diversification among the Corvides. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Aristide, Leandro; Rosenberger, Alfred L; Tejedor, Marcelo F; Perez, S Ivan
2015-01-01
Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis). Copyright © 2013 Elsevier Inc. All rights reserved.
Dridi, M; Rosseel, T; Orton, R; Johnson, P; Lecollinet, S; Muylkens, B; Lambrecht, B; Van Borm, S
2015-10-01
West Nile virus (WNV) occurs as a population of genetic variants (quasispecies) infecting a single animal. Previous low-resolution viral genetic diversity estimates in sampled wild birds and mosquitoes, and in multiple-passage adaptation studies in vivo or in cell culture, suggest that WNV genetic diversification is mostly limited to the mosquito vector. This study investigated genetic diversification of WNV in avian hosts during a single passage using next-generation sequencing. Wild-captured carrion crows were subcutaneously infected using a clonal Middle-East WNV. Blood samples were collected 2 and 4 days post-infection. A reverse-transcription (RT)-PCR approach was used to amplify the WNV genome directly from serum samples prior to next-generation sequencing resulting in an average depth of at least 700 × in each sample. Appropriate controls were sequenced to discriminate biologically relevant low-frequency variants from experimentally introduced errors. The WNV populations in the wild crows showed significant diversification away from the inoculum virus quasispecies structure. By contrast, WNV populations in intracerebrally infected day-old chickens did not diversify from that of the inoculum. Where previous studies concluded that WNV genetic diversification is only experimentally demonstrated in its permissive insect vector species, we have experimentally shown significant diversification of WNV populations in a wild bird reservoir species.
Hipp, Andrew L; Manos, Paul S; González-Rodríguez, Antonio; Hahn, Marlene; Kaproth, Matthew; McVay, John D; Avalos, Susana Valencia; Cavender-Bares, Jeannine
2018-01-01
Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak diversity is key to understanding biodiversity of northern temperate forests. A phylogenetic study of biogeography, niche evolution and diversification patterns in Quercus was performed using 300 samples, 146 species. Next-generation sequencing data were generated using the restriction-site associated DNA (RAD-seq) method. A time-calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, and leaf habit data to reconstruct the biogeographic and evolutionary history of the American oaks. Our highly resolved phylogeny demonstrates sympatric parallel diversification in climatic niche, leaf habit, and diversification rates. The two major American oak clades arose in what is now the boreal zone and radiated, in parallel, from eastern North America into Mexico and Central America. Oaks adapted rapidly to niche transitions. The Mexican oaks are particularly numerous, not because Mexico is a center of origin, but because of high rates of lineage diversification associated with high rates of evolution along moisture gradients and between the evergreen and deciduous leaf habits. Sympatric parallel diversification in the oaks has shaped the diversity of North American forests. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Johnson, Steven D.
2010-01-01
The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems. PMID:20047876
Johnson, Steven D
2010-02-12
The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems.
Experimental evolution in biofilm populations
Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef
2016-01-01
Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713
A method for investigating relative timing information on phylogenetic trees.
Ford, Daniel; Matsen, Frederick A; Stadler, Tanja
2009-04-01
In this paper, we present a new way to describe the timing of branching events in phylogenetic trees. Our description is in terms of the relative timing of diversification events between sister clades; as such it is complementary to existing methods using lineages-through-time plots which consider diversification in aggregate. The method can be applied to look for evidence of diversification happening in lineage-specific "bursts", or the opposite, where diversification between 2 clades happens in an unusually regular fashion. In order to be able to distinguish interesting events from stochasticity, we discuss 2 classes of neutral models on trees with relative timing information and develop a statistical framework for testing these models. These model classes include both the coalescent with ancestral population size variation and global rate speciation-extinction models. We end the paper with 2 example applications: first, we show that the evolution of the hepatitis C virus deviates from the coalescent with arbitrary population size. Second, we analyze a large tree of ants, demonstrating that a period of elevated diversification rates does not appear to have occurred in a bursting manner.
Experimental evolution in biofilm populations.
Steenackers, Hans P; Parijs, Ilse; Dubey, Akanksha; Foster, Kevin R; Vanderleyden, Jozef
2016-05-01
Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. © FEMS 2016.
Cowman, P F; Bellwood, D R
2011-12-01
Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Raia, P.; Carotenuto, F.; Passaro, F.; Piras, P.; Fulgione, D.; Werdelin, L.; Saarinen, J.; Fortelius, M.
2013-01-01
A classic question in evolutionary biology concerns the tempo and mode of lineage evolution. Considered variously in relation to resource utilization, intrinsic constraints or hierarchic level, the question of how evolutionary change occurs in general has continued to draw the attention of the field for over a century and a half. Here we use the largest species-level phylogeny of Coenozoic fossil mammals (1031 species) ever assembled and their body size estimates, to show that body size and taxonomic diversification rates declined from the origin of placentals towards the present, and very probably correlate to each other. These findings suggest that morphological and taxic diversifications of mammals occurred hierarchically, with major shifts in body size coinciding with the birth of large clades, followed by taxonomic diversification within these newly formed clades. As the clades expanded, rates of taxonomic diversification proceeded independently of phenotypic evolution. Such a dynamic is consistent with the idea, central to the Modern Synthesis, that mammals radiated adaptively, with the filling of adaptive zones following the radiation. PMID:23173207
Voluntarism and Diversification of Undergraduate Geoscience Programs.
ERIC Educational Resources Information Center
Greenberg, Jeffrey King
1990-01-01
Strategies that can be used to revitalize geoscience education are discussed. Stressed are the ideas of providing voluntary assistance to science and science teacher education and program diversification. (CW)
Large-scale diversification without genetic isolation in nematode symbionts of figs
Susoy, Vladislav; Herrmann, Matthias; Kanzaki, Natsumi; Kruger, Meike; Nguyen, Chau N.; Rödelsperger, Christian; Röseler, Waltraud; Weiler, Christian; Giblin-Davis, Robin M.; Ragsdale, Erik J.; Sommer, Ralf J.
2016-01-01
Diversification is commonly understood to be the divergence of phenotypes accompanying that of lineages. In contrast, alternative phenotypes arising from a single genotype are almost exclusively limited to dimorphism in nature. We report a remarkable case of macroevolutionary-scale diversification without genetic divergence. Upon colonizing the island-like microecosystem of individual figs, symbiotic nematodes of the genus Pristionchus accumulated a polyphenism with up to five discrete adult morphotypes per species. By integrating laboratory and field experiments with extensive genotyping of individuals, including the analysis of 49 genomes from a single species, we show that rapid filling of potential ecological niches is possible without diversifying selection on genotypes. This uncoupling of morphological diversification and speciation in fig-associated nematodes has resulted from a remarkable expansion of discontinuous developmental plasticity. PMID:26824073
Janssens, Steven B; Knox, Eric B; Huysmans, Suzy; Smets, Erik F; Merckx, Vincent S F T
2009-09-01
Impatiens comprises more than 1000 species and is one of the largest genera of flowering plants. The genus has a subcosmopolitan distribution, yet most of its evolutionary history is unknown. Diversification analyses, divergence time estimates and historical biogeography, illustrated that the extant species of Impatiens originated in Southwest China and started to diversify in the Early Miocene. Until the Early Pliocene, the net diversification rate within the genus was fairly slow. Since that time, however, approximately 80% of all Impatiens lineages have originated. This period of rapid diversification coincides with the global cooling of the Earth's climate and subsequent glacial oscillations. Without this accelerated diversification rate, Impatiens would only have contained 1/5th of its current number of species, thereby indicating the rapid radiation of the genus.
2016-01-01
Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests. PMID:27669569
Drummond, Christopher S.; Eastwood, Ruth J.; Miotto, Silvia T. S.; Hughes, Colin E.
2012-01-01
Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth–death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18–0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48–1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89–3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36–1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for “replicate adaptive radiations” in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World. PMID:22228799
Andriananjamanantsoa, Herinandrianina N; Engberg, Shannon; Louis, Edward E; Brouillet, Luc
Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests.
On portfolio risk diversification
NASA Astrophysics Data System (ADS)
Takada, Hellinton H.; Stern, Julio M.
2017-06-01
The first portfolio risk diversification strategy was put into practice by the All Weather fund in 1996. The idea of risk diversification is related to the risk contribution of each available asset class or investment factor to the total portfolio risk. The maximum diversification or the risk parity allocation is achieved when the set of risk contributions is given by a uniform distribution. Meucci (2009) introduced the maximization of the Rényi entropy as part of a leverage constrained optimization problem to achieve such diversified risk contributions when dealing with uncorrelated investment factors. A generalization of the risk parity is the risk budgeting when there is a prior for the distribution of the risk contributions. Our contribution is the generalization of the existent optimization frameworks to be able to solve the risk budgeting problem. In addition, our framework does not possess any leverage constraint.
Big bang in the evolution of extant malaria parasites.
Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki
2008-10-01
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.
Brain shape convergence in the adaptive radiation of New World monkeys
Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan
2016-01-01
Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427
Dawson, Natalie G.; Hope, Andrew G.; Talbot, Sandra L.; Cook, Joseph A.
2013-01-01
Aim: We examined data for ermine (Mustela erminea) to test two sets of diversification hypotheses concerning the number and location of late Pleistocene refugia, the timing and mode of diversification, and the evolutionary influence of insularization. Location: Temperate and sub-Arctic Northern Hemisphere. Methods: We used up to two mitochondrial and four nuclear loci from 237 specimens for statistical phylogeographical and demographic analyses. Coalescent species-tree estimation used a Bayesian approach for clade divergence based on external mutation rate calibrations. Approximate Bayesian methods were used to assess population size, timing of divergence and gene flow. Results: Limited structure coupled with evidence of population growth across broad regions, including previously ice-covered areas, indicated expansion from multiple centres of differentiation, but high endemism along the North Pacific coast (NPC). A bifurcating model of diversification with recent growth spanning three glacial cycles best explained the empirical data. Main conclusions: A newly identified clade in North America indicated a fourth refugial area for ermine. The shallow coalescence of all extant ermine reflects a recent history of diversification overlying a deeper fossil record. Post-glacial colonization has led to potential contact zones for multiple lineages in north-western North America. A model of diversification of ermine accompanied by recent gene flow was marginally less well supported than a model of divergence of major clades in response to the most recent glacial cycles.
Income diversification and risk for fishermen.
Kasperski, Stephen; Holland, Daniel S
2013-02-05
Catches and prices from many fisheries exhibit high interannual variability, leading to variability in the income derived by fishery participants. The economic risk posed by this may be mitigated in some cases if individuals participate in several different fisheries, particularly if revenues from those fisheries are uncorrelated or vary asynchronously. We construct indices of gross income diversification from fisheries at the level of individual vessels and find that the income of the current fleet of vessels on the US West Coast and in Alaska is less diverse than at any point in the past 30 y. We also find a dome-shaped relationship between the variability of individuals' income and income diversification, which implies that a small amount of diversification does not reduce income risk but that higher levels of diversification can substantially reduce the variability of income from fishing. Moving from a single fishery strategy to a 50-25-25 split in revenues reduces the expected coefficient of variation of gross revenues between 24% and 65% for the vessels included in this study. The increasing access restrictions in many marine fisheries through license reductions and moratoriums have the potential to limit fishermen's ability to diversify their income risk across multiple fisheries. Catch share programs often result in consolidation initially and may reduce diversification. However, catch share programs also make it feasible for fishermen to build a portfolio of harvest privileges and potentially reduce their income risk. Therefore, catch share programs create both threats and opportunities for fishermen wishing to maintain diversified fishing strategies.
Explosive ice age diversification of kiwi.
Weir, Jason T; Haddrath, Oliver; Robertson, Hugh A; Colbourne, Rogan M; Baker, Allan J
2016-09-20
Molecular dating largely overturned the paradigm that global cooling during recent Pleistocene glacial cycles resulted in a burst of species diversification although some evidence exists that speciation was commonly promoted in habitats near the expanding and retracting ice sheets. Here, we used a genome-wide dataset of more than half a million base pairs of DNA to test for a glacially induced burst of diversification in kiwi, an avian family distributed within several hundred kilometers of the expanding and retracting glaciers of the Southern Alps of New Zealand. By sampling across the geographic range of the five kiwi species, we discovered many cryptic lineages, bringing the total number of kiwi taxa that currently exist to 11 and the number that existed just before human arrival to 16 or 17. We found that 80% of kiwi diversification events date to the major glacial advances of the Middle and Late Pleistocene. During this period, New Zealand was repeatedly fragmented by glaciers into a series of refugia, with the tiny geographic ranges of many kiwi lineages currently distributed in areas adjacent to these refugia. Estimates of effective population size through time show a dramatic bottleneck during the last glacial cycle in all but one kiwi lineage, as expected if kiwi were isolated in glacially induced refugia. Our results support a fivefold increase in diversification rates during key glacial periods, comparable with levels observed in classic adaptive radiations, and confirm that at least some lineages distributed near glaciated regions underwent rapid ice age diversification.
Mast, Austin R; Olde, Peter M; Makinson, Robert O; Jones, Eric; Kubes, Amanda; Miller, Eliot T; Weston, Peter H
2015-10-01
Subtribe Hakeinae (526 spp.) represents a large Australian plant radiation central to our understanding of that flora's evolution and ecology. It contains Grevillea-the third largest plant genus in Australia and a group inferred to have among the highest diversification rates in the angiosperms. However, we lack a robust phylogenetic framework for understanding subtribe Hakeinae and recognize that Grevillea lacks an unambiguous synapomorphy supporting its monophyly. We used four plastid and one nuclear DNA region from a taxonomically even sampling of a third of the species to infer a time-calibrated phylogeny of Hakeinae and absolute diversification rates of major clades. We developed the R package addTaxa to add unsampled taxa to the tree for diversification rate inference. Grevillea is paraphyletic with respect to Hakea and Finschia. Under most parameter combinations, Hakea contains the major clade with the highest diversification rate in Hakeinae, rather than Grevillea. The crown age of the Grevillea+Hakea+Finschia crown group is about double that of prior estimates. We demonstrate that the paraphyly of Grevillea considerably enlarges the number of Australian descendants from its most recent common ancestor but has also misled investigators who considered a single operational taxonomic unit as adequate to represent the genus for inferences of diversification rate and timing. Our time-calibrated phylogeny can form the basis of future evolutionary, comparative ecology, and biogeography studies involving this large Australian plant radiation, as well as nomenclatural changes. © 2015 Botanical Society of America.
Diversification of clearwing butterflies with the rise of the Andes.
De-Silva, Donna Lisa; Elias, Marianne; Willmott, Keith; Mallet, James; Day, Julia J
2016-01-01
Despite the greatest butterfly diversity on Earth occurring in the Neotropical Andes and Amazonia, there is still keen debate about the origins of this exceptional biota. A densely sampled calibrated phylogeny for a widespread butterfly subtribe, Oleriina (Nymphalidae: Ithomiini) was used to estimate the origin, colonization history and diversification of this species-rich group. Neotropics. Ancestral elevation and biogeographical ranges were reconstructed using data generated from detailed range maps and applying the dispersal-extinction-cladogenesis model using stratified palaeogeographical time slice matrices. The pattern of diversification through time was examined by comparing constant and variable rate models. We also tested the hypothesis that a change in elevation is associated with speciation. The Oleriina likely originated in the Andes in the Early to Middle Miocene and rapidly diversified to include four genera all of which also originated in the Andes. These clades, together with four species groups, experienced varying spatial and temporal patterns of diversification. An overall early burst and decreasing diversification rate is identified, and this pattern is reflected for most subclades. Changes in the palaeogeological landscape, particularly the prolonged uplift of the Andes, had a profound impact on the diversification of the subtribe. The Oleriina mostly remained within the Andes and vicariant speciation resulted in some instances. Dynamic dispersal occurred with the disappearance of geological barriers such as the Acre System and the subtribe exploited newly available habitats. Our results confirm the role of the Andean uplift in the evolution of Neotropical biodiversity.
Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.
Bouchenak-Khelladi, Yanis; Slingsby, Jasper A; Verboom, G Anthony; Bond, William J
2014-02-01
The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled. We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma. C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance. C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.
Portik, Daniel M; Leaché, Adam D; Rivera, Danielle; Barej, Michael F; Burger, Marius; Hirschfeld, Mareike; Rödel, Mark-Oliver; Blackburn, David C; Fujita, Matthew K
2017-10-01
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model-testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species-specific and related to life-history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification. © 2017 John Wiley & Sons Ltd.
Income diversification and risk for fishermen
Kasperski, Stephen; Holland, Daniel S.
2013-01-01
Catches and prices from many fisheries exhibit high interannual variability, leading to variability in the income derived by fishery participants. The economic risk posed by this may be mitigated in some cases if individuals participate in several different fisheries, particularly if revenues from those fisheries are uncorrelated or vary asynchronously. We construct indices of gross income diversification from fisheries at the level of individual vessels and find that the income of the current fleet of vessels on the US West Coast and in Alaska is less diverse than at any point in the past 30 y. We also find a dome-shaped relationship between the variability of individuals' income and income diversification, which implies that a small amount of diversification does not reduce income risk but that higher levels of diversification can substantially reduce the variability of income from fishing. Moving from a single fishery strategy to a 50-25-25 split in revenues reduces the expected coefficient of variation of gross revenues between 24% and 65% for the vessels included in this study. The increasing access restrictions in many marine fisheries through license reductions and moratoriums have the potential to limit fishermen's ability to diversify their income risk across multiple fisheries. Catch share programs often result in consolidation initially and may reduce diversification. However, catch share programs also make it feasible for fishermen to build a portfolio of harvest privileges and potentially reduce their income risk. Therefore, catch share programs create both threats and opportunities for fishermen wishing to maintain diversified fishing strategies. PMID:23341621
Host-driven diversification of gall-inducing Acacia thrips and the aridification of Australia
McLeish, Michael J; Chapman, Thomas W; Schwarz, Michael P
2007-01-01
Background Insects that feed on plants contribute greatly to the generation of biodiversity. Hypotheses explaining rate increases in phytophagous insect diversification and mechanisms driving speciation in such specialists remain vexing despite considerable attention. The proliferation of plant-feeding insects and their hosts are expected to broadly parallel one another where climate change over geological timescales imposes consequences for the diversification of flora and fauna via habitat modification. This work uses a phylogenetic approach to investigate the premise that the aridification of Australia, and subsequent expansion and modification of arid-adapted host flora, has implications for the diversification of insects that specialise on them. Results Likelihood ratio tests indicated the possibility of hard molecular polytomies within two co-radiating gall-inducing species complexes specialising on the same set of host species. Significant tree asymmetry is indicated at a branch adjacent to an inferred transition to a Plurinerves ancestral host species. Lineage by time diversification plots indicate gall-thrips that specialise on Plurinerves hosts differentially experienced an explosive period of speciation contemporaneous with climatic cycling during the Quaternary period. Chronological analyses indicated that the approximate age of origin of gall-inducing thrips on Acacia might be as recent as 10 million years ago during the Miocene, as truly arid landscapes first developed in Australia. Conclusion Host-plant diversification and spatial heterogeneity of hosts have increased the potential for specialisation, resource partitioning, and unoccupied ecological niche availability for gall-thrips on Australian Acacia. PMID:17257412
Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum.
Arcila, Dahiana; Tyler, James C
2017-11-15
Integrative evolutionary analyses based upon fossil and extant species provide a powerful approach for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence. We infer the phylogeny and macroevolutionary history of the Tetraodontiformes (triggerfishes, pufferfishes and allies), a group with one of the most extensive fossil records among fishes. Our analyses combine molecular and morphological data, based on an expanded matrix that adds newly coded fossil species and character states. Beyond confidently resolving the relationships and divergence times of tetraodontiforms, our diversification analyses detect a major mass-extinction event during the Palaeocene-Eocene Thermal Maximum (PETM), followed by a marked increase in speciation rates. This pattern is consistently obtained when fossil and extant species are integrated, whereas examination of the fossil occurrences alone failed to detect major diversification changes during the PETM. When taking into account non-homogeneous models, our analyses also detect a rapid lineage diversification increase in one of the groups (tetraodontoids) during the middle Miocene, which is considered a key period in the evolution of reef fishes associated with trophic changes and ecological opportunity. In summary, our analyses show distinct diversification dynamics estimated from phylogenies and the fossil record, suggesting that different episodes shaped the evolution of tetraodontiforms during the Cenozoic. © 2017 The Author(s).
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot
Xing, Yaowu; Ree, Richard H.
2017-01-01
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification—that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai–Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots. PMID:28373546
Ribas, Camila C; Moyle, Robert G; Miyaki, Cristina Y; Cracraft, Joel
2007-01-01
The mechanisms underlying the taxonomic assembly of montane biotas are still poorly understood. Most hypotheses have assumed that the diversification of montane biotas is loosely coupled to Earth history and have emphasized instead the importance of multiple long-distance dispersal events and biotic interactions, particularly competition, for structuring the taxonomic composition and distribution of montane biotic elements. Here we use phylogenetic and biogeographic analyses of species in the parrot genus Pionus to demonstrate that standing diversity within montane lineages is directly attributable to events of Earth history. Phylogenetic relationships confirm three independent biogeographic disjunctions between montane lineages, on one hand, and lowland dry-forest/wet-forest lineages on the other. Temporal estimates of lineage diversification are consistent with the interpretation that the three lineages were transported passively to high elevations by mountain building, and that subsequent diversification within the Andes was driven primarily by Pleistocene climatic oscillations and their large-scale effects on habitat change. These results support a mechanistic link between diversification and Earth history and have general implications for explaining high altitudinal disjuncts and the origin of montane biotas. PMID:17686731
Cabezas, Patricia; Sanmartín, Isabel; Paulay, Gustav; Macpherson, Enrique; Machordom, Annie
2012-06-01
The diversification of Indo-Pacific marine fauna has long captivated the attention of evolutionary biologists. Previous studies have mainly focused on coral reef or shallow water-associated taxa. Here, we present the first attempt to reconstruct the evolutionary history--phylogeny, diversification, and biogeography--of a deep-water lineage. We sequenced the molecular markers 16S, COI, ND1, 18S, and 28S for nearly 80% of the nominal species of the squat lobster genus Paramunida. Analyses of the molecular phylogeny revealed an accelerated diversification in the late Oligocene-Miocene followed by a slowdown in the rate of lineage accumulation over time. A parametric biogeographical reconstruction showed the importance of the southwest Pacific area, specifically the island arc of Fiji, Tonga, Vanuatu, Wallis, and Futuna, for diversification of squat lobsters, probably associated with the global warming, high tectonic activity, and changes in oceanic currents that took place in this region during the Oligocene-Miocene period. These results add strong evidence to the hypothesis that the Neogene was a period of major diversification for marine organisms in both shallow and deep waters. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
A Bayesian framework to estimate diversification rates and their variation through time and space
2011-01-01
Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891
Unparalleled rates of species diversification in Europe
Valente, Luis M.; Savolainen, Vincent; Vargas, Pablo
2010-01-01
The most rapid species radiations have been reported from ‘evolutionary laboratories’, such as the Andes and the Cape of South Africa, leading to the prevailing view that diversification elsewhere has not been as dramatic. However, few studies have explicitly assessed rates of diversification in northern regions such as Europe. Here, we show that carnations (Dianthus, Caryophyllaceae), a well-known group of plants from temperate Eurasia, have diversified at the most rapid rate ever reported in plants or terrestrial vertebrates. Using phylogenetic methods, we found that the majority of species of carnations belong to a lineage that is remarkably species-rich in Europe, and arose at the rate of 2.2–7.6 species per million years. Unlike most previous studies that have inferred rates of diversification in young diverse groups, we use a conservative approach throughout that explicitly incorporates the uncertainties associated with phylogenetic inference, molecular dating and incomplete taxon sampling. We detected a shift in diversification rates of carnations coinciding with a period of increase in climatic aridity in the Pleistocene, suggesting a link between climate and biodiversity. This explosive radiation suggests that Europe, the continent with the world's best-studied flora, has been underestimated as a cradle of recent and rapid speciation. PMID:20106850
Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates.
Xu, Feifei; He, Dan; Liu, Jiabin; Ni, Qingyong; Lyu, Yongqing; Xiong, Shiqiu; Li, Yan
2018-08-01
Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion. Copyright © 2018 Elsevier Ltd. All rights reserved.
North Andean origin and diversification of the largest ithomiine butterfly genus
Lisa De-Silva, Donna; Mota, Luísa L.; Chazot, Nicolas; Mallarino, Ricardo; Silva-Brandão, Karina L.; Piñerez, Luz Miryam Gómez; Freitas, André V.L.; Lamas, Gerardo; Joron, Mathieu; Mallet, James; Giraldo, Carlos E.; Uribe, Sandra; Särkinen, Tiina; Knapp, Sandra; Jiggins, Chris D.; Willmott, Keith R.; Elias, Marianne
2017-01-01
The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species’ elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others. PMID:28387233
Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae)
Higginson, Dawn M.; Miller, Kelly B.; Segraves, Kari A.; Pitnick, Scott
2013-01-01
Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape and heteromorphism. PMID:22519797
Evolutionary origins and diversification of proteobacterial mutualists.
Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E
2014-01-22
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.
Li, Yan; Yang, Zexiao
2017-03-01
AbstractYellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.
Signatures of microevolutionary processes in phylogenetic patterns.
Costa, Carolina L N; Lemos-Costa, Paula; Marquitti, Flavia M D; Fernandes, Lucas D; Ramos, Marlon F; Schneider, David M; Martins, Ayana B; Aguiar, Marcus A M
2018-06-23
Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.
North Andean origin and diversification of the largest ithomiine butterfly genus
NASA Astrophysics Data System (ADS)
Lisa de-Silva, Donna; Mota, Luísa L.; Chazot, Nicolas; Mallarino, Ricardo; Silva-Brandão, Karina L.; Piñerez, Luz Miryam Gómez; Freitas, André V. L.; Lamas, Gerardo; Joron, Mathieu; Mallet, James; Giraldo, Carlos E.; Uribe, Sandra; Särkinen, Tiina; Knapp, Sandra; Jiggins, Chris D.; Willmott, Keith R.; Elias, Marianne
2017-04-01
The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species’ elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others.
Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards.
Broeckhoven, Chris; Diedericks, Genevieve; Hui, Cang; Makhubo, Buyisile G; Mouton, P le Fras N
2016-11-01
Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy-free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an "early burst" in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche-filling model. We suggest that the observed "early burst" pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L
2006-08-31
An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.
Gehara, Marcelo; Barth, Adriane; Oliveira, Eliana Faria de; Costa, Marco Antonio; Haddad, Célio Fernando Baptista; Vences, Miguel
2017-07-01
The Atlantic Forest (AF) of Brazil has long been recognized as a biodiversity conservation hotspot. Despite decades of studies the species inventory of this biome continues to increase with the discovery of cryptic diversity and the description of new species. Different diversification mechanisms have been proposed to explain the diversity in the region, including models of forest dynamics, barriers to gene flow and dispersal. Also, sea level change is thought to have influenced coastal diversification and isolated populations on continental islands. However, the timing and mode of diversification of insular populations in the AF region were rarely investigated. Here, we analyze the phylogeography and species diversity of the small-sized direct-developing frog Ischnocnema parva. These frogs are independent from water bodies but dependent on forest cover and high humidity, and provide good models to understand forest dynamics and insular diversification. Our analysis was based on DNA sequences for one mitochondrial and four nuclear genes of 71 samples from 18 localities including two islands, São Sebastião, municipality of Ilhabela, and Mar Virado, municipality of Ubatuba, both in the state of São Paulo. We use molecular taxonomic methods to show that I. parva is composed of six independently evolving lineages, with the nominal I. parva likely endemic to the type locality. The time-calibrated species tree shows that these lineages have diverged in the Pliocene and Pleistocene, suggesting the persistence of micro-refuges of forest in the AF. For the two insular populations we used approximate Bayesian computation to test different diversification hypotheses. Our findings support isolation with migration for São Sebastião population, with ∼1Mya divergence time, and isolation without migration for Mar Virado population, with ∼13Kya divergence time, suggesting a combination of different processes for diversification on AF islands. Copyright © 2017. Published by Elsevier Inc.
Strijk, Joeri S.; Noyes, Richard D.; Strasberg, Dominique; Cruaud, Corinne; Gavory, Fredéric; Chase, Mark W.; Abbott, Richard J.; Thébaud, Christophe
2012-01-01
Madagascar is surrounded by archipelagos varying widely in origin, age and structure. Although small and geologically young, these archipelagos have accumulated disproportionate numbers of unique lineages in comparison to Madagascar, highlighting the role of waif-dispersal and rapid in situ diversification processes in generating endemic biodiversity. We reconstruct the evolutionary and biogeographical history of the genus Psiadia (Asteraceae), a plant genus with near equal numbers of species in Madagascar and surrounding islands. Analyzing patterns and processes of diversification, we explain species accumulation on peripheral islands and aim to offer new insights on the origin and potential causes for diversification in the Madagascar and Indian Ocean Islands biodiversity hotspot. Our results provide support for an African origin of the group, with strong support for non-monophyly. Colonization of the Mascarenes took place by two evolutionary distinct lineages from Madagascar, via two independent dispersal events, each unique for their spatial and temporal properties. Significant shifts in diversification rate followed regional expansion, resulting in co-occurring and phenotypically convergent species on high-elevation volcanic slopes. Like other endemic island lineages, Psiadia have been highly successful in dispersing to and radiating on isolated oceanic islands, typified by high habitat diversity and dynamic ecosystems fuelled by continued geological activity. Results stress the important biogeographical role for Rodrigues in serving as an outlying stepping stone from which regional colonization took place. We discuss how isolated volcanic islands contribute to regional diversity by generating substantial numbers of endemic species on short temporal scales. Factors pertaining to the mode and tempo of archipelago formation and its geographical isolation strongly govern evolutionary pathways available for species diversification, and the potential for successful diversification of dispersed lineages, therefore, appears highly dependent on the timing of arrival, as habitat and resource properties change dramatically over the course of oceanic island evolution. PMID:22900068
Simons, Andrew M; Johnston, Mark O
2006-11-01
Environmental variation that is not predictably related to cues is expected to drive the evolution of bet-hedging strategies. The high variance observed in the timing of seed germination has led to it being the most cited diversification strategy in the theoretical bet-hedging literature. Despite this theoretical focus, virtually nothing is known about the mechanisms responsible for the generation of individual-level diversification. Here we report analyses of sources of variation in timing of germination within seasons, germination fraction over two generations and three sequential seasons, and the genetic correlation structure of these traits using almost 10,000 seeds from more than 100 genotypes of the monocarpic perennial Lobelia inflata. Microenvironmental analysis of time to germination suggests that extreme sensitivity to environmental gradients, or microplasticity, even within a homogeneous growth chamber, may act as an effective individual-level diversification mechanism and explains more than 30% of variance in time to germination. The heritability of within-season timing of germination was low (h(2) = 0.07) but significant under homogeneous conditions. Consistent with individual-level diversification, this low h(2) was attributable not to low additive genetic variance, but to an unusually high coefficient of residual variation in time to germination. Despite high power to detect additive genetic variance in within-season diversification, it was low and indistinguishable from zero. Restricted maximum likelihood detected significant genetic variation for germination fraction (h(2) = 0.18) under homogeneous conditions. Unexpectedly, this heritability was positive when measured within a generation by sibling analysis and negative when measured across generations by offspring-on-parent regression. The consistency of dormancy fraction over multiple delays, a major premise of Cohen's classic model, was supported by a strong genetic correlation (r = 0.468) observed for a cohort's germination fraction over two seasons. We discuss implications of the results for the evolution of bet hedging and highlight the need for further empirical study of the causal components of diversification.
Rotational diversification and intensification
USDA-ARS?s Scientific Manuscript database
Diversification and intensification of inland Pacific Northwest (PNW) dryland cereal cropping systems can present win-win scenarios that deliver short and long-term benefits for producers and the environment, stabilizing profit and increasing adaptability to and mitigation of climate change. Improvi...
Habitat use affects morphological diversification in dragon lizards
COLLAR, D C; SCHULTE, J A; O’MEARA, B C; LOSOS, J B
2010-01-01
Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to species’ morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification. PMID:20345808
Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia
2006-02-02
Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary
Liu, Liang; Zhang, Jin; Rheindt, Frank E.; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V.; Meng, Jin; Wu, Shaoyuan
2017-01-01
The timing of the diversification of placental mammals relative to the Cretaceous–Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms. PMID:28808022
Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota.
Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A; McHardy, Alice C; Embley, T Martin; Prosser, James I; Macqueen, Daniel J
2015-07-28
The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.
Hardman, Michael; Hardman, Lotta M
2008-02-01
We applied Bayesian phylogenetics, divergence time estimation, diversification pattern analysis, and parsimony-based methods of ancestral state reconstruction to a combination of nucleotide sequences, maximum body sizes, fossils, and paleoclimate data to explore the influence of an extrinsic (climate change) and an intrinsic (maximum body size) factor on diversification rates in a North American clade of catfishes (Ictaluridae). We found diversification rate to have been significantly variable over time, with significant (or nearly significant) rate increases in the early history of Noturus. Though the latter coincided closely with a period of dramatic climate change at the Eocene-Oligocene boundary, we did not detect evidence for a general association between climate change and diversification rate during the entire history of Ictaluridae. Within Ictaluridae, small body size was found to be a near significant predictor of species richness. Morphological stasis of several species appears to be a consequence of a homoplastic increase in body size. We estimated the maximum standard length of the ictalurid ancestor to be approximately 50 cm, comparable to Eocene ictalurids (Astephus) and similar to modern sizes of Ameiurus and their Asian sister-taxon Cranoglanis. During the late Paleocene and early Eocene, the ictalurid ancestor diversified into the lineages represented by the modern epigean genera. The majority of modern species originated in the Oligocene and Miocene, most likely according to a peripheral isolates model of speciation. We discuss the difficulties of detecting macroevolutionary patterns within a lineage history and encourage the scrutiny of the terminal Eocene climatic event as a direct promoter of diversification.
Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota
Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A.; McHardy, Alice C.; Embley, T. Martin; Prosser, James I.; Macqueen, Daniel J.
2015-01-01
The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400–700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum. PMID:26170282
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary.
Liu, Liang; Zhang, Jin; Rheindt, Frank E; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V; Meng, Jin; Wu, Shaoyuan
2017-08-29
The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.
Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V
2015-08-01
The drivers of angiosperm diversity have long been sought and the flower-arthropod association has often been invoked as the most powerful driver of the angiosperm radiation. We now know that features that influence arthropod interactions cannot only affect the diversification of lineages, but also expedite or constrain their rate of extinction, which can equally influence the observed asymmetric richness of extant angiosperm lineages. The genus Asarum (Aristolochiaceae; ∼100 species) is widely distributed in north temperate forests, with substantial vegetative and floral divergence between its three major clades, Euasarum, Geotaenium, and Heterotropa. We used Binary-State Speciation and Extinction Model (BiSSE) Net Diversification tests of character state distributions on a Maximum Likelihood phylogram and a Coalescent Bayesian species tree, inferred from seven chloroplast markers and nuclear rDNA, to test for signal of asymmetric diversification, character state transition, and extinction rates of floral and vegetative characters. We found that reduction in vegetative growth, loss of autonomous self-pollination, and the presence of putative fungal-mimicking floral structures are significantly correlated with increased diversification in Asarum. No significant difference in model likelihood was identified between symmetric and asymmetric rates of character state transitions or extinction. We conclude that the flowers of the Heterotropa clade may have converged on some aspects of basidiomycete sporocarp morphology and that brood-site mimicry, coupled with a reduction in vegetative growth and the loss of autonomous self-pollination, may have driven diversification within Asarum. Copyright © 2015 Elsevier Inc. All rights reserved.
Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V
2017-05-01
Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Tegebu, Fredu Nega; Mathijs, Erik; Deckers, Jozef; Haile, Mitiku; Nyssen, Jan; Tollens, Eric
2012-01-01
Livestock fulfill different functions. Depending on their livelihood strategies, households differ in their choice of what type of animal to keep and on accumulation of the chosen animal overtime. Using a panel data of 385 rural households in a mixed farming system in northern Ethiopia, this paper investigates the dynamic behavior of rural households' livestock holding to identify determinants of choice and accumulation of livestock overtime. Choice is analyzed for a principal animal, the animal that constituted the largest value of livestock assets a household possessed, using a multinomial logit model. Results indicate that rural households differ in their choice of what type of animal to keep. Agro-climatic conditions, sex and age of household head, presence of an adult male member in a household, and liquidity are the major factors that influence the type of principal animal households keep. Conditional on the principal animal selected, we analyzed the factors that determine the accumulation of the chosen animals by correcting for selection bias. Area of land cultivated is the most significant factor that explains the number of animals households keep. Other factors include sex of household head, diversification into nonfarm self-employment, and shocks.
Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair
2017-03-01
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Owen, Christopher L; Marshall, David C; Hill, Kathy B R; Simon, Chris
2017-07-01
Over the last 30 million years, Australia's landscape has undergone dramatic cooling and drying due to the establishment of the Antarctic Circumpolar Current and change in global CO$_{2}$ levels. Studies have shown that many Australian organisms went extinct during these major cooling events, while others experienced adaptive radiations and increases in diversification rates as a result of exploiting new niches in the arid zone. Despite the many studies on diversification and biogeography in Australia, few have been continent-wide and none have focused on a group of organisms adapted to feeding on plants. We studied 162 species of cicadas in the Australian Pauropsalta complex, a large generic lineage within the tribe Cicadettini. We asked whether there were changes in the diversification rate of Pauropsalta over time and if so: 1) which clades were associated with the rate change? 2) did timing of rate shifts correspond to known periods of dramatic historical climate change, 3) did increases in diversification rate along select lineages correspond to adaptive radiations with movement into the arid zone? To address these questions, we estimated a molecular phylogeny of the Pauropsalta complex using ${\\sim}$5300 bp of nucleotide sequence data distributed among five loci (one mtDNA locus and four nDNA loci). We found that this large group of cicadas did not diversify at a constant rate as they spread through Australia; instead the signature of decreasing diversification rate changed roughly around the time of the expansion of the east Antarctic ice sheets ${\\sim}$16 Ma and the glaciation of the northern hemisphere ${\\sim}$3 Ma. Unlike other Australian taxa, the Pauropsalta complex did not explosively radiate in response to an early invasion of the arid zone. Instead multiple groups invaded the arid zone and experienced rates of diversification similar to mesic-distributed taxa. We found evidence for relictual groups, located in pre-Mesozoic habitat, that have not diversified and continue to reside on mesic hosts in isolated "habitat islands". Future work should focus on groups of similar ages with similar distribution patterns to determine whether this tempo and pattern of diversification and biogeography is consistent with evidence from other phytophagous insects. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Koyanagi, Mitsumasa; Wada, Seiji; Kawano-Yamashita, Emi; Hara, Yuichiro; Kuraku, Shigehiro; Kosaka, Shigeaki; Kawakami, Koichi; Tamotsu, Satoshi; Tsukamoto, Hisao; Shichida, Yoshinori; Terakita, Akihisa
2015-09-15
Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460-480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. In this paper, we have clearly shown the different molecular properties of duplicated non-visual opsins by demonstrating the diversification of parapinopsin with respect to spectral sensitivity. Moreover, we have shown a plausible link between the diversification and its physiological impact by discovering a strong candidate for the underlying pigment in light-regulated melatonin secretion in zebrafish; the diversification could generate a new contribution of parapinopsin to pineal photoreception. Current findings could also provide an opportunity to understand the "color" preference of non-visual photoreception.
Flemer, Stevenson; Wurthmann, Alexander; Mamai, Ahmed; Madalengoitia, José S
2008-10-03
A strategy for the solid-phase diversification of PPII mimic scaffolds through guanidinylation is presented. The approach involves the synthesis N-Pmc-N'-alkyl thioureas as diversification reagents. Analogues of Fmoc-Orn(Mtt)-OH can be incorporated into a growing peptide chain on Wang resin. Side chain deprotection with 1% TFA/CH2Cl2 followed by EDCI-mediated reaction of N-Pmc-N'-alkyl thioureas with the side chain amine affords arginine analogues with modified guanidine head groups. The scope, limitations, and incidental chemistry are discussed.
Hayakawa, Takashi; Sugawara, Tohru; Go, Yasuhiro; Udono, Toshifumi; Hirai, Hirohisa; Imai, Hiroo
2012-01-01
Chimpanzees (Pan troglodytes) have region-specific difference in dietary repertoires from East to West across tropical Africa. Such differences may result from different genetic backgrounds in addition to cultural variations. We analyzed the sequences of all bitter taste receptor genes (cTAS2Rs) in a total of 59 chimpanzees, including 4 putative subspecies. We identified genetic variations including single-nucleotide variations (SNVs), insertions and deletions (indels), gene-conversion variations, and copy-number variations (CNVs) in cTAS2Rs. Approximately two-thirds of all cTAS2R haplotypes in the amino acid sequence were unique to each subspecies. We analyzed the evolutionary backgrounds of natural selection behind such diversification. Our previous study concluded that diversification of cTAS2Rs in western chimpanzees (P. t. verus) may have resulted from balancing selection. In contrast, the present study found that purifying selection dominates as the evolutionary form of diversification of the so-called human cluster of cTAS2Rs in eastern chimpanzees (P. t. schweinfurthii) and that the other cTAS2Rs were under no obvious selection as a whole. Such marked diversification of cTAS2Rs with different evolutionary backgrounds among subspecies of chimpanzees probably reflects their subspecies-specific dietary repertoires.
Hayakawa, Takashi; Sugawara, Tohru; Go, Yasuhiro; Udono, Toshifumi; Hirai, Hirohisa; Imai, Hiroo
2012-01-01
Chimpanzees (Pan troglodytes) have region-specific difference in dietary repertoires from East to West across tropical Africa. Such differences may result from different genetic backgrounds in addition to cultural variations. We analyzed the sequences of all bitter taste receptor genes (cTAS2Rs) in a total of 59 chimpanzees, including 4 putative subspecies. We identified genetic variations including single-nucleotide variations (SNVs), insertions and deletions (indels), gene-conversion variations, and copy-number variations (CNVs) in cTAS2Rs. Approximately two-thirds of all cTAS2R haplotypes in the amino acid sequence were unique to each subspecies. We analyzed the evolutionary backgrounds of natural selection behind such diversification. Our previous study concluded that diversification of cTAS2Rs in western chimpanzees (P. t. verus) may have resulted from balancing selection. In contrast, the present study found that purifying selection dominates as the evolutionary form of diversification of the so-called human cluster of cTAS2Rs in eastern chimpanzees (P. t. schweinfurthii) and that the other cTAS2Rs were under no obvious selection as a whole. Such marked diversification of cTAS2Rs with different evolutionary backgrounds among subspecies of chimpanzees probably reflects their subspecies-specific dietary repertoires. PMID:22916235
Diversification and the rate of molecular evolution: no evidence of a link in mammals.
Goldie, Xavier; Lanfear, Robert; Bromham, Lindell
2011-10-04
Recent research has indicated a positive association between rates of molecular evolution and diversification in a number of taxa. However debate continues concerning the universality and cause of this relationship. Here, we present the first systematic investigation of this relationship within the mammals. We use phylogenetically independent sister-pair comparisons to test for a relationship between substitution rates and clade size at a number of taxonomic levels. Total, non-synonymous and synonymous substitution rates were estimated from mitochondrial and nuclear DNA sequences. We found no evidence for an association between clade size and substitution rates in mammals, for either the nuclear or the mitochondrial sequences. We found significant associations between body size and substitution rates, as previously reported. Our results present a contrast to previous research, which has reported significant positive associations between substitution rates and diversification for birds, angiosperms and reptiles. There are three possible reasons for the differences between the observed results in mammals versus other clades. First, there may be no link between substitution rates and diversification in mammals. Second, this link may exist, but may be much weaker in mammals than in other clades. Third, the link between substitution rates and diversification may exist in mammals, but may be confounded by other variables.
New insights into diversification of hyper-heuristics.
Ren, Zhilei; Jiang, He; Xuan, Jifeng; Hu, Yan; Luo, Zhongxuan
2014-10-01
There has been a growing research trend of applying hyper-heuristics for problem solving, due to their ability of balancing the intensification and the diversification with low level heuristics. Traditionally, the diversification mechanism is mostly realized by perturbing the incumbent solutions to escape from local optima. In this paper, we report our attempt toward providing a new diversification mechanism, which is based on the concept of instance perturbation. In contrast to existing approaches, the proposed mechanism achieves the diversification by perturbing the instance under solving, rather than the solutions. To tackle the challenge of incorporating instance perturbation into hyper-heuristics, we also design a new hyper-heuristic framework HIP-HOP (recursive acronym of HIP-HOP is an instance perturbation-based hyper-heuristic optimization procedure), which employs a grammar guided high level strategy to manipulate the low level heuristics. With the expressive power of the grammar, the constraints, such as the feasibility of the output solution could be easily satisfied. Numerical results and statistical tests over both the Ising spin glass problem and the p -median problem instances show that HIP-HOP is able to achieve promising performances. Furthermore, runtime distribution analysis reveals that, although being relatively slow at the beginning, HIP-HOP is able to achieve competitive solutions once given sufficient time.
Seed size and its rate of evolution correlate with species diversification across angiosperms
Miller, Eleanor F.; Papadopulos, Alexander S. T.; Tanentzap, Andrew J.
2017-01-01
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the angiosperm phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL. PMID:28723902
Mao, Kangshan; Hao, Gang; Liu, Jianquan; Adams, Robert P; Milne, Richard I
2010-10-01
• A central aim of biogeography is to understand when and how modern patterns of species diversity and distribution developed. Many plant groups have disjunct distributions within the Northern Hemisphere, but among these very few have been studied that prefer warm semi-arid habitats. • Here we examine the biogeography and diversification history of Juniperus, which occurs in semi-arid habitats through much of the Northern Hemisphere. A phylogeny was generated based on > 10,000 bp of cpDNA for 51 Juniperus species plus many outgroups. Phylogenies based on fewer species were also constructed based on nuclear internal transcribed spacer (nrITS) and combined nrITS/cpDNA data sets to check for congruence. Divergence time-scales and ancestral distributions were further inferred. • Both long dispersal and migration across land bridges probably contributed to the modern range of Juniperus, while long-term climatic changes and the uplift of the Qinghai-Tibetan plateau probably drove its diversification. Diversification apparently slowed down during climate-stable period of the Oligocene, and then speeded up from the Miocene onwards. • Juniperus probably originated in Eurasia, and was a part of the south Eurasian Tethyan vegetation of the Eocene to Oligocene. It reached America once at this time, once in the Miocene and once more recently.
Ribas, Camila C.; Aleixo, Alexandre; Nogueira, Afonso C. R.; Miyaki, Cristina Y.; Cracraft, Joel
2012-01-01
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen ‘complete’ time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0–2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia. PMID:21795268
Wang, Bin; Nishikawa, Kanto; Matsui, Masafumi; Nguyen, Truong Quang; Xie, Feng; Li, Cheng; Khatiwada, Janak Raj; Zhang, Baowei; Gong, Dajie; Mo, Yunming; Wei, Gang; Chen, Xiaohong; Shen, Youhui; Yang, Daode; Xiong, Rongchuan
2018-01-01
Global climatic transitions and Tibetan Plateau uplifts are hypothesized to have profoundly impacted biodiversity in southeastern Asia. To further test the hypotheses related to the impacts of these incidents, we investigated the diversification patterns of the newt genus Tylototriton sensu lato, distributed across the mountain ranges of southeastern Asia. Gene-tree and species-tree analyses of two mitochondrial genes and two nuclear genes revealed five major clades in the genus, and suggested several cryptic species. Dating estimates suggested that the genus originated in the early-to-middle Miocene. Under different species delimitating scenarios, diversification analyses with birth-death likelihood tests indicated that the genus held a higher diversification rate in the late Miocene-to-Pliocene era than that in the Pleistocene. Ancestral area reconstructions indicated that the genus originated from the northern Indochina Peninsula. Accordingly, we hypothesized that the Miocene Climatic Transition triggered the diversification of the genus, and the reinforcement of East Asian monsoons associated with the stepwise uplifts of the Tibetan Plateau promoted the radiation of the genus in southeastern Asia during the Miocene-to-Pliocene period. Quaternary glacial cycles likely had limited effects on speciation events in the genus, but mainly had contributions on their intraspecific differentiations. PMID:29576937
Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M
2018-05-01
Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
C4 Photosynthesis Promoted Species Diversification during the Miocene Grassland Expansion
Spriggs, Elizabeth L.; Christin, Pascal-Antoine; Edwards, Erika J.
2014-01-01
Identifying how organismal attributes and environmental change affect lineage diversification is essential to our understanding of biodiversity. With the largest phylogeny yet compiled for grasses, we present an example of a key physiological innovation that promoted high diversification rates. C4 photosynthesis, a complex suite of traits that improves photosynthetic efficiency under conditions of drought, high temperatures, and low atmospheric CO2, has evolved repeatedly in one lineage of grasses and was consistently associated with elevated diversification rates. In most cases there was a significant lag time between the origin of the pathway and subsequent radiations, suggesting that the ‘C4 effect’ is complex and derives from the interplay of the C4 syndrome with other factors. We also identified comparable radiations occurring during the same time period in C3 Pooid grasses, a diverse, cold-adapted grassland lineage that has never evolved C4 photosynthesis. The mid to late Miocene was an especially important period of both C3 and C4 grass diversification, coincident with the global development of extensive, open biomes in both warm and cool climates. As is likely true for most “key innovations”, the C4 effect is context dependent and only relevant within a particular organismal background and when particular ecological opportunities became available. PMID:24835188
Yan, Hai-Fei; Zhang, Cai-Yun; Anderberg, Arne A; Hao, Gang; Ge, Xue-Jun; Wiens, John J
2018-04-17
What causes the disparity in biodiversity among regions is a fundamental question in biogeography, ecology, and evolutionary biology. Evolutionary and biogeographic processes (speciation, extinction, dispersal) directly determine species richness patterns, and can be studied using integrative phylogenetic approaches. However, the strikingly high richness of East Asia relative to other Northern Hemisphere regions remains poorly understood from this perspective. Here, for the first time, we test two general hypotheses (older colonization time, faster diversification rate) to explain this pattern, using the plant tribe Lysimachieae (Primulaceae) as a model system. We generated a new time-calibrated phylogeny for Lysimachieae (13 genes, 126 species), to estimate colonization times and diversification rates for each region and to test the relative importance of these two factors for explaining regional richness patterns. We find that neither time nor diversification rates alone explain richness patterns among regions in Lysimachieae. Instead, a new index that combines both factors explains global richness patterns in the group and their high East Asian biodiversity. Based on our results from Lysimachieae, we suggest that the high richness of plants in East Asia may be explained by a combination of older colonization times and faster diversification rates in this region. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Wang, Bin; Nishikawa, Kanto; Matsui, Masafumi; Nguyen, Truong Quang; Xie, Feng; Li, Cheng; Khatiwada, Janak Raj; Zhang, Baowei; Gong, Dajie; Mo, Yunming; Wei, Gang; Chen, Xiaohong; Shen, Youhui; Yang, Daode; Xiong, Rongchuan; Jiang, Jianping
2018-01-01
Global climatic transitions and Tibetan Plateau uplifts are hypothesized to have profoundly impacted biodiversity in southeastern Asia. To further test the hypotheses related to the impacts of these incidents, we investigated the diversification patterns of the newt genus Tylototriton sensu lato , distributed across the mountain ranges of southeastern Asia. Gene-tree and species-tree analyses of two mitochondrial genes and two nuclear genes revealed five major clades in the genus, and suggested several cryptic species. Dating estimates suggested that the genus originated in the early-to-middle Miocene. Under different species delimitating scenarios, diversification analyses with birth-death likelihood tests indicated that the genus held a higher diversification rate in the late Miocene-to-Pliocene era than that in the Pleistocene. Ancestral area reconstructions indicated that the genus originated from the northern Indochina Peninsula. Accordingly, we hypothesized that the Miocene Climatic Transition triggered the diversification of the genus, and the reinforcement of East Asian monsoons associated with the stepwise uplifts of the Tibetan Plateau promoted the radiation of the genus in southeastern Asia during the Miocene-to-Pliocene period. Quaternary glacial cycles likely had limited effects on speciation events in the genus, but mainly had contributions on their intraspecific differentiations.
Pérez-Escobar, Oscar Alejandro; Chomicki, Guillaume; Condamine, Fabien L; Karremans, Adam P; Bogarín, Diego; Matzke, Nicholas J; Silvestro, Daniele; Antonelli, Alexandre
2017-07-01
The Andean mountains of South America are the most species-rich biodiversity hotspot worldwide with c. 15% of the world's plant species, in only 1% of the world's land surface. Orchids are a key element of the Andean flora, and one of the most prominent components of the Neotropical epiphyte diversity, yet very little is known about their origin and diversification. We address this knowledge gap by inferring the biogeographical history and diversification dynamics of the two largest Neotropical orchid groups (Cymbidieae and Pleurothallidinae), using two unparalleled, densely sampled orchid phylogenies (including more than 400 newly generated DNA sequences), comparative phylogenetic methods, geological and biological datasets. We find that the majority of Andean orchid lineages only originated in the last 20-15 million yr. Andean lineages are derived from lowland Amazonian ancestors, with additional contributions from Central America and the Antilles. Species diversification is correlated with Andean orogeny, and multiple migrations and recolonizations across the Andes indicate that mountains do not constrain orchid dispersal over long timescales. Our study sheds new light on the timing and geography of a major Neotropical diversification, and suggests that mountain uplift promotes species diversification across all elevational zones. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Eo, Soo Hyung; DeWoody, J. Andrew
2010-01-01
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427
Menezes, Riya C.; Jayarajan, Aditi; Shanker, Kartik
2016-01-01
The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. PMID:27534957
Nylin, Sören; Slove, Jessica; Janz, Niklas
2014-01-01
It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598
Vijayakumar, S P; Menezes, Riya C; Jayarajan, Aditi; Shanker, Kartik
2016-08-17
The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. © 2016 The Author(s).
Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.
NASA Astrophysics Data System (ADS)
Khresat, Saeb
2016-04-01
Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for land preparation through tillage systems decreased by 40-60% as a result of fuel and time-saving in the operations. The mean biological and grain yield by applying conservation agriculture have increased between 14-35% compared to conventional agriculture. It is concluded that there is a correlation between CO2 loss and tillage intensity and that a shift from traditional agriculture to Conservation agriculture can contribute to making agricultural systems more resilient to climate change.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
..., diversification, number of accounts of the Clearing Member, and the extent to which the Clearing Member's options... diversification that lowers the risk compared with open interest for larger firms, and (ii) the new formula adds a...
Why Revenue Diversification Matters
ERIC Educational Resources Information Center
Leuhusen, Fredrik Carl Axel Peter
2017-01-01
Revenue diversification is a term that becomes more relevant as higher education institutions are confronted with increased regulation, competition, declining enrollments, and strained finances. A challenge that many institutions face is that expenditures are higher than revenues and increase faster than them. The term Revenue diversification…
Springer, Mark S.; Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; Park, Jong; Rabosky, Daniel L.; Stadler, Tanja; Steiner, Cynthia; Ryder, Oliver A.; Janečka, Jan E.; Fisher, Colleen A.; Murphy, William J.
2012-01-01
Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71–63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event (“Grande Coupure”) at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts. PMID:23166696
Machado, Anderson Ferreira Pinto; Rønsted, Nina; Bruun-Lund, Sam; Pereira, Rodrigo Augusto Santinelo; Paganucci de Queiroz, Luciano
2018-05-01
Ficus (Moraceae) is well diversified in the Neotropics with two lineages inhabiting the wet forests of this region. The hemiepiphytes of section Americanae are the most diversified with c. 120 species, whereas section Pharmacosycea includes about 20 species mostly with a terrestrial habit. To reconstruct the biogeographical history and diversification of Ficus in the Americas, we produced a dated Bayesian phylogenetic hypothesis of Neotropical Ficus including two thirds of the species sequenced for five nuclear regions (At103, ETS, G3pdh, ITS/5.8S and Tpi). Ancestral range was estimated using all models available in Biogeobears and Binary State Speciation and Extinction analysis was used to evaluate the role of the initial habit and propagule size in diversification. The phylogenetic analyses resolved both Neotropical sections as monophyletic but the internal relationships between species in section Americanae remain unclear. Ficus started their diversification in the Neotropics between the Oligocene and Miocene. The genus experienced two bursts of diversification: in the middle Miocene and the Pliocene. Colonization events from the Amazon to adjacent areas coincide with the end of the Pebas system (10 Mya) and the connection of landmasses. Divergence of endemic species in the Atlantic forest is inferred to have happened after its isolation and the opening and consolidation of the Cerrado. Our results suggest a complex diversification in the Atlantic forest differing between postulated refuges and more instable areas in the South distribution of the forest. Finally the selection for initial hemiepiphytic habit and small to medium propagule size influenced the diversification and current distribution of the species at Neotropical forests marked by the historical instability and long-distance dispersal. Copyright © 2018 Elsevier Inc. All rights reserved.
Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael
2017-04-15
New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).
Willis, C G; Hall, J C; Rubio de Casas, R; Wang, T Y; Donohue, K
2014-12-01
Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit traits, and how the evolution of these traits is correlated with shifts in geographic range size, habitat and diversification rates in the tribe Brassiceae (Brassicaceae). The phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates. It was found that the evolution of traits associated with limited dispersal evolved only in association with compensatory traits that increase dispersal ability. The evolution of increased dispersal ability occurred in multiple ways through the correlated evolution of different combinations of fruit traits. The evolution of traits that increase dispersal ability was in turn associated with larger seed size, increased geographic range size and higher diversification rates. This study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel
2016-09-21
Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects.
Stein, R Will; Brown, Joseph W; Mooers, Arne Ø
2015-11-01
The phylogeny of Galliformes (landfowl) has been studied extensively; however, the associated chronologies have been criticized recently due to misplaced or misidentified fossil calibrations. As a consequence, it is unclear whether any crown-group lineages arose in the Cretaceous and survived the Cretaceous-Paleogene (K-Pg; 65.5 Ma) mass extinction. Using Bayesian phylogenetic inference on an alignment spanning 14,539 bp of mitochondrial and nuclear DNA sequence data, four fossil calibrations, and a combination of uncorrelated lognormally distributed relaxed-clock and strict-clock models, we inferred a time-calibrated molecular phylogeny for 225 of the 291 extant Galliform taxa. These analyses suggest that crown Galliformes diversified in the Cretaceous and that three-stem lineages survived the K-Pg mass extinction. Ideally, characterizing the tempo and mode of diversification involves a taxonomically complete phylogenetic hypothesis. We used simple constraint structures to incorporate 66 data-deficient taxa and inferred the first taxon-complete phylogenetic hypothesis for the Galliformes. Diversification analyses conducted on 10,000 timetrees sampled from the posterior distribution of candidate trees show that the evolutionary history of the Galliformes is best explained by a rate-shift model including 1-3 clade-specific increases in diversification rate. We further show that the tempo and mode of diversification in the Galliformes conforms to a three-pulse model, with three-stem lineages arising in the Cretaceous and inter and intrafamilial diversification occurring after the K-Pg mass extinction, in the Paleocene-Eocene (65.5-33.9 Ma) or in association with the Eocene-Oligocene transition (33.9 Ma). Copyright © 2015 Elsevier Inc. All rights reserved.
Essaying Purposes and Specialisations of Institutional Types in Knowledge Production
ERIC Educational Resources Information Center
Ntshoe, Isaac
2015-01-01
This article deals with differentiation, diversification and dedifferentiation of purposes and specialisations of institutional types in the post-apartheid setting, using as examples universities of technology created 10 years ago. It examines differentiation, diversification and dedifferentiation in the global context, particularly the…
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.
Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver
2017-01-04
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.
Tempo of trophic evolution and its impact on mammalian diversification
Price, Samantha A.; Hopkins, Samantha S. B.; Smith, Kathleen K.; Roth, V. Louise
2012-01-01
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores. PMID:22509033
Tempo of trophic evolution and its impact on mammalian diversification.
Price, Samantha A; Hopkins, Samantha S B; Smith, Kathleen K; Roth, V Louise
2012-05-01
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.
Diversification rates and phenotypic evolution in venomous snakes (Elapidae).
Lee, Michael S Y; Sanders, Kate L; King, Benedict; Palci, Alessandro
2016-01-01
The relationship between rates of diversification and of body size change (a common proxy for phenotypic evolution) was investigated across Elapidae, the largest radiation of highly venomous snakes. Time-calibrated phylogenetic trees for 175 species of elapids (more than 50% of known taxa) were constructed using seven mitochondrial and nuclear genes. Analyses using these trees revealed no evidence for a link between speciation rates and changes in body size. Two clades (Hydrophis, Micrurus) show anomalously high rates of diversification within Elapidae, yet exhibit rates of body size evolution almost identical to the general elapid 'background' rate. Although correlations between speciation rates and rates of body size change exist in certain groups (e.g. ray-finned fishes, passerine birds), the two processes appear to be uncoupled in elapid snakes. There is also no detectable shift in diversification dynamics associated with the colonization of Australasia, which is surprising given that elapids appear to be the first clade of venomous snakes to reach the continent.
Derryberry, Elizabeth P.; Claramunt, Santiago; Derryberry, Graham; Chesser, R. Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J.V.; Brumfield, Robb T.
2011-01-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.
Brodersen, Jakob; Howeth, Jennifer G; Post, David M
2015-09-14
Intraspecific phenotypic variation can strongly impact community and ecosystem dynamics. Effects of intraspecific variation in keystone species have been shown to propagate down through the food web by altering the adaptive landscape for other species and creating a cascade of ecological and evolutionary change. However, similar bottom-up eco-evolutionary effects are poorly described. Here we show that life history diversification in a keystone prey species, the alewife (Alosa pseudoharengus), propagates up through the food web to promote phenotypic diversification in its native top predator, the chain pickerel (Esox niger), on contemporary timescales. The landlocking of alewife by human dam construction has repeatedly created a stable open water prey resource, novel to coastal lakes, that has promoted the parallel emergence of a habitat polymorphism in chain pickerel. Understanding how strong interactions propagate through food webs to influence diversification across multiple trophic levels is critical to understand eco-evolutionary interactions in complex natural ecosystems.
2009-01-01
Background The Neotropical ovenbird-woodcreeper family (Furnariidae) is an avian group characterized by exceptionally diverse ecomorphological adaptations. For instance, members of the family are known to construct nests of a remarkable variety. This offers a unique opportunity to examine whether changes in nest design, accompanied by expansions into new habitats, facilitates diversification. We present a multi-gene phylogeny and age estimates for the ovenbird-woodcreeper family and use these results to estimate the degree of convergent evolution in both phenotype and habitat utilisation. Furthermore, we discuss whether variation in species richness among ovenbird clades could be explained by differences in clade-specific diversification rates, and whether these rates differ among lineages with different nesting habits. In addition, the systematic positions of some enigmatic ovenbird taxa and the postulated monophyly of some species-rich genera are evaluated. Results The phylogenetic results reveal new examples of convergent evolution and show that ovenbirds have independently colonized open habitats at least six times. The calculated age estimates suggest that the ovenbird-woodcreeper family started to diverge at ca 33 Mya, and that the timing of habitat shifts into open environments may be correlated with the aridification of South America during the last 15 My. The results also show that observed large differences in species richness among clades can be explained by a substantial variation in net diversification rates. The synallaxines, which generally are adapted to dry habitats and build exposed vegetative nests, had the highest diversification rate of all major furnariid clades. Conclusion Several key features may have played an important role for the radiation and evolution of convergent phenotypes in the ovenbird-woodcreeper family. Our results suggest that changes in nest building strategy and adaptation to novel habitats may have played an important role in a diversification that included multiple radiations into more open and bushy environments. The synallaxines were found to have had a particularly high diversification rate, which may be explained by their ability to build exposed vegetative nests and thus to expand into a variety of novel habitats that emerged during a period of cooling and aridification in South America. PMID:19930590
Irestedt, Martin; Fjeldså, Jon; Dalén, Love; Ericson, Per G P
2009-11-21
The Neotropical ovenbird-woodcreeper family (Furnariidae) is an avian group characterized by exceptionally diverse ecomorphological adaptations. For instance, members of the family are known to construct nests of a remarkable variety. This offers a unique opportunity to examine whether changes in nest design, accompanied by expansions into new habitats, facilitates diversification. We present a multi-gene phylogeny and age estimates for the ovenbird-woodcreeper family and use these results to estimate the degree of convergent evolution in both phenotype and habitat utilisation. Furthermore, we discuss whether variation in species richness among ovenbird clades could be explained by differences in clade-specific diversification rates, and whether these rates differ among lineages with different nesting habits. In addition, the systematic positions of some enigmatic ovenbird taxa and the postulated monophyly of some species-rich genera are evaluated. The phylogenetic results reveal new examples of convergent evolution and show that ovenbirds have independently colonized open habitats at least six times. The calculated age estimates suggest that the ovenbird-woodcreeper family started to diverge at ca 33 Mya, and that the timing of habitat shifts into open environments may be correlated with the aridification of South America during the last 15 My. The results also show that observed large differences in species richness among clades can be explained by a substantial variation in net diversification rates. The synallaxines, which generally are adapted to dry habitats and build exposed vegetative nests, had the highest diversification rate of all major furnariid clades. Several key features may have played an important role for the radiation and evolution of convergent phenotypes in the ovenbird-woodcreeper family. Our results suggest that changes in nest building strategy and adaptation to novel habitats may have played an important role in a diversification that included multiple radiations into more open and bushy environments. The synallaxines were found to have had a particularly high diversification rate, which may be explained by their ability to build exposed vegetative nests and thus to expand into a variety of novel habitats that emerged during a period of cooling and aridification in South America.
2013-01-01
Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation. PMID:23343473
24 CFR 570.401 - Community adjustment and economic diversification planning assistance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Community adjustment and economic... GRANTS Special Purpose Grants § 570.401 Community adjustment and economic diversification planning... government in nonentitlement areas to undertake the planning of community adjustments and economic...
13 CFR 108.740 - Portfolio diversification (“overline” limitation).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Portfolio diversification (âoverlineâ limitation). 108.740 Section 108.740 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Financing of Small Businesses by NMVC Companies...
24 CFR 570.401 - Community adjustment and economic diversification planning assistance.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Community adjustment and economic... GRANTS Special Purpose Grants § 570.401 Community adjustment and economic diversification planning... government in nonentitlement areas to undertake the planning of community adjustments and economic...
24 CFR 570.401 - Community adjustment and economic diversification planning assistance.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Community adjustment and economic... GRANTS Special Purpose Grants § 570.401 Community adjustment and economic diversification planning... government in nonentitlement areas to undertake the planning of community adjustments and economic...
24 CFR 570.401 - Community adjustment and economic diversification planning assistance.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Community adjustment and economic... GRANTS Special Purpose Grants § 570.401 Community adjustment and economic diversification planning... government in nonentitlement areas to undertake the planning of community adjustments and economic...
24 CFR 570.401 - Community adjustment and economic diversification planning assistance.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Community adjustment and economic... GRANTS Special Purpose Grants § 570.401 Community adjustment and economic diversification planning... government in nonentitlement areas to undertake the planning of community adjustments and economic...
Vasconcelos, Thais N C; Proença, Carol E B; Ahmad, Berhaman; Aguilar, Daniel S; Aguilar, Reinaldo; Amorim, Bruno S; Campbell, Keron; Costa, Itayguara R; De-Carvalho, Plauto S; Faria, Jair E Q; Giaretta, Augusto; Kooij, Pepijn W; Lima, Duane F; Mazine, Fiorella F; Peguero, Brigido; Prenner, Gerhard; Santos, Matheus F; Soewarto, Julia; Wingler, Astrid; Lucas, Eve J
2017-04-01
Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. Copyright © 2017 Elsevier Inc. All rights reserved.
Diversification of health care services: the effects of ownership, environment, and strategy.
Shortell, S M; Morrison, E M; Hughes, S L; Friedman, B S; Vitek, J L
1987-01-01
The present findings suggest that the trend toward greater diversification of hospital services is likely to be most strongly influenced by state Medicaid policies and certain hospital characteristics. Increasing Medicaid eligibility and payment levels is likely to have a positive effect on services diversification. Growth in the number of inpatient services provided and a more severe case mix are also likely to be involved with greater service diversification. Affiliation with a not-for-profit hospital system is likely to be associated with more diversified hospital services but not affiliation with an investor-owned system. There is also some indication that the overall portfolio of services which a hospital offers in regard to market share and market growth characteristics influences diversification. Specifically, a low market share portfolio is likely to be associated with less diversification. Competition is likely to be associated with more diversification; particularly for hospitals belonging to systems. The effect of competition on hospital strategy and services diversification is a particularly important area for further investigation. Increasing Medicaid payment and eligibility levels are also likely to have a positive effect on the provision of services which are usually unprofitable. Raising such levels is likely to be particularly beneficial to inner-city hospitals who are already providing a greater number of such services. However, the present data suggest that investor-owned hospitals are least likely to provide such services. Increasing Medicaid eligibility levels is also likely to be associated with fewer services for which charity care has to be provided. State regulation in the form of rate review and certificate of need is likely to be associated with more services for which hospitals provide some charity care. But such policies alone do not deal with the larger issue of how to finance care for the medically indigent. Present data suggest the charity care issue may be particularly salient in markets characterized by a relatively high degree of competition. Finally, investor-owned hospitals provide as many services involving charity care as not-for-profit system hospitals, although investor-owned system hospitals provide fewer such services than not-for-profit freestanding hospitals. Throughout, the findings indicate the importance of distinguishing between ownership and system affiliation. Previous research has failed to make a distinction between ownership form and system affiliation, thus attributing to ownership form differences which, as present findings suggest, appear to be more associated with system affiliation.(ABSTRACT TRUNCATED AT 400 WORDS)
Family level phylogenies reveal modes of macroevolution in RNA viruses.
Kitchen, Andrew; Shackelton, Laura A; Holmes, Edward C
2011-01-04
Despite advances in understanding the patterns and processes of microevolution in RNA viruses, little is known about the determinants of viral diversification at the macroevolutionary scale. In particular, the processes by which viral lineages assigned as different "species" are generated remain largely uncharacterized. To address this issue, we use a robust phylogenetic approach to analyze patterns of lineage diversification in five representative families of RNA viruses. We ask whether the process of lineage diversification primarily occurs when viruses infect new host species, either through cross-species transmission or codivergence, and which are defined here as analogous to allopatric speciation in animals, or by acquiring new niches within the same host species, analogous to sympatric speciation. By mapping probable primary host species onto family level viral phylogenies, we reveal a strong clustering among viral lineages that infect groups of closely related host species. Although this is consistent with lineage diversification within individual hosts, we argue that this pattern more likely represents strong biases in our knowledge of viral biodiversity, because we also find that better-sampled human viruses rarely cluster together. Hence, although closely related viruses tend to infect related host species, it is unlikely that they often infect the same host species, such that evolutionary constraints hinder lineage diversification within individual host species. We conclude that the colonization of new but related host species may represent the principle mode of macroevolution in RNA viruses.
Etienne, Rampal S; Haegeman, Bart
2012-10-01
In this article we propose a new framework for studying adaptive radiations in the context of diversity-dependent diversification. Diversity dependence causes diversification to decelerate at the end of an adaptive radiation but also plays a key role in the initial pulse of diversification. In particular, key innovations (which in our definition include novel traits as well as new environments) may cause decoupling of the diversity-dependent dynamics of the innovative clade from the diversity-dependent dynamics of its ancestral clade. We present a likelihood-based inference method to test for decoupling of diversity dependence using molecular phylogenies. The method, which can handle incomplete phylogenies, identifies when the decoupling took place and which diversification parameters are affected. We illustrate our approach by applying it to the molecular phylogeny of the North American clade of the legume tribe Psoraleeae (47 extant species, of which 4 are missing). Two diversification rate shifts were previously identified for this clade; our analysis shows that the first, positive shift can be associated with decoupling of two Pediomelum subgenera from the other Psoraleeae lineages, while we argue that the second, negative shift can be attributed to speciation being protracted. The latter explanation yields nonzero extinction rates, in contrast to previous findings. Our framework offers a new perspective on macroevolution: new environments and novel traits (ecological opportunity) and diversity dependence (ecological limits) cannot be considered separately.
Johnson, Marc T J; Fitzjohn, Richard G; Smith, Stacey D; Rausher, Mark D; Otto, Sarah P
2011-11-01
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Soto, Eduardo M; Labarque, Facundo M; Ceccarelli, F Sara; Arnedo, Miquel A; Pizarro-Araya, Jaime; Ramírez, Martín J
2017-02-01
Oceanic archipelagoes, by their young origin and isolation, provide privileged settings to study the origin and diversification of species. Here, we study the anyphaenid spider genus Philisca, endemic to the Valdivian temperate rainforest, which includes species living both on the mainland as well as on the Robison Crusoe Island in the Juan Fernández archipelago. Anyphaenids, as many spiders, are potentially good colonizers due their ability for ballooning, an airborne dispersal mediated by strands of silk that are caught in the wind. We use a molecular approach to estimate both the phylogenetic relationships and the timeframe of species diversification of Philisca, with the aim to infer its evolutionary history. We further estimate the rates of speciation on both the insular and continental Philisca species and score the microhabitat used by each species and their sizes as a proxy to evaluate ecological niche diversification within the island. Most analyses support the monophyly of Philisca, with the exclusion of Philisca tripunctata. Our results reveal colonization from a single lineage that postdated the origin of the island, followed by rapid (∼2Ma) diversification. The ancestral microhabitat was most likely leaf-dwelling but we identify two independent microhabitat shifts. Our data provides evidence that Philisca has undergone an adaptive radiation on the Robison Crusoe Island. Copyright © 2016 Elsevier Inc. All rights reserved.
Speciation with gene flow in whiptail lizards from a Neotropical xeric biome.
Oliveira, Eliana F; Gehara, Marcelo; São-Pedro, Vinícius A; Chen, Xin; Myers, Edward A; Burbrink, Frank T; Mesquita, Daniel O; Garda, Adrian A; Colli, Guarino R; Rodrigues, Miguel T; Arias, Federico J; Zaher, Hussam; Santos, Rodrigo M L; Costa, Gabriel C
2015-12-01
Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process. © 2015 John Wiley & Sons Ltd.
Moreau, Corrie S; Bell, Charles D
2013-08-01
Ants are one of the most ecologically and numerically dominant group of terrestrial organisms with most species diversity currently found in tropical climates. Several explanations for the disparity of biological diversity in the tropics compared to temperate regions have been proposed including that the tropics may act as a "museum" where older lineages persist through evolutionary time or as a "cradle" where new species continue to be generated. We infer the molecular phylogenetic relationships of 295 ant specimens including members of all 21 extant subfamilies to explore the evolutionary diversification and biogeography of the ants. By constraining the topology and age of the root node while using 45 fossils as minimum constraints, we converge on an age of 139-158 Mya for the modern ants. Further diversification analyses identified 10 periods with a significant change in the tempo of diversification of the ants, although these shifts did not appear to correspond to ancestral biogeographic range shifts. Likelihood-based historical biogeographic reconstructions suggest that the Neotropics were important in early ant diversification (e.g., Cretaceous). This finding coupled with the extremely high-current species diversity suggests that the Neotropics have acted as both a museum and cradle for ant diversity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies
Mullen, Sean P.; Savage, Wesley K.; Wahlberg, Niklas; Willmott, Keith R.
2011-01-01
Latitudinal gradients in species richness are among the most well-known biogeographic patterns in nature, and yet there remains much debate and little consensus over the ecological and evolutionary causes of these gradients. Here, we evaluated whether two prominent alternative hypotheses (namely differences in diversification rate or clade age) could account for the latitudinal diversity gradient in one of the most speciose neotropical butterfly genera (Adelpha) and its close relatives. We generated a multilocus phylogeny of a diverse group of butterflies in the containing tribe Limenitidini, which has both temperate and tropical representatives. Our results suggest there is no relationship between clade age and species richness that could account for the diversity gradient, but that instead it could be explained by a significantly higher diversification rate within the predominantly tropical genus Adelpha. An apparent early larval host-plant shift to Rubiaceae and other plant families suggests that the availability of new potential host plants probably contributed to an increase in diversification of Adelpha in the lowland Neotropics. Collectively, our results support the hypothesis that the equatorial peak in species richness observed within Adelpha is the result of increased diversification rate in the last 10–15 Myr rather than a function of clade age, perhaps reflecting adaptive divergence in response to the dramatic host-plant diversity found within neotropical ecosystems. PMID:21106589
Early Cretaceous greenhouse pumped higher taxa diversification in spiders.
Shao, Lili; Li, Shuqiang
2018-05-24
The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.
Márquez-Corro, José Ignacio; Escudero, Marcial; Luceño, Modesto
2017-10-17
Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.
Plastome phylogeny and early diversification of Brassicaceae.
Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A
2017-02-16
The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.
Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke
2014-08-01
Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
The age of chocolate: a diversification history of Theobroma and Malvaceae
USDA-ARS?s Scientific Manuscript database
Dated molecular phylogenies of broadly distributed lineages can help to compare patterns of diversification in different parts of the world. An explanation for greater Neotropical diversity compared to other parts of the tropics is that it was an accident of the Andean orogeny. Using dated phylogeni...
Entrepreneurship in the Community College: Revenue Diversification.
ERIC Educational Resources Information Center
Brightman, Richard W.
1989-01-01
Offers guidelines for community colleges wishing to become involved in for-profit ventures as a means of revenue diversification. Explains the differences between for-profit activities related to the college's non-profit mission and those that are not; alternative organizational structures; and common operations (e.g., catering, retail sales, and…
ERIC Educational Resources Information Center
Suarez, Jacinto E.
1994-01-01
Examines the impact of publishing industry diversification on the college textbook publishing process. Topics discussed include characteristics and trends of the college publishing industry; corporate ownership and managerial practices; the rationalization of editorial and marketing processes; evaluative criteria; author selection; and suggestions…
Classroom Diversification: A Strategic View of Educational Productivity
ERIC Educational Resources Information Center
Lopez, Omar S.
2007-01-01
This article advances a theory of educational productivity based on a paradigm of classroom diversification that defines a strategic view of the education production process. The paradigm's underlying premise is that classroom student performance, and the instructional interactions that produce such outcomes, depend on economies derived from the…
HISTORICAL PATTERNS OF HABITAT CHANGES AND GENETIC DIVERGENCE IN THE DESERT AND SHORT HORNED LIZARDS
Historical environmental change is thought to have played an important role in the diversification of the biota of western North America. Many patterns of diversification have been associated with glacial-interglacial cycles of the latest Pleistocene. To evaluate the relativ...
ERIC Educational Resources Information Center
Tyndorf, Darryl; Glass, Chris R.
2016-01-01
Numerous microeconomic studies demonstrate the significant individual returns to tertiary education; however, little empirical evidence exists regarding the effects of higher education massification and diversification agendas on long-term macroeconomic growth. The researchers used the Uzawa-Lucas endogenous growth model to tertiary education…
Promoting small towns for rural development: a view from Nepal.
Bajracharya, B N
1995-06-01
Two small villages in Nepal are the subjects of case studies that illustrate the role of small towns in provision of services, employment, and market operations. Some general findings are that small towns act as service centers for distribution of basic essential goods such as food grains, salt, kerosene, and fabric for hill and mountain areas. The role of small towns as market centers and in the provision of employment is limited. In resource-poor areas small towns are less diversified. Towns with agricultural surpluses are more developed. Small hill towns satisfy consumption rather than production needs. The growth of rural areas and towns in rural areas in Nepal is dependent on arable land and levels of production in hill areas. Limited land and low levels of production have an adverse impact. Movement of people, goods, and services is limited by difficult terrain and lack of access to good roads. Variability in access to off-farm jobs and services available in small towns varies with ethnicity and place of residence. The best development strategy for small towns in Nepal is market-oriented territorial development, which retains surpluses in the local area and integrates markets in the larger economy. The strategy would decentralize planning into small territorial units that include both small towns and groups of villages, provide institutional support for the rural poor, expand off-farm employment, and include investment in region-serving functions. Subsistence agriculture needs to include diversification of high value cash crops based on local comparative advantage suitable for hill climate and terrain. Small farmers must produce both cash and subsistence crops. Government should provide market space and paved areas, weighing facilities, and overnight storage facilities. Products would be processed at the village level. Subdistricts must be established according to spatial and social linkages between villages and the service center and coordinated at the district level. Group marketing, transport to large urban centers, and agricultural technical services are needed.
Diversification versus specialization in complex ecosystems.
Di Clemente, Riccardo; Chiarotti, Guido L; Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano
2014-01-01
By analyzing the distribution of revenues across the production sectors of quoted firms we suggest a novel dimension that drives the firms diversification process at country level. Data show a non trivial macro regional clustering of the diversification process, which underlines the relevance of geopolitical environments in determining the microscopic dynamics of economic entities. These findings demonstrate the possibility of singling out in complex ecosystems those micro-features that emerge at macro-levels, which could be of particular relevance for decision-makers in selecting the appropriate parameters to be acted upon in order to achieve desirable results. The understanding of this micro-macro information exchange is further deepened through the introduction of a simplified dynamic model.
Diversification versus Specialization in Complex Ecosystems
Di Clemente, Riccardo; Chiarotti, Guido L.; Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano
2014-01-01
By analyzing the distribution of revenues across the production sectors of quoted firms we suggest a novel dimension that drives the firms diversification process at country level. Data show a non trivial macro regional clustering of the diversification process, which underlines the relevance of geopolitical environments in determining the microscopic dynamics of economic entities. These findings demonstrate the possibility of singling out in complex ecosystems those micro-features that emerge at macro-levels, which could be of particular relevance for decision-makers in selecting the appropriate parameters to be acted upon in order to achieve desirable results. The understanding of this micro-macro information exchange is further deepened through the introduction of a simplified dynamic model. PMID:25384059
ERIC Educational Resources Information Center
Oubre, Linda Seiffert
2017-01-01
With changing funding models and increased competition, academic institutions are increasingly looking for new ways to finance their missions. Business schools are turning to revenue diversification through new venturing to offset declining MBA enrollment, high business faculty salaries, and changes in accreditation standards that require more…
Diversification: Midland/Odessa Health & Retirement Endeavor.
ERIC Educational Resources Information Center
Skipper, P. K.
In reaction to the economic risks associated with an over reliance on oil and gas exports, residents of the Midland/Odessa area of Texas began seeking diversification options for the local economy and, in 1986, formed the Midland/Odessa Health and Retirement Endeavor (MOHRE). This non-profit corporation was formed to examine the feasibility of…
Origins, evolution and diversification of cleptoparasitic lineages in long-tongued bees
USDA-ARS?s Scientific Manuscript database
The evolution of parasitic behavior may catalyze the exploitation of new ecological niches yet also binds the fate of a parasite to that of its host. It is thus not clear whether evolutionary transitions from free-living organism to parasite lead to increased or decreased rates of diversification. W...
ERIC Educational Resources Information Center
Shirtz, Shahar Baruch
2017-01-01
This is a study of processes of structural and functional diversification of the uses of three cognate verbs across the Indo-Iranian language family: "do/make", "be/become", and "give". First, this study identifies over sixty distinct construction types in which these verbs are used, including complex predicate…
ERIC Educational Resources Information Center
Mayo, Peter
2009-01-01
This paper focuses on the EU discourse on Higher Education and analyses this discourse within the context of globalisation. Importance is attached to the issues of lifelong learning, competitiveness, diversification, entrepreneurship, access, knowledge society, modernisation, quality assurance, innovation and creativity, governance and business-HE…
Callahan, Melissa S; McPeek, Mark A
2016-01-01
Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus. Copyright © 2015 Elsevier Inc. All rights reserved.
Biphasic patterns of diversification and the emergence of modules
Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2012-01-01
The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076
Cornette, James L; Lieberman, Bruce S; Goldstein, Robert H
2002-06-11
We show that the rates of diversification of the marine fauna and the levels of atmospheric CO(2) have been closely correlated for the past 545 million years. These results, using two of the fundamental databases of the Earth's biota and the Earth's atmospheric composition, respectively, are highly statistically significant (P < 0.001). The strength of the correlation suggests that one or more environmental variables controlling CO(2) levels have had a profound impact on evolution throughout the history of metazoan life. Comparing our work with highly significant correlations described by D. H. Rothman [Rothman, D. H. (2001) Proc. Natl. Acad. Sci. USA 98, 4305-4310] between total biological diversity and a measure of stable carbon isotope fractionation, we find that the rates of diversification rather than total diversification correlate with environmental variables, and that the rate of diversification follows the record of CO(2) projected by R. A. Berner and Z. Kothavala [Berner, R. A. & Kothavala, Z. (2001) Am. J. Sci. 301, 182-204] more closely than that predicted by Rothman.
Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae).
García-R, Juan C; Gibb, Gillian C; Trewick, Steve A
2014-01-01
Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.
Mosaic patterns of diversification dynamics following the colonization of Melanesian islands.
Toussaint, Emmanuel F A; Hendrich, Lars; Shaverdo, Helena; Balke, Michael
2015-11-03
The fate of newly settled dispersers on freshly colonized oceanic islands is a central theme of island biogeography. The emergence of increasingly sophisticated methods of macroevolutionary pattern inference paves the way for a deeper understanding of the mechanisms governing these diversification patterns on lineages following their colonization of oceanic islands. Here we infer a comprehensive molecular phylogeny for Melanesian Exocelina diving beetles. Recent methods in historical biogeography and diversification rate inference were then used to investigate the evolution of these insects in space and time. An Australian origin in the mid-Miocene was followed by independent colonization events towards New Guinea and New Caledonia in the late Miocene. One colonization of New Guinea led to a large radiation of >150 species and 3 independent colonizations of New Caledonia gave rise to about 40 species. The comparably late colonizations of Vanuatu, Hawaii and China left only one or two species in each region. The contrasting diversification trajectories of these insects on Melanesian islands are likely accounted for by island size, age and availability of ecological opportunities during the colonization stage.
Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.
Blanchard, Benjamin D; Moreau, Corrie S
2017-02-01
Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Diversifying the secondary school curriculum: The African experience
NASA Astrophysics Data System (ADS)
Sifuna, Daniel N.
1992-01-01
The paper discusses some African experiences in the diversification of secondary education, which is taken to mean curriculum change in a practical or vocational direction. This approach is intended to provide a wider set of future career options than is offered in the more uniform academic curriculum. The diversification policy has generally been seen as a solution to a number of economic and social problems facing the independent African countries, notably the increasing youth unemployment and the escalating costs of formal education. Studies which have so far been carried out have, however, revealed that diversification programmes have not met the intended objectives, although there is sustained interest in vocationalising formal education. Problems which commonly face these programmes include high unit costs, an absence of clarity in aims and objectives, a shortage of qualified teachers and the low status of vocational subjects as viewed by the students and the community. For future development, it is suggested that diversification programmes be reorganised to relate to more realistic goals through wider community participation and through the work-orientation of post-school training programmes.
2016-01-01
The historic richness of most taxonomic groups increases substantially over geological time. Explanations for this fall broadly into two categories: bias in the fossil record and elevated net rates of diversification in recent periods. For example, the break up of Pangaea and isolation between continents might have increased net diversification rates. In this study, we investigate the effect on terrestrial diversification rates of the increased isolation between land masses brought about by continental drift. We use ecological neutral theory as a means to study geologically complex scenarios tractably. Our models show the effects of simulated geological events that affect all species equally, without the added complexity of further ecological processes. We find that continental drift leads to an increase in diversity only where isolation between continents leads to additional speciation through vicariance, and where higher taxa with very low global diversity are considered. We conclude that continental drift by itself is not sufficient to account for the increase in terrestrial species richness observed in the fossil record. PMID:26977062
Jordan, Sean M R; Barraclough, Timothy G; Rosindell, James
2016-04-05
The historic richness of most taxonomic groups increases substantially over geological time. Explanations for this fall broadly into two categories: bias in the fossil record and elevated net rates of diversification in recent periods. For example, the break up of Pangaea and isolation between continents might have increased net diversification rates. In this study, we investigate the effect on terrestrial diversification rates of the increased isolation between land masses brought about by continental drift. We use ecological neutral theory as a means to study geologically complex scenarios tractably. Our models show the effects of simulated geological events that affect all species equally, without the added complexity of further ecological processes. We find that continental drift leads to an increase in diversity only where isolation between continents leads to additional speciation through vicariance, and where higher taxa with very low global diversity are considered. We conclude that continental drift by itself is not sufficient to account for the increase in terrestrial species richness observed in the fossil record. © 2016 The Authors.
Derryberry, Elizabeth P; Claramunt, Santiago; Derryberry, Graham; Chesser, R Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J V; Brumfield, Robb T
2011-10-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Tavera, Jose; Acero P, Arturo; Wainwright, Peter C
2018-04-01
We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation indicates that Haemulidae originated during the mid Eocene (54.7-42.3 Ma) but that the major lineages were formed during the mid-Oligocene 30-25 Ma. We propose a new classification that reflects the phylogenetic history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology. Copyright © 2017 Elsevier Inc. All rights reserved.
Sánchez-García, Marisol; Matheny, Patrick Brandon
2017-01-01
Although fungi are one of the most diverse groups of organisms, little is known about the processes that shape their high taxonomic diversity. This study focuses on evolution of ectomycorrhizal (ECM) mushroom-forming fungi, symbiotic associates of many trees and shrubs, in the suborder Tricholomatineae of the Agaricales. We used the BiSSE model and BAMM to test the hypothesis that the ECM habit represents an evolutionary key innovation that allowed the colonization of new niches followed by an increase in diversification rate. Ancestral state reconstruction (ASR) supports the ancestor of the Tricholomatineae as non-ECM. We detected two diversification rate increases in the genus Tricholoma and the Rhodopolioid clade of the genus Entoloma. However, no increases in diversification were detected in the four other ECM clades of Tricholomatineae. We suggest that diversification of Tricholoma was not only due to the evolution of the ECM lifestyle, but also to the expansion and dominance of its main hosts and ability to associate with a variety of hosts. Diversification in the Rhodopolioid clade could be due to the unique combination of spore morphology and ECM habit. The spore morphology may represent an exaptation that aided spore dispersal and colonization. This is the first study to investigate rate shifts across a phylogeny that contains both non-ECM and ECM lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Slovák, Marek; Kučera, Jaromír; Lack, Hans Walter; Ziffer-Berger, Jotham; Melicharková, Andrea; Záveská, Eliška; Vďačný, Peter
2018-02-01
Understanding transcontinental biogeographic patterns has been one of the main foci of the field of biogeography. While multiple explanations for transcontinental disjunctions have been proposed, little is still known about the relative importance of intrinsic and extrinsic traits for the diversification dynamics of disjunct taxa. Here, we study the evolutionary history of the genus Picris L. (Compositae), a great model for investigating the diversification dynamics of transoceanic bipolar disjunct organisms. Ancestral state reconstructions indicate that the most recent common ancestor (MRCA) of Picris was a semelparous and heterocarpic herb that lived in unpredictable environments of North Africa and West Asia. Diversification analyses suggest a significant shift in speciation ca. 1 million years ago, likely associated with the onset of the mid-Pleistocene revolution. Longevity characters are correlated with the evolution of particular fruit types and with environmental conditions. Heterocarpic species are mostly semelparous herbs strongly linked with unpredictable habitats, while homocarpic taxa are mostly iteroparous plants occurring in predictable environments. Binary-state speciation and extinction analyses suggest that homocarpy, iteroparity, and habitats predictability accelerate diversification. Although the combination of homocarpy and iteroparity evolved in several lineages, only members of the P. hieracioides group were able to colonise Eurasia and expand to Australia by transoceanic dispersal. Those findings indicate that large-scale colonisation events depend on a complex interplay of intrinsic and extrinsic factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Ackerly, David
2009-01-01
The concepts of niche conservatism and adaptive radiation have played central roles in the study of evolution and ecological diversification. With respect to phenotypic evolution, the two processes may be seen as opposite ends of a spectrum; however, there is no straightforward method for the comparative analysis of trait evolution that will identify these contrasting scenarios. Analysis of the rate of phenotypic evolution plays an important role in this context and merits increased attention. In this article, independent contrasts are used to estimate rates of evolution for continuous traits under a Brownian motion model of evolution. A unit for the rate of phenotypic diversification is introduced: the felsen, in honor of J. Felsenstein, is defined as an increase of one unit per million years in the variance among sister taxa of ln-transformed trait values. The use of a standardized unit of measurement facilitates comparisons among clades and traits. Rates of diversification of three functional traits (plant height, leaf size, and seed size) were estimated for four to six woody plant clades (Acer, Aesculus, Ceanothus, Arbutoideae, Hawaiian lobeliads, and the silversword alliance) for which calibrated phylogenies were available. For height and leaf size, rates were two to ≈300 times greater in the Hawaiian silversword alliance than in the other clades considered. These results highlight the value of direct estimates of rates of trait evolution for comparative analysis of adaptive radiation, niche conservatism, and trait diversification. PMID:19843698
Ackerly, David
2009-11-17
The concepts of niche conservatism and adaptive radiation have played central roles in the study of evolution and ecological diversification. With respect to phenotypic evolution, the two processes may be seen as opposite ends of a spectrum; however, there is no straightforward method for the comparative analysis of trait evolution that will identify these contrasting scenarios. Analysis of the rate of phenotypic evolution plays an important role in this context and merits increased attention. In this article, independent contrasts are used to estimate rates of evolution for continuous traits under a Brownian motion model of evolution. A unit for the rate of phenotypic diversification is introduced: the felsen, in honor of J. Felsenstein, is defined as an increase of one unit per million years in the variance among sister taxa of ln-transformed trait values. The use of a standardized unit of measurement facilitates comparisons among clades and traits. Rates of diversification of three functional traits (plant height, leaf size, and seed size) were estimated for four to six woody plant clades (Acer, Aesculus, Ceanothus, Arbutoideae, Hawaiian lobeliads, and the silversword alliance) for which calibrated phylogenies were available. For height and leaf size, rates were two to approximately 300 times greater in the Hawaiian silversword alliance than in the other clades considered. These results highlight the value of direct estimates of rates of trait evolution for comparative analysis of adaptive radiation, niche conservatism, and trait diversification.
Wilson, Andrew W; Hosaka, Kentaro; Mueller, Gregory M
2017-03-01
A systematic and evolutionary ecology study of the model ectomycorrhizal (ECM) genus Laccaria was performed using herbarium material and field collections from over 30 countries covering its known geographic range. A four-gene (nrITS, 28S, RPB2, EF1α) nucleotide sequence dataset consisting of 232 Laccaria specimens was analyzed phylogenetically. The resulting Global Laccaria dataset was used for molecular dating and estimating diversification rates in the genus. Stable isotope analysis of carbon and nitrogen was used to evaluate the origin of Laccaria's ECM ecology. In all, 116 Laccaria molecular species were identified, resulting in a near 50% increase in its known diversity, including the new species described herein: Laccaria ambigua. Molecular dating indicates that the most recent common ancestor to Laccaria existed in the early Paleocene (56-66 million yr ago), probably in Australasia. At this time, Laccaria split into two lineages: one represented by the new species L. ambigua, and the other reflecting a large shift in diversification that resulted in the remainder of Laccaria. L. ambigua shows a different isotopic profile than all other Laccaria species. Isotopes and diversification results suggest that the evolution of the ECM ecology was a key innovation in the evolution of Laccaria. Diversification shifts associated with Laccaria's dispersal to the northern hemisphere are attributed to adaptations to new ecological niches. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Recent and rapid speciation with limited morphological disparity in the genus Rattus.
Rowe, Kevin C; Aplin, Ken P; Baverstock, Peter R; Moritz, Craig
2011-03-01
Recent and rapid radiations provide rich material to examine the factors that drive speciation. Most recent and rapid radiations that have been well-characterized involve species that exhibit overt ecomorphological differences associated with clear partitioning of ecological niches in sympatry. The most diverse genus of rodents, Rattus (66 species), evolved fairly recently, but without overt ecomorphological divergence among species. We used multilocus molecular phylogenetic data and five fossil calibrations to estimate the tempo of diversification in Rattus, and their radiation on Australia and New Guinea (Sahul, 24 species). Based on our analyses, the genus Rattus originated at a date centered on the Pliocene-Pleistocene boundary (1.84-3.17 Ma) with a subsequent colonization of Sahul in the middle Pleistocene (0.85-1.28 Ma). Given these dates, the per lineage diversification rates in Rattus and Sahulian Rattus are among the highest reported for vertebrates (1.1-1.9 and 1.6-3.0 species per lineage per million years, respectively). Despite their rapid diversification, Rattus display little ecomorphological divergence among species and do not fit clearly into current models of adaptive radiations. Lineage through time plots and ancestral state reconstruction of ecological characters suggest that diversification of Sahulian Rattus was most rapid early on as they expanded into novel ecological conditions. However, rapid lineage accumulation occurred even when morphological disparity within lineages was low suggesting that future studies consider other phenotypes in the diversification of Rattus.
Matos-Maraví, Pável; Clouse, Ronald M; Sarnat, Eli M; Economo, Evan P; LaPolla, John S; Borovanska, Michaela; Rabeling, Christian; Czekanski-Moir, Jesse; Latumahina, Fransina; Wilson, Edward O; Janda, Milan
2018-06-01
The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodiversity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species diversity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation. Ancestral state reconstructions of the ants' ecological preferences, and diversification rates were estimated for selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred since at least 20-25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca. 10-20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid orogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification and widespread distribution across the Indo-Pacific. Copyright © 2018 Elsevier Inc. All rights reserved.
Friedman, Matt
2010-06-07
The spiny-finned teleost fishes (Acanthomorpha) include nearly one-third of all living vertebrate species and assume a bewildering array of bodyplans, but the macroevolutionary assembly of modern acanthomorph biodiversity remains largely unexplored. Here, I reconstruct the trajectory of morphological diversification in this major radiation from its first appearance in the Late Cretaceous to the Miocene using a geometric morphometric database comprising more than 600 extinct species known from complete body fossils. The anatomical diversity (disparity) of acanthomorphs is low throughout the Cretaceous, increases sharply and significantly in the wake of the Cretaceous-Palaeogene (K-P) extinction, and shows little change throughout subsequent Cenozoic intervals. This pattern of morphological diversification appears robust to two potential biasing factors: the 'Lagerstätten effect', and the non-random segregation of rare and common taxa along phenotypic axes. Dissecting the trajectory of acanthomorph radiation along phylogenetic lines reveals that the abrupt post-extinction increase in disparity is driven largely by the proliferation of trophically diverse modern groups within Percomorpha, a spiny-fin subclade containing more than 15 000 living species and identified as showing a substantially elevated diversification rate relative to background vertebrate levels. A major component of the Palaeogene acanthomorph radiation reflects colonization of morphospace previously occupied by non-acanthomorph victims of the K-P. However, other aspects of morphological diversification cannot be explained by this simple ecological release model, suggesting that multiple factors contributed to the prolific anatomical radiation of acanthomorphs.
Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic.
Toussaint, Emmanuel F A; Condamine, Fabien L; Hawlitschek, Oliver; Watts, Chris H; Porch, Nick; Hendrich, Lars; Balke, Michael
2015-01-01
During the Cenozoic, Australia experienced major climatic shifts that have had dramatic ecological consequences for the modern biota. Mesic tropical ecosystems were progressively restricted to the coasts and replaced by arid-adapted floral and faunal communities. Whilst the role of aridification has been investigated in a wide range of terrestrial lineages, the response of freshwater clades remains poorly investigated. To gain insights into the diversification processes underlying a freshwater radiation, we studied the evolutionary history of the Australasian predaceous diving beetles of the tribe Hydroporini (147 described species). We used an integrative approach including the latest methods in phylogenetics, divergence time estimation, ancestral character state reconstruction, and likelihood-based methods of diversification rate estimation. Phylogenies and dating analyses were reconstructed with molecular data from seven genes (mitochondrial and nuclear) for 117 species (plus 12 outgroups). Robust and well-resolved phylogenies indicate a late Oligocene origin of Australasian Hydroporini. Biogeographic analyses suggest an origin in the East Coast region of Australia, and a dynamic biogeographic scenario implying dispersal events. The group successfully colonized the tropical coastal regions carved by a rampant desertification, and also colonized groundwater ecosystems in Central Australia. Diversification rate analyses suggest that the ongoing aridification of Australia initiated in the Miocene contributed to a major wave of extinctions since the late Pliocene probably attributable to an increasing aridity, range contractions and seasonally disruptions resulting from Quaternary climatic changes. When comparing subterranean and epigean genera, our results show that contrasting mechanisms drove their diversification and therefore current diversity pattern. The Australasian Hydroporini radiation reflects a combination of processes that promoted both diversification, resulting from new ecological opportunities driven by initial aridification, and a subsequent loss of mesic adapted diversity due to increasing aridity. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mitchell, Jonathan S.; Chang, Jonathan
2017-01-01
Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM’s likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA’s numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that “unobserved rate shifts” appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\sim}$\\end{document}20% of simulated trees in MEA’s data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth–death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth. PMID:28334223
Rabosky, Daniel L; Mitchell, Jonathan S; Chang, Jonathan
2017-07-01
Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that "unobserved rate shifts" appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the ${\\sim}$20% of simulated trees in MEA's data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth-death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Rodriguez, Lillian Jennifer; Bain, Anthony; Chou, Lien-Siang; Conchou, Lucie; Cruaud, Astrid; Gonzales, Regielene; Hossaert-McKey, Martine; Rasplus, Jean-Yves; Tzeng, Hsy-Yu; Kjellberg, Finn
2017-08-29
Interspecific interactions have long been assumed to play an important role in diversification. Mutualistic interactions, such as nursery pollination mutualisms, have been proposed as good candidates for diversification through co-speciation because of their intricate nature. However, little is known about how speciation and diversification proceeds in emblematic nursery pollination systems such as figs and fig wasps. Here, we analyse diversification in connection with spatial structuring in the obligate mutualistic association between Ficus septica and its pollinating wasps throughout the Philippines and Taiwan. Ceratosolen wasps pollinating F. septica are structured into a set of three vicariant black coloured species, and a fourth yellow coloured species whose distribution overlaps with those of the black species. However, two black pollinator species were found to co-occur on Lanyu island. Microsatellite data on F. septica indicates the presence of three gene pools that broadly mirrors the distribution of the three black clades. Moreover, receptive fig odours, the specific message used by pollinating wasps to locate their host tree, varied among locations. F. septica and its black pollinator clades exhibited similar geographic structuring. This could be due originally to geographic barriers leading to isolation, local adaptation, and finally co-structuring. Nevertheless, the co-occurrence of two black pollinator species on Lanyu island suggests that the parapatric distribution of the black clades is now maintained by the inability of migrating individuals of black pollinators to establish populations outside their range. On the other hand, the distribution of the yellow clade strongly suggests an initial case of character displacement followed by subsequent range extension: in our study system, phenotypic or microevolutionary plasticity has allowed the yellow clade to colonise hosts presenting distinct odours. Hence, while variation in receptive fig odours allows specificity in the interaction, this variation does not necessarily lead to coevolutionary plant-insect diversification. Globally, our results evidence evolutionary plasticity in the fig-fig wasp mutualism. This is the first documentation of the presence of two distinct processes in pollinating fig wasp diversification on a host species: the formation of vicariant species and the co-occurrence of other species over large parts of their ranges probably made possible by character displacement.
Katharios, Pantelis; Seth-Smith, Helena M. B.; Fehr, Alexander; Mateos, José M.; Qi, Weihong; Richter, Denis; Nufer, Lisbeth; Ruetten, Maja; Guevara Soto, Maricruz; Ziegler, Urs; Thomson, Nicholas R; Schlapbach, Ralph; Vaughan, Lloyd
2015-01-01
Aquaculture is a burgeoning industry, requiring diversification into new farmed species, which are often at risk from infectious disease. We used a mesocosm technique to investigate the susceptibility of sharpsnout seabream (Diplodus puntazzo) larvae to potential environmental pathogens in seawater compared to control borehole water. Fish exposed to seawater succumbed to epitheliocystis from 21 days post hatching, causing mortality in a quarter of the hosts. The pathogen responsible was not chlamydial, as is often found in epitheliocystis, but a novel species of the γ-proteobacterial genus Endozoicomonas. Detailed characterisation of this pathogen within the infectious lesions using high resolution fluorescent and electron microscopy showed densely packed rod shaped bacteria. A draft genome sequence of this uncultured bacterium was obtained from preserved material. Comparison with the genome of the Endozoicomonas elysicola type strain shows that the genome of Ca. Endozoicomonas cretensis is undergoing decay through loss of functional genes and insertion sequence expansion, often indicative of adaptation to a new niche or restriction to an alternative lifestyle. These results demonstrate the advantage of mesocosm studies for investigating the effect of environmental bacteria on susceptible hosts and provide an important insight into the genome dynamics of a novel fish pathogen. PMID:26639610
Getahun, H; Haimanot, R T
1998-01-01
Three hundred and thirty three patients in the lathyrism endemic rural Estie district of Northern Ethiopia were interviewed and examined to assess the psychosocial impacts of neurolathyrism. The majority of the affected were in the age group of 11-20 years (43%) followed by 21-30 years (29%). Males were more affected than females (4.8:1). Peak occurrences of neurolathyrism was observed at time of mobilization of the population in villagization and land diversification schemes. Females were affected to lesser extent and at an earlier age than males. Neurolathyrism affected matrimony among the rural farming population where marriage is considered as the most significant social achievement of any young member of the society. Divorce rate due to paralysis was 28%. It also influenced the choice of occupation among the afflicted rural people. Many males went into ecclesiastical professions. A significant number of males also took up occupations which traditionally were considered to be exclusively for women like basketry and embroidery. More females, not withstanding their age, were engaged in cattle-keeping. During the study, the rural communities were made aware of the association of neurolathyrism and consumptions of grass pea seed. It is believed that this step will enable communities to use home-based detoxifying methods and resort to alternate crops during times of food shortage.
Pesticide consumption and productivity and the potential of IPM in Bangladesh.
Rahman, Sanzidur
2013-02-15
The paper analyses trends in consumption, productivity and the determinants of pesticide use in Bangladesh over a 33 year period (1977-2009), including a discussion on the scope to expand Integrated Pest Management (IPM) practices. Pesticide use grew at an alarming rate of 10.0% per year (p<0.01) although the corresponding response in yield growth of major crops has been minimal (<1.0% per year). Pesticide productivity (i.e., 'gross value added from crops at constant prices' per 'kg of active ingredients of all pesticides used') is declining steadily at a rate of -8.6% per year (p<0.01). Adoption of Green Revolution (GR) technology, crop diversification, average farm size and literacy rate are the most significant determinants of pesticide use, whereas research and development (R&D) investment depresses pesticide use. Consistent evidence of excessive pesticide use in Bangladesh was observed. Although the government has shifted focus from pesticide use to IPM, its coverage remains inadequate as only 7.4% of the total farmers are covered after 30 years of effort. Tighter pesticide regulation and its effective implementation, and expansion of IPM through public, private and non-governmental organisation (NGO) stakeholders are suggested to reduce pesticide consumption. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nissa, Z. N. A.; Suadi; Sukardi
2018-03-01
Floating net cages farming (KJA) is one of the main livelihood resources in Sendang Village, Gajah Mungkur Reservoir. The purposes of this study were to determine the livelihood asset of fish farmers, the problems of livelihood asset management and the utilization strategy to support aquaculture businesses also farmers livelihood. The study showed that the natural capital, provides easiest way to farmer in fish cultivation. The fish farmers also have good technical capabilities in fish cultivation and the product has high demand and value which is essential for farmers livelihood. The main problems faced by small-scale farmers and all large-scale farmers were transition period, and the rise of cost price which sometime cause the failure in the business. The strategies to deal the problems include technological adjustment, managing the pattern of stocking of tilapia seeds and income source diversification. There were differences in dealing the rise of cost. The small-scale farmers borrow from the bank, while medium-scale farmers use their savings. Another difference of livelihood strategy was the management of financial capital. However, various strategies were still required to increase the livelihood of fish farmers and could address the vulnerabilities in the cultivation of KJA as a common pool resources.
Rural Household Demographics, Livelihoods and the Environment
de Sherbinin, Alex; VanWey, Leah; McSweeney, Kendra; Aggarwal, Rimjhim; Barbieri, Alisson; Henry, Sabina; Hunter, Lori M.; Twine, Wayne
2008-01-01
This paper reviews and synthesizes findings from scholarly work on linkages among rural household demographics, livelihoods and the environment. Using the livelihood approach as an organizing framework, we examine evidence on the multiple pathways linking environmental variables and the following demographic variables: fertility, migration, morbidity and mortality, and lifecycles. Although the review draws on studies from the entire developing world, we find the majority of micro-level studies have been conducted in either marginal (mountainous or arid) or frontier environments, especially Amazonia. Though the linkages are mediated by many complex and often context-specific factors, there is strong evidence that dependence on natural resources intensifies when households lose human and social capital through adult morbidity and mortality, and qualified evidence for the influence of environmental factors on household decision-making regarding fertility and migration. Two decades of research on lifecycles and land-cover change at the farm level have yielded a number of insights about how households make use of different land-use and natural resource management strategies at different stages. A thread running throughout the review is the importance of managing risk through livelihood diversification, ensuring future income security, and culture-specific norms regarding appropriate and desirable activities and demographic responses. Recommendations for future research are provided. PMID:19190718
There is no silver bullet: the value of diversification in planning invasive species surveillance
Denys Yemshanov; Frank H. Koch; Bo Lu; D. Barry Lyons; Jeffrey P. Prestemon; Taylor Scarr; Klaus Koehler
2014-01-01
In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a geographical environment.Wefind the optimal allocation of surveillance resourcesamongmultiple geographical subdivisions via application of a...
ERIC Educational Resources Information Center
Iowa State Dept. of Agriculture, Des Moines.
These instructional materials on agricultural diversification and marketing were developed for use by Iowa's vocational and technical agricultural instructors and extension personnel. This document is one of three manuals making up a single package. (The other two are Christmas Tree Production and Marketing and Sod Production and Marketing). The…
Arctic and wilderness travel-hosts and guests: The territory of Nunavut, Canada
Wilfred E. Richard
2007-01-01
The semi-autonomous Territory of Nunavut in Arctic Canada requires a policy that induces economic diversification and equity for the Inuit population. Though mining continues as the primary economic activity, a focus on preserving Inuit wilderness skills would support cultural continuity and diversification of the Nunavut economy. Traditional Inuit life ways draw no...
ERIC Educational Resources Information Center
Holmberg, Daniel; Hallonsten, Olof
2015-01-01
Twentieth-century "massification" of higher education and academic research led to mission diversification and structural diversification of national higher education systems (HESs), but also a tendency of non-university colleges to seek to develop into full-scale universities by the emulation of practices of established academic…
ERIC Educational Resources Information Center
Palmer, Robert T.; Arroyo, Andrew T.; Maramba, Dina C.
2018-01-01
While research has shown that the racial diversity of historically Black colleges and universities (HBCUs) is increasing, literature suggests that some stakeholders at HBCUs feel the diversification of Black colleges could change their culture, which some see as vital for promoting the success of Black students. Given this, the following study…
USDA-ARS?s Scientific Manuscript database
Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...
Diversified management of coal enterprises in China: model selection, motivation and effect analysis
NASA Astrophysics Data System (ADS)
Lyu, Jingye; Lian, Xu; Li, Penglin
2018-01-01
In the context of promoting the new energy revolution and economic development of the new normal, the coal industry to excess production capacity is one of the important aspects of structural reform of the supply side. The purpose of diversification of coal enterprises in China is to seize historical opportunities, create new models of development and improve operational efficiency. In the research on diversification of coal enterprises, exploring the mode selection, motivation and effect from the aspects of the industry is conducive to the realization of the smooth replacement and the sustainable development of enterprises, to further enrich the strategic management of coal enterprises, to provide effective reference for the formulation of enterprise management decision-making and implementation of diversification strategy.
Fast demographic traits promote high diversification rates of Amazonian trees
Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John
2014-01-01
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190
Ravinet, Mark; Takeuchi, Naoko; Kume, Manabu; Mori, Seiichi; Kitano, Jun
2014-01-01
Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks. PMID:25460163
Mesozoic Calcareous Nannofossil Evolution: Relation to Paleoceanographic Events
NASA Astrophysics Data System (ADS)
Roth, Peter H.
1987-12-01
The taxonomic evolution of Jurassic and Cretaceous calcareous nannofossil species is described using the following indices: species diversity, rate of speciation, rate of extinction, rate of diversification, rate of turnover, survivorship, and species accretion. The Jurassic prior to the late Oxfordian is characterized by positive diversification rates, that is, rates of speciation exceeded rates of extinction. Highest rates of diversification occurred in the late Lias and early Oxfordian. During the generally regressive latest Jurassic, diversification rates remained low and rates of extinctions exceed rates of speciation. In the early Cretaceous, rates of diversification are positive and peak in the early Valanginian, early Aptian, and middle Albian, after which time rates of extinction generally exceed rates of speciation. Such peaks in rate of evolution coincide with times of increased accumulation of organic carbon in the ocean ("anoxic events"). Peaks in rates of extinction result in very high rates of turnover during times of major regressions, in particular, in the Tithonian and Maastrichtian. Survivorship analyses for three datum planes (74.5, 144, and 160 Ma) show relatively constant extinction rates with some stepping in the older part; they are best explained by a temporally fluctuating abiotic environment causing changes in the probability of extinction. Species accretion curves are also relatively linear with some indication of changing rates of speciation. The coincidences of major changes in evolutionary rates with major paleoceanographic events are indicative of a predominantly abiotic control of nannoplankton evolution. Relationships of evolutionary rates of calcareous nannoplankton with deep ocean ventilation, sea level, and ocean fertility indicates that global tectonic processes are the ultimate causes of evolutionary change.
Macroevolutionary dynamics in the early diversification of Asteraceae.
Panero, Jose L; Crozier, Bonnie S
2016-06-01
Spatial and temporal differences in ecological opportunity can result in disparity of net species diversification rates and consequently uneven distribution of taxon richness across the tree of life. The largest eudicotyledonous plant family Asteraceae has a global distribution and at least 460 times more species than its South American endemic sister family Calyceraceae. In this study, diversification rate dynamics across Asteraceae are examined in light of the several hypothesized causes for the family's evolutionary success that could be responsible for rate change. The innovations of racemose capitulum and pappus, and a whole genome duplication event occurred near the origin of the family, yet we found the basal lineages of Asteraceae that evolved in South America share background diversification rates with Calyceraceae and their Australasian sister Goodeniaceae. Instead we found diversification rates increased gradually from the origin of Asteraceae approximately 69.5Ma in the late Cretaceous through the Early Eocene Climatic Optimum at least. In contrast to earlier studies, significant rate shifts were not strongly correlated with intercontinental dispersals or polyploidization. The difference is due primarily to sampling more backbone nodes, as well as calibrations placed internally in Asteraceae that resulted in earlier divergence times than those found in most previous relaxed clock studies. Two clades identified as having transformed rate processes are the Vernonioid Clade and a clade within the Heliantheae alliance characterized by phytomelanic fruit (PF Clade) that represents an American radiation. In Africa, subfamilies Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, Corymbioideae, and Asteroideae diverged in a relatively short span of only 6.5millionyears during the Middle Eocene. Copyright © 2016 Elsevier Inc. All rights reserved.
Perez, M F; Bonatelli, I A S; Moraes, E M; Carstens, B C
2016-01-01
Pilosocereus machrisii and P. aurisetus are cactus species within the P. aurisetus complex, a group of eight cacti that are restricted to rocky habitats within the Neotropical savannas of eastern South America. Previous studies have suggested that diversification within this complex was driven by distributional fragmentation, isolation leading to allopatric differentiation, and secondary contact among divergent lineages. These events have been associated with Quaternary climatic cycles, leading to the hypothesis that the xerophytic vegetation patches which presently harbor these populations operate as refugia during the current interglacial. However, owing to limitations of the standard phylogeographic approaches used in these studies, this hypothesis was not explicitly tested. Here we use Approximate Bayesian Computation to refine the previous inferences and test the role of different events in the diversification of two species within P. aurisetus group. We used molecular data from chloroplast DNA and simple sequence repeats loci of P. machrisii and P. aurisetus, the two species with broadest distribution in the complex, in order to test if the diversification in each species was driven mostly by vicariance or by long-dispersal events. We found that both species were affected primarily by vicariance, with a refuge model as the most likely scenario for P. aurisetus and a soft vicariance scenario most probable for P. machrisii. These results emphasize the importance of distributional fragmentation in these species, and add support to the hypothesis of long-term isolation in interglacial refugia previously proposed for the P. aurisetus species complex diversification. PMID:27071846
Dong, Jiajia; Kergoat, Gael J; Vicente, Natállia; Rahmadi, Cahyo; Xu, Shengquan; Robillard, Tony
2018-06-07
Southeast Asia harbors an extraordinary species richness and endemism. While only covering 4% of the Earth's landmass, this region includes four of the planet's 34 biodiversity hotspots. Its complex geological history generated a megadiverse and highly endemic biota, attracting a lot of attention, especially in the field of island biogeography. Here we used the cricket genus Cardiodactylus as a model system to study biogeographic patterns in Southeast Asia. We carried out molecular analyses to: (1) infer phylogenetic relationships based on five mitochondrial and four nuclear markers, (2) estimate divergence times and infer biogeographical ancestral areas, (3) depict colonization routes, and summarize emigration and immigration events, as well as in situ diversification, and (4) determine whether shifts in species diversification occurred during the course of Cardiodactylus evolution. Our results support the monophyly of the genus and of one of its species groups. Dating and biogeographical analyses suggest that Cardiodactylus originated in the Southwest Pacific during the Middle Eocene. Our reconstructions indicate that Southeast Asia was independently colonized twice during the Early Miocene (ca. 19-16 Million years ago), and once during the Middle Miocene (ca. 13 Million years ago), with New Guinea acting as a corridor allowing westward dispersal through four different passageways: Sulawesi, the Philippines, Java and the Lesser Sunda Islands. Sulawesi also served as a diversification hub for Cardiodactylus through a combination of high immigration and in situ diversification events, which can be accounted for by the complex geological history of the Wallacea region. Copyright © 2018. Published by Elsevier Inc.
Community assembly and diversification in Indo-Pacific coral reef fishes
Hubert, Nicolas; Paradis, Emmanuel; Bruggemann, Henrich; Planes, Serge
2011-01-01
Theories of species coexistence have played a central role in ecology and evolutionary studies of the origin and maintenance of biodiversity in highly diverse communities. The concept of niche and associated theories predict that competition for available ecological space leads to a ceiling in species richness that influences further diversification patterns. By contrast, the neutral theory supports that speciation is stochastic and diversity independent. We examined the phylogenetic community structure and diversification rates in three families and 14 sites within coral reef fish communities from the Indian and Pacific oceans. Using the phylogenetic relationships among 157 species estimated with 2300 bp of mitochondrial DNA, we tested predictions in terms of species coexistence from the neutral and niche theories. At the regional scale, our findings suggest that phylogenetic community structure shifts during community assembly to a pattern of dispersion as a consequence of allopatric speciation in recent times but overall, variations in diversification rates did not relate with sea level changes. At the local scale, the phylogenetic community structure is consistent with a neutral model of community assembly since no departure from a random sorting of species was observed. The present results support a neutral model of community assembly as a consequence of the stochastic and unpredictable nature of coral reefs favoring generalist and sedentary species competing for living space rather than trophic resources. As a consequence, the observed decrease in diversification rates may be seen as the result of a limited supply of living space as expected in a finite island model. PMID:22393499
Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.
Webber, Quinn M R; Fletcher, Quinn E; Willis, Craig K R
2017-12-01
Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.
Sahoo, Ranjit Kumar; Warren, Andrew D; Collins, Steve C; Kodandaramaiah, Ullasa
2017-08-02
Skippers (Family: Hesperiidae) are a large group of butterflies with ca. 4000 species under 567 genera. The lack of a time-calibrated higher-level phylogeny of the group has precluded understanding of its evolutionary past. We here use a 10-gene dataset to reconstruct the most comprehensive time-calibrated phylogeny of the group, and explore factors that affected the diversification of these butterflies. Ancestral state reconstructions show that the early hesperiid lineages utilized dicots as larval hostplants. The ability to feed on monocots evolved once at the K-Pg boundary (ca. 65 million years ago (Mya)), and allowed monocot-feeders to diversify much faster on average than dicot-feeders. The increased diversification rate of the monocot-feeding clade is specifically attributed to rate shifts in two of its descendant lineages. The first rate shift, a four-fold increase compared to background rates, happened ca. 50 Mya, soon after the Paleocene-Eocene thermal maximum, in a lineage of the subfamily Hesperiinae that mostly fed on forest monocots. The second rate shift happened ca. 40 Mya in a grass-feeding lineage of Hesperiinae when open-habitat grasslands appeared in the Neotropics owing to gradual cooling of the atmospheric temperature. The evolution of monocot feeding strongly influenced diversification of skippers. We hypothesize that although monocot feeding was an intrinsic trait that allowed exploration of novel niches, the lack of extensive availability of monocots comprised an extrinsic limitation for niche exploration. The shifts in diversification rate coincided with paleoclimatic events during which grasses and forest monocots were diversified.
To diversify or not to diversify.
Markides, C C
1997-01-01
One of the most challenging decisions a company can confront is whether to diversify. The rewards and risks are extraordinary. Success stories such as General Electric, Disney, and 3M abound, but so do stories of failure-consider Quaker Oats' entry into the fruit juice business with Snapple. What makes diversification such an unpredictable, high-stakes game? First, companies usually face the decision in an atmosphere that is not conducive to thoughtful deliberation. For example, an attractive company comes into play, and a competitor is interested in buying it. Or the board of directors urges expanding into new markets. Suddenly, senior managers must synthesize mountains of data under intense time pressure. To complicate matters, diversification as a corporate strategy regularly goes in and out of vogue. In short, there is little conventional wisdom to guide managers as they consider a move that could greatly increase shareholder value or seriously damage it. But diversification doesn't need to be quite such a roll of the dice, argues the author. His research suggests that if managers consider six questions, they can reduce the gamble of diversification. Answering the questions will not lead to an easy go-no-go decision, but by helping managers weigh risks and opportunities, it can help them assess the likelihood of success. The issues that the questions raise, and the discussion they provoke, are meant to be coupled with the detailed financial analysis usually conducted before a diversification decision is made. Together, these tools can turn a complex and often pressured decision into a more structured and well-reasoned one.
Ravinet, Mark; Takeuchi, Naoko; Kume, Manabu; Mori, Seiichi; Kitano, Jun
2014-01-01
Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.
Wei-Ning Bai; Peng-Cheng Yan; Bo-Wen Zhang; Keith E. Woeste; Kui Lin; Da-Yong Zhang
2018-01-01
Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable...
Ming-Li Zhang; Yun Kang; Yang Zhong; Stewart C. Sanderson
2012-01-01
Phyllolobium, a recently established genus from subgenus Pogonophace of Astragalus, contains about 20 species and four sections, mostly endemic to the Qinghai-Tibetan Plateau (QTP). The uplift of the QTP undoubtedly affected organismic evolution in the region, but further molecular dating in a phylogenetic context is required to test whether diversification is linked...
ERIC Educational Resources Information Center
You, Zhuran; Hu, Yingzi
2013-01-01
The past decade or so has witnessed a large-scale reform of the Chinese national college entrance exam (the gaokao) system, which nonetheless has been trapped within a dilemma of balancing diversification and equality. Specifically speaking, the reform needs to reconcile the clash between adopting diverse and holistic college admissions to fix the…
ERIC Educational Resources Information Center
Oh, Jeongran
2011-01-01
Recent reforms of high school education in Korea have focused on transforming the uniform and standardized system into a deregulated and diversified system that has an emphasis on school choice and competition. Situating the high school diversification policy in the context of the recent controversy of the neoliberal educational reform, this study…
Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace.
Condamine, Fabien L; Toussaint, Emmanuel F A; Clamens, Anne-Laure; Genson, Gwenaelle; Sperling, Felix A H; Kergoat, Gael J
2015-07-02
One hundred and fifty years after Alfred Wallace studied the geographical variation and species diversity of butterflies in the Indomalayan-Australasian Archipelago, the processes responsible for their biogeographical pattern remain equivocal. We analysed the macroevolutionary mechanisms accounting for the temporal and geographical diversification of the charismatic birdwing butterflies (Papilionidae), a major focus of Wallace's pioneering work. Bayesian phylogenetics and dating analyses of the birdwings were conducted using mitochondrial and nuclear genes. The combination of maximum likelihood analyses to estimate biogeographical history and diversification rates reveals that diversity-dependence processes drove the radiation of birdwings, and that speciation was often associated with founder-events colonizing new islands, especially in Wallacea. Palaeo-environment diversification models also suggest that high extinction rates occurred during periods of elevated sea level and global warming. We demonstrated a pattern of spatio-temporal habitat dynamics that continuously created or erased habitats suitable for birdwing biodiversity. Since birdwings were extinction-prone during the Miocene (warmer temperatures and elevated sea levels), the cooling period after the mid-Miocene climatic optimum fostered birdwing diversification due to the release of extinction. This also suggests that current global changes may represent a serious conservation threat to this flagship group.
Schirrmeister, Bettina E; de Vos, Jurriaan M; Antonelli, Alexandre; Bagheri, Homayoun C
2013-01-29
Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE.
Piscivory limits diversification of feeding morphology in centrarchid fishes.
Collar, David C; O'Meara, Brian C; Wainwright, Peter C; Near, Thomas J
2009-06-01
Proximity to an adaptive peak influences a lineage's potential to diversify. We tested whether piscivory, a high quality but functionally demanding trophic strategy, represents an adaptive peak that limits morphological diversification in the teleost fish clade, Centrarchidae. We synthesized published diet data and applied a well-resolved, multilocus and time-calibrated phylogeny to reconstruct ancestral piscivory. We measured functional features of the skull and performed principal components analysis on species' values for these variables. To assess the role of piscivory on morphological diversification, we compared the fit of several models of evolution for each principal component (PC), where model parameters were allowed to vary between lineages that differed in degree of piscivory. According to the best-fitting model, two adaptive peaks influenced PC 1 evolution, one peak shared between highly and moderately piscivorous lineages and another for nonpiscivores. Brownian motion better fit PCs 2, 3, and 4, but the best Brownian models infer a slow rate of PC 2 evolution shared among all piscivores and a uniquely slow rate of PC 4 evolution in highly piscivorous lineages. These results suggest that piscivory limits feeding morphology diversification, but this effect is most severe in lineages that exhibit an extreme form of this diet.
Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C.
2013-01-01
Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE. PMID:23319632